
Contents 6-1

CHAPTER 6

Contents

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-6
Types of Alerts 6-8
Types of Dialog Boxes 6-9

Modal Dialog Boxes 6-10
Movable Modal Dialog Boxes 6-11
Modeless Dialog Boxes 6-12

Items in Alert and Dialog Boxes 6-13
Events in Alert and Dialog Boxes 6-14
Alert Boxes, Dialog Boxes, and the Window Manager 6-15
About the Dialog Manager 6-16

Using the Dialog Manager 6-17
Creating Alert Sounds and Alert Boxes 6-18
Creating Dialog Boxes 6-23
Providing Items for Alert and Dialog Boxes 6-26

Item Types 6-30
Display Rectangles 6-32
Enabled and Disabled Items 6-36
Resource IDs for Items 6-36
Titles for Buttons, Checkboxes, and Radio Buttons 6-37
Text Strings for Static Text and Editable Text Items 6-40
Pop-Up Menus as Items 6-42
Keyboard Navigation Among Items 6-44

Manipulating Items 6-44
Changing Static Text 6-46
Getting Text From Editable Text Items 6-48
Adding Items to an Existing Dialog Box 6-51

Using an Application-Defined Item to Draw the Bold Outline for a
Default Button 6-56

CHAPTER 6

6-2 Contents

Displaying Alert and Dialog Boxes 6-61
Positioning Alert and Dialog Boxes 6-62
Deactivating Windows Behind Alert and Modal Dialog Boxes 6-64
Displaying Modeless Dialog Boxes 6-66
Adjusting Menus for Modal Dialog Boxes 6-68
Adjusting Menus for Movable Modal and Modeless Dialog Boxes 6-73
Displaying Multiple Alert and Dialog Boxes 6-74
Displaying Alert and Dialog Boxes From the Background 6-74
Including Color in Your Alert and Dialog Boxes 6-75

Handling Events in Alert and Dialog Boxes 6-77
Responding to Events in Controls 6-78
Responding to Events in Editable Text Items 6-79
Responding to Events in Alert Boxes 6-81
Responding to Events in Modal Dialog Boxes 6-82
Writing an Event Filter Function for Alert and Modal Dialog
Boxes 6-86
Responding to Mouse Events in Modeless and
Movable Modal Dialog Boxes 6-89
Responding to Keyboard Events in Modeless and
Movable Modal Dialog Boxes 6-94
Responding to Activate and Update Events in Modeless and Movable
Modal Dialog Boxes 6-97
Closing Dialog Boxes 6-100

Dialog Manager Reference 6-101
Data Structure 6-101

The Dialog Record 6-101
Dialog Manager Routines 6-102

Initializing the Dialog Manager 6-102
Creating Alerts 6-105
Creating and Disposing of Dialog Boxes 6-113
Manipulating Items in Alert and Dialog Boxes 6-120
Handling Text in Alert and Dialog Boxes 6-129
Handling Events in Dialog Boxes 6-135

Application-Defined Routines 6-143
Resources 6-147

The Dialog Resource 6-148
The Alert Resource 6-150
The Item List Resource 6-151
The Dialog Color Table Resource 6-156
The Alert Color Table Resource 6-157
The Item Color Table Resource 6-158

Summary of the Dialog Manager 6-165
Pascal Summary 6-165

Constants 6-165
Data Types 6-166
Dialog Manager Routines 6-166
Application-Defined Routines 6-168

CHAPTER 6

Contents 6-3

C Summary 6-168
Constants 6-168
Data Types 6-169
Dialog Manager Routines 6-170
Application-Defined Routines 6-172

Assembly-Language Summary 6-172
Data Structures 6-172
Global Variables 6-172

CHAPTER 6

6-5

Dialog Manager

This chapter describes how your application can use the Dialog Manager to alert users to
unusual situations and to solicit information from users. For example, in some situations
your application might not be able to carry out a command normally, and in other
situations the user must specify multiple parameters before your application can execute
a command. For circumstances like these, the Macintosh user interface includes these
two features:

■ alerts—including alert sounds and alert boxes—which warn the user whenever an
unusual or potentially undesirable situation occurs within your application

■ dialog boxes, which allow the user to provide additional information or to modify
settings before your application carries out a command

Read this chapter to learn how and when to implement alerts and dialog boxes. For
example, your application can use the Dialog Manager to ask the user whether to save
new or altered documents before quitting and, if the situation arises, to inform the user
that there is insufficient disk space to save the file.

Virtually all applications need to implement alerts and dialog boxes. To avoid needless
development effort, use the Dialog Manager to implement alerts and to create most
dialog boxes. It is possible, however—and sometimes desirable—to bypass the Dialog
Manager and instead use Window Manager, Control Manager, QuickDraw, and Event
Manager routines to create or respond to events in complex dialog boxes. Even if you
decide not to use the Dialog Manager, read this chapter for information about effective
human interface design and localization issues regarding dialog boxes.

To use this chapter, you should be familiar with resources, the Event Manager, the
Window Manager, and the Control Manager.

You typically use resources to specify the items you wish to display in alert boxes and
dialog boxes; for example, you specify the size, location, and appearance of a dialog
box in a dialog resource—a resource of type 'DLOG' . See the chapter “Introduction to
the Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

The Dialog Manager offers routines that handle most of the events relating to alerts
and dialog boxes, but your application still needs to handle a few additional events
as described in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86. See the chapter “Event Manager” in this book for general
information about events and event handling.

The Dialog Manager uses the Window Manager to display your alert boxes and dialog
boxes. Although the Dialog Manager uses most of the Window Manager routines
necessary to activate and update your alert and dialog boxes, your application needs
to use Window Manager routines if it creates certain types of dialog boxes—such as
modeless dialog boxes—as explained in this chapter. See the chapter “Window
Manager” in this book for general information about windows.

The Dialog Manager uses the Control Manager to create and display buttons, radio
buttons, checkboxes, and pop-up menus and to handle events in them. Generally, you
shouldn’t use any other controls—such as scroll bars—in your dialog boxes. If you need

CHAPTER 6

Dialog Manager

6-6 Introduction to Alerts and Dialog Boxes

to implement a more complex control, see the chapter “Control Manager” in this book.
Buttons are the only controls you should use in alert boxes.

If you include editable text items in your dialog boxes, the Dialog Manager uses TextEdit
to handle associated editing tasks. For general information on TextEdit, see the chapter
“TextEdit” in Inside Macintosh: Text .

