
Contents 7-1

CHAPTER 7

Contents

Finder Interface

Introduction to the Finder Interface 7-3
About the Finder Interface 7-6
Using the Finder Interface 7-6

Giving a Signature to Your Application and a Creator and a
File Type to Your Documents 7-8
Creating Icons for the Finder 7-11
Creating Customized Document Icons 7-17
Creating File Reference Resources 7-18
Creating a Bundle Resource 7-20
How and When the Finder Launches Your Application 7-25
Displaying Messages When the Finder Can’t Find Your Application 7-27
Providing Version Resources 7-31
Using Finder Information in the Catalog File 7-32
Supporting Stationery Pads 7-34
Distributing Fonts, Sounds, and Other Movable Resources 7-36
Providing Balloon Help for Nondocument Icons 7-38
Using Aliases 7-39
Using the System Folder and Its Related Directories 7-41
The Desktop Database 7-45

Finder Interface Reference 7-46
Data Structures 7-46

File Information Record 7-47
Extended File Information Record 7-49
Directory Information Record 7-50
Extended Directory Information Record 7-50

Routines 7-51
Resolving Alias Files 7-51
Finding Directories 7-53

CHAPTER 7

7-2 Contents

Resources 7-56
The Signature Resource 7-57
The Icon List Resource 7-57
The Small Icon List Resource 7-58
The Large 4-Bit Color Icon Resource 7-59
The Small 4-Bit Color Icon Resource 7-60
The Large 8-Bit Color Icon Resource 7-61
The Small 8-Bit Color Icon Resource 7-62
The Icon Resource 7-63
The Color Icon Resource 7-64
The File Reference Resource 7-64
The Bundle Resource 7-65
The Missing-Application Name String 7-68
The Application-Missing Message String 7-68
The Version Resource 7-69

Summary of the Finder Interface 7-71
Pascal Summary 7-71

Constants 7-71
Data Types 7-73
Routines 7-74

C Summary 7-74
Constants 7-74
Data Types 7-76
Routines 7-77

Assembly-Language Summary 7-77
Data Structures 7-77

Result Codes 7-78

CHAPTER 7

Introduction to the Finder Interface 7-3

Finder Interface

The Finder is an application that works with the system software to keep track of files
and manage the user ’s desktop display. This chapter describes the programming
interface your application should use to interact with the Finder.

To use this chapter, you should be familiar with the Resource Manager. See the chapter
“Introduction to the Macintosh Toolbox” in this book for general information about
resources; detailed information about the Resource Manager and its routines is provided
in the chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox. Virtually
all software intended for Macintosh computers must use the Finder-related resources
described in this chapter.

Read this chapter to learn how to

■ set up the resources the Finder needs to display and start up your application

■ set up the resources the Finder uses to display information about other files related to
your application

■ check or change Finder-related information stored in a volume’s catalog file

■ support stationery pads

■ use the directories generally organized within the System Folder

This chapter does not explain how to use Apple events to communicate with the Finder.
When a user opens or prints a file from the Finder, the Finder sends information to your
application so that it can open or print the file. In System 7, applications that support
high-level events receive this information through the required Apple events.

Refer to Inside Macintosh: Interapplication Communication for instructions on how
your application should respond to these required Apple events that the Finder sends
to your application: Open Application, Open Documents, Print Documents, and Quit
Application. In addition, your application can use another set of Apple events—called
Finder events—to request services from the Finder. For example, your application can
ask the Finder to perform such operations as launching another application on your
behalf. Refer to Inside Macintosh: Interapplication Communication for more details.

Introduction to the Finder Interface

The Finder is an application that manages the user’s desktop interface. The desktop is
the working environment displayed on the Macintosh computer—namely, the gray
background area on the screen.

On the desktop, the Finder displays icons representing your application and the
documents it creates, and it tracks user activity. An icon is an image that the Finder
displays to graphically represent some object—such as a file, a folder, or the Trash—
that the user can manipulate. For example, Figure 7-1 on the next page shows icons that
the Finder displays for several sample applications (called SurfWriter 3.0, SurfPainter,
and SurfDB) and for a text document (named Some Memo) that a user has created
with the SurfWriter application. These icons are displayed in a window that the Finder
uses to display the contents of the disk icon labeled Essentials.

CHAPTER 7

Finder Interface

7-4 Introduction to the Finder Interface

Figure 7-1 Application and document icons in a window on the desktop

To distinguish your product for the user, you should design your own icons for all the
files associated with your application. For each file type that your application uses or
creates, you should define large, small, black-and-white, and 4-bit and 8-bit color icons—
each in a separate resource. Your application can then use another resource, called a
bundle resource, to assign these icons to all your files of a particular type. For example,
the document icon representing Some Memo in Figure 7-1 is the icon that the SurfWriter
application assigns to all text files that it creates. When double-clicking the icon for Some
Memo, the user asks the Finder to launch the SurfWriter application, which in turn
responds by opening the document Some Memo in a window.

Stationery pads are files that a user creates to serve as templates for other documents.
Editions are special files that contain data to be shared among applications. Query
documents contain commands and data in a format appropriate for a database or other
data source. If your application supports any of these document types, you can create
icons for the Finder that distinguish the stationery pads, editions, and query documents
that users create with your application. For example, Plate 4 at the front of this book
shows customized stationery pad and edition icons used for documents created with the
SurfWriter application. (Editions are described in Inside Macintosh: Interapplication
Communication. Query documents are described in Inside Macintosh: Communications.)

You might also like your application to create customized icons for documents on the
desktop. Or, if instead of producing an application, you produce and distribute
information documents (such as database files, stationery pads, query documents, clip
art libraries, or dictionaries) to be used by other applications, you can also provide
customized icons for the Finder that distinguish your documents.

Macintosh users have access to online assistance in the form of help balloons. You can
customize the help balloon that the Finder displays for your application icon. For
example, Figure 7-2 shows a customized help balloon for the SurfWriter application icon.

CHAPTER 7

Finder Interface

Introduction to the Finder Interface 7-5

Figure 7-2 A customized help balloon for an application icon

When appropriate, the Finder starts up your application and uses Apple events to tell
your application what documents to open or print. To perform these tasks, the Finder
relies on information you provide through resources. When the user creates or installs a
file, the File Manager (described in Inside Macintosh: Files) initially stores some of this
information in the volume’s catalog file. (The catalog file is a special file, located on a
volume, that contains information about the hierarchical organization of files and folders
on that volume.)

The Finder extracts from the catalog file the information you provide in your resources
and, for quick access to your resource information, the Finder uses that information to
build either a desktop database for all volumes over 2 MB or a Desktop file for volumes
under 2 MB. (The desktop database is a Finder-maintained database of icons, file types,
applications, version data, and comments; the Desktop file is a resource file in which the
Finder stores this information for volumes under 2 MB.)

You can even specify resources that identify your application when the user tries to open
a document and your application is missing. For example, if a user tries to open a
document named Instructions and the SurfWriter application is missing from the user’s
computer system, the Finder displays the alert box in Figure 7-3.

Figure 7-3 A Finder message identifying a missing application

The System Folder is a directory that contains the software that Macintosh computers
use to start up. The System Folder includes a set of folders for storing related files. Your
application may use several of these folders for storing its files. For example, you may
want to use the Preferences folder to store preferences files that your application needs
when starting up.

CHAPTER 7

Finder Interface

7-6 About the Finder Interface

About the Finder Interface

You can use the Finder interface to

■ create the resources—such as those describing icons—that the Finder uses to extract
and to display information about your application and its documents (Generally, all
applications should provide these resources for their files.)

■ determine and change the Finder information structure stored in a catalog file
(Generally, most applications need to determine—and many might wish to set—
information in the catalog file.)

■ support stationery pads so that users can easily use templates for their documents
(Generally, most applications that create documents should support stationery pads.)

■ locate the directories typically located in the System Folder (Generally, many
applications will want to access these directories.)

Using the Finder Interface

The Finder needs quick access to some key information about your application, such as
what icons to use when displaying your application and its documents. You supply most
of this information in the resource fork of your application file.

The Finder extracts this information and uses it to maintain its own database of the
resources it needs. The Finder records the location of your application on disk in
this database so that it can find your application quickly when the user opens one of
your documents.

For compatibility with the Finder, your application should have

■ a signature resource, so that the Finder can identify and start up your application
when a user double-clicks documents created by your application

■ a set of resources that describe icons that visually represent your application and
any documents it creates

■ a set of file reference resources, to link icons with the file types they represent and
to allow users to launch your application by dragging document icons to your
application icon

■ a bundle resource, to group together your application’s signature, icon, and file
reference resources

■ a size resource, to tell the Finder how much memory to allocate for your applica-
tion when it starts up and whether your application supports various system
software features

■ either a missing-application name string resource in your application’s documents
(to display the name of your application if the user tries to open or print a document

CHAPTER 7

Finder Interface

Using the Finder Interface 7-7

created by your application when your application is missing) or an application-
missing message string resource in your application’s documents (to explain why
the user can’t open or print a document used only by your application)

Note

Supply a missing-application name string resource for documents
that you intend for users to open with your application; supply an
application-missing message string resource for documents (such
as preferences files) that your application uses but that users
shouldn’t open. You supply only one of these resources in a document—
never both. ◆

Your application can also make use of these resources:

■ version resources, so that users can easily find out the version of your application and,
if applicable, the version of your application’s superset of files

■ a help resource, which the Finder uses to display your customized Balloon Help
message for your application, control panel, system extension, or desk accessory icon

If you sell or distribute data in the form of a document to be used by other applications,
you can assist users by providing

■ an appropriate file type to allow users to open your document from the Finder by
dragging its icon to an application icon or by choosing the Open command from the
File menu within an application

■ the resources describing an icon family to represent your document to the user

■ a missing-application name string resource or an application-missing message string
resource, so the Finder can assist users who try to open or print your documents from
the Finder

■ version resources, so that users can easily find out the version of your document and,
if your document file is one of a larger collection of files, the version of the entire
superset of files

A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. You can always check the information in the catalog file. In
particular, you may want to check the file type or creator for a file, or you may want to
check or set one of the Finder flags for a document. When opening a document, your
application should check a Finder flag to determine if the document is a stationery pad,
and, if it is, your application should copy the document’s contents into a new document
and open the new document in an untitled window.

Your application might wish to use the folders located in the System Folder. Those
you’re most likely to want to access are Preferences, Temporary Items, and Trash. For
example, you might wish to check for the existence of a user’s configuration file in
Preferences, create a temporary file in Temporary Items, or—if your application runs out
of storage when trying to save a file—check how much storage is taken by items in the
Trash directory and report this to the user. You can use the FindFolder function to get
the path information you need to gain access to these system-related directories.

CHAPTER 7

Finder Interface

7-8 Using the Finder Interface

In System 7, users can create Finder objects called aliases to aid them in organizing their
files. Ordinarily, when the user wants to open or print files, your application does not
need to be concerned with whether they are aliases because the Finder resolves aliases
before passing them to your application. However, if your application bypasses the
Finder (or the Standard File Package, which is described in Inside Macintosh: Files) when
manipulating documents, it should check for and resolve aliases itself by using the Alias
Manager function ResolveAliasFile .

The rest of this chapter describes in detail how to use these Finder features in your
application.

Giving a Signature to Your Application and a Creator and a
File Type to Your Documents
The Finder identifies your application through its signature, a unique four-character
sequence. The signature must not conflict with the signature of any other application.
To ensure uniqueness, you must register your application’s signature with Apple
Computer, Inc., at Macintosh Developer Technical Support.

Note

There is no need to register your own resource types because they’re
usually used in only your own applications or documents. ◆

You must include in your resource file a special resource that has your application’s
signature as its resource type. By convention, the signature resource has a resource ID
number of 0. The signature resource typically contains a string that specifies the name,
version number, and release date of your application. If you do not provide specific
version information through a version resource (described in “Providing Version
Resources” beginning on page 7-31), the Finder displays the string stored in the
signature resource when the user selects your application and chooses Get Info from
the File menu.

Listing 7-1 illustrates a signature resource in Rez input format. (Rez is the resource
compiler provided with Apple’s Macintosh Programmer’s Workshop [MPW], available
from APDA.)

Listing 7-1 Rez input for a signature resource

type 'WAVE' as 'STR '; /*WAVE is the signature*/

resource 'WAVE' (0, purgeable) { /*resource ID is 0*/

"SurfWriter 3.0 © 1992" /*default Get Info string*/

};

Note

The signature resource alone is not sufficient to establish your
application’s signature. You must also supply a bundle resource,
described in “Creating a Bundle Resource” beginning on page 7-20. ◆

CHAPTER 7

Finder Interface

Using the Finder Interface 7-9

Whenever your application creates a document, it assigns the document a creator and
a file type. Typically, as described in “Using Finder Information in the Catalog File”
beginning on page 7-32, your application sets its signature as the document’s creator.
When a user double-clicks a document or selects it and chooses Open or Print from the
Finder’s File menu, the Finder reads the creator field of that file to find the document’s
creator. The Finder then searches for an application with a signature by that name. When
it finds that application, the Finder launches it.

If the document’s creator is your application’s signature, for example, the Finder calls the
Process Manager to start your application. The Finder then passes to your application
the information it needs to open or print the document; since the introduction of
System 7, the Finder has used Apple events to pass this information to your application.
Inside Macintosh: Interapplication Communication describes how your application processes
the required Apple events to open or print files.

As described in “Using Finder Information in the Catalog File” beginning on page 7-32,
your application typically assigns a file type to a document when it creates one. The file
type can be a type especially defined for your application, or it can be one of the existing
general types, such as those listed here.

File type Description

'APPL' Launchable application

'DFIL' File for storing desk accessories

'DRVR' Driver

'FFIL' File for storing fonts

'INIT' System extension

'PICT' QuickDraw picture

'PRER' Printer driver

'RDEV' Chooser extension

'TEXT' Stream of ASCII characters

'adev' Network extension (such as EtherTalk 2.0)

'appe' Background-only application

'cdev' Control panel

'edtp' Edition for sharing graphics-oriented data

'edts' Edition for sharing sound-oriented data

'edtt' Edition for sharing text-oriented data

'ffil' Font

'ifil' Script system resource collection

'kfil' Keyboard layout

'pref' Preferences file

'qery' Query document for database access

'scri' System extension for script systems

'sfil' Sound

CHAPTER 7

Finder Interface

7-10 Using the Finder Interface

Note

Apple reserves the use of all signatures and file types whose names
contain only lowercase and nonalphabetic characters. Your signature
and the file types created especially for your application must each
contain at least one uppercase character. Since the system software
never displays signatures and file types to users, signatures and file
types can consist of character combinations that might otherwise be
incomprehensible to anyone but you. ◆

Like signatures, file types must be registered with Apple. Your application must have a
file type of 'APPL' . The creator field of your application file should contain its own
signature. Most programming environments provide a simple tool for setting the creator
field of your application file.

Your application can create documents of any type, and it can specify any application
as the creator. You could write a utility application, for example, that creates a new
document by opening one text file and appending onto it another text file. The applica-
tion would give the new document the same creator as the first original text file so
that the Finder can call on that application when the user wants to open or print the
new document.

Assign the standard file type 'TEXT' to files that consist of only text—that is, a stream of
characters with return characters at the ends of paragraphs. Most word processors allow
the user to create text-only files. A document of file type 'TEXT' can be opened or
printed by any application that accepts such file types. Your application can still assign
its own signature as the file’s creator so that the Finder can call on it to open or print the
file when appropriate.

Users can also open a document created by your application—as well as a document of a
file type supported by your application—by selecting its icon and dragging it to your
application’s icon. Because the document’s file type is stored in the catalog file and the
Finder stores a list of your application’s supported file types in the desktop database, the
Finder can determine whether to launch your application. If the document’s file type is
supported by your application, the Finder launches your application and passes it the
name of the document. (These topics are detailed in subsequent sections of this chapter.)

For example, if your application is a page-layout program, it might create documents of
its own file type while also supporting documents of 'TEXT' and 'PICT' file types. A
user can launch your application by dragging a document of any of these file types to
your application icon.

Your application also relies on file types to determine which files to let the user open
when your application is running. When your application calls the Standard File
Package to open a file, your application supplies either a list of the file types that your
application can open or a filter function for those types. The open file dialog box then
displays only files of the specified types. (See Inside Macintosh: Files for details.)

'tfil' TrueType font

'ttro' TeachText read-only file

'zsys' A system file (such as the System file itself)

File type Description

CHAPTER 7

Finder Interface

Using the Finder Interface 7-11

Creating Icons for the Finder
The Finder represents your files as icons. To distinguish your product for the user, you
can design your own icons for all the files associated with your application, including

■ your application file itself

■ standard documents created by your application

■ stationery pads that users create from your application’s documents

■ data-sharing editions that users create from your application’s documents

■ other special documents, such as read-only, graphics, and query documents, which
are either created by your Macintosh application or provided by you for use by other
Macintosh applications

For most effective display, you should create an icon family for each of your files.
An icon family is the set of icons that represent a single object, such as an application
or a document, that the Finder displays. An entire icon family consists of large
(32-by-32 pixel) and small (16-by-16 pixel) icons, each with a mask, and each available
in three different versions of color: black and white, 4 bits of color data per pixel, and
8 bits of color data per pixel. Specifically, the following icons make up the icon family
for a single file:

■ a large (32-by-32 pixel) black-and-white icon and mask—both of which you define in
an icon list ('ICN#') resource

■ a small (16-by-16 pixel) black-and-white icon and mask—both of which you define in
a small icon list ('ics#') resource

■ a large (32-by-32 pixel) color icon with 4 bits of color data per pixel—which you
define in a large 4-bit color icon ('icl4') resource

■ a small (16-by-16 pixel) color icon with 4 bits of color data per pixel—which you
define in a small 4-bit color icon ('ics4') resource

■ a large (32-by-32 pixel) color icon with 8 bits of color data per pixel—which you
define in a large 8-bit color icon ('icl8') resource

■ a small (16-by-16 pixel) color icon with 8 bits of color data per pixel—which you
define in a small 8-bit color icon ('ics8') resource

Plate 3 in the front of this book shows how the SurfWriter sample application uses these
resources to define the icon family for its application icon.

Somewhat related to these resources are the icon ('ICON') resource and the color icon
('cicn') resource. You can use either to describe a 32-by-32 pixel icon within some
element of your application. However, the Finder does not use or display any resources
that you create of type 'ICON' or type 'cicn' . Instead, your application uses these
resources to display icons within your application. Generally, you use an icon resource to
display a black-and-white icon in a menu or dialog box, as described in the chapters
“Menu Manager” and “Dialog Manager” in this book. (For example, the color alert box
in Plate 2 in the front of this book specifies a resource of type 'cicn' for the color icon
in the upper-left corner of the alert box.) If you provide a color icon ('cicn') resource
with the same resource ID as the icon ('ICON') resource, the Menu Manager and the
Dialog Manager display the color icons instead of the black-and-white icons for users
with color monitors.

CHAPTER 7

Finder Interface

7-12 Using the Finder Interface

Before creating icon families for your files, you should begin by designing a graphic
element that all of your icon families can share and that can help the users quickly
identify the files associated with your product. Figure 7-4, for example, illustrates how
a company uses the image of a wave in all of its application icons; these icons represent
the SurfWriter text-editing application, the SurfPainter graphics application, and the
SurfDB database application. As illustrated in Plate 4 at the front of this book, the wave
element is also included in icons representing the documents, stationery pads, and
editions that users create with these applications.

Figure 7-4 Large black-and-white application icons for a company’s product line

If you do not design your own icons, the Finder uses a set of its own default application
and document icons for display. Figure 7-5 shows the Finder ’s default large black-and-
white icons.

Figure 7-5 Default large black-and-white icons

CHAPTER 7

Finder Interface

Using the Finder Interface 7-13

Note
Desk accessories, displayed by default with the icon shown in
Figure 7-5, were designed for early versions of Macintosh system
software that did not support cooperative multitasking. Desk
accessories and applications are much more alike in their appearance
and behavior in System 7. Because there are no longer any compelling
reasons for creating desk accessories, you should generally write a
small application instead of a desk accessory if you wish to create
a small or simple program. ◆

If you don’t want the Finder to display the default icons for your application or
documents, you must at least define an icon list ('ICN#') resource for each icon.

The term icon list has become a bit of a misnomer, because you can define only two
images in the icon list resource: a 32-by-32 pixel black-and-white icon and its mask.
To define color and 16-by-16 pixel icons for a file, you create additional resources, as
described later in this section. (If you don’t define color versions of your icons, the
Finder displays the black-and-white icon defined in your icon list resource on all
displays, and if you don’t define 16-by-16 pixel icons, the Finder algorithmically reduces
the 32-by-32 pixel icon to half size when needed.)

An icon list resource defines one icon. It contains two icon descriptions: the actual icon
for display and an all-black mask that shows the area covered by the icon. The Finder
uses the mask to crop the icon’s outline into whatever background color or pattern is on
the desktop. The Finder then draws the icon into this shape. Therefore, it’s important
that the mask be exactly the same shape as the icon. The mask also defines the area that
users need to click to select the icon. Therefore, it’s best not to have any holes in the
mask; otherwise, users may have trouble selecting your icon.

Figure 7-6 illustrates a black-and-white icon and its mask for an application. The area
around the pencil just underneath the wave creates a problem with this sample icon and
its mask: like a hole in a mask, it creates two small areas within the middle of the icon
that the user cannot select with the cursor.

Figure 7-6 A black-and-white icon and its mask for an application

CHAPTER 7

Finder Interface

7-14 Using the Finder Interface

An icon list resource is defined to be an array of two items of type String[128] ; each
bit in the first array represents a pixel in the 32-by-32 pixel icon, and each bit in the
second array represents a pixel in the 32-by-32 pixel mask. Typically, you use a high-level
tool such as the ResEdit application, which is available through APDA, to create your
icon list resources. Figure 7-7 shows how the icon list resource for the icon in Figure 7-6
was created using the ResEdit icon editor. When you are satisfied with the appearance of
your icons, you can use the DeRez decompiler to convert your icon list resources into
Rez input.

Listing 7-2 is a partial listing of the icon list resource’s Rez input that describes the
application icon shown in Figure 7-7; Listing 7-2 also shows partial listings for the icon
list resources used for the icons that represent the documents created by the application.
This listing and those that follow in this chapter use Rez input format to help you
understand the format of the resources and see how they work together.

Figure 7-7 The ResEdit view of an icon

Listing 7-2 Rez input for an icon list resource

data 'ICN#' (128, purgeable) { /*application icon & mask*/
/*array: 2 elements*/
/*[1]: the application icon*/

$"0E 00 00 00" /*1st line of icon: 4 bytes (32 bits)*/
. /*32 lines total in icon*/
.
.
, /*[2]: the mask*/
$"0E 00 00 00 /*1st line of mask: 4 bytes (32 bits)*/
. /*32 lines total in mask*/
.
.

};

CHAPTER 7

Finder Interface

Using the Finder Interface 7-15

data 'ICN#' (129, purgeable) { /*text document icon and mask*/
/*icon data goes here*/

};
data 'ICN#' (130, purgeable) { /*stationery pad icon & mask*/

/*icon data goes here*/
};
data 'ICN#' (131, purgeable) { /*edition icon & mask*/

/*icon data goes here*/
};

You can also define a small (16-by-16 pixel) version of your icon in a small icon list
resource (that is, in a resource of resource type 'ics#'). On black-and-white monitors,
the Finder displays the small icon in windows when the user chooses by Small Icon
from the View menu. On black-and-white monitors, the small icon also appears in the
Application menu after the user launches your application and in the Apple menu if
the user places your application or an alias to it in the Apple Menu Items folder. (Alias
files and the Apple Menu Items folder are described, respectively, in “Using Aliases”
beginning on page 7-39 and “Using the System Folder and Its Related Directories”
beginning on page 7-41.)

You should also define color versions of both large and small icons by using several
resource types. The resource for each icon variation has the same resource ID as the icon
list resource that defines the large black-and-white icon. For example, if the resource ID
number of your application icon’s icon list resource is 128, its small icon list resource
should have a resource ID number of 128; and the following resources should also have
resource IDs of 128: the large 4-bit color icon resource, the small 4-bit color icon resource,
the large 8-bit color icon resource, and the small 8-bit color icon resource.

Don’t define masks for the resources that define color icons. The large 4-bit color icon
resource and large 8-bit color icon resource use the black-and-white icon mask defined in
their companion icon list resource, and the small 4-bit color icon resource and small 8-bit
color icon resource use the black-and-white icon mask defined in their companion
'ics#' resource. Because of this, the outline shapes of your color icons should exactly
match those defined in your 'ICN#' and 'ics#' resources.

ResEdit 2.1 includes an icon family editor to help you easily manage the creation of these
related resources. See the ResEdit Reference for details.

See Macintosh Human Interface Guidelines for information about the most effective use of
color and shape for your icons. It is generally best that you first create the black-and-
white icons in the icon list resource and small icon list resource and then add color to
them using the resources that define color icons. Don’t alter the shapes of your icons
among these resources; otherwise, the masks defined in the icon list resource and the
small icon list resource won’t match these shapes. Choose your colors from the 36
recommended icon colors in the system palette. (If you use ResEdit 2.1, these colors
appear in a palette when you choose Apple Icon Colors from the Color menu.) Note that
you cannot specify your own color table for these resources.

For more information about color palettes, see Inside Macintosh: Imaging. Although the
Palette Manager allows you to define a palette for the system to use when it needs to
define the color environment, you should rely on the system palette colors for your

CHAPTER 7

Finder Interface

7-16 Using the Finder Interface

icons. Users may often use the Finder when your application is not running, and the user
can switch to another application when your application is running. Relying on the
system palette gives your icons a more consistent look in the Finder regardless of what
the active application is. Also, because users can change the desktop color and pattern,
your application gives users more control over their work environment if your icons rely
on the system palette. Users can always alter your color definitions by selecting an icon
and choosing a color from the Label menu. The Finder then blends the chosen color into
those of the selected icon. To restore the original colors, users must choose None from
the Label menu.

If your application creates documents, it should also define at least two additional icon
families: one to be displayed for documents created by your application and another
to be displayed when the user creates a stationery pad from one of your applica-
tion’s documents. (“Supporting Stationery Pads” beginning on page 7-34 describes
stationery pads.)

If your application creates other variations of its documents, you can assist your users
by providing different icons for the different documents. For example, TeachText has
separate icon families to distinguish its read-only and graphics documents.

If your application supports data sharing through the Edition Manager, your application
should also define an icon family for editions. The Edition Manager (described in Inside
Macintosh: Interapplication Communication) allows users to share and automatically
update data from numerous documents and applications. For example, a user might
want to capture sales figures and totals from within a spreadsheet and then include this
information in a word-processing document that summarizes sales for a given month. If
both the spreadsheet and word-processing applications support the Edition Manager, the
user begins by selecting data within the spreadsheet document and creating a publisher.
The spreadsheet application then writes a copy of that data to a separate file, called an
edition. The edition is represented by an icon; by default, it appears as the edition icon
shown in Figure 7-5 on page 7-12. If the user opens a word-processing document and
creates a subscriber to the spreadsheet document’s edition, the word-processing
application then incorporates the desired sales figures and totals from the spreadsheet
document’s edition into the document.

If you design your application to create editions, consider creating an icon that uniquely
identifies your editions and that associates them with your application’s documents. The
file type for your edition containers should be 'edtt' (for text-oriented data), 'edtp'
(for graphics-oriented data), or 'edts' (for sound-oriented data); and the creator, of
course, should be the signature of your application.

If your Macintosh application is a database program or serves as a source for data (as
a spreadsheet program often does), you might wish to create query documents so that
other Macintosh applications can gain access to that data through the Data Access
Manager; in this case, your application should also define an icon family for its query
documents. (See Inside Macintosh: Communications for information on sharing data in
this manner.)

Plate 4 at the front of this book shows the large color icons for the various documents
that the sample SurfWriter application creates: text documents, stationery pads,
and editions.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-17

Defining icon resources is not enough to display your icons. In addition, you must
follow one of two sets of procedures:

■ If you are an application developer, you must define file reference resources and a
bundle resource for your application, as described in “Creating File Reference
Resources” beginning on page 7-18 and “Creating a Bundle Resource” beginning on
page 7-20.

■ If you are an information provider or a database developer—that is, if you provide
documents that are used by other applications—you don’t need to create file reference
resources or a bundle resource to provide document icons on Macintosh computers
running System 7. You can instead create customized icons for your documents as
described in the following section.

Creating Customized Document Icons
You can create customized icons for your documents. Users can also create customized
icons. When an icon list resource is stored with a resource ID of –16455 in the resource
fork of a file, the Finder uses the large, small, 4-bit and 8-bit color, and black-and-white
icons defined in resources with that resource ID as customized icons in place of the
Finder’s default icon and in place of any icons listed in the file’s bundle resource.

Note

Although an application can assign icons to it all of its documents by
associating their icons with the documents’ file types in a bundle
resource (as explained in “Creating File Reference Resources” beginning
on page 7-18 and “Creating a Bundle Resource” beginning on
page 7-20), a customized icon can represent only one specific file—that
file that has an icon list resource with a resource ID of –16455 in its
resource fork. ◆

Users of System 7 are able to customize individual icons. By selecting a file and choosing
Get Info from the File menu, the user sees the information window for that file. The
user can then select the icon displayed in the upper-left corner of the information
window and use the Paste command in the Edit menu to replace it with a picture from
the Clipboard. The Finder creates a family of icons based on the user’s customized
icon, assigns a resource ID number of –16455 to each resource in the icon family, stores
these resources in the resource fork of the file that the icon represents, and sets the
hasCustomIcon bit in the file’s Finder flags field. (Finder flags are described in detail
in “File Information Record” beginning on page 7-47.)

Your application can use the same strategy to provide customized icons for the
documents that it creates. For example, a drawing application might create miniature
versions of the illustrations contained within its documents and use those for the
documents’ icons.

If you are a database developer who creates and distributes query documents that
support the Data Access Manager, you can also use this strategy to create icons that
identify your database’s query documents. Similarly, if instead of producing an
application you produce and distribute information (such as database files, stationery
pads, clip art libraries, or dictionaries) to be used by other applications, you might want
to provide icons that distinguish your documents.

CHAPTER 7

Finder Interface

7-18 Using the Finder Interface

To make the Finder display customized icons for a document, you must create—at least—
an icon list resource with resource ID –16455 and store it in the document’s resource
fork. (To create this while your application is running, your application can call the
AddResource procedure, described in the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.) You can use the following constant in place of
the ID number:

CONSTkCustomIconResource = –16455; {res ID for custom icon}

If you provide only an icon list resource, the Finder uses a black-and-white icon on all
screen displays and automatically reduces it when a small version of the icon is required.
To create color versions and to define a small version of the icon, create an entire icon
family as described in “Creating Icons for the Finder” beginning on page 7-11.

After creating resources for icons using the kCustomIconResource constant as their
IDs, you must set the hasCustomIcon bit in the file’s Finder flags field. To prevent
users from changing these icons, set the nameLocked bit in the file’s Finder flags field.
(Most development environments provide tools for setting these bits. “Using Finder
Information in the Catalog File” beginning on page 7-32 describes how to determine
and set these Finder flags.)

Creating File Reference Resources
File reference ('FREF') resources perform two main functions. First, they associate icons
you define with file types used by your application. Second, they allow users to drag
document icons to your application icon in order to open them from your application.

Create a file reference resource for your application file itself and create separate file
reference resources for each file type that your application can open. Listing 7-3 shows,
in Rez input format, the file reference resources for the SurfWriter application file, text
documents, stationery pads, and editions and for TeachText read-only documents.

Each file reference resource specifies the following items:

■ a file type

■ the local ID of an icon list resource as assigned in the bundle resource

■ an empty string

The file type can be defined for files created by your application only, for files created by
other applications that your application supports, or for files of the existing general
types, such as 'TEXT' and 'PICT' .

As described in the next section, “Creating a Bundle Resource,” the local ID maps the
file type to an icon list resource that is assigned the same local ID in the bundle resource.
If you wanted two file types to share the same icon, for example, you could create two
separate file reference resources that share the same local ID, which the bundle resource
would map to the same icon list resource. (Creating two file types that share the same
icon is not recommended, however, because a shared icon would make it very difficult
for the user to distinguish between the different file types while using the Finder.)

CHAPTER 7

Finder Interface

Using the Finder Interface 7-19

Listing 7-3 Rez input for file reference resources

resource 'FREF' (208, purgeable) { /*SurfWriter application*/

'APPL', /*type 'APPL'*/

0, /*maps to icon list resource w/ local ID 0 in bundle resource*/

"" /*leave empty string for name: not implemented*/

};

resource 'FREF' (209, purgeable) { /*SurfWriter document*/

'TEXT', /*type 'TEXT'*/

 1, /*maps to icon list resource w/ local ID 1 in bundle resource*/

""

};

resource 'FREF' (210, purgeable) { /*SurfWriter stationery pad*/

'sEXT', /*type 'sEXT'*/

2, /*maps to icon list resource w/ local ID 2 in bundle resource*/

""

};

resource 'FREF' (211, purgeable) { /*SurfWriter edition*/

'edtt', /*type 'edtt'*/

3, /*maps to icon list resource w/ local ID 3 in bundle resource*/

""

};

resource 'FREF' (212, purgeable) { /*TeachText read-only files*/

'ttro', 4 , "" / *These documents have TeachText as their */

/* creator. Finder uses TeachText's icon list resource */

/* for these documents. Included here so users */

/* can drag these docs to SurfWriter's app icon*/

};

If you provide your own icon for the stationery pads that users create from your
application’s documents, create a file reference resource for your stationery pads.
Assign this file reference resource a file type in the following manner: use the file type
of the document upon which the stationery pad is based, but replace the first letter of
the original document’s file type with a lowercase s. As with other file reference
resources, you map this to an icon list resource in the bundle resource. (This convention
necessitates that you make the names of your documents’ file types unique in their last
three letters.)

For example, in Listing 7-3, the 'sEXT' file type assigned within the file reference
resource is used for stationery pads created from documents of the 'TEXT' file type. In
this case, when the isStationery bit (described in “Using Finder Information in the
Catalog File” beginning on page 7-32) is set on a document of file type 'TEXT' , the
Finder looks in the SurfWriter application’s bundle ('BNDL') resource to determine
what icon is mapped to documents of type 'sEXT' . The Finder then displays the
document using the stationery pad icon shown in Plate 4 at the front of this book.

CHAPTER 7

Finder Interface

7-20 Using the Finder Interface

When the user drags a document icon to your application icon, the Finder checks a list
that it maintains of your file reference resources. If the document’s file type appears in
this list, the Finder launches your application with a request to open that document.