This chapter provides a brief introduction to the concepts and functions of alerts and
dialog boxes, and then it discusses how you can

■ create and display alerts and dialog boxes

■ include controls, informative text, editable text fields, and similar items in your alert
boxes and dialog boxes

■ respond to events in your alert boxes and dialog boxes

Introduction to Alerts and Dialog Boxes

The behaviors and uses of alerts differ from those of dialog boxes. Important distinctions
also exist between different types of alerts and between different types of dialog boxes.
You choose among these according to the user’s current situation.

Your application should give an alert to report an error or to issue a warning to the
user. An alert can simply play a sound (called an alert sound) for the user, it can display
an alert box that contains a message and requires an acknowledgment from the user,
or it can play an alert sound and simultaneously display an alert box. Alert boxes are
special windows that contain informative text, buttons, and, generally, icons. They
may also contain pictures. As shown in Figure 6-1, an alert box typically consists of
text describing why the alert appears and buttons requiring the user to acknowledge
or rectify the problem.

Figure 6-1 An alert box used by the Finder

By requiring the user to click a button, an alert box obliges the user to acknowledge the
alert box before proceeding. To assist the user who isn’t sure how to respond when an
alert box appears, your application specifies a preferred button—which invokes a
preferred action—for every alert box. The Dialog Manager draws a bold outline around
the preferred button so that it stands out from the other buttons in the alert box. The
outlined button is also the alert box’s default button; if the user presses the Return key

CHAPTER 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-7

or the Enter key, the Dialog Manager acts as if the user had clicked this preferred button.
For example, if the user presses the Return or Enter key in response to the alert box
shown in Figure 6-1, the Dialog Manager inverts the OK button for 8 ticks and informs
the Finder that the OK button has been selected; then the Finder responds by deleting
the item contained in the Trash.

Use a dialog box when your application needs more information to carry out a com-
mand. Commands in menus normally act on only one object. If the user chooses a
command that your application cannot perform until the user supplies more informa-
tion, use a dialog box to elicit the information from the user. If a command brings up
a dialog box, indicate this to your user by placing three ellipsis points (...) after the
command’s name in the menu.

A dialog box is a special window that typically resembles a form on which the user
checks boxes and fills in blanks. Figure 6-2 shows a typical dialog box.

Figure 6-2 A typical dialog box

Although an alert typically requires only an acknowledgment to proceed from the user, a
dialog box ordinarily requires the user to supply information—for instance, by entering
text or by clicking a checkbox—necessary for completing the command. When you
create a dialog box that carries out a command, you normally provide OK and Cancel
buttons. When the user clicks the OK button, your application should perform the
command according to the information that the user supplied in the dialog box. When
the user clicks the Cancel button, your application should revoke the command and
retract all of its actions as though the user had never given the command. Instead of
using an OK button, you might use a button that describes the action to be performed;
for example, you might use a Search button in a Search command’s dialog box or a
Remove button in a Remove command’s dialog box. For simplicity, this chapter refers to
the button that performs the action described in the dialog box as the OK button. You
may even provide more than one button that performs the command, each in a slightly
different way. For example, in a Change command’s dialog box, you might include a
Change Selection button to replace only the current selection and a Change All button to
replace all occurrences throughout the entire document.

You can use any or all of the following elements in the dialog boxes you create:

■ informative or instructional text

■ rectangles in which text may be entered (initially blank or containing default text that
can be edited)

CHAPTER 6

Dialog Manager

6-8 Introduction to Alerts and Dialog Boxes

■ controls

■ graphics (icons or QuickDraw pictures)

■ other items as defined by your application

Types of Alerts
Every user of every application is liable to do something that the application won’t
understand or can’t cope with in a normal manner. Alerts give your application a way
to respond to these situations in a consistent manner. There are two major categories
of alerts: alert sounds and alert boxes.

The system alert sound is a sound resource stored in the System file. This sound is
played whenever system software or your application uses the Sound Manager
procedure SysBeep . The Sound control panel allows the user to select which sound
is played as the system alert sound. You can also provide your own alert sound to use
in place of the system alert sound.

Use an alert sound for errors that are both minor and immediately obvious. For example,
if the user tries to backspace past the left boundary of a text field, your application might
play the alert sound instead of displaying an alert box. Your application can base its
response on the number of consecutive times an alert condition recurs; the first time,
your application might simply play a sound, and thereafter it might present an alert box.
Your application can define different responses for each one of four alert stages.

An alert box is primarily a one-way communication from your application to the user;
the only way the user can respond is by clicking buttons. Therefore, your alert boxes
should contain buttons, but usually they should not contain editable text fields, radio
buttons, or checkboxes—items that are typically displayed in dialog boxes.

There are three standard kinds of alert boxes: note alerts, caution alerts, and stop alerts.
They are distinguished by the icons displayed in their upper-left corners.

Use a note alert to inform users of a situation that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking the OK button. Occasionally, as shown in Figure 6-3, a note
alert may ask a simple question and provide a choice of responses.

Figure 6-3 A note alert

CHAPTER 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-9

Use a caution alert to alert the user to an operation that may have undesirable results if
it’s allowed to continue. As shown in Figure 6-4, you should give the user the choice of
whether to continue the action (by clicking the OK button) or to stop the action (by
clicking the Cancel button).

Figure 6-4 A caution alert

Use a stop alert to inform the user that a problem or situation is so serious that the
action cannot be completed. Stop alerts, as illustrated in Figure 6-5, typically have only
a single button (OK), because all the user can do is acknowledge that the action cannot
be completed.

Figure 6-5 A stop alert

You can also create custom alert boxes containing in the upper-left corners either your
own icons or blank spaces. Plate 2 at the front of this book illustrates an alert box that
the SurfWriter application displays when the user chooses the About command from the
Apple menu. After reading the information in this alert box, the user clicks the OK
button to dismiss it.

Types of Dialog Boxes
Dialog boxes should always require information from the user as well as communicate
information to the user. That is, the purpose of a dialog box is to carry on a dialog
between the user and your application—typically, in preparation for the execution of
a command. Your dialog boxes can include editable text fields and controls such as
checkboxes and radio buttons. With these, the user supplies the information your
application needs to carry out the command. There are three types of dialog boxes:
modal dialog boxes, movable modal dialog boxes, and modeless dialog boxes. These
are described in the next three sections.

CHAPTER 6

Dialog Manager

6-10 Introduction to Alerts and Dialog Boxes

Modal Dialog Boxes

Before allowing the user to proceed with any other work, many dialog boxes require the
user to click a button. The only response a user receives when clicking outside the dialog
box is an alert sound. This type is called a modal dialog box because it puts the user in
the state or “mode” of being able to work only inside the dialog box. Also called a
fixed-position modal dialog box (to differentiate it from a movable modal dialog box),
this type of dialog box looks like an alert box that includes other types of controls in
addition to buttons. Figure 6-6 shows the modal dialog box that SurfWriter displays after
the user chooses the Spell Check command.