If your application supports file types for which it doesn’t provide icons, you can still
define file reference resources for them, and then users can launch your application by
dragging these document icons to your application icon. For example, the file reference
resource with resource ID 212 in Listing 7-3 on page 7-19 is created so that the Finder
launches the SurfWriter application when users drag TeachText read-only documents to
the SurfWriter application icon. Since these documents have TeachText as their creator,
the Finder displays the icon that the TeachText application defines for them in its own
bundle resource.

By supporting the Open Documents event, you can also specify disks, folders, and a pair
of wildcard file types in your file reference resources so that users can launch your
application by dragging their icons to your application icon. As explained in Inside
Macintosh: Interapplication Communication, the Open Documents event is one of the four
required Apple events. After the Finder uses the Process Manager to launch an
application that supports high-level events, the Finder sends your application an Open
Documents event, which includes a list of alias records for objects that the application
should open.

Because alias records can specify volumes and directories as well as files, an Open
Documents event gives you the opportunity to handle cases in which users drag disk
or folder icons to your application. (Alias records are described in “Using Aliases”
beginning on page 7-39.) Create a file reference resource and specify 'disk' as the
file type to allow users to drag hard disk and floppy disk icons to your application icon.
Create a file reference resource and specify 'fold' as the file type to allow users to
drag folder icons to your application icon.

You can create a file reference resource that specifies '****' as the file type to allow
users to drag all file types—including applications, system extensions, documents, and
so on, but not including disks or folders—to your application icon. If you create three file
reference resources that specify 'disk' , 'fold' , and '****' as their file types and if
your application supports the Open Documents event, you effectively allow users to
launch your application by dragging any icon to your application icon. It is up to your
application to open disks, folders, or all possible file types in a manner appropriate to the
needs of the user.

Creating a Bundle Resource
A bundle ('BNDL') resource associates all of the resources used by the Finder for your
application; in particular, it associates your application and its documents with their
icons. The bundle resource contains

■ the application’s signature

■ the resource ID number of its signature resource (which should always be 0)

■ the assignment of local IDs to the resource IDs of all icon list resources defined for the
application; the local IDs must be the same as those assigned within corresponding
file reference resources

CHAPTER 7

Finder Interface

Using the Finder Interface 7-21

■ the assignment, for compatibility reasons, of local IDs to file reference resource IDs
(For consistency, these can be the same local IDs that are assigned inside the file
reference resources, but they don’t have to be—they only need to be unique for every
file reference resource.)

When the Finder first displays your application on the user’s desktop, it checks the
catalog file (described in detail in “Using Finder Information in the Catalog File”
beginning on page 7-32) to see if your application has a bundle resource. If it doesn’t,
the Finder displays the default icons shown in Figure 7-5 on page 7-12. If your
application has a bundle resource, the Finder installs the information from the bundle
resource and all its bundled resources into either the desktop database for a hard disk
or into the Desktop file for a floppy disk and uses this information to display icons for
the file types associated with your application.

You must assign local IDs to your icon list resources within your bundle resource. Make
sure that for all your file types with icons, these local IDs match the local IDs you
assigned inside their corresponding file reference resources. In the Desktop file on floppy
disks (and on hard disks running earlier versions of system software), the Finder
renumbers the resource IDs that you’ve assigned to your resources to avoid conflicts
with the resources of other applications. Therefore, the bundle resource has to rely on
these local IDs to map icon list resources to their file reference resources; that is, the
bundle resource uses the local ID you assign to an icon list resource to map it to the file
reference resource that has specified the same local ID.

For example, the file reference resource with resource ID 208 in Listing 7-3 on page 7-19
shows that the file type 'APPL' (the SurfWriter application file) is assigned a local ID
of 0. In the bundle resource shown in Listing 7-4, you see that local ID 0 is assigned to
the icon list resource with resource ID 128. This maps the icon defined by this resource
(see Figure 7-7 on page 7-14) to the SurfWriter application file. Listing 7-4 shows
the bundle resource for the icons and file reference resources defined in Listing 7-2 on
page 7-14 and in Listing 7-3 on page 7-19.

Listing 7-4 Rez input for a bundle resource

resource 'BNDL' (128, purgeable) { /*SurfWriter bundle resource*/

'WAVE', /*SurfWriter signature*/

0, /*resource ID of signature resource: should be 0*/

{

'ICN#', { /*mapping local IDs in 'FREF's to 'ICN#' IDs*/

0, 128, /*'FREF' w/ local ID 0 maps to 'ICN#' res ID 128*/

1, 129, /*'FREF' w/ local ID 1 maps to 'ICN#' res ID 129*/

2, 130, /*'FREF' w/ local ID 2 maps to 'ICN#' res ID 130*/

3, 131 /*'FREF' w/ local ID 3 maps to 'ICN#' res ID 131*/

/*no 'FREF' with local ID 4 in this list: */

/* TeachText's icons used for 'ttro' file type*/

},

CHAPTER 7

Finder Interface

7-22 Using the Finder Interface

'FREF', { /*local res IDs for 'FREF's: no duplicates*/

10, 208, /*local ID 10 assigned to 'FREF' res ID 208*/

11, 209, /*local ID 11 assigned to 'FREF' res ID 209*/

12, 210, /*local ID 12 assigned to 'FREF' res ID 210*/

13, 211, /*local ID 13 assigned to 'FREF' res ID 211*/

14, 212 /*local ID 14 assigned to 'FREF' res ID 212*/

}

}

};

In Listing 7-4, notice that you also assign local IDs to file reference resources inside the
bundle resource. This assignment is superfluous because the Finder doesn’t map these
local IDs to any other resources. The local ID assignment for file reference resources
inside the bundle resource was implemented for the earliest versions of Macintosh
system software, and it remains this way today to maintain backward compatibility. For
compatibility with the format of the bundle resource, assign local IDs to file reference
resource IDs. You may number them any way you like, except that each local ID in this
particular list must be unique.

Of all the icon resource types that make up an icon family, you need to list only the icon
list resource in the bundle resource. The Finder automatically recognizes and loads all
the other members of the icon family—provided that you have given them the same
resource IDs that you have assigned to your icon list resource.

If the user drags documents created by other applications to your application icon, and
if you have created file reference resources for these documents’ file types, the Finder
launches your application and passes it the names of the documents. You should create
file reference resources for all file types that your application supports. Do not provide
icon resources for file types created by other applications because the Finder won’t use
them, but will instead use the icon resources defined by the documents’ creators. Though
the local IDs of such a file reference resource are superfluous in the file reference resource
and at the bottom of the bundle resource, the resource formats require that you provide
local IDs in both.

For example, notice in Listing 7-3 on page 7-19 that the file reference resource with
resource ID 212 is assigned a local ID of 4, but that no icon list resource is assigned to
local ID 4 in the bundle resource in Listing 7-4 on page 7-21. This file reference resource,
which specifies a file type of 'ttro' , was created in Listing 7-3 to make the Finder
launch the SurfWriter application when users drag TeachText read-only documents to
the SurfWriter application icon. No icon mapping is made for this file type in the
SurfWriter application’s bundle resource because the Finder displays the icons defined
for it by the TeachText application. The file reference resource with resource ID 212 is
assigned to local ID 14 in the bundle resource in Listing 7-4 because the format of the
resource requires a local ID for all associated file reference resources.

You alert the Finder that your application has a bundle resource by setting a bit in the
file’s Finder flags field. (Most development environments provide a simple tool for
setting the bundle bit. “Using Finder Information in the Catalog File” beginning on
page 7-32 describes Finder flags.)

CHAPTER 7

Finder Interface

Using the Finder Interface 7-23

Figure 7-8 illustrates how the bundle resource created in Listing 7-4 uses local IDs to
map icon list resources to file reference resources. This figure illustrates two main
concepts: first, that one bundle resource ties together all the icon resources and file
reference resources for your application and all of its documents; and second, that the
icon resources and their associated file reference resources are mapped together by
local IDs.

Figure 7-8 Linking icon list resources and file reference resources in a bundle resource

CHAPTER 7

Finder Interface

7-24 Using the Finder Interface

In Figure 7-8, the application file’s icon list resource has resource ID 128 while its file
reference resource has resource ID 208. For easier code maintenance, you should
probably assign the same resource ID to a file’s file reference resource that you assign
to its icon list resource. However, because the Finder renumbers these whenever it
adds them to a Desktop file on floppy disks, you must map them by using local IDs. In
Figure 7-8, the application file’s icon list resource is assigned local ID 0. This maps the
icon to the file type described by the file reference resource with local ID 0—in this case,
the file reference resource with resource ID 208.

The general steps you must take to provide icons for applications and documents are
enumerated here and assume that you are using a tool, such as ResEdit, that allows you
to open and edit several resources simultaneously. (Remember that these resources must
have resource IDs of 128 or greater.)

To provide your application with icon families for itself and for its documents, follow
these steps:

1. Design a graphic element that all of your icon families can share in common and that
can help users quickly identify the files associated with your product.

2. Create an icon list ('ICN#') resource for your application file.

3. Create the other members of the icon family of the application file—resources of types
'ics#' , 'icl8' , 'icl4' , 'ics8' , and 'ics4' —and give each of these the same
resource ID as the icon list resource.

4. Create a bundle ('BNDL') resource.

5. Within the bundle resource, list the resource ID number of the application file’s icon
list resource and assign it a local ID of 0.

6. Create a file reference resource for the application file.

7. Within the file reference resource, assign the application a file type of 'APPL' and
assign it a local ID of 0.

8. Within the bundle resource, list the resource ID number of the file reference resource
for the application file and assign it a unique local ID—for example, 0 to maintain
consistency with the local ID assigned in the file reference resource.

9. Create another icon family—consisting of resources of types 'ICN#' , 'ics#' ,
'icl8' , 'icl4' , 'ics8' , and 'ics4' —to represent one type of document that
your application creates.

10. Within the application’s bundle resource, list the resource ID number of the
document’s icon list resource and assign it a local ID of 1.

11. Create a file reference resource for the document.

12. Within the file reference resource for the document, assign it a file type (for example,
'TEXT' or 'edtt') and assign it a local ID of 1.

13. Within the bundle resource, list the resource ID number of the file reference resource
for the document and assign it a unique local ID—for example, 1 to maintain
consistency with the local ID assigned in the file reference resource.

14. Assigning unique local IDs for every type of document your application creates,
repeat steps 9 through 13.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-25

15. If your application supports file types of other applications, define file reference
resources for them, but do not create icon resources for them.

16. Create a signature resource (as described in “Giving a Signature to Your Application
and a Creator and a File Type to Your Documents” beginning on page 7-8) with
resource ID 0.

17. Set the file’s hasBundle bit and clear the hasBeenInited bit in the file’s Finder
flags. (Finder flags are described in “Using Finder Information in the Catalog File”
beginning on page 7-32.)

18. Save and close all of the resources. (When you restart your Macintosh computer, your
application should appear with its own icon. If you later alter any of your icons, clear
the hasBeenInited bit and rebuild your desktop database by pressing Command-
Option when restarting.)

How and When the Finder Launches Your Application
The previous sections in this chapter explain the resources that the Finder uses to display
and launch your application. This section provides a brief summary of how the Finder—
using the previously described resources—starts up your application whenever the user
requests the Finder to launch your application or to open or print a document supported
by your application.

The simplest scenarios under which the Finder launches your application occur when
the user double-clicks your application icon or selects it and chooses Open from the
Finder’s File menu. In these cases, the Finder calls the Process Manager to start your
application. As explained in Inside Macintosh: Processes, the Process Manager creates a
partition of memory for your application, loads your code into this partition, and sets up
the stack, heap, and A5 world for your application. The Process Manager returns control
to the Finder.

If your application supports the required Apple events (as explained in Inside Macintosh:
Interapplication Communication), the Finder sends your application an Open
Application event and then relinquishes control to your application. Your application
then performs the tasks necessary to open itself—displaying an untitled document
window, for example.

When the user requests the Finder to open or print a document supported by your
application, the Finder calls the Process Manager and launches your application in the
same way, except that the Finder sets up the information your application needs to open
or print the document and passes this information to your application. This information
includes a list of files to open or print. In System 7, applications receive this information
through Apple events, which are described in Inside Macintosh: Interapplication
Communication.

The user can request the Finder to open documents created by your application by
double-clicking one of their icons, and the user can request the Finder to open or print
documents by selecting one or more icons and choosing Open or Print from the Finder’s
File menu. The Finder reads the creator field of each selected file to find the document’s
creator. Typically (as described in “Using Finder Information in the Catalog File”
beginning on page 7-32), your application sets the four-character string specified in its

CHAPTER 7

Finder Interface

7-26 Using the Finder Interface

signature resource as the creator of its documents. The Finder searches for the applica-
tion whose signature matches each document’s creator. If the document’s creator
matches your application’s signature, the Finder calls the Process Manager, launches
your application, and then passes your application the name of the selected document
or selected multiple documents in an Open Documents or a Print Documents event.
Your application should then open the documents in titled windows or print them, as
appropriate. (See Inside Macintosh: Files for detailed information about opening
documents; see Inside Macintosh: Imaging for detailed information about printing them.)

If the user tries to open documents created by your application and your application is
missing, the Finder displays an alert box telling the user that your application is missing.
The Finder displays the name of your application in this alert box if you provide your
documents with a missing-application name string resource, as described in “Displaying
Messages When the Finder Can’t Find Your Application” beginning on page 7-27.

Sometimes when your application is already running, the user might double-click a
document created by your application. In this case, the Finder sends your application
the Open Documents event.

The user can also request the Finder to launch your application by dragging one icon or
several icons to your application’s icon. The Finder determines whether to launch your
application by comparing the document’s file type (which is stored in the catalog file)
against the list of your application’s supported file types. The Finder compiles this list
from the file reference resources you create for your application; the Finder stores this
list in the desktop database. If the document’s file type appears in the file reference
resource list for your application, the Finder calls the Process Manager, launches your
application, and passes it the name of the selected document or selected multiple
documents in an Open Documents event. Your application should then open the
documents in titled windows.

You can also specify disks, folders, and a wildcard file type for all other files in your file
reference resources so that users can launch your application by dragging their icons to
your application icon, in which case the Finder launches your application and sends it an
Open Documents event. An Open Documents event includes a list of alias records for ob-
jects that the application should open. It is up to your application to open disks, folders,
or all possible file types in a manner appropriate to the needs of the user. (Alias records
are described in “Using Aliases” beginning on page 7-39.)

To support stationery, your application should specify the isStationeryAware
constant in its 'SIZE' resource and always check the isStationery bit of a document
passed to it by the Finder. If the isStationery bit is set for a file that the user wants to
open, your application should copy the stationery pad’s contents into a new document
and open the document in an untitled window. This is described in “Supporting
Stationery Pads” beginning on page 7-34.

In System 7, users can create aliases, which are objects that represent other files,
directories, or volumes. If the user opens an alias that represents a document created by
your application, the Finder resolves the alias for you; that is, it passes your application
the name and location of the document itself, not the alias.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-27

Displaying Messages When the Finder Can’t Find
Your Application
When the user double-clicks a file or selects it and chooses either the Open or the Print
command from the Finder’s File menu, the Finder looks for the application whose
signature is stored in the file’s creator field. The Finder starts up that application and
tells it which documents the user wants to open or print. If the Finder cannot find the
creator application, it displays an alert box.

If the document is of file type 'TEXT' or 'PICT' and if the TeachText application is
available, an alert box asks the user whether the TeachText application should be
used to open the document. For documents of any other file type, or if the TeachText
application is not present, the Finder displays an alert box like the one shown in
Figure 7-9. Your application should store one of two string resources in its documents
to make the alert box message more useful than the default shown in Figure 7-9.

Figure 7-9 The default application-unavailable alert box

Before displaying the default message shown in Figure 7-9, the Finder looks in the
document for one of two special 'STR ' resources with resource ID numbers of –16396
and –16397: the missing-application name string and the application-missing message
string, respectively. If the Finder can’t find the document’s creator on any mounted
volume, it looks first for the application-missing message string resource. Provide an
application-missing message string resource if you do not intend for users to open the
file. The message should explain why the file can’t be opened. If the Finder does not find
an application-missing message string resource, it looks for the missing-application
name string resource. Provide a missing-application name string resource if you intend
for users to open the file. The missing-application name string should be your applica-
tion’s name; the Finder displays it in an alert box to inform the user that your application
is needed.

Supply either the application-missing message string resource or the missing-application
name string resource; don’t supply both. Supply an application-missing message string
resource for documents (such as a preferences file) that your application uses but that
users should not open; supply a missing-application name string resource for documents
that you intend for users to open with your application.

Your missing-application name string resource (an 'STR ' resource with a resource ID
number of –16396) should contain the name of your application. Listing 7-5 on the next
page shows a missing-application name string resource for the SurfWriter application.

CHAPTER 7

Finder Interface

7-28 Using the Finder Interface

Listing 7-5 Rez input for a missing-application name string resource

resource 'STR ' (-16396, purgeable) { /*the application name*/

"SurfWriter"

};

You can store this resource in the resource fork of your application. When your applica-
tion saves a document for the first time, it should copy the missing-application name
string resource from your application’s resource fork to the resource fork of the newly
created document. Listing 7-6 shows a fragment of an application-defined function
called DoSaveAsCmd, which the application calls when the user chooses the Save As
command from the File menu. (For a description of the File Manager routines used here
to create, open, and save the resource file, see Inside Macintosh: Files.)