Figure 6-6 A modal dialog box

IMPORTANT

Because the user must explicitly dismiss a modal dialog box before
doing anything else, you should use a modal dialog box only when it’s
essential for the user to complete an operation before performing any
other work. Fixed-position modal dialog boxes restrict the user ’s
freedom of action; therefore, use them sparingly. As a rule of thumb,
use a modeless dialog box whenever possible, use a movable modal
dialog box whenever you can’t use a modeless dialog box, and use a
fixed-position modal dialog box only when you can’t implement the
dialog box as modeless or movable. ▲

A modal dialog box usually has at least two buttons: OK and Cancel. When the user
clicks the OK button, your application should perform the command according to the
information provided by the user and then remove the modal dialog box. You can give
the OK button a more descriptive title if you wish. When the user clicks the Cancel
button, your application should revoke any actions it took since displaying the modal
dialog box, and then it should remove the modal dialog box. Always label this button
“Cancel.” Your dialog boxes can have additional buttons as well; these may or may not
dismiss the dialog box.

Every dialog box you create should have a default button—that is, one whose action is
invoked when the user presses the Return or Enter key. Unless you provide your own
event filter function, the Dialog Manager treats the first item you specify in a description
of a dialog box as the default button (that is, so long as the first item is a button). You use

CHAPTER 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-11

an event filter function, described in “Writing an Event Filter Function for Alert and
Modal Dialog Boxes” beginning on page 6-86, to supplement the Dialog Manager’s
ability to handle events; for example, an event filter function can also test for disk-
inserted events and can allow background applications to receive update events. If you
provide your own event filter function, it should test for key-down events involving the
Return and Enter keys and respond as if the default button were clicked. The default
button should invoke the preferred action, and you should try to design the preferred
action to be safe—that is, so that it doesn’t cause loss of data.

Although the Dialog Manager draws bold outlines around default buttons in alert
boxes, it does not draw bold outlines around those in dialog boxes. To indicate the
preferred action, your application should outline the default button. “Using an
Application-Defined Item to Draw the Bold Outline for a Default Button” beginning on
page 6-56 shows a method you can use to outline a button. If you don’t outline a
button in a dialog box, none should be the default button, and you must ensure in your
event filter function that pressing the Return or Enter key has no effect.

Movable Modal Dialog Boxes

The user sometimes needs to see windows obscured by an overlying modal dialog box.
In this case, you should use a movable modal dialog box instead of a fixed-position
modal dialog box. The movable modal dialog box is a modal dialog box that has a title
bar so that the user can move the box by dragging its title bar.

The movable modal dialog box contains no close box and should contain no zoom box.
These visual clues indicate that the user can move the dialog box, but that the dialog
box is modal—that is, the user must respond to the dialog box before performing any
other work in your application. If the user clicks another window belonging to your
application, it should play the system alert sound. Your application removes a movable
modal dialog box only after the user clicks one of its buttons. Unlike regular modal
dialog boxes, however, this type of dialog box allows the user to bring another
application to the front by clicking one of its windows or by choosing the application
name from the Application or Apple menu.

Figure 6-7 shows the movable modal dialog box that the Finder displays after the user
chooses the Find command from the File menu.

Figure 6-7 A movable modal dialog box

CHAPTER 6

Dialog Manager

6-12 Introduction to Alerts and Dialog Boxes

It’s important to consider whether you can use a modeless dialog box instead of a modal
or a movable modal dialog box—especially to preserve the user’s ability to perform any
task in any order.

Movable modal dialog boxes should generally respond like modal dialog boxes. Note,
however, that users should be able to switch between your application and another
application (thereby sending your application to the background) when you display a
movable modal dialog box—an action users cannot perform with modal dialog boxes.
For example, Macintosh system software uses several movable modal dialog boxes to
show that the Finder is busy with a time-consuming operation (such as file copying), yet
a user can still switch the Finder to the background.

Modeless Dialog Boxes

Other dialog boxes do not require the user to respond before doing anything else; these
are called modeless dialog boxes. Whenever possible, you should try to implement your
dialog boxes as modeless. As shown in Figure 6-8, a modeless dialog box looks like a
document window. The user should be able to move it, make it inactive and active again,
and close it like any document window. Unlike a document window, it consists mostly
of buttons and other controls instead of text, and it contains no scroll bars and no size
box. (A modeless dialog box should not have a size box or scroll bars; if you need these
features, use the Window Manager to create a window.)

Figure 6-8 A modeless dialog box

When you display a modeless dialog box, you must allow the user to perform other
operations—such as working in document windows—without dismissing the dialog
box. When a user clicks a button in a modeless dialog box, your application should not
remove it; instead, the dialog box should remain on the desktop so that the user can
perform the command again. Because of the difficulty in revoking the last action invoked
from a modeless dialog box, it typically does not have a Cancel button, although it may
have a Stop button. A Stop button in a modeless dialog box is useful for halting long
printing or searching operations, for example.

When finished with a modeless dialog box, the user can click its close box or choose
Close from the File menu (when the dialog box is the active window). Your application
should then remove the modeless dialog box. A modeless dialog box is also dismissed
implicitly when the user chooses Quit. It’s usually helpful to the user for your
application to remember the contents of the dialog box after it’s dismissed. This way,
when the user invokes the dialog box again, even after the user closes and reopens your
application, you can restore the dialog box exactly as it was.

CHAPTER 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-13

Items in Alert and Dialog Boxes
All dialog boxes and alert boxes contain items—such as icons, text, controls, and
QuickDraw pictures. You use resources called item lists to specify which items you want
to appear in your alert boxes and dialog boxes. You can even define your own items—
for example, a picture whose appearance changes. Figure 6-9 illustrates most of these
item types.

Figure 6-9 Typical items in a dialog box

Your application enables or disables the items it includes in its dialog and alert boxes. An
enabled item is one for which the Dialog Manager reports user events involving that
item; for example, the Dialog Manager reports to the application when a user clicks the
enabled Cancel button shown in Figure 6-9. A disabled item is one for which the Dialog
Manager does not report events. For example, the Dialog Manager does not report to the
application when the user clicks or drags the static text item “Save this document as” in
Figure 6-9 because that item is disabled.

Don’t confuse a disabled item with an inactive control . When you don’t want the
Control Manager to display visual responses to mouse events in a control, you make
it inactive by using the Control Manager procedure HiliteControl . For example,
until the user types a filename, the Save button in Figure 6-9 is inactive. The Control
Manager displays an inactive control in a way (such as by dimming it) that shows it’s
inactive. The Dialog Manager makes no visual distinction between a disabled item and
an enabled item; the Dialog Manager simply doesn’t inform your application when the
user clicks a disabled item.

You should use HiliteControl to dim a control in dialog box whenever the user can’t
use that control. For example, Figure 6-8 shows a modeless dialog box with a dimmed

CHAPTER 6

Dialog Manager

6-14 Introduction to Alerts and Dialog Boxes

Stop button. The Stop button is dimmed because it has no effect until the user clicks the
Search button. When the user initiates the search operation by clicking the Search button,
the Stop button becomes active, and the Search button is dimmed.

You should use the Control Manager procedure HiliteControl to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The HiliteControl procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate the dialog box again,
use HiliteControl to make the controls active again.

You store information about all dialog or alert box items in an item list resource. When
you use Dialog Manager routines to invoke alert boxes or create dialog boxes, the
Dialog Manager gets most of the descriptive information about them from resources.
The Dialog Manager calls the Resource Manager to read into memory what it needs
from the resource file.

Events in Alert and Dialog Boxes
Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure.

To handle events in a modal dialog box, your application must explicitly call the
ModalDialog procedure after displaying the dialog box.

In either case, when an enabled item is clicked, the Dialog Manager returns the
item number. You’ll then do whatever is appropriate in response to that click. For
mouse-down events outside the alert box or modal dialog box, the ModalDialog
procedure plays the system alert sound and gets the next event.

The Dialog Manager automatically removes an alert box when the user clicks any
enabled item. For a modal dialog box, your application should continue calling
ModalDialog until the user selects the OK or Cancel button, and then—after
responding appropriately to the user’s selection—your application should remove
the dialog box.

When it receives an event, ModalDialog passes the event to an event filter function
before handling the event itself. You should provide an event filter function as a
secondary event-handling loop for events that ModalDialog doesn’t handle. For both
alert and modal dialog boxes, you should provide a simple event filter function that
performs the following tasks:

■ return TRUE and the item number for the default button if the user presses the Return
or Enter key

■ return TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

■ update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

■ return FALSE for all events that your event filter function doesn’t handle

CHAPTER 6

Dialog Manager

Introduction to Alerts and Dialog Boxes 6-15

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor within an
application-defined item.

For your application’s modeless and movable modal dialog boxes, you can pass events
to the IsDialogEvent function, or you can use your own event-handling code to
learn whether the events need to be handled as part of a dialog box. If they do, call
the DialogSelect function to assist you in handling them instead of calling the
ModalDialog procedure. Your application should not remove a modeless dialog box
unless the user clicks its close box or chooses Close from the File menu when the
modeless dialog box is the active window. Your application should remove a movable
modal dialog box only after the user clicks one of its enabled buttons.

Instead of using the IsDialogEvent or DialogSelect function to handle events
within modeless and movable modal dialog boxes, you can use Control Manager,
Window Manager, and TextEdit routines (such as FindWindow , BeginUpdate ,
EndUpdate , FindControl , TrackControl , and TEClick) to handle these events
without the aid of the Dialog Manager.

Alert Boxes, Dialog Boxes, and the Window Manager
The Dialog Manager uses the Window Manager to draw your alert boxes and dialog
boxes. You can use Window Manager or QuickDraw routines to manipulate an alert
box or a dialog box just like any other window—showing it, hiding it, moving it, and
resizing it.

The Dialog Manager gets most of the descriptive information about alerts and dialog
boxes from resources in a resource file. An alert resource is a resource that describes an
alert, and a dialog resource is a resource that describes a dialog box. Both are analogous
to a window resource. (In addition to providing information that the Dialog Manager
passes to the Window Manager, you also include in your alert resources and dialog
resources additional information that the Dialog Manager alone uses. These resources
are described more fully in “Creating Alert Sounds and Alert Boxes” beginning on
page 6-18 and “Creating Dialog Boxes” beginning on page 6-23.)

When you create an alert box, the Dialog Manager always passes to the Window
Manager the dBoxProc window definition ID for the alert box; this is so that all alert
boxes have the same standard appearance and behavior. The Window Manager always
displays an alert box in front of all other windows. Because an alert box requires the user
to respond before doing anything else, and the response dismisses the alert box, your
application typically won’t need to use any Window Manager or QuickDraw routines to
manipulate an alert box.

The GetNewDialog function for creating dialog boxes is similar to the Window
Manager function GetNewWindow. When you call GetNewDialog to create a
dialog box, you supply the same information as when you create a window with
GetNewWindow. For example, you use a resource to specify the window definition ID,
which determines how the dialog box looks and behaves, and a rectangle that defines
the dimensions of the dialog box’s graphics port. As for any window, you specify the

CHAPTER 6

Dialog Manager

6-16 Introduction to Alerts and Dialog Boxes

plane of the dialog box (which, by convention, should initially be frontmost), and you
specify whether it is initially visible or invisible. If you create a dialog box that is initially
invisible—for example, if you need to set a control’s value before displaying it—you use
the Window Manager procedure ShowWindow to display the dialog box.

The Dialog Manager creates the dialog window by calling the Window Manager
function NewCWindow and then setting the window class in the window record to
indicate that it’s a dialog box. The Dialog Manager procedures for disposing of a dialog
box, CloseDialog and DisposeDialog , are analogous to the Window Manager
procedures CloseWindow and DisposeWindow .

When you create a dialog box (as described in “Creating Dialog Boxes” beginning on
page 6-23), use the window definition ID of dBoxProc for modal dialog boxes. Use
the noGrowDocProc window definition ID for modeless dialog boxes. (If your dialog
box absolutely needs a size box or scroll bars, you should use the Window Manager
to create the window instead of using the Dialog Manager.) And finally, use the
movableDBoxProc window definition ID to create movable modal dialog boxes.

The Dialog Manager provides routines for handling most events in alert boxes and
dialog boxes. For example, your application does not need to use such routines as the
Window Manager function FindWindow and the Control Manager function
TrackControl to determine when and where a mouse-down event occurs within an
alert box’s buttons. The Dialog Manager tells you which button the user clicks, and your
application needs only to respond appropriately to the click. The Dialog Manager also
automatically handles update and activate events for your alert boxes and dialog boxes.
“Handling Events in Alert and Dialog Boxes” beginning on page 6-77 describes in detail
how to use the Dialog Manager to help your application handle events.

About the Dialog Manager
The Dialog Manager greatly simplifies the task of creating alert boxes and simple modal
dialog boxes. Whenever you need to create an alert box, you’ll save yourself much effort
by relying on the Dialog Manager. (If you need only to play the system alert sound
without ever displaying an alert box for an error condition, you can use the Sound
Manager procedure SysBeep instead of using the Dialog Manager. See Inside Macintosh:
Sound for more information about the SysBeep procedure.)