Listing 7-6 Storing a missing-application name string resource in the resource fork of
a document

VAR

myData: MyDocRecHnd; {handle to document record}

myErr: OSErr;

myFile: Integer; {file reference number}

{with the DoSaveAsCmd routine: create document's resource fork}

FSpCreateResFile(myData^^.fileFSSpec, 'MYAP', 'TEXT',

smSystemScript);

myErr := ResError;

IF myErr = noErr THEN {open the resource fork}

myFile := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

IF myFile > 0 THEN {copy the missing-application name string}

myErr := DoCopyResource('STR ', -16396, gAppsResFile, myFile)

ELSE

myErr := ResError;

IF myErr = noErr THEN

myErr := FSClose(myFile); {close the resource fork}

Listing 7-7 shows the application-defined function DoCopyResource , which copies the
missing-application name string resource from the application’s resource fork into the
newly created document’s resource fork. (For a description of the Resource Manager
routines used here to set, open, and write the resource file, see the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox.)

CHAPTER 7

Finder Interface

Using the Finder Interface 7-29

Listing 7-7 Copying the missing-application name string resource into the resource fork of
a document

FUNCTION DoCopyResource (theType: ResType; theID: Integer;
 source: Integer; dest: Integer): OSErr;

VAR
myHandle: Handle; {handle to resource to copy}

myName: Str255; {name of resource to copy}
myType: ResType; {ignored; used for GetResInfo}
myID: Integer; {ignored; used for GetResInfo}

BEGIN
UseResFile(source); {set the source resource file}
myHandle := GetResource(theType, theID); {open the source}
IF myHandle <> NIL THEN

BEGIN
GetResInfo(myHandle, myID, myType, myName); {get resource }

{ name}
DetachResource(myHandle); {detach resource}

UseResFile(dest); {set the destination resource file}
AddResource(myHandle, theType, theID, myName);
IF ResError = noErr THEN

WriteResource(myHandle); {write resource data}

END;
DoCopyResource := ResError; {return result code}

END;

If a user tries to open or print one of the application’s documents when the application is
not present, the Finder specifies the application’s name in the alert box, as illustrated in
Figure 7-10.

Figure 7-10 The application-unavailable alert box specifying an application’s name

Your application-missing message string resource (an 'STR ' resource with a
resource ID number of –16397) should explain why the user cannot open or print a
document. Use this resource for files—such as your application’s preferences file—
that are not intended to be opened or printed by the user. Register a signature (as
explained in “Giving a Signature to Your Application and a Creator and a File Type to
Your Documents” beginning on page 7-8) that is different from the signature of your

CHAPTER 7

Finder Interface

7-30 Using the Finder Interface

application and set this signature as the creator of files that you don’t want your users to
open. This ensures that the Finder displays your message instead of launching your
application when the user double-clicks these documents.

Listing 7-8 illustrates an application-missing string resource that explains why a user
cannot open a preferences file.

Listing 7-8 Rez input for an application-missing message string resource

resource 'STR ' (-16397, purgeable) { /*the message*/
"This document describes user preferences for the application "

"SurfWriter. You cannot open or print this document. To be "
"effective, this document must be stored in the Preferences "
"folder in the System Folder."
};

Figure 7-11 shows the alert box generated by Listing 7-8.

Figure 7-11 The application-unavailable alert box with a customized message

Note that if your application creates documents of file type 'TEXT' or 'PICT' , if
the TeachText application is available, and if your application is missing when the
user tries to open these documents from the Finder, the Finder always displays the
alert box shown in Figure 7-12. For these file types, the Finder displays this alert box
even if you provide missing-application name string resource or application-missing
message string resource.

Figure 7-12 The application-unavailable alert box for 'TEXT' and 'PICT' documents

CHAPTER 7

Finder Interface

Using the Finder Interface 7-31

Providing Version Resources
You can use version ('vers') resources to record version information for your
application. If the user opens the Views control panel, clicks the Show version box, and
then chooses any command from the View menu other than by Icon or by Small Icon,
filenames and their version numbers from the version resource appear in the active
Finder window. The Finder also displays version information when the user selects your
application and chooses Get Info from the File menu.

The version resource allows you to store a version number, a version message, and a
region code. (Because the Get Info command’s information window already displays
the name of your application, the version message should not include the name of
your application.) You can use version resources to assign version information to an
individual file and, if it is a part of a larger collection of files, to the entire superset of
files. The version resource with a resource ID number of 1 specifies the version of the
file; the version resource with a resource ID number of 2 specifies the version of the set
of files.

Each version resource should contain these elements:

■ Major revision level in binary-coded decimal format. Although the Finder doesn’t
display it anywhere, you can store this information here; most programming
environments provide a tool for setting this element.

■ Minor revision level in binary-coded decimal format. Although the Finder doesn’t
display it anywhere, you can store this information here; most programming
environments provide a tool for setting this element.

■ Development stage. You can use any of these values or the constants that
represent them:

■ Prerelease revision level. This number specifies the version if the software is still
prerelease.

■ Region code. This identifies the script system for which this version of the software is
intended. See the chapter “Script Manager” in Inside Macintosh: Text for information
about the values represented by the various region codes that can be specified here.

■ Version number. This string identifies the version number of the software. When the
user opens the Views control panel, clicks the Show version box, and then chooses any
command from the View menu other than by Icon or by Small Icon, the Finder
window containing this application displays this string.

Value Constant Description

0x20 development Prealpha file

0x40 alpha Alpha file

0x60 beta Beta file

0x80 release Released file

CHAPTER 7

Finder Interface

7-32 Using the Finder Interface

■ Version message. This string identifies the version number and either a company
copyright for a file or a product name for a superset of files. When the user selects this
file and chooses the Get Info command, the Finder displays this string in the
information window as follows:
■ For a version resource with a resource ID number of 1, this string is displayed in

the version field of the information window.
■ For a version resource with a resource ID number of 2, this string is displayed

beneath the file’s name next to the file’s icon at the top of the information window.

Listing 7-9 illustrates the version resources for a graphics application and for the
document-processing system of which it is a part. Notice that the paint program is
version 1.0 while the set of files that compose the entire document-processing system
is version 2.0.

Listing 7-9 Rez input for a pair of version resources

resource 'vers' (1, purgeable) {

0x01, 0x00, release, 0x00, verUS,

"1.0",

"1.0 (US), © My Company, Inc. 1992"

};

resource 'vers' (2, purgeable) {

0x02, 0x00, release, 0x00, verUS,

"2.0",

"(for SurfWriter 3.0)"

};

Figure 7-13 illustrates how the Finder displays the information from these resources in
its information window.

You can store version resources in any kind of file, not just an application. If your
application does not contain a version resource with a resource ID number of 1, the
Finder displays the string from your signature resource as the version information
in the information window for your application.

Using Finder Information in the Catalog File
A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. The information for files is listed in file information records (data
structures of type FInfo) and in extended file information records (data structures of
type FXInfo). The information for directories is listed in directory information (DInfo)
records and in extended (DXInfo) directory information records.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-33

Figure 7-13 The version data in the information window

The Finder manipulates the fields in the file information, directory information, and
extended directory information records; your application shouldn’t have to directly
check or set any of these fields.

Normally, your application sets the file type and the creator information in fields of the
file’s file information record when your application creates a new file; for example, the
File Manager function FSpCreate (described in Inside Macintosh: Files) takes a creator
and a file type as parameters. The Finder manipulates the other fields in the file
information record, which is shown here:

TYPE FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location i n window}

fdFldr: Integer; {directory that contains file}

END;

After you have created a file, you can use the File Manager function FSpGetFInfo to
return the file information record, then change the fdType and fdCreator fields by
using the File Manager function FSpSetFInfo .

CHAPTER 7

Finder Interface

7-34 Using the Finder Interface

You can check the information in this record by calling the File Manager function
FSpGetFInfo or PBGetCatInfo . In particular, you may want to check the file type
or creator for a file, or you may want to check or set one of your document’s Finder flags.
See “File Information Record” beginning on page 7-47 for a list of all the Finder flags.
The only Finder flags you might ever want to set are described here:

■ isInvisible . This flag specifies that a file is invisible from the Finder and from the
Standard File Package dialog boxes. Making a file invisible is generally not
recommended. Not even temporary files need to be invisible because the Temporary
Items folder into which they should be written is invisible. The Temporary Items
folder is described in “Using the System Folder and Its Related Directories” beginning
on page 7-41.

■ hasBundle . This flag specifies that a file has a bundle resource that associates the file
with your own icons. When the Finder displays or manipulates a file, it checks the
file’s hasBundle bit (also called the bundle bit). If that bit is not set, the Finder
displays a default icon for that file type. If the hasBundle bit is set, the Finder checks
the hasBeenInited bit. If the hasBeenInited bit is set, the Finder uses the
information in the desktop database to display that file’s icon. If the hasBeenInited
bit is not set, the Finder installs the information from the bundle resource in the
desktop database and sets the hasBeenInited bit. Most development environments
provide a simple tool for setting the bundle bit when you create your application.

■ nameLocked . This flag specifies that a file cannot be renamed from the Finder and
that the file cannot have customized icons assigned to it by users.

■ isStationery . This flag specifies that a file is a stationery pad. To support
stationery pads, your application should check this bit for every document passed to
it by either the Finder or the Standard File Package. (The File Manager functions
StandardGetFile and CustomGetFile return this flag in the sfFlags field of the
standard file reply record.) If the isStationery bit is set for a file that a user wants
to open, your application should copy the template’s contents into a new document
and open the document in an untitled window. Stationery pads are described in the
next section.

■ isShared . This flag specifies that a file is an application that multiple users on a
network can execute simultaneously.

■ hasCustomIcon . This flag specifies that a file has a customized icon. “Creating
Customized Document Icons” beginning on page 7-17 explains how users or your
application can use customized icons.

Supporting Stationery Pads
Stationery pads are special documents that the user creates as templates. Opening
a stationery pad should not open the document itself; instead, it should open a new
document with the same contents as the stationery pad. To turn any document into
a stationery pad, the user selects it, chooses Get Info from the File menu, and clicks
the Stationery pad checkbox in the information window. The Finder tags a document as
being a stationery pad by setting the isStationery bit in the file’s Finder flags field.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-35

When the user opens a stationery pad from the Finder, the Finder first checks your
application’s size resource to see if your application supports stationery. The 'SIZE'
resource tells the Finder and the Process Manager which features your application
supports and how much memory to allocate when it starts up your application.
Listing 7-10 illustrates a size resource.

Listing 7-10 Rez input for a size resource

resource 'SIZE' (-1, purgeable) {

reserved,

acceptSuspendResumeEvents,

reserved,

canBackground,

doesActivateOnFGSwitch,

backgroundAndForeground,

dontGetFrontClicks,

ignoreAppDiedEvents,

is32BitCompatible,

isHighLevelEventAware,

localAndRemoteHLEvents,

isStationeryAware, /*support stationery pads*/

dontUseTextEditServices,

reserved, reserved, reserved,

kPrefSize * 1024,

kMinSize * 1024

};

Notice that the twelfth field, isStationeryAware , tells the Finder that this application
supports stationery pads.

If the isStationeryAware bit is not set in the size resource, the Finder creates a
new document from the template and prompts the user for a name. The Finder then
starts up your application as usual, passing it the name of the new document.

If the isStationeryAware bit is set, as shown in Listing 7-10, the Finder informs your
application that the user has opened a document and passes your application the name
of the stationery pad.

To support stationery, your application should

■ specify the isStationeryAware constant in its size resource

■ always check the isStationery bit of a document before opening it

Listing 7-11 on page 7-36 illustrates a simple function that takes a file system
specification record and returns TRUE or FALSE, indicating whether the file is a
stationery document or not.

CHAPTER 7

Finder Interface

7-36 Using the Finder Interface

Listing 7-11 Determining whether a document is a stationery pad

FUNCTION IsStationeryDoc (myFSSpec: FSSpec): Boolean;

VAR

 myErr: OSErr;

 myFInfo: FInfo;

BEGIN

 myErr := FSpGetFInfo(myFSSpec, myFInfo);

 IF myErr = noErr THEN

 IsStationeryDoc := BTST(myFInfo.fdFlags, isStationery)

 ELSE

 IsStationeryDoc := FALSE;

END;

The isStationery bit alone identifies whether a document is stationery. If the
isStationery bit is set for a file that the user wants to open, your application should
copy the template’s contents into a new document and open the document in an untitled
window. (For information about opening documents and about the File Manager
function FSpGetFInfo , see Inside Macintosh: Files.)

Your application can check the sfFlags field of the standard file reply record to
determine whether the isStationery bit is set. Unlike the Finder, the Standard File
Package always passes your application the stationery pad itself, not a copy of it,
regardless of the setting of the isStationery bit. When the user opens a stationery
pad from within your application, the Standard File Package checks your application’s
size resource. If your application does not support stationery, the Standard File Package
displays an alert box warning the user that the stationery pad itself, not a copy of it,
is being opened. As you can see, the user can still easily change the template and
mistakenly write over it by choosing Save without assigning a new name. You can
prevent this unnecessary user frustration by making your application stationery-aware.

You can supply the icon to be displayed for stationery pads created from your
application’s documents by using the resources described in “Creating Icons for the
Finder” beginning on page 7-11. If you do not supply your own stationery pad icon, the
Finder uses the default stationery pad icon illustrated in Figure 7-5 on page 7-12.

In your documentation, tell users to choose the Get Info command to make stationery
pads. You may also want to give examples of useful stationery pads created with your
application. For example, if your application supports text and graphics, you may
provide samples of stationery pads for business letterheads or billing statements.

Distributing Fonts, Sounds, and Other Movable Resources
If you create fonts, sounds, keyboard layouts, and script system resource collections, you
can distribute them in individual, movable resource files.

Movable resources such as fonts, keyboard layouts, and sounds are represented on the
screen by icons. To install these resources, the user drags their icons to the System Folder

CHAPTER 7

Finder Interface

Using the Finder Interface 7-37

icon. The Finder puts font resources in the Fonts folder, and it puts the other resources
in the System file. The user can determine which fonts are currently installed by double-
clicking the System Folder to open it and then double-clicking the Fonts folder. By
double-clicking the System file so that it opens like a folder, the user can see which other
movable resources are installed. (For a description of the new organization of the System
Folder, see “Using the System Folder and Its Related Directories” beginning on
page 7-41.)

To make one of these resources visible on the screen, assign it one of the special file types
defined by the Finder for movable resources. The following list shows the resources that
can be moved, their assigned file types, and their icons:

Note

You or your users can give customized icons to these file types (as
described in “Creating Customized Document Icons” beginning on
page 7-17) as long as the files are not installed in the System file
or in a suitcase file. As soon as users install them in the System file or
in a suitcase file, the Finder displays them using the icons shown in
the previous list. Font and TrueType font movable resources retain
their custom icons when installed in the Fonts folder. ◆

The user can still store fonts (as well as desk accessories) in files that have suitcase icons,
which is how they were distributed for installation or saved by the user using the
Font/DA Mover in versions of system software that preceded System 7. A suitcase file
that holds desk accessories is of type 'DFIL' , and a suitcase file that holds fonts is of
type 'FFIL' . All suitcase files have a creator of 'DMOV' .

Resource File type
Large black-
and-white icon

Font 'ffil'

Keyboard layout 'kfil'

Script system
resource collection

'ifil'

Sound 'sfil'

TrueType font 'tfil'

CHAPTER 7

Finder Interface

7-38 Using the Finder Interface

In your documentation, tell users to install fonts, sounds, or script system resource
collections by dragging their icons to the System Folder icon. A dialog box appears
asking the user to verify that the resource should be installed in either the Fonts folder
or the System file. The user clicks OK to accept the installation. The user also has the
option to click Cancel to prevent the installation.

Note

If users drag icons to the open System Folder window instead of to the
System Folder icon, the Finder copies or moves the files into the System
Folder directory instead of installing them into either the Fonts folder or
the System file. ◆

Providing Balloon Help for Nondocument Icons
The Finder offers Balloon Help online assistance for users. After the user chooses Show
Balloons from the Help menu, descriptive help balloons appear when the user moves the
cursor to an area of the screen (such as a menu, a window control, or a dialog box) that
has a help resource associated with it.

The Finder provides default help balloons for application, control panel, and system
extension icons. You can provide a customized help balloon for your application, control
panel, or system extension icon by adding an 'hfdr' resource with resource ID –5696 to
the resource fork of your application. Figure 7-14 compares the default help balloon with
a customized help balloon for the SurfWriter application icon.

Figure 7-14 Default and customized help balloons for application icons

Listing 7-12 shows a Finder help override resource and its associated 'STR ' resource,
which are used for the customized help balloon shown in Figure 7-14.

Note

You cannot override the default help balloon that the Finder uses
for document icons. ◆

The chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox describes in
detail how to provide Balloon Help for your application icon and for other elements of
your application.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-39

Listing 7-12 Rez input for a help balloon resource for an application icon

resource 'hfdr' (-5696, purgeable) { /*help for SurfWriter icon*/

HelpMgrVersion, hmDefaultOptions, 0, 0, /*header information*/

{HMSTRResItem {kIconHelpString}}

};

resource 'STR ' (kIconHelpString, purgeable) { /*help message for app icon*/

"Use the SurfWriter word processor to create or edit the "

"swellest documents you ever wrote on your Macintosh computer."