You may find, however, that the advantages of using the Dialog Manager begin to
diminish for dialog boxes if you make them very complex. For complex modal dialog
boxes (particularly those containing multipart controls or multiple application-defined
items) and for many movable modal and modeless dialog boxes, you may find it more
convenient to implement your own dialog boxes using the Window Manager to create
standard windows and using the Control Manager, QuickDraw, and the Event Manager
to handle the tasks assumed by the Dialog Manager.

There are two main issues to consider when deciding whether to use the Dialog Manager:

■ whether to use the Window Manager and the Control Manager instead of the Dialog
Manager to create a dialog box

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-17

■ whether to use the Event Manager, Window Manager, Control Manager, and TextEdit
instead of the Dialog Manager to handle events

You may, for example, want to create complex dialog boxes by using the Dialog
Manager, but then use the Event Manager, Window Manager, Control Manager, and
TextEdit to handle events inside your normal event loop. With regard to movable modal
and modeless dialog boxes, the sample code in this chapter illustrates such a hybrid
approach: it uses the Dialog Manager to create the dialog boxes, but it uses normal
event-handling code to determine an appropriate action according to which type of
window is frontmost. When a modeless or movable modal dialog box is in front, this
chapter illustrates how to take actions specific to that dialog box.

If you draw your own dialog box in a standard window without using the Dialog
Manager, you won’t be able to use Dialog Manager routines to help handle events,
but in return you’ll be able to update the window more quickly and extend its event
handling more easily. Here are some situations that tend to diminish the advantages
of using the Dialog Manager to create dialog boxes or handle events involving them:

■ The dialog box contains more than 20 items.

■ You need a multipart control, such as a scroll bar.

■ You need to move items offscreen and onscreen.

■ You need to display a moving indicator, such as a progress indicator.

■ You need to display a list in the dialog box. (For more information on lists, see the
chapter “List Manager” in Inside Macintosh: More Macintosh Toolbox.)

■ You need to display text in a font other than the system font.

■ Your application must respond to events other than mouse-down events, key-down
events inside editable text items, and a few key-down events for keyboard equivalents
when your application displays the dialog box.

If none of these situations applies to the dialog box you want to create, then you should
definitely use the Dialog Manager. If only one situation applies, you should probably use
the Dialog Manager. If two or more of these situations apply, you may find that it is
better to create and manage a standard window that operates like a dialog box instead of
using the Dialog Manager to create or manage it.

Using the Dialog Manager

You can use the Dialog Manager to

■ alert users to critical situations

■ carry on a dialog with users when your application needs their input

With Dialog Manager routines, you invoke alert boxes or create dialog boxes in windows
whose contents are, in turn, managed by the Dialog Manager. The Dialog Manager
automatically handles update events, activate events, cursor tracking, and most
text-editing tasks for your alert and dialog boxes.

CHAPTER 6

Dialog Manager

6-18 Using the Dialog Manager

To implement alerts and dialog boxes, you generally

■ create an alert resource or a dialog resource in a resource file

■ create another resource to specify a list of items—such as controls, informative text,
and pictures—to be displayed in the alert box or dialog box

■ create and display the alert box or dialog box

■ respond as appropriate to events relating to your alert or dialog box

■ close the dialog box when you are finished with it (for alert boxes, the Dialog
Manager automatically performs this for you)

These tasks are explained in greater detail in the rest of this chapter.

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager, the
Window Manager, the Menu Manager, and TextEdit, in that order. Then initialize the
Dialog Manager by using the InitDialogs procedure.

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. If you want to use alert sounds other than the system alert sound, write
your own sound procedure (as illustrated in Listing 6-3 on page 6-22) and call the
ErrorSound procedure to make it the current sound procedure.

If you want to display static text or editable text in a font other than the system font, you
can use the SetDialogFont procedure. However, there are a number of caveats
regarding this procedure. For descriptions of these caveats, see “Special Considerations”
in the description of SetDialogFont on page 6-105.

System 7 and earlier versions of the Communications Toolbox add several new routines
(namely, AppendDITL , ShortenDITL , and CountDITL) that make it easier for you
to add items to, remove items from, and count the number of items in a dialog box.
Before calling these routines, you should make sure that they are available by using the
Gestalt function with the gestaltDITLExtAttr selector. Test the bit field indicated
by the gestaltDITLExtPresent constant in the response parameter. If the bit is set,
then AppendDITL , ShortenDITL , and CountDITL are available.

CONSTgestaltDITLExtPresent = 0; {if this bit is set, then }

{ AppendDITL, ShortenDITL, }

{ & CountDITL are available}

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

Creating Alert Sounds and Alert Boxes
To create an alert, use one of these functions: NoteAlert , CautionAlert , StopAlert ,
and Alert . Icons associated with the first three functions appear in the upper-left corner
of the alert boxes, as previously shown in Figure 6-3, Figure 6-4, and Figure 6-5. The
Alert function allows you to display your own icon or to have no icon at all in the
upper-left corner of the alert box.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-19

These functions take descriptive information about the alert from an alert resource that
you provide. An alert resource has the resource type 'ALRT' . When you call one of these
functions, you pass it the resource ID of the alert resource and a pointer to an event filter
function. These functions create and display an alert box. When the user clicks a button
in an alert box, these functions return the button’s item number and close the alert box,
at which time you respond appropriately to the user’s click, as described in “Responding
to Events in Alert Boxes” beginning on page 6-81.

Here’s an example of how to create the caution alert shown in Figure 6-10.

VAR

myAlertItem: Integer;

myAlertItem := CautionAlert(kSaveAlertID, @MyEventFilter);

Figure 6-10 An alert box to save changes to a document

You should specify a pointer to an event filter function when you call the Alert ,
StopAlert , CautionAlert , and NoteAlert functions. You should provide an event
filter function as a secondary event-handling loop for events that ModalDialog doesn’t
handle. In this example, a pointer to MyEventFilter is specified for the event filter
function. You can use the standard event filter function by passing NIL in this parameter.
The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. As described in “Writing an Event Filter Function for Alert
and Modal Dialog Boxes” beginning on page 6-86, your application should provide a
simple event filter function that also allows background applications to receive update
events. You can use the same event filter function in most or all of your alert boxes and
modal dialog boxes.

Continuing with the previous example, an application-defined constant
(kSaveAlertID) specifies the resource ID of an alert resource in a parameter to
the CautionAlert function. Listing 6-1 shows how this alert resource appears
in Rez input format. (Rez is the resource compiler provided with Apple’s Macintosh
Programmer’s Workshop [MPW], available from APDA.)

Listing 6-1 Rez input for an alert resource

resource 'ALRT' (kSaveAlertID, purgeable) { /*alert resource*/

{94, 80, 183, 438} , / *rectangle for alert box*/

kSaveAlertDITL , / *use the 'DITL' with res ID 200*/

CHAPTER 6

Dialog Manager

6-20 Using the Dialog Manager

{ / *alert stages, starting with # 4; at each * /

/ * s tag e, m ake OK the default , display the */

/* a lert box , & play the system alert sound* /

OK, visible, sound1, /*4th consecutive error*/

OK, visible, sound1, /*3rd consecutive error*/

OK, visible, sound1, /*2nd consecutive error*/

OK, visible, sound1, /*1st error*/

},

alertPositionParentWindow / *place o ver document window*/

};

An alert resource contains the following information:

■ a rectangle, given in global coordinates, that determines the alert box’s dimensions
and, optionally, its position; these coordinates specify the upper-left and lower-right
corners of the alert box

■ the resource ID of the item list for the alert box

■ the actions to be taken at each of four alert stages

■ as an option, a constant (either alertPositionParentWindow ,
alertPositionMainScreen , or alertPositionParentWindowScreen)
that tells the Dialog Manager where to position the alert box (available only to
applications running in System 7)

In Listing 6-1, the coordinates (94,80,183,438) specify the dimensions of the alert box, and
the alertPositionParentWindow constant causes the Dialog Manager to place the
alert box just below the title bar of the user’s document window. If you don’t supply a
positioning constant, the Dialog Manager places the alert box at the global coordinates
you specify for the alert box’s rectangle. The positioning constants for alert boxes are
explained in “Positioning Alert and Dialog Boxes” beginning on page 6-62.

In Listing 6-1, the application-defined constant kSaveAlertDITL represents the
resource ID for the item list resource. “Providing Items for Alert and Dialog Boxes”
beginning on page 6-26 describes how to create an item list resource.

Your application can base its response on the number of consecutive times an alert
condition recurs. In Listing 6-1, the alert resource specifies that each consecutive time
the user repeats the action that invokes this caution alert, the Dialog Manager should
perform the following: outline the OK button and treat it as the default button, display
the alert box (that is, make it “visible”), and play a single system alert sound.

Your application can define different responses for each of four stages of an alert. This is
most appropriate for stop alerts—those that signify that an action cannot be completed—
especially when that action has a high probability of being accidental (for example, when
the user chooses the Cut command when no text is selected). Under such a circumstance,
your application might simply play the system alert sound the first two times the user
makes the mistake, and for subsequent mistakes it might also present an alert box. Every
consecutive occurrence of the mistake after the fourth alert stage is treated as a
fourth-stage alert.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-21

For example, a user might try to paste a graphic outside the page margins of a simple
page-layout program; the first time the user tries this, the application—using the Dialog
Manager—may simply play the system alert sound for the user. If the user repeats the
mistake, the application may play the system alert sound again. But when the user
repeats the error for the third consecutive time, the application may display an alert box
like the one shown in Figure 6-11. If the user makes the same mistake immediately after
dismissing this alert box, the alert box reappears, and it continues doing so until the user
corrects or abandons the improper action.

Figure 6-11 An alert box displayed only during the third and fourth alert stages

Listing 6-2 shows the alert resource used to specify the stop alert displayed in
Figure 6-11. Notice that the fourth alert stage is listed first, and the first alert stage is
listed last. At the third alert stage, the application displays an alert box but does not
play the system alert sound. If the user repeats the mistake a fourth consecutive time,
the application plays the system alert sound and displays the alert box as well.

Listing 6-2 Specifying different alert responses according to alert stage

resource 'ALRT' (kStopAlertID, purgeable) { /*alert resource*/

{40, 40, 127, 353} , / *rectangle for alert box*/

kStopAlertDITL , / *use the 'DITL' with res ID 300*/

{ / *alert stages, starting with #4*/

OK, visible, sound1 , / *4th err : show a lert box, play alert sound* /

OK, visible, silent , / *3rd err : show a lert box , don' t play sound* /

OK, invisible, sound1 , / *2nd err : play sound, don't show alert box */

OK, invisible, sound1 , / *1st err : play sound, don't show alert box */

},

alertPositionParentWindow / *place o ver document window*/

};

The actions for each alert stage are specified by the following three pieces of information:

■ Which button is the default button—the OK button (that is, the first item in the item
list resource) or the Cancel button (that is, the second item in the item list resource).
The Dialog Manager automatically draws a bold outline around the default button,
and when the user presses the Return or Enter key, the Dialog Manager treats—or
your event filter function should treat—that keyboard event as a click in the default

CHAPTER 6

Dialog Manager

6-22 Using the Dialog Manager

button. The OK and Cancel buttons are described in detail in “Providing Items for
Alert and Dialog Boxes” beginning on page 6-26. At each alert stage, you can change
the default button, although it’s difficult to imagine a scenario where changing the
default button would be helpful to the user. In the previous example, the OK button is
the default.

■ Whether the alert box is to be displayed. If you specify the visible constant for
an alert stage, the alert box is displayed; if you specify the invisible constant, it is
not. In Listing 6-2, the alert box is not displayed the first two consecutive times the
user repeats the mistake, but it is displayed for all subsequent consecutive times.

■ Which of four possible sounds (if any) should be emitted at this stage of the alert. In
the previous example, the first, second, and fourth alert stages play a single system
alert sound, but the third stage plays no sound.

By default, the Dialog Manager uses the system alert sound. The sound1 constant, used
in Listing 6-2, tells the Dialog Manager to play the system alert sound once; you can also
specify the sound2 and sound3 constants, which cause the Dialog Manager to play the
system alert sound two and three times, respectively, each time at the same pitch and
with the same duration. The volume of the sound depends on the current speaker
volume setting, which the user can adjust in the Sound control panel. If the user has set
the speaker volume to 0, the menu bar blinks once in place of each sound that the user
would otherwise hear.

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and then call ErrorSound and pass it a pointer to your
sound procedure. The ErrorSound procedure (described on page 6-104) makes your
sound procedure the current sound procedure. For example, you might create a sound
procedure named MyAlertSound , as shown in Listing 6-3.

Listing 6-3 Creating your own sound procedure for alerts

PROCEDURE MyAlertSound (soundNo : I nteger);

BEGIN

CASE soundNo OF

0: PlayMyWhisperAlert ; {sound for silent constant in alert resources}

1: PlayMyBellAlert ; {sound for sound1 constant in alert resources}

2: PlayMyDrumAlert ; {sound for sound2 constant in alert resources}

3: PlayMyTrumpetAlert ; {sound for sound3 constant in alert resources }

OTHERWISE ;

END; {of CASE}

END;

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-23

As previously explained, the dimensions of the rectangle you specify in the alert
resource determine the dimensions of the alert box. You can also let the rectangle
coordinates serve as global coordinates that position the alert box, or you can let the
Dialog Manager automatically locate it for you according to three standard positions.
Listing 6-2 on page 6-21, for example, uses the alertPositionParentWindow
constant to position the alert box over the document window where the user is working.
For details about these standard positions, see “Positioning Alert and Dialog Boxes”
beginning on page 6-62.