};

Using Aliases
The Finder allows the user to create multiple icons to represent a single document or
other desktop object (such as a disk, a folder, or the Trash). One of the icons represents
the actual file; the others are aliases that point to the file. An alias is an object that
represents some other file, directory, or volume. An alias looks like the icon of its target,
but its name is displayed in a different style. The style depends on the system script; for
Roman and most other scripts, alias names are displayed in italic.

To the user, the icons of the actual file and its aliases are functionally identical. Aliases
give the user more flexibility in organizing files and offer a convenient way to store a
local copy of a large or dynamic file that resides on a file server.

Ordinarily, when the user wants to open or print files, your application does not need to
be concerned with whether they are aliases because both the Finder and the Standard
File Package resolve aliases before passing them to your application. If the user opens an
alias that represents a document created by your application, the Finder passes your
application the name and location of the document itself, not the alias. Similarly, when
the user opens an alias from within your application, the Standard File Package passes
your application the name of the target document.

If your application opens a file or a directory without going through the Finder or the
Standard File Package (if, for example, it uses preference files or dictionary files), your
application should always call the ResolveAliasFile function just before opening
the file.

As a Finder object, the alias depicts a file called the alias file, which contains a record
that points to the file, directory, or volume represented by the icon. Alias files are created
and managed by the user through the Finder.

Although your application shouldn’t create alias files or change users’ aliases, your
application can create and use its own alias records for storing identifying information
about files or directories. An alias record is a data structure that identifies a file, folder, or
volume. Whenever your application needs to store file or directory information, you can
record the location and other identifying information in an alias record. The next time
your application needs the file or directory, you can use the Alias Manager to locate it,
even if the user has renamed it, copied it, restored it from backup, or moved it. You can

CHAPTER 7

Finder Interface

7-40 Using the Finder Interface

also use alias records to identify objects on other volumes, including AppleShare
volumes. See the chapter “Alias Manager” in Inside Macintosh: Files for details about
creating and managing information in alias records.

An alias file contains an alias record, stored as a resource of type 'alis' , that points to
the target of the alias. (The alias target is the file, directory, or volume described by the
alias record.) The alias file might also contain the target object’s icon descriptions. The
Finder identifies an alias file by setting the isAlias bit in the file’s Finder flags field (see
“File Information Record” beginning on page 7-47 for a description of Finder flags).

An alias file that represents a document typically has the same type and creator as the
file it represents. However, many Finder objects—such as disks, folders, and the Trash—
do not have file types. Instead, alias files for these objects are assigned special file
types, called alias types. Here are the alias types for those objects for which users can
create aliases:

(The Extensions, Preferences, Apple Menu Items, Control Panels, Startup Items, and
PrintMonitor Documents folders are described in “Using the System Folder and Its
Related Directories” beginning on page 7-41.)

Object Alias type Constant

Apple Menu Items
folder 'faam' kAppleMenuFolderAliasType

AppleShare drop folder 'fadr' kDropFolderAliasType

Application 'adrp' kApplicationAliasType

Control Panels folder 'fact' kControlPanelFolderAliasType

Exported
AppleShare folder 'faet' kExportedFolderAliasType

Extensions folder 'faex' kExtensionFolderAliasType

File server 'srvr' kContainerServerAliasType

Floppy disk 'flpy' kContainerFloppyAliasType

Folder 'fdrp' kContainerFolderAliasType

Hard disk 'hdsk' kContainerHardDiskAliasType

Mounted
AppleShare folder 'famn' kMountedFolderAliasType

Other objects that
can hold files 'drop' kContainerAliasType

Preferences folder 'fapf' kPreferencesFolderAliasType

PrintMonitor
Documents folder 'fapn' kPrintMonitorDocsFolderAliasType

Shared
AppleShare folder 'fash' kSharedFolderAliasType

Startup Items folder 'fast' kStartupFolderAliasType

System Folder 'fasy' kSystemFolderAliasType

Trash 'trsh' kContainerTrashAliasType

CHAPTER 7

Finder Interface

Using the Finder Interface 7-41

When opening a file without going through the Finder or the Standard File Package,
you call ResolveAliasFile immediately before opening the file. (The
ResolveAliasFile function is described in detail on page 7-52.) In Listing 7-13,
the customized open function MyOpen ensures that the file to be opened is the target
file and then opens the data fork with the File Manager function FSpOpenDF.

Listing 7-13 Using the ResolveAliasFile function to open a file

FUNCTION MyOpen (VAR theSpec: FSSpec; perm: SignedByte;
 VAR fRefNum: Integer): OSErr;

VAR
myErr: OSErr;

targetIsFolder: Boolean;
wasAliased: Boolean;

BEGIN
myErr := ResolveAliasFile(theSpec, TRUE, targetIsFolder, wasAliased);

IF targetIsFolder THEN
myErr := paramErr {cannot open a folder}

ELSE IF (myErr <> noErr) THEN {try to open it}
myErr := FSpOpenDF(theSpec, perm, fRefNum);

MyOpen := myErr;
END;

Using the System Folder and Its Related Directories
The System Folder is a directory that stores essential system software such as the System
file, the Finder, and printer drivers. System 7 introduced a new organization for the
System Folder, which contains a set of new subdirectories to hold related files. The
Finder uses these subdirectories to facilitate file management for the user. For example,
by sorting and storing such files as desk accessories, control panels, fonts, preferences
files, system extensions, and temporary files into separate folders for the user, the Finder
keeps the top level of the System Folder from being cluttered with dozens, or even
hundreds, of files.

The user can easily install and remove fonts, sounds, keyboard layouts, control panels,
and system extensions by dragging their icons to the System Folder icon. The Finder
then moves them into the proper subdirectories. When a control panel icon is dragged to
the System Folder icon, for example, the Finder presents a dialog box that asks the user,
“Place this control panel into the ‘Control Panels’ folder?” The user accepts by clicking
the OK button or declines by clicking the Cancel button.

Note

If users drag icons to the open System Folder window instead of to
the System Folder icon, the Finder copies or moves the files into the
System Folder directory instead of copying or moving them to the
proper subdirectories. ◆

CHAPTER 7

Finder Interface

7-42 Using the Finder Interface

Figure 7-15 shows a user ’s view of the new directory organization typically found within
the System Folder.

Figure 7-15 The System Folder and related folders

Additional related directories are located at the root directory. Notice the Trash window.
It shows the contents of the Trash directory, which is represented to the user by the Trash
icon. The Trash directory exists at the root level of the volume. A Macintosh sharing files
among users in a network environment maintains separate Trash subdirectories within a
shared Trash directory. That is, the server creates a separate, uniquely named Trash
subdirectory for every user who opens a volume on a Macintosh server and drags an
object to the Trash icon. All Trash subdirectories within a shared Trash directory are
invisible to users. On the desktop, the user sees only the Trash icon of the local
Macintosh computer. When the user double-clicks the Trash icon, a window reveals the
names of only those files that the user has thrown away; no distinction is made to the
user as to which computers any of these files originated on.

At the root level of the volume, the Finder also maintains a Temporary Items folder
and a Desktop Folder, both of which are invisible to the user and so don’t appear
in Figure 7-15.

Figure 7-15 illustrates the folder organization typically found on single-user systems. Of
all the related directories shown, your application is likely to use only the Preferences
folder and the Temporary Items folder. However, you cannot be certain of the location of
these or any of the other system-related directories. In the future, these system-related
directories may not be located in the System Folder or in the root directory.

You can use the FindFolder function (described on page 7-54) to get the path
information to these directories. Of these directories, the only ones you are ever likely
to need are Preferences, Temporary Items, and Trash. For example, you might wish to
check for the existence of a user’s configuration file in Preferences, create a temporary
file in Temporary Items, or—if your application runs out of storage when trying to save
a file—check how much storage is taken by items in the Trash directory and report this
to the user.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-43

Your application may freely use these two directories for storing and locating
important files:

■ Preferences, located in the System Folder, holds preferences files to record local
configuration settings. Your application can store its preferences file in this directory.
The active Finder Preferences file is always stored in the Preferences folder. Do not use
the Preferences folder to hold information that is to be shared by users on more than
one Macintosh computer on a network. Ensure that your application can always
operate even if its preferences file has been deleted.

■ Temporary Items, located at the root level of the volume, holds temporary files
created by applications. The Temporary Items folder is invisible to the user. Your
application can place its temporary files in this directory. A temporary file should exist
only as long as your application needs to keep it open. As soon as your application
closes the file, your application should remove the temporary file. You should also
ensure that you are assigning a unique name to your temporary file so that you don’t
write over another application’s file.

It’s important to bear in mind a few rules about storing your application’s files. First,
don’t store any files at the top level of the System Folder. Use the Preferences directory
or one of the other directories described in the following list.

Second, use the FindFolder function to locate or put files in the right place. Don’t
assume files are on the same volume as your application; they could be on a different
local volume, or on a remote volume on the network.

Third, don’t store any files that multiple users may need to access, such as dictionaries
and format converters, in the Preferences directory or in any of the directories located in
the System Folder. Remember that the files in the System Folder are generally accessible
only to the person who starts up from the System file in that System Folder.

There are additional directories that either the user or the Finder uses for storing and
locating important files; these directories are described here. Generally, your application
should not store files in these directories.

■ Apple Menu Items, located in the System Folder, holds the standard desk accessories
plus any other desk accessories, applications, files, folders, or aliases that the user
wants to display in the Apple menu. Only the user and the Installer should put things
into the Apple Menu Items folder.

■ Control Panels, located in the System Folder, holds control panels. The Apple Menu
Items folder holds an alias to the Control Panels folder so that the user can also reach
the control panels through the Apple menu. Only the user and the Installer should put
things into the Control Panels folder.

■ Desktop Folder, which is invisible to users, is located at the root level of the volume.
The Desktop Folder stores information about the icons that appear on the desktop
area of the screen. The user controls the contents of the Desktop Folder by arranging
icons on the screen. What appears on the screen to the user is the union of the contents
of Desktop Folders for all mounted volumes.

■ Extensions, located in the System Folder, holds extensions—that is, code that is not
part of the basic system software but that provides system-level services, such as
printer drivers and system extensions. Files of type 'INIT' , previously called startup
documents, and of type 'appe' , also known as background-only applications, are

CHAPTER 7

Finder Interface

7-44 Using the Finder Interface

routed by the Finder to this folder. Files of type 'scri' (system extensions for
script systems) are also routed to this folder. Only the user and the Installer should
put files into the Extensions folder.

■ Fonts, located in the System Folder on computers using system software version 7.1
or later, holds fonts. Only the user and the Installer should put fonts into the Fonts
folder.

■ PrintMonitor Documents, located in the System Folder, holds spooled docu-
ments waiting to be printed. Only the printing software uses the PrintMonitor
Documents folder.

■ Rescued Items from volume name, located in the Trash directory, is a directory
created by the Finder at system startup, restart, or shutdown only when the Finder
finds items in the Temporary Items folder. Since applications should remove their
temporary files when they close them, the existence of a file in a Temporary Items
folder indicates a system crash. When the Finder discovers a file in the Temporary
Items folder, the Finder creates a Rescued Items from volume name directory that is
named for the volume on which the Temporary Items folder exists. For example, the
Finder creates a directory called Rescued Items from Loma Prieta when a file is
discovered in the Temporary Items folder on a volume named Loma Prieta. The
Finder then moves the temporary file to that directory so that users can examine the
file in case they want to recreate their work up to the time of the system crash. When a
user empties the Trash, all Rescued Items folders disappear. Only the Finder should
put anything into Rescued Items directories.

■ Startup Items, located in the System Folder, holds applications and desk accessories
(or their aliases) that the user wants started up every time the Finder starts up.
Only the user should put things into the Startup Items folder. Note that there is a
distinction between startup applications that users put in the Startup Items folder
and system extensions of file type 'INIT' (previously called startup documents),
which are typically installed in the Extensions folder.

■ System file, located in the System Folder, contains the basic system software plus
some system resources, such as sound and keyboard resources. The System file
behaves like a folder in this regard: although it looks like a suitcase icon, double-
clicking it opens a window that reveals movable resource files (such as sounds,
keyboard layouts, and script system resource collections) stored in the System file.
(“Distributing Fonts, Sounds, and Other Movable Resources” beginning on page 7-36
describes the resources that can be moved into the System file.) Only the user and the
Installer should put resources into the System file.

■ Trash, located at the root level of a volume, holds items that the user moves to the
Trash icon. After opening the Trash icon, the user sees the collection of all items that
he or she has moved to the Trash icon—that is, the union of all appropriate Trash
directories from all mounted volumes. A Macintosh set up to share files among users
in a network environment maintains separate Trash subdirectories for remote users
within its shared Trash directory. That is, the server creates a separate, uniquely
named Trash subdirectory for every remote user who opens a volume on a Macintosh
file server and drags an object to the Trash icon. All Trash subdirectories and the
shared Trash directory are invisible to users. The Finder empties a Trash directory (or,
in the case of a file server, a Trash subdirectory) only when the user of that directory
chooses the Empty Trash command.

CHAPTER 7

Finder Interface

Using the Finder Interface 7-45

Although the names of the visible system-related folders vary on different international
systems, the invisible directories Temporary Items and Desktop Folder keep these names
on all systems. System software assigns unique names for invisible Trash subdirectories.

Generally, you should store application-specific files in the folder with your application,
not in any of these system-related directories. Your application may want to provide
users with a mechanism to specify a directory in which to look for auxiliary files. For
example, you could design a customized version of the open file dialog box that allows
users to specify a path to locations where files are stored. This technique may be useful
for finding files that are shared by several applications. It’s also possible to track the
location of files by using the Alias Manager. For details, see the chapter “Alias Manager”
in Inside Macintosh: Files.

When you design your application, it’s important to consider the user’s view of the tools
that you provide. In most cases you’ll want to build your application so that the user
deals with one icon that represents the entire set of abilities your application provides.
This scheme simplifies the user’s world by restricting the complexity of installing and
maintaining your product. If you provide optional tools—such as a dictionary and
thesaurus—that have their own icons, it’s a good idea to allow these tools to work from
any location in the file system rather than relying on their storage somewhere in the
System Folder.

The Desktop Database
For quick access to the resources it needs, the Finder maintains a central desktop
database of information about the files and directories on a volume. The Finder
updates the database when applications are added, moved, renamed, or deleted.

Normally, your application won’t need to use the information in the desktop database
or to use Desktop Manager routines to manipulate it. Instead, your application should
let the Finder manipulate the desktop database and handle such Desktop Manager tasks
as launching applications when users double-click icons, maintaining user comments
associated with files, and managing the icons used by applications.

In case you discover some important need to retrieve information from the desktop
database or even to change the desktop database from within your application, Desktop
Manager routines are provided for you to do so. While your application probably won’t
ever need to use them, for the sake of completeness they are described in Inside
Macintosh: More Macintosh Toolbox.

Much of the information in the desktop database comes from the bundle resources
for applications and other files on the volume. (See “Using Finder Information in the
Catalog File” beginning on page 7-32 for a discussion on setting the bundle bit of an
application so that its bundled resources get stored in the desktop database.) The
desktop database contains all icon definitions and their associated file types. It lists all
the file types that each application can open and all copies or versions of the application
that’s listed as the creator of a file. The desktop database also lists the location of each
application on the disk and any comments that the user has added to the information
windows for desktop objects.

CHAPTER 7

Finder Interface

7-46 Finder Interface Reference

The Finder maintains a desktop database for each volume with a capacity greater than
2 MB. For most volumes, such as hard disks, the database is stored on the volume itself.
For read-only volumes—such as some compact discs—that don’t contain their own
desktop database, the Desktop Manager creates it and stores it in the System Folder of
the startup drive.

For compatibility with older versions of system software, the Finder keeps the informa-
tion for ejectable volumes with a capacity smaller than 2 MB in a resource file instead of
a database.

Finder Interface Reference

This section describes the data structures, routines, and resources that are specific to the
Finder interface.

The “Data Structures” section shows the data structures for the file information record,
the extended file information record, the directory information record, and the extended
directory information record. The “Routines” section describes the routines for resolving
alias files and for finding system-related folders. The “Resources” section describes the
resources you supply for your files so that the Finder can relay information about them
to your users.

Data Structures
A catalog file exists on every volume to maintain relationships between the files and
directories on that volume. (A volume is any storage medium formatted to contain files.)
Although it’s used mostly by the File Manager, the catalog file also contains information
used by the Finder. The information for files is listed in file information records and
extended file information records; the information for directories is listed in directory
information records and extended directory information records.

Normally, your application sets the file type and the creator information in fields of a file
information record when your application creates a new file. (For a complete discussion
of the File Manager and the functions available for creating files, see Inside Macintosh:
Files.) The Finder manipulates the other fields in the file information record. You can
check the information in this record by calling the File Manager function FSpGetFInfo
or PBGetCatInfo . In particular, you may want to check the file type or creator for a file,
or you may want to check or set one of your document’s Finder flags.

The Finder manipulates the fields in the extended file information, directory informa-
tion, and extended directory information records; your application shouldn’t have to
directly check or set any of these fields. These data structures are described here for
completeness.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-47

File Information Record

You typically set a file’s type and creator when you create the file; for example, you pass
a creator and a file type to the File Manager function FSpCreate as parameters. The
Finder manipulates the other fields in the file information record, which is a data
structure of type FInfo . After you have created a file, you can use the File Manager
function FSpGetFInfo to return the file information record, then change the fdType
and fdCreator fields by using the File Manager function FSpSetFInfo .

TYPE FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location in window}

fdFldr: Integer; {window that contains file}

END;

Field descriptions

fdType File type. For a discussion of file types, see “Giving a Signature to
Your Application and a Creator and a File Type to Your Documents”
beginning on page 7-8.

fdCreator The signature of the application that created the file. For a
discussion about creators, see “Giving a Signature to Your
Application and a Creator and a File Type to Your Documents”
beginning on page 7-8.

fdFlags Finder flags. There are only a few flags that your application might
ever need to set; these are described in “Using Finder Information
in the Catalog File” beginning on page 7-32. All of the Finder flags
are listed here for completeness.

Flag name
Bit
number Description

isAlias 15 For a file, this bit indicates that the file
is an alias file. For directories, this bit is
reserved—in which case, set to 0.

isInvisible 14 The file or directory is invisible from the
Finder and from the Standard File Package
dialog boxes.

hasBundle 13 For a file, this bit indicates that the file
contains a bundle resource. For directories,
this bit is reserved—in which case, set to 0.

nameLocked 12 The file or directory can’t be renamed from
the Finder, and the icon cannot be changed.

isStationery 11 For a file, this bit indicates that the file is a
stationery pad. For directories, this bit is
reserved—in which case, set to 0.

CHAPTER 7

Finder Interface

7-48 Finder Interface Reference

You can use these constants as masks for these flags:

CONST
fHasBundle = 8192; {set if file has a bundle }

{ resource}
fInvisible = 16384; {set if icon is invisible}

kIsOnDesk = $1; {unused and reserved in }
{ System 7}

kColor = $E; {three bits of color }
{ coding}

kIsShared = $40; {file can be executed by }
{ multiple users }
{ simultaneously}

kHasBeenInited

= $100; {file info is in desktop }
{ database}

kHasCustomIcon
= $400; {file or directory has a }

{ customized icon}
kIsStationery

 = $800; {file is a stationery pad}
kNameLocked = $1000; {file or directory can't }

{ be renamed from Finder, }
{ and icon can't be }
{ changed}

kHasBundle = $2000; {file has bundle resource}

hasCustomIcon 10 The file or directory contains a
customized icon.

Reserved 9 Reserved; set to 0.

hasBeenInited 8 The Finder has recorded information from
the file’s bundle resource into the desktop
database and given the file or folder a
position on the desktop.

hasNoINITS 7 The file contains no 'INIT' resources; set
to 0. Reserved for directories; set to 0.

isShared 6 The file is an application that can be
executed by multiple users simultaneously.
Defined only for applications; otherwise, set
to 0.

requiresSwitchLaunch 5 Unused and reserved in System 7; set to 0.

colorReserved 4 Unused and reserved in System 7; set to 0.

color 1–3 Three bits of color coding.

isOnDesk 0 Unused and reserved in System 7; set to 0.

Flag name
Bit
number Description

CHAPTER 7

Finder Interface

Finder Interface Reference 7-49

kIsInvisible = $4000; {file or directory is }
{ invisible from Finder & }
{ from Standard File }
{ Package dialog boxes}

kIsAlias = $8000; {file is an alias file}

fdLocation The location—specified in coordinates local to the window—of the
file’s icon within its window.

fdFldr The window in which the file’s icon appears; this information is
meaningful only to the Finder.

Extended File Information Record

The Finder manipulates the fields in the extended file information records, which are
data structures of type FXInfo ; your application shouldn’t have to check or set any of
these fields directly.

TYPE FXInfo =
RECORD

fdIconID: Integer; {icon ID}
fdUnused: ARRAY[1..3] OF Integer;

{unused but reserved 6 bytes}
fdScript: SignedByte; {script flag and code}

fdXFlags: SignedByte; {reserved}
fdComment: Integer; {comment ID}

fdPutAway: LongInt; {home directory ID}
END;

Field descriptions

fdIconID An ID number for the file’s icon; the numbers that identify icons are
assigned by the Finder.

fdUnused Reserved.
fdScript The script system for displaying the file’s name. Ordinarily, the

Finder (and the Standard File Package) displays the names of all
desktop objects in the system script, which depends on the
region-specific configuration of the system. The high bit of the byte
in the fdScript field is set by default to 0, which causes the Finder
to display the filename in the current system script. If the high bit is
set to 1, the Finder (and the Standard File Package) displays the
filename and directory name in the script whose code is recorded in
the remaining 7 bits.

fdXFlags Reserved.
fdComment An ID number for the comment that is displayed in the information

window when the user selects a file and chooses the Get Info
command from the File menu. The numbers that identify comments
are assigned by the Finder.

fdPutAway If the user moves the file onto the desktop, the directory ID of the
folder from which the user moves the file.

CHAPTER 7

Finder Interface

7-50 Finder Interface Reference

Directory Information Record

The Finder manipulates the fields in the directory information record, which is a data
structure of type DInfo . Your application shouldn’t have to check or set any of these
fields directly.

TYPE DInfo =

RECORD

frRect: Rect; {folder's window rectangle}

frFlags: Integer; {flags}

frLocation: Point; {folder's location in window}

frView: Integer; {folder's view}

END;

Field descriptions

frRect The rectangle for the window that the Finder displays when the
user opens the folder.

frFlags Reserved.
frLocation Location of the folder in the parent window.
frView The manner in which folders are displayed; this is set by the user

with commands from the View menu of the Finder.

Extended Directory Information Record

The Finder manipulates the fields in the extended directory information records, which
are data structures of type DXInfo ; your application shouldn’t have to check or set any
of these fields directly.

TYPE DXInfo =

RECORD

frScroll: Point; {scroll position}

frOpenChain: LongInt; {directory ID chain of open }

{ folders}

frScript: SignedByte; {script flag and code}

frXFlags: SignedByte; {reserved}

frComment: Integer; {comment ID }

frPutAway: LongInt; {home dir ectory ID}

END;

Field descriptions

frScroll Scroll position within the Finder window. The Finder does not
necessarily save this position immediately upon user action.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-51

frOpenChain Chain of directory IDs for open folders. The Finder numbers
directory IDs. The Finder does not necessarily save this information
immediately upon user action.

frScript The script system for displaying the folder’s name. Ordinarily, the
Finder (and the Standard File Package) displays the names of all
desktop objects in the current system script, which depends on the
region-specific configuration of the system. The high bit of the byte
in the fdScript field is set by default to 0, which causes the Finder
to display the folder’s name in the current system script. If the high
bit is set to 1, the Finder (and the Standard File Package) displays
the filename and directory name in the script whose code is
recorded in the remaining 7 bits. However, as of system software
version 7.1, the Window Manager and Dialog Manager do not
support multiple simultaneous scripts, so the system script is
always used for displaying filenames and directory names in dialog
boxes, window titles, and other user interface elements used by the
Finder. Therefore, until the system software’s script capability is
fully implemented, you should treat this field as reserved.

frXFlags Reserved.
frComment An ID number for the comment that is displayed in the information

window when the user selects a folder and chooses the Get Info
command from the File menu. The numbers that identify comments
are assigned by the Finder.

frPutAway If the user moves the folder onto the desktop, the directory ID of the
folder from which the user moves it.

Routines
This section describes the routines your application can use to resolve alias files if it
bypasses the Finder when manipulating documents and to find system-related folders
if your application needs to determine where they are located.

Resolving Alias Files

Ordinarily, when the user wants to open or print files, your application does not need to
be concerned with whether they are aliases because the Finder resolves aliases before
passing them to your application. If the user opens an alias that represents a document
created by your application, the Finder passes your application the name and location of
the document itself, not the alias. (Similarly, when the user opens an alias from within
your application, the Standard File Package passes your application the name of the
target document.) If your application bypasses the Finder when manipulating
documents, it should check for and resolve aliases itself by using the Alias Manager
function ResolveAliasFile , which is described here for completeness.

CHAPTER 7

Finder Interface

7-52 Finder Interface Reference

ResolveAliasFile

If your application bypasses the Finder when manipulating documents, it should check
for and resolve aliases itself by using the ResolveAliasFile function.

FUNCTION ResolveAliasFile (VAR theSpec: FSSpec;

resolveAliasChains: Boolean;

VAR targetIsFolder: Boolean;

VAR wasAliased: Boolean): OSErr;

theSpec A file system specification record for the file or directory you plan to open.

resolveAliasChains
A Boolean value. Set this parameter to TRUE if you want
ResolveAliasFile to resolve all aliases in a chain, stopping only when
it reaches the target file. Set this parameter to FALSE if you want to
resolve only one alias file, even if the target is another alias file.

targetIsFolder
A return parameter only. The ResolveAliasFile function returns
TRUE in this parameter if the file specification record in the parameter
theSpec points to a directory or a volume; otherwise,
ResolveAliasFile returns FALSE in this parameter.

wasAliased
A return parameter only. The ResolveAliasFile function returns
TRUE in this parameter if the file specification record in the parameter
theSpec points to an alias; otherwise, ResolveAliasFile returns
FALSE in this parameter.

DESCRIPTION

The ResolveAliasFile function returns in the parameter theSpec the name and
location of the target file that you initially pass in the parameter theSpec .

The ResolveAliasFile function first checks the catalog file for the file or directory
specified in the parameter theSpec to determine whether it is an alias and whether it is
a file or a directory. If the object is not an alias, ResolveAliasFile leaves theSpec
unchanged, sets the targetIsFolder parameter to TRUE for a directory or volume and
FALSE for a file, sets wasAliased to FALSE, and returns noErr . If the object is an alias,
ResolveAliasFile resolves it, places the target in the parameter theSpec , and sets
the wasAliased flag to TRUE.

When ResolveAliasFile finds the specified volume and parent directory but fails to
find the target file or directory in that location, ResolveAliasFile returns a result
code of fnfErr and fills in the parameter theSpec with a complete file system
specification record describing the target (that is, its volume reference number, parent
directory ID, and filename or folder name). The file system specification record is valid,

CHAPTER 7

Finder Interface

Finder Interface Reference 7-53

although the object it describes does not exist. This information is intended as a “hint”
that lets you explore possible solutions to the resolution failure. You can, for example,
use the file system specification record to create a replacement for a missing file with the
File Manager function FSpCreate .

If ResolveAliasFile receives an error code while resolving an alias, it leaves the
input parameters as they are and exits, returning an error code. In addition to any of
these result codes, ResolveAliasFile can also return any Resource Manager or File
Manager errors.

SPECIAL CONSIDERATIONS

Before calling the ResolveAliasFile function, you should make sure that it is
available by using the Gestalt function with the gestaltAliasMgrAttr selector.

RESULT CODES

SEE ALSO

Listing 7-13 on page 7-41 illustrates how to use ResolveAliasFile from an
application’s own MyOpen function. The file system specification record is described in
Inside Macintosh: Files. Aliases and other Alias Manager and File Manager routines
are also described in greater detail in Inside Macintosh: Files. The Gestalt function is
described in the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Finding Directories

You can use the FindFolder function to get the path information you need to gain
access to the system-related directories described in “Using the System Folder and Its
Related Directories” beginning on page 7-41. Those you’re most likely to want to access
are Preferences, Temporary Items, and Trash. For example, you might wish to check for
the existence of a user ’s configuration file in Preferences, create a temporary file in
Temporary Items, or—if your application runs out of disk storage when trying to save a
file—check how much disk storage is taken by items in the Trash directory and report
this to the user.

noErr 0 No error
nsvErr –35 Volume not found
fnfErr –43 Target not found, but volume and parent directory

found, and theSpec parameter contains a valid
file system specification record

dirNFErr –120 Parent directory not found

CHAPTER 7

Finder Interface

7-54 Finder Interface Reference

FindFolder

To get the path information to gain access to the system-related directories, use the
FindFolder function.

FUNCTION FindFolder (vRefNum: Integer; folderType: OSType;

createFolder: Boolean;

VAR foundVRefNum: Integer;

VAR foundDirID: LongInt): OSErr;

vRefNum The volume reference number (or the constant kOnSystemDisk for the
startup disk) of the volume on which you want to locate a directory.

folderType
A four-character folder type, or a constant that represents the type, for the
directory you want to find. The constants and the four-character folder
types they represent are listed here:

CONST

kAppleMenuFolderType

= 'amnu'; {Apple Menu Items}

kControlPanelFolderType

= 'ctrl'; {Control Panels}

kDesktopFolderType = 'desk'; {Desktop Folder}

kExtensionFolderType

= 'extn'; {Extensions}

kFontsFolderType = 'font'; {Fonts folder}

kPreferencesFolderType

= 'pref'; {Preferences}

kPrintMonitorDocsFolderType

= 'prnt'; {PrintMonitor }

{ Documents}

kStartupFolderType = 'strt'; {Startup Items}

kSystemFolderType = 'macs'; {System Folder}

kTemporaryFolderType

= 'temp'; {Temporary Items}

kTrashFolderType = 'trsh'; {single-user Trash}

kWhereToEmptyTrashFolderType

= 'empt'; {shared Trash on net}

createFolder
Pass the constant kCreateFolder in this parameter to create a directory
if it does not already exist; otherwise, pass the constant
kDontCreateFolder .

CHAPTER 7

Finder Interface

Finder Interface Reference 7-55

foundVRefNum
The volume reference number, returned by FindFolder , for the volume
containing the directory you specify in the folderType parameter.

foundDirID
The directory ID number, returned by FindFolder , for the directory you
specify in the folderType parameter.

DESCRIPTION

For the folder type on the particular volume (specified, respectively, in the folderType
and vRefNum parameters), the FindFolder function returns the directory’s volume
reference number in the foundVRefNum parameter and its directory ID in the
foundDirID parameter.

The specified folder used for a given volume might be located on a different volume in
future versions of system software; therefore, do not assume the volume that you
specify in vRefNum and the volume returned in foundVRefNum will be the same.

Specify a volume reference number (or the constant kOnSystemDisk for the startup
disk) in the vRefNum parameter.

Specify a four-character folder type—or the constant that represents it—in the
folderType parameter. Use the kTrashFolderType constant to locate the current
user’s Trash directory for a given volume—even one located on a file server. On a file
server, you can use the kWhereToEmptyTrashFolderType constant to locate the
parent directory of all logged-on users’ Trash subdirectories.

Use the constant kCreateFolder in the createFolder parameter to tell
FindFolder to create a directory if it does not already exist; otherwise, use the constant
kDontCreateFolder . Directories inside the System Folder are created only if the
System Folder directory exists. The FindFolder function will not create a System
Folder directory even if you specify the kCreateFolder constant in the
createFolder parameter.

The FindFolder function returns a nonzero result code if the folder isn’t found,
and it can also return other file system errors reported by the File Manager or
Memory Manager.

SPECIAL CONSIDERATIONS

The Finder identifies the subdirectories of the System Folder, and their folder types, in a
resource of type 'fld#' located in the System file. Do not modify or rely on the contents
of the 'fld#' resource in the System file; use only the FindFolder function to find the
appropriate directories.

To determine the availability of the FindFolder function, use the Gestalt function
with the Gestalt selector gestaltFindFolderAttr . Test the bit field indicated by the
gestaltFindFolderPresent constant in the response parameter. If the bit is set, then
the FindFolder function is present.

CONSTgestaltFindFolderPresent = 0; {if this bit is set, }
{ FindFolder is present}

CHAPTER 7

Finder Interface

7-56 Finder Interface Reference

RESULT CODES

SEE ALSO

The system-related directories located by the FindFolder function are described in
“Using the System Folder and Its Related Directories” beginning on page 7-41.

Resources
This section describes the resources you supply for your files so that the Finder can use
your files and relay information about them to your users. These resources are

■ the signature resource—defined using a string ('STR ') resource—which the Finder
uses to identify and start up your application when a user double-clicks documents
created by your application

■ the set of resources (icon list resource, small icon list resource, large 4-bit color icon
resource, small 4-bit color icon resource, large 8-bit color icon resource, and small 8-bit
color icon resource) that visually represent your application and any documents it
creates, and two related resources, the icon ('ICON') resource and the color icon
('cicn') resource

■ the file reference ('FREF') resource, which links icons with the files types they
represent and which allows users to launch your application by dragging document
icons to your application icon

■ a bundle ('BNDL') resource, which groups together your application’s signature, icon
list resource, and file reference resources

■ a missing-application name string—that is, a string ('STR ') resource—for your
application’s documents in order to display the name of your application if the user
tries to open or print a document created by your application when your application
is missing

■ an application-missing message string—that is, a string ('STR ') resource—in your
application’s documents in order to explain why the user can’t open or print certain
documents used by your application

■ the version ('vers') resource, so that users can easily find out the version of a file
and, if applicable, the version of the superset of files to which the single file belongs

For information about using the 'SIZE' resource to support stationery pads, see
“Supporting Stationery Pads” beginning on page 7-34.

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see instead “Using the Finder Interface” beginning on page 7-6
for detailed information.

noErr 0 No error
fnfErr –43 Type not found in 'fld#' resource, or disk doesn’t

have System Folder support or System Folder in volume
header, or disk does not have desktop database support
for Desktop Folder—in all cases, folder not found

dupFNErr –48 File found instead of folder

CHAPTER 7

Finder Interface

Finder Interface Reference 7-57

The Signature Resource

Every application that creates documents should define a signature resource, so that the
Finder can identify and start up the application when a user double-clicks documents
created by the application. A signature resource is typically defined to be a string
resource (that is, a resource of type 'STR ') that is given a unique four-character
signature as its resource type. For example, an application with the signature of WAVE
would use a string resource to define its signature resource as a resource of type 'WAVE' .
The signature resource should have a resource ID number of 0.

To ensure uniqueness, developers must register their applications’ four-character
signatures with Apple Computer, Inc., at Macintosh Developer Technical Support.