Creating Dialog Boxes
To create a dialog box, use the GetNewDialog or NewDialog function. You should
usually use GetNewDialog , which takes information about the dialog box from a
dialog ('DLOG') resource in a resource file. Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification
or translation to other languages. The rest of this section describes how to use
GetNewDialog . Although it’s generally not recommended, you can also use the
NewDialog or NewColorDialog function and pass it the necessary descriptive
information in individual parameters instead of using a dialog resource. See page 6-118
for a description of NewDialog and page 6-115 for a description of NewColorDialog .

The GetNewDialog function creates a data structure (called a dialog record) of type
DialogRecord from the information in the dialog resource and returns a pointer to it.
A dialog record includes a window record. When you use GetNewDialog , the Dialog
Manager sets the windowKind field in the window record to dialogKind . As
explained in “Displaying Alert and Dialog Boxes” beginning on page 6-61, you can use
this pointer with Window Manager or QuickDraw routines to display and manipulate
the dialog box.

When you use GetNewDialog , you pass it the resource ID of the dialog resource, an
optional pointer to the memory to use for the dialog record, and the window pointer
Pointer(-1) , which causes the Window Manager to display the dialog box in front of
all other windows.

If you pass NIL for the memory pointer, the dialog record is allocated in your
application’s heap. Passing NIL is appropriate for modal dialog boxes and movable
modal dialog boxes, but—if you are creating a modeless dialog box—this can cause your
heap to become fragmented. In the case of modeless dialog boxes, therefore, you should
allocate your own memory as you would for a window; allocating window memory is
described in the chapter “Window Manager” in this book.

Here’s an example of how to create the dialog box shown in Figure 6-12.

VAR

theDialog: DialogPtr;

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

CHAPTER 6

Dialog Manager

6-24 Using the Dialog Manager

Figure 6-12 A simple modal dialog box

This example uses an application-supplied constant (kSpellCheckID) to specify the
resource ID number of a dialog resource. Listing 6-4 shows how this dialog resource
appears in Rez input format.

Listing 6-4 Rez input for a dialog resource

resource 'DLOG' (kSpellCheckID, purgeable) { /*dialog resource*/

{62, 184, 216, 448}, /*rectangle for dialog box*/

dBoxProc, /*window def inition ID for modal dialog box*/

visible, /*display this dialog box immediately*/

noGoAway, /*don't draw a close box*/

0x0, /* initial re fCo n value of 0*/

kSpellCheckDITL, /*use item list with res ID 400*/

"Spellcheck Options", /*title if this were a modeless dialog box */

alertPositionParentWindow / *place o ver document window*/

};

The dialog resource contains the following information:

■ a rectangle, given in global coordinates, that determines the dialog box’s
dimensions and, optionally, position; these coordinates specify the upper-left
and lower-right corners

■ the window definition ID, which specifies the window definition function and
variation code for the type of dialog box

■ a constant (either visible or invisible) that specifies whether the dialog box
should be drawn on the screen immediately

■ a constant (either noGoAway or goAway); use goAway only to specify a close box in
the title bar of a modeless dialog box

■ a reference value of type LongInt , which your application may use for any purpose

■ the resource ID of the item list resource for the dialog box

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-25

■ a text string used for the title of a modeless or movable modal dialog box

■ as an option, a constant (either alertPositionParentWindow ,
alertPositionMainScreen , or alertPositionParentWindowScreen) that
tells the Dialog Manager how to position the dialog box (available only to applications
running in System 7)

In the example, a rectangle with coordinates (62,184,216,448) specifies the dimensions of
the dialog box, and the alertPositionParentWindow constant causes the Dialog
Manager to place the dialog box just below the title bar of the user’s document window.
If you don’t supply a positioning constant, the Dialog Manager places the dialog box at
the global coordinates you specify for the dialog box’s rectangle. Positioning constants
for dialog boxes are explained in “Positioning Alert and Dialog Boxes” beginning on
page 6-62.

In the example, the dBoxProc window definition ID is used. Use the following window
definition IDs for specifying dialog box types:

In each case, the Dialog Manager uses the Window Manager to draw the appropriate
window frame. Figure 6-6 on page 6-10 shows an example of a modal dialog box drawn
with the dBoxProc window definition ID, Figure 6-7 on page 6-11 shows an example of
a movable modal dialog box drawn with the movableDBoxProc window definition ID,
and Figure 6-8 on page 6-12 illustrates a modeless dialog box drawn with the
noGrowDocProc window definition ID.

Listing 6-4 specifies the visible constant so that the dialog box is drawn immediately.
If you use the invisible constant, the dialog box is not drawn until your application
uses the Window Manager procedure ShowWindow to display the dialog box.

Use the goAway constant only with modeless dialog boxes. For modal dialog boxes and
movable modal dialog boxes, use the noGoAway constant, as shown in the example.

Notice that because the example does not make use of the reference constant, 0 (0x0) is
provided as a filler. However, you may wish to make use of this constant. For example,
your application can store a number that represents a dialog box type, or it can store
a handle to a record that maintains state information about the dialog box or other
window types, as explained in the chapter “Window Manager” in this book. You can use
the Window Manager procedure SetWRefCon at any time to change this value in the
dialog record for a dialog box, and you can use the GetWRefCon function to determine
its current value.

Listing 6-4 uses an application-defined constant that specifies the resource ID for the
item list. The next section, “Providing Items for Alert and Dialog Boxes,” describes how
to create an item list.

Window defi nition ID Dialog box type

dBoxProc Modal dialog box

movableDBoxProc Movable modal dialog box

noGrowDocProc Modeless dialog box

CHAPTER 6

Dialog Manager

6-26 Using the Dialog Manager

Supply a text string in your dialog resource when you want a modeless dialog box or a
movable modal dialog box to have a title. You can specify an empty string for a title bar
that contains no text. The example specifies the string “Spellcheck Options” for code
readability but, because the example creates a modal dialog box, no title bar is displayed.

You can let the Dialog Manager automatically locate the dialog box according
to three standard positions. Listing 6-4 on page 6-24, for example, specifies the
alertPositionParentWindow constant to position the dialog box over the
document window where the user is working. For details on these standard positions,
see “Positioning Alert and Dialog Boxes” beginning on page 6-62.