This section describes the structure of a signature resource defined to be of type 'STR '
after it’s compiled by the Rez resource compiler. The format of a Rez input file for a
signature resource differs from its compiled output form. If you are concerned only with
creating a signature resource, see “Giving a Signature to Your Application and a Creator
and a File Type to Your Documents” beginning on page 7-8.

If you examine a compiled version of a signature resource, as shown in Figure 7-16, you
find that it contains a Pascal string that specifies the name, version number, and release
date of the application.

Figure 7-16 Structure of a signature resource compiled as a string ('STR ') resource

If an application does not provide specific version information through a version
resource (described in “Providing Version Resources” beginning on page 7-31), the
Finder displays the string stored in the signature resource when the user selects the
application and chooses Get Info from the File menu.

The Icon List Resource

An icon list resource is one of several icon resources that you create to represent visually
for the user your application or one of the document types it creates. An icon list
resource is a resource with the resource type 'ICN#' . All icon list resources must be
marked purgeable, and they must have resource IDs greater than 128.

When the user chooses by Icon from the View menu, the Finder displays the black-and-
white icon specified in this resource in windows if either the user has a black-and-white
monitor or your application has not defined any resources for color icons; otherwise, the
Finder displays a color version of the icon.

CHAPTER 7

Finder Interface

7-58 Finder Interface Reference

An icon list resource is defined to be an array of two items of type String[128] ; each
bit in the first array represents a pixel in the 32-by-32 pixel icon, and each bit in the
second array represents a pixel in the 32-by-32 pixel mask. You can use a high-level tool
such as the ResEdit application, which is available through APDA, to create icon list
resources. You can then use the DeRez decompiler to convert your icon list resources into
Rez input when necessary. See “Creating Icons for the Finder” beginning on page 7-11
for additional information about creating icon list resources and other resources for
representing files to users.

An icon list resource defines one icon, which the Finder uses to display the file it
represents. If you examine the compiled version of an icon list resource, as represented
in Figure 7-17, you find that it contains the following elements:

■ The 32-by-32 pixel black-and-white icon.

■ The 32-by-32 pixel black icon mask, which shows the area covered by the black-and-
white icon and any 32-by-32 pixel color versions of the icon. The Finder uses the mask
to crop the icon’s outline into whatever background color or pattern is on the desktop.
The Finder then draws the black-and-white icon specified in this resource—or the
color icons specified in large 4-bit color icon resources or large 8-bit color icon
resources—into this shape.

Figure 7-17 Structure of a compiled icon list ('ICN#') resource

To create 16-by-16 pixel and color versions of the icon defined in an icon list resource
(thereby supplying an entire icon family), your application must also create the
following resources: a small icon list resource, a large 4-bit color icon resource, a small
4-bit color icon resource, a large 8-bit color icon resource, and a small 8-bit color icon
resource. Their compiled formats are described in the next several sections; guidelines
for creating them are provided in “Creating Icons for the Finder” beginning on page 7-11.

The Small Icon List Resource

A small icon list resource is one of several resources that you provide for an icon
family. A small icon list resource is a resource with the resource type 'ics#' . A small
icon list resource must be marked purgeable, and it must have the same resource
ID as the icon list resource that represents the file that the small icon list resource
also represents.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-59

When the user chooses by Small Icon from the View menu, the Finder displays the
small black-and-white icon specified in this resource in windows if either the user has a
black-and-white monitor or the application has not defined any resources for color icons;
otherwise, a color version of the icon is displayed. Similarly, the small black-and-white
icon or its color version appears in the Application menu after the user launches the
application and in the Apple menu if the user places the application or an alias to it in
the Apple Menu Items folder.

A small icon list resource is defined to be an array of two items of type String[32] ;
each bit in the first array represents a pixel in the 16-by-16 pixel icon, and each bit in the
second array represents a pixel in the 16-by-16 pixel mask. You can use a high-level tool
such as the ResEdit application to create small icon list resources. You can then use the
DeRez decompiler to convert your small icon list resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating small icon list resources and other resources for representing files to users.

A small icon list resource defines one icon, which the Finder uses to display the file it
represents. If you examine the compiled version of a small icon list resource, as
represented in Figure 7-18, you find that it contains the following elements:

■ The 16-by-16 pixel black-and-white icon for display on the desktop.

■ The 16-by-16 pixel black icon mask, which shows the area covered by the icon. The
Finder uses the mask to crop the icon’s outline into whatever background color or
pattern is on the desktop. The Finder then draws the black-and-white icon specified
in this resource—or the color icons specified in the small 4-bit color icon resource or
the small 8-bit color icon resource—into this shape.

The format for the compiled icon list resource is described on page 7-57; the format
for the compiled small 4-bit color icon resource is described on page 7-60; and the
format for the compiled small 8-bit color icon resource is described on page 7-62.

Figure 7-18 Structure of a compiled small icon list ('ics#') resource

The Large 4-Bit Color Icon Resource

A large 4-bit color icon resource is one of several resources that you provide for an icon
family. A large 4-bit color icon resource is a resource with the resource type 'icl4' . A
large 4-bit color icon resource must be marked purgeable, and it must have the same

CHAPTER 7

Finder Interface

7-60 Finder Interface Reference

resource ID as the icon list resource that represents the file that the large 4-bit color icon
resource also represents.

When the user chooses by Icon from the View menu, the Finder displays the large 4-bit
color icon specified in this resource in windows if the user has a monitor displaying
4 bits of color data per pixel. Similarly, the large 4-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A large 4-bit color icon resource is defined to be of type String[512] ; every 4 bits in
the string represent a pixel in the 32-by-32 pixel icon. You can use a high-level tool such
as the ResEdit application to create large 4-bit color icon resources. You can then use the
DeRez decompiler to convert your large 4-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

A large 4-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a large 4-bit color icon resource,
as represented in Figure 7-18, you find that it contains only the 32-by-32 pixel 4-bit color
icon for display by the Finder. This resource does not specify a mask for the icon;
instead, the Finder uses the mask specified for the icon list resource with the same
resource ID number as this resource.

Figure 7-19 Structure of a compiled large 4-bit color icon ('icl4') resource

The format for the compiled icon list resource is described on page 7-57.

The Small 4-Bit Color Icon Resource

A small 4-bit color icon resource is one of several resources that you provide for an icon
family. A small 4-bit color icon resource is a resource with the resource type 'ics4' . A
small 4-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the small 4-bit color icon
resource also represents.

When the user chooses by Small Icon from the View menu, the Finder displays the small
4-bit color icon specified in this resource in windows if the user has a monitor displaying
4 bits of color data per pixel. Similarly, the small 4-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-61

A small 4-bit color icon resource is defined to be of type String[128] ; every 4 bits in
the string represent a pixel in the 16-by-16 pixel icon. You can use a high-level tool such
as the ResEdit application to create small 4-bit color icon resources. You can then use the
DeRez decompiler to convert your small 4-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for representing files to users.

A small 4-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a small 4-bit color icon resource,
as represented in Figure 7-18, you find that it contains only the 16-by-16 pixel 4-bit color
icon for display by the Finder. This resource does not specify a mask for the icon;
instead, the Finder uses the mask specified for the small icon list resource with the same
resource ID number as this resource.

Figure 7-20 Structure of a compiled small 4-bit color icon ('ics4') resource

The format for the compiled icon list resource is described on page 7-57. The format for
the compiled small icon list resource is described on page 7-58.

The Large 8-Bit Color Icon Resource

A large 8-bit color icon resource is one of several resources that you provide for an icon
family. A large 8-bit color icon resource is a resource with the resource type 'icl8' .
A large 8-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the large 8-bit color
icon resource also represents.

When the user chooses by Icon from the View menu, the Finder displays the large 8-bit
color icon specified in this resource in windows if the user has a monitor displaying
8 bits of color data per pixel. Similarly, the large 8-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A large 8-bit color icon resource is defined to be of type String[1024] ; every byte in
the string represents a pixel in the 32-by-32 pixel icon. You can use a high-level tool such
as the ResEdit application to create large 8-bit color icon resources. You can then use the
DeRez decompiler to convert your large 8-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

CHAPTER 7

Finder Interface

7-62 Finder Interface Reference

A large 8-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a large 8-bit color icon resource,
as represented in Figure 7-21, you find that it contains only the 32-by-32 pixel 8-bit color
icon for display by the Finder. This resource does not specify a mask for the icon;
instead, the Finder uses the mask specified for the icon list resource with the same
resource ID number as this resource.

The format for the compiled icon list resource is described on page 7-57.

Figure 7-21 Structure of a compiled large 8-bit color icon ('icl8') resource

The Small 8-Bit Color Icon Resource

A small 8-bit color icon resource is one of several resources that you provide for an icon
family. A small 8-bit color icon resource is a resource with the resource type 'ics8' . A
small 8-bit color icon resource must be marked purgeable, and it must have the same
resource ID as the icon list resource that represents the file that the small 8-bit color icon
resource also represents.

When the user chooses by Small Icon from the View menu, the Finder displays the small
8-bit color icon specified in this resource in windows if the user has a monitor displaying
8 bits of color data per pixel. Similarly, the small 8-bit color icon appears in the
Application menu after the user launches the application and in the Apple menu if the
user places the application or an alias to it in the Apple Menu Items folder.

A small 8-bit color icon resource is defined to be of type String[256] ; every byte in the
string represents a pixel in the 16-by-16 pixel icon. You can use a high-level tool such as
the ResEdit application to create small 8-bit color icon resources. You can then use the
DeRez decompiler to convert your small 8-bit color icon resources into Rez input when
necessary. See “Creating Icons for the Finder” beginning on page 7-11 for information
about creating resources for visually representing files.

A small 8-bit color icon resource defines one icon, which the Finder uses to display the
file it represents. If you examine the compiled version of a small 8-bit color icon resource,
as represented in Figure 7-22, you find that it contains only the 16-by-16 pixel 8-bit color
icon for display by the Finder. This resource does not specify a mask for the icon;
instead, the Finder uses the mask specified for the small icon list resource with the same
resource ID number as this resource.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-63

Figure 7-22 Structure of a compiled small 8-bit color icon ('ics8') resource

The format for the compiled icon list resource is described on page 7-57. The format for
the compiled small icon list resource is described on page 7-58.

The Icon Resource

When you want to display a 32-by-32 pixel black-and-white icon within some element of
your application (such as within a menu, an alert box, or a dialog box), you can create an
icon resource. An icon resource is a resource with the resource type 'ICON' . All icon
resources must be marked purgeable, and they must have resource IDs greater than 128.

Using icon resources, you can create icons similar to the ones the Finder uses to display
your application’s files on the desktop; however, unlike the resource types previously
described in this section, the Finder does not use or display any resources that you create
of type 'ICON' . Instead, your application uses icon resources of type 'ICON' to display
icons from within your application. Icon resources are described here for completeness
and to mitigate the confusion that sometimes arises concerning icon ('ICON') resources
(which your application creates for its own use), icon list ('ICN#') resources, and the
other previously described resources necessary for defining an icon family (which your
application creates for the Finder’s use).

See “Creating Icons for the Finder” beginning on page 7-11 for additional information
about creating icon list resources and other resources for representing files to users.

Generally, you use icon resources in menus and dialog boxes, as described in the
chapters “Menu Manager” and “Dialog Manager” in this book. If you provide a color
icon ('cicn') resource with the same resource ID as the icon resource, the Menu
Manager and the Dialog Manager display the color icons instead of the black-and-white
icons for users with color monitors. (For example, the color alert box in Plate 2 specifies a
resource of type 'cicn' for the color icon in the upper-left corner of the alert box.)

An icon resource is defined to be of type String[128] ; each bit represents a pixel in the
32-by-32 pixel icon. As illustrated in Figure 7-23 on the next page, an icon resource
resembles an icon list resource without the array that specifies the icon’s mask. You can
use a high-level tool such as the ResEdit application to create icon resources. You can
then use the DeRez decompiler to convert your icon resources into Rez input when
necessary.

CHAPTER 7

Finder Interface

7-64 Finder Interface Reference

Figure 7-23 Structure of a compiled icon ('ICON') resource

The Color Icon Resource

When you want to display a color icon within some element of your application (such as
within a menu, an alert box, or a dialog box), you can create a color icon resource. A
color icon resource is a resource with the resource type 'cicn' . All color icon resources
must be marked purgeable, and they must have resource IDs greater than 128.

Using color icon resources, you can create icons similar to the ones the Finder uses to
display your application’s files on the desktop; however, the Finder does not use or
display any resources that you create of type 'cicn' . Instead, your application uses
icon resources of type 'cicn' to display icons from within your application. Color icon
resources (that is, those of resource type 'cicn') are mentioned here to mitigate the
confusion that sometimes arises concerning color icon resources (which your application
creates for its own use) and the small and large 4-bit and 8-bit color icon resources (types
'ics4' , 'icl4' , 'ics8' , and 'icl8') necessary to define an icon family (which your
application creates for the Finder’s use).

See “Creating Icons for the Finder” beginning on page 7-11 for information about
creating an icon family that includes color icons for representing files to users.

Generally, you use color icon resources in menus, alert boxes, and dialog boxes, as
described in the chapters “Menu Manager” and “Dialog Manager” in this book. If you
provide a color icon ('cicn') resource with the same resource ID as an icon resource
(described on page 7-63), the Menu Manager and the Dialog Manager display the color
icon instead of the black-and-white icon for users with color monitors.You can use a
high-level tool such as the ResEdit application to create color icon resources. You can
then use the DeRez decompiler to convert your color icon resources into Rez input when
necessary. (For example, the color alert box in Plate 2 specifies a resource of type 'cicn'
for the color icon in the upper-left corner of the alert box.)

See Inside Macintosh: Imaging for more information about color icon resources.

The File Reference Resource

To link icons with the files types they represent and to allow users to launch your
application by dragging document icons to your application icon, create a file reference
resource for every icon list resource you create. A file reference resource is a resource
with the resource type 'FREF' . All file reference resources must have resource IDs
greater than 128, and each must be marked purgeable.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-65

This section describes the structure of a file reference resource after it is compiled by the
Rez resource compiler. The format of a Rez input file for a file reference resource differs
from its compiled output form. If you are concerned only with creating a file reference
resource, see “Creating File Reference Resources” beginning on page 7-18.

If you examine a compiled version of a file reference resource, as illustrated in
Figure 7-24, you find that it contains the following elements:

■ File type. This is the four-character code that identifies the type of file represented by
this resource. File types are described in “Giving a Signature to Your Application and
a Creator and a File Type to Your Documents” beginning on page 7-8.

■ Local ID. The Finder uses this number to map the file type specified in this resource
to an icon list resource that is assigned the same local ID in the bundle resource. The
icon list resource is described on page 7-57; the bundle resource is described in the
next section.

■ Empty string. This element should always contain an empty Pascal string.

Figure 7-24 Structure of a compiled file reference ('FREF') resource

The Bundle Resource

To group together your application’s signature, icon list resource, and file reference
resources, create a bundle resource. A bundle resource is a resource with the resource
type 'BNDL' . All bundle resources must have resource ID numbers greater than 128,
and all must be made purgeable.

This section describes the structure of the bundle resource after it is compiled by the Rez
resource compiler. The format of a Rez input file for a bundle resource differs from its
compiled output form. If you are concerned only with creating a bundle resource, see
“Creating a Bundle Resource” beginning on page 7-20.

CHAPTER 7

Finder Interface

7-66 Finder Interface Reference

Figure 7-25 Structure of a compiled bundle ('BNDL') resource

If you examine a compiled version of a file reference resource, as illustrated in
Figure 7-25, you find that it contains the following elements:

■ Application signature. This is the unique four-character code that identifies the
application to the Finder. (Application signatures are described in “Giving a Signature
to Your Application and a Creator and a File Type to Your Documents” beginning on
page 7-8.)

■ Resource ID of the signature resource. By convention, this should always be 0.
■ Array count. This element should always contain the value 2.
■ Mapping of local IDs to icon list resource IDs for all icons supplied by the application.

This is illustrated in Figure 7-26.

■ Superfluous local ID mapping for file reference resources. This is illustrated in
Figure 7-27.

If you examine the compiled portion of a bundle resource that maps local IDs to icon list
resource IDs, you find that it contains the following elements:

■ Resource type. This element should always specify the resource type 'ICN#' (that is,
an icon list resource).

■ Count of all the icon families supplied by the application. This is the number of local
ID–to–icon list resource ID mapping pairs in the rest of this resource.

■ Local ID for an icon list resource. This local ID must match the local ID assigned to the
icon list resource within a file reference resource.

■ Resource ID for the icon list resource assigned a local ID in the preceding element. To
visually represent files of the type described in the file reference resource that contains
the local ID in the preceding element, the Finder uses the black-and-white icon and
mask described in this icon list resource. The Finder also uses the icons defined in the
following resources with this same resource ID: small icon list resource, small 4-bit
color icon resource, small 8-bit color icon resource, large 4-bit color icon resource, and
large 8-bit color icon resource.

CHAPTER 7

Finder Interface

Finder Interface Reference 7-67

Figure 7-26 Mapping local IDs to icon list resource IDs in a bundle resource

■ Local ID–to–icon list resource ID mapping pairs for the rest of the icons representing
file types for an application.

Figure 7-27 illustrates the remainder of a bundle resource, which assigns local IDs to
file reference resource IDs. This assignment is superfluous because the Finder doesn’t
map these local IDs to any other resources. This ID assignment was implemented for
the earliest versions of Macintosh system software, and it remains this way today to
maintain backward compatibility.

Figure 7-27 Structure of superfluous local ID mapping for file reference resources in a
bundle resource

CHAPTER 7

Finder Interface

7-68 Finder Interface Reference

If you examine the compiled portion of the remainder of a bundle resource, you find that
it contains the following elements:

■ Resource type. This element should always specify the resource type 'FREF' (that is,
a file reference resource).

■ Count of all the file reference resources representing file types for an application.
This is the number of local ID–to–file reference resource mapping pairs in the rest of
this resource.

■ Local ID for a file reference resource. The local ID can be any integer so long as no
other file reference resource is given that same local ID within this resource.

■ Resource ID for the file reference resource assigned a local ID in the preceding field.

■ Local ID–to–file reference resource ID mapping pairs for the rest of the file reference
resources that represent file types with application-supplied icons.

The Missing-Application Name String

When your application creates a document that the user can open, your application
should include a missing-application name string in the resource file of the document.
The missing-application name string is a resource with the resource type 'STR ' , it
must have a resource ID number of –16396, and it must be made purgeable. The string
resource should contain your application’s name only. See “Displaying Messages When
the Finder Can’t Find Your Application” beginning on page 7-27 for additional
information about copying this resource into the resource fork of your documents.

If you examine a compiled missing-application name string, as illustrated in Figure 7-28,
you find that it consists entirely of a Pascal string that names the application that created
the document. The Finder displays this string in an alert box if the user tries to open or
print a document created by the application whenever the application is missing.

Figure 7-28 Structure of a compiled missing-application name string resource

The Application-Missing Message String

When your application creates a document that your application uses but that the user
cannot open (such as a preferences file), your application should set the creator of the
document to a registered signature that is not the same as your or anyone else’s
application, and include an application-missing message string in the resource file of the
document. The application-missing name string is a resource with the resource type

CHAPTER 7

Finder Interface

Finder Interface Reference 7-69

'STR ' , it must have a resource ID number of –16397, and it must be made purgeable.
The string resource should contain a message that explains why the user cannot open or
print the document, as explained in “Displaying Messages When the Finder Can’t Find
Your Application” beginning on page 7-27.

If you examine a compiled application-missing message string, as illustrated in
Figure 7-29, you find that it consists entirely of a Pascal string that explains why the
user cannot open the document. The Finder displays this string in an alert box if the user
tries to open or print a document that is given a special creator that is not used as a
signature by any application file. (File creators and application signatures are explained
in “Giving a Signature to Your Application and a Creator and a File Type to Your
Documents” beginning on page 7-8.)

Figure 7-29 Structure of a compiled application-missing message string resource

The Version Resource

You can use a version resource in any file so that users can easily find out the version of
the file and, if it is a part of a larger collection of files, of the entire superset of files. A
version resource is a resource with the resource type 'vers' . The version resource
with a resource ID number of 1 specifies the version of an individual file; the version
resource with a resource ID number of 2 specifies the superset of files to which the
individual file belongs.

If your application does not contain a version resource with a resource ID number of 1,
the Finder displays the string from your application’s signature resource (described
in “Giving a Signature to Your Application and a Creator and a File Type to Your
Documents” beginning on page 7-8) in the information window when the user chooses
the Get Info command from the File menu.

This section describes the structure of this resource after it is compiled by the Rez
resource compiler. The format of a Rez input file for a version resource differs from its
compiled output form. If you are concerned only with creating version resources, see
“Providing Version Resources” beginning on page 7-31.

If you examine a compiled version of version resource, as illustrated in Figure 7-30 on
page 7-70, you find that it contains the following elements:

■ Major revision level in binary-coded decimal format.

■ Minor revision level in binary-coded decimal format.

CHAPTER 7

Finder Interface

7-70 Finder Interface Reference

Figure 7-30 Format of a compiled version ('vers') resource

■ Development stage. The values that can appear in this field, as well as the constants
that can be used to specify them in a Rez input file, are the following:

■ Prerelease revision level. This number specifies the version if the software is
still prerelease.

■ Region code. This identifies the script system for which this version of the software is
intended. See the chapter “Script Manager” in Inside Macintosh: Text for information
about the values represented by the various region codes that can be specified here.

■ Version number. This Pascal string identifies the version number of the software.
When the user opens the Views control panel, clicks the Show version box, and then
chooses any command from the View menu other than by Icon or by Small Icon, the
Finder window containing this application displays this string.

■ Version message. This Pascal string identifies the version number and either a
company copyright for a file or a product name for a superset of files. When the
user selects this file and chooses the Get Info command, the Finder displays this
string in the information window as follows:
■ For a version resource with a resource ID number of 1, this string is displayed in

the version field of the information window.
■ For a version resource with a resource ID number of 2, this string is displayed

beneath the file’s name next to the file’s icon at the top of the information window.

Value Constant Description

0x20 development Prealpha file

0x40 alpha Alpha file

0x60 beta Beta file

0x80 release Released file

CHAPTER 7

Finder Interface

Summary of the Finder Interface 7-71

Summary of the Finder Interface

Pascal Summary

Constants

CONST{Gestalt selectors}

gestaltFindFolderAttr = 'fold'; {selector for FindFolder}

{interpreting Gestalt selector responses}

gestaltFindFolderPresent = 0; {if this bit is set, }

{ FindFolder is present }

{ for custom icons}

kCustomIconResource = –16455; {resource ID for }

{ custom icon }

{ for Finder flags}

fHasBundle = 8192; {set if file has 'BNDL'}

fInvisible = 16384; {set if icon is invisible}

kIsOnDesk = $1; {unused and reserved in }

{ System 7}

kColor = $E; {three bits of color coding}

kIsShared = $40; {file can be executed by }

{ multiple users }

{ simultaneously}

kHasBeenInited = $100; {file info is in desktop }

{ database}

kHasCustomIcon = $400; {file or directory has a }

{ customized icon}

kIsStationery = $800; {file is a stationery pad}

kNameLocked = $1000; {file or directory can't }

{ be renamed from Finder, }

{ and icon can't be changed}

kHasBundle = $2000; {file has a bundle resource}

kIsInvisible = $4000; {file or directory is }

{ invisible from Finder & }

{ from Standard File }

{ Package dialog boxes}

kIsAlias = $8000; {file is an alias file}

CHAPTER 7

Finder Interface

7-72 Summary of the Finder Interface

{for FindFolder}

kOnSystemDisk = $8000; {use vRefNum for the }

{ boot disk}

kCreateFolder = TRUE; {create folder if it }

{ doesn't exist}

kDontCreateFolder = FALSE; {don't create folder}

{for special folder types}

kSystemFolderType = 'macs'; {System Folder}

kDesktopFolderType = 'desk'; {Desktop Folder}

kTrashFolderType = 'trsh'; {single-user Trash}

kWhereToEmptyTrashFolderType = 'empt'; {shared Trash on network}

kPrintMonitorDocsFolderType = 'prnt'; {PrintMonitor Document s}

kStartupFolderType = 'strt'; {Startup Items}

kFontsFolderType = 'font'; {Fonts}

kAppleMenuFolderType = 'amnu'; {Apple Menu Items}

kControlPanelFolderType = 'ctrl'; {Control Panels}

kExtensionFolderType = 'extn'; {Extensions}

kPreferencesFolderType = 'pref'; {Preferences}

kTemporaryFolderType = 'temp'; {Temporary Items}

{alias types}

kContainerFolderAliasType = 'fdrp'; {folder alias}

kContainerTrashAliasType = 'trsh'; {Trash alias}

kContainerHardDiskAliasType = 'hdsk'; {hard disk alias}

kContainerFloppyAliasType = 'flpy'; {floppy disk alias}

kContainerServerAliasType = 'srvr'; {server alias}

kApplicationAliasType = 'adrp'; {application alias}

kContainerAliasType = 'drop'; {all other containers}

kSystemFolderAliasType = 'fasy'; {System Folder alias}

kAppleMenuFolderAliasType = 'faam'; {Apple Menu Items folder }

{ alias}

kStartupFolderAliasType = 'fast'; {Startup Items folder alias}

kPrintMonitorDocsFolderAliasType

= 'fapn'; {PrintMonitor Documents }

{ folder alias}

kPreferencesFolderAliasType = 'fapf'; {Preferences folder alias}

kControlPanelFolderAliasType = 'fact'; {Control Panels folder alias}

kExtensionFolderAliasType = 'faex'; {Extensions folder alias}

kExportedFolderAliasType = 'faet'; {export folder alias}

kDropFolderAliasType = 'fadr'; {drop folder alias}

kSharedFolderAliasType = 'fash'; {shared folder alias}

kMountedFolderAliasType = 'famn'; {mounted folder alias }

CHAPTER 7

Finder Interface

Summary of the Finder Interface 7-73

Data Types

TYPE { Finder information records in the volum e catalog file }

FInfo =

RECORD

fdType: OSType; {file type}

fdCreator: OSType; {file creator}

fdFlags: Integer; {Finder flags}

fdLocation: Point; {file's location i n window}

fdFldr: Integer; {directory that contains file}

END;

FXInfo =

RECORD

fdIconID: Integer; {icon ID}

fdUnused: ARRAY[1..3] OF Integer;

{unused but reserved 6 bytes}

fdScript: SignedByte; {script flag and code}

fdXFlags: SignedByte; {reserved}

fdComment: Integer; {comment ID}

fdPutAway: LongInt; {home directory ID}

END;

DInfo =

RECORD

frRect: Rect; {folder's window rectangle}

frFlags: Integer; {flags}

frLocation: Point ; { folder's location in window}

frView: Integer ; { folder's view}

END;

DXInfo =

RECORD

frScroll: Point; {scroll position}

frOpenChain: LongInt; {di r I D chain of open folders}

frScript: SignedByte; {script flag and code}

frXFlags: SignedByte; {reserved}

frComment: Integer; {comment ID }

frPutAway: LongInt; {dir ectory ID}

END;

CHAPTER 7

Finder Interface

7-74 Summary of the Finder Interface

Routines

Resolving Alias Files

FUNCTION ResolveAliasFile (VAR theSpec: FSSpec;
resolveAliasChains: Boolean;
VAR targetIsFolder: Boolean;
VAR wasAliased: Boolean): OSErr;

Finding Directories

FUNCTION FindFolder (vRefNum: Integer; folderType: OSType;
createFolder: Boolean;
VAR foundVRefNum: Integer;
VAR foundDirID: LongInt): OSErr;

C Summary

Constants

enum {
/*Gestalt selectors*/

#define gestaltFindFolderAttr 'fold' /*selector for FindFolder*/

/*interpreting Gestalt selector responses*/

gestaltFindFolderPresent = 0 /*if this bit is set, */
/* FindFolder is present*/

};
/*for custom icons*/

#define kCustomIconResource –16455 /*resource ID for */

/* custom icon*/

/*Finder flags*/
#define kIsOnDesk 0x1 /*unused and reserved in */

/* System 7*/

#define kColor 0xE /*3 bits of color coding*/
#define kIsShared 0x40 /*file can be executed by */

/* multiple users */
/* simultaneously*/

#define kHasBeenInited 0x100 /*file info is in desktop */

/* database*/
#define kHasCustomIcon 0x400 /*file or directory has a */

/* customized icon*/

CHAPTER 7

Finder Interface

Summary of the Finder Interface 7-75

#define kIsStationary 0x800 /*file is a stationery pad*/
#define kNameLocked 0x1000 /*file or directory can't */

/* be renamed from the */
/* Finder, and icon can't */

/* be changed*/

#define kHasBundle 0x2000 /*file has a bundle */
/* resource*/

#define kIsInvisible 0x4000 /*file or directory is */
/* invisible from Finder */

/* & from Standard File */

/* Package dialog boxes*/
#define kIsAlias 0x8000 /*file is an alias file*/

enum {

/*for Finder flags*/

fHasBundle = 8192, /*set if file has 'BNDL'*/
fInvisible = 16384 /*set if icon is invisible*/

};
enum {

/*for FindFolder*/

kOnSystemDisk = 0x8000 /*use vRefNum for the */
/* boot disk*/

#define kCreateFolder true /*create folder if it */
/* doesn't exist*/

#define kDontCreateFolder false /*don't create folder*/

/*for special folder types*/

#define kSystemFolderType 'macs' /*System Folder*/
#define kDesktopFolderType 'desk' /*Desktop Folder*/

#define kTrashFolderType 'trsh' /*single-user Trash*/

#define kWhereToEmptyTrashFolderType
 'empt' /*shared Trash*/

#define kPrintMonitorDocsFolderType
 'prnt' /*PrintMonitor Documents*/

#define kStartupFolderType 'strt' /*Startup Items*/

#define kFontsFolderType 'font' /*Fonts*/
#define kAppleMenuFolderType 'amnu' /*Apple Menu Items*/

#define kControlPanelFolderType 'ctrl' /*Control Panels*/
#define kExtensionFolderType 'extn' /*Extensions*/

#define kPreferencesFolderType 'pref' /*Preferences*/

#define kTemporaryFolderType 'temp' /*Temporary Items*/
};

/*for alias types*/
#define kContainerFolderAliasType 'fdrp' /*folder alias*/

#define kContainerTrashAliasType 'trsh' /*Trash alias*/

CHAPTER 7

Finder Interface

7-76 Summary of the Finder Interface

#define kContainerHardDiskAliasType 'hdsk' /*hard disk alias*/
#define kContainerFloppyAliasType 'flpy' /*floppy disk alias*/

#define kContainerServerAliasType 'srvr' /*server alias*/
#define kApplicationAliasType 'adrp' /*application alias*/

#define kContainerAliasType 'drop' /*all other containers*/

#define kSystemFolderAliasType 'fasy' /*System Folder alias*/
#define kAppleMenuFolderAliasType 'faam' /*Apple Menu Items folder */

/* alias*/
#define kStartupFolderAliasType 'fast' /*Startup Items folder */

/* alias*/

#define kPrintMonitorDocsFolderAliasType
 'fapn' /*PrintMonitor Documents */

/* folder alias*/
#define kPreferencesFolderAliasType 'fapf' /*Preferences folder alias*/

#define kControlPanelFolderAliasType 'fact' /*Control Panels fldr alias*/

#define kExtensionFolderAliasType 'faex' /*Extensions folder alias*/
#define kExportedFolderAliasType 'faet' /*export folder alias*/

#define kDropFolderAliasType 'fadr' /*drop folder alias*/
#define kSharedFolderAliasType 'fash' /*shared folder alias*/

#define kMountedFolderAliasType 'famn' /*mounted folder alias*/

Data Types

struct FInfo { /*Finder information records in th e catalog file* /

OSType fdType; /*file type*/

OSType fdCreator; /*file creator*/

unsigned short fdFlags; /*Finder flags*/

Point fdLocation; /*file's location i n window* /

short fdFldr; /*directory that contains file*/

};

struct FXInfo {

short fdIconID; /*icon ID*/

short fdUnused[3]; /*unused but reserved 6 bytes*/

char fdScript; /*script flag and code*/

char fdXFlags; /*reserved*/

short fdComment; /*comment ID*/

long fdPutAway; /*home dir ectory ID*/

};

CHAPTER 7

Finder Interface

Summary of the Finder Interface 7-77

struct DInfo {

Rect frRect; /*folder's window rectangle*/

unsigned short frFlags; /*flags*/

Point frLocation; /*folder's location in window*/

short frView; /*folder's view*/

};

struct DXInfo {

Point frScroll; /*scroll position*/

long frOpenChain; /*directory ID chain of open folders*/

char frScript; /*script flag and code*/

char frXFlags; /*reserved*/

short frComment; /*comment ID*/

long frPutAway; /*directory ID*/

};

Routines

Resolving Alias Files

pascal OSErr ResolveAliasFile
(FSSpec *theSpec, Boolean resolveAliasChains,

Boolean *targetIsFolder, Boolean *wasAliased);

Finding Directories

pascal OSErr FindFolder (short vRefNum, OSType folderType,
Boolean createFolder, short *foundVRefNum,
long *foundDirID);

Assembly-Language Summary

Data Structures

FInfo Data Structure

0 fdType long file type
4 fdCreator long file creator
8 fdFlags word Finder flags

10 fdLocation long file’s location in window
14 fdFldr word directory that contains file

CHAPTER 7

Finder Interface

7-78 Summary of the Finder Interface

FXInfo Data Structure

DInfo Data Structure

DXInfo Data Structure

Result Codes

0 fdIconID word icon ID
2 fdUnused 6 bytes reserved
8 fdScript 1 byte script flag and code
9 fdXFlags 1 byte reserved

10 fdComment word comment ID
12 fdPutAway long home directory ID

0 frRect 8 bytes folder ’s window rectangle
8 frFlags word flags

10 frLocation long folder ’s location in window
14 frView word folder ’s view

0 frScroll long scroll position
4 frOpenChain long directory ID chain of open folders
8 frScript 1 byte script flag and code
9 frXFlags 1 byte reserved

10 frComment word comment ID
12 frPutAway long directory ID

noErr 0 No error
nsvErr –35 Volume not found
fnfErr –43 For FindFolder : Type not found in 'fld#' resource, or disk doesn’t have

System Folder support or System Folder in volume header, or disk does not
have desktop database support for Desktop Folder—in all cases, folder not
found
For ResolveAliasFile : Target not found, but volume and parent
directory found and theSpec parameter contains a valid file system
specification record

dupFNErr –48 File found instead of folder
dirNFErr –120 Parent directory not found