Providing Items for Alert and Dialog Boxes
You use an item list ('DITL') resource to store information about all the items (text,
controls, icons, or pictures) in an alert or dialog box. As described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and “Creating Dialog Boxes”
beginning on page 6-23, you specify the resource ID of the item list resource in the alert
('ALRT') resource or dialog ('DLOG') resource.

Within an item list resource for an alert box or a dialog box, you specify its static text,
buttons, and the resource IDs of icons and QuickDraw pictures. In addition, you can
specify checkboxes, radio buttons, editable text, and the resource IDs of other types of
controls (such as pop-up menus) in an item list resource for a dialog box.

Figure 6-13 shows an example of an alert box displayed by the SurfWriter application
when the user chooses the About command from the Apple menu. To display its own
icon in the upper-left corner of the alert box, the application uses the Alert function. An
alert resource with resource ID 128 is passed in a parameter to the Alert function.
The alert resource in turn specifies an item list resource with resource ID 128. The item
list resource specifies an OK button, some static text, and an icon, whose resource ID is
128. (It’s customary to assign the same resource ID to the item list resource and to either
its alert resource or dialog resource, but it’s not necessary to do so.)

In this example, when the user chooses the About command, the SurfWriter application
uses the Alert function to display the alert.

itemHit := Alert(kAboutBoxID, @MyEventFilter);

The Alert function in this example displays the alert box defined by the alert resource
represented by the kAboutBoxID resource ID. As explained in “Responding to Events
in Alert Boxes” beginning on page 6-81, the Alert function handles most user actions
while the alert box is displayed. When the user clicks any button in an alert box, Alert
removes the alert box and returns to your application the item number of the selected
button. The application-defined function MyEventFilter that is pointed to in this
example allows background applications to receive update events for their windows.

Listing 6-5 shows the resources, in Rez input format, that the Alert function uses to
display the alert box shown in Figure 6-13.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-27

Figure 6-13 Relationship of various resources to an alert box

Listing 6-5 Rez input for providing an alert box with items

define kAboutBoxID 128 /*resource ID for About SurfWriter alert box*/
define kAboutBoxDITL 128 /*resource ID for item list*/

define kSurfWriterIconID 128 /*resource ID for 'ICON' resource*/
define kSurfWriterColorIconID 128 /*resource ID for 'cicn' resource*/

define kAboutBoxHelp 128 /*resource ID for 'hdlg' resource*/

resource 'ALRT' (kAboutBoxID, purgeable) { /*About SurfWriter alert box*/
{40, 40, 156, 309}, /*rectangle for alert box*/

kAboutBoxDITL, /*use item list resource with ID 128*/
{ /*identical alert stage responses*/

OK, visible, silent,
OK, visible, silent,

OK, visible, silent,
OK, visible, silent,

},
alertPositionMainScreen /*display on the main screen*/

};

CHAPTER 6

Dialog Manager

6-28 Using the Dialog Manager

resource 'DITL' (kAboutBoxDITL, purgeable) { /*items for About SW alert box*/
/*ITEM NO. 1*/

{ {86, 201, 106, 259}, /*display rectangle for item*/
Button { /*the item is a button*/

enabled, /*enable item to return click*/
"OK" /*title for button is "OK"*/

},
/*ITEM NO. 2*/

{10, 20, 42, 52}, /*display rectangle for item*/
Icon { /*the item is an icon*/

disabled, /*don't return clicks on this item*/
kSurfWriterIconID /*use 'ICON' & 'cicn' resources */

/* with resource IDs of 128*/
},

/*ITEM NO. 3*/
{10, 78, 74, 259}, /*display rectangle for the item*/

StaticText { /*the item is static text*/
disabled, /*don't return clicks on this item*/

"SurfWriter 3.0\n" /*text string to display*/
"A Swell Text Processor \n\n "

"©My Company, Inc. 1992"
},

/*ITEM NO. 4*/
{0, 0, 0, 0}, /*help items get an empty rectangle*/

HelpItem { /*invisible item for reading in help balloons*/
disabled, /*don't return clicks on this item*/

HMScanhdlg /*scan resource type 'hdlg' for help balloons*/
{kAboutBoxHelp} /*get 'hdlg' with resource ID 128*/

}
}

};
data 'ICON' (kSurfWriterIconID, purgeable) {

/*icon data for black-and-white icon for About SurfWriter goes here*/
};

data 'cicn' (kSurfWriterColorIconID, purgeable) {
/*icon data for color icon for About SurfWriter goes here*/

};

Items are usually referred to by their positions in the item list resource. For example, the
Alert function returns 1 when the user clicks the OK button in the alert box created in
Listing 6-5. The Dialog Manager returns 1 because the OK button is the first item in the
list. (Responding to the item numbers returned by Alert and other Dialog Manager
functions is explained in “Handling Events in Alert and Dialog Boxes” beginning on
page 6-77.) Similarly, when you use a Dialog Manager routine to manipulate an item,
you specify it by its item number, an integer that corresponds to an item’s position in its
item list resource.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-29

IMPORTANT

Item list resources should always be marked as purgeable. ▲

The Dialog Manager also calls the Resource Manager to read in any individual items
as necessary.

When you create a dialog box or an alert box, the Dialog Manager creates a dialog record.
The Dialog Manager then reads in the item list resource and stores a handle to it in the
items field of the dialog record. Because the Dialog Manager always makes a copy of
the item list resource and uses that copy, several independent dialog boxes may share
the same item list resource. As explained in “Adding Items to an Existing Dialog Box”
beginning on page 6-51, you can use the AppendDITL and ShortenDITL procedures
to modify or customize copies of a shared item list resource for use in individual
dialog boxes.

As an alternative to using a dialog resource, you can read in a dialog’s item list resource
directly and then pass a handle to it along with other information to NewDialog , which
creates the dialog box. Remember, however, that it is easier to localize your application if
you use a dialog resource and the GetNewDialog function.

An item list resource contains the following information for each item:

■ a display rectangle

■ the type of item (as described in the next section)

■ a constant (either enabled or disabled) that instructs the Dialog Manager whether
to report events for that item

■ either a text string or a resource ID, as appropriate for the type of item

The display rectangle determines the size and location of the item. Specify the display
rectangle in coordinates local to the alert or dialog box. For example, in Listing 6-5 the
first item is displayed in a rectangle specified by the coordinates (86,201,106,259), which
place the item in the lower-right corner of this alert box. More information about display
rectangles and their placement is provided in “Display Rectangles” beginning on
page 6-32.

In an item list resource, you can specify controls, text, icons, pictures, and other items
that you define. In Listing 6-5, the first item’s type is specified by the Button constant.
Item types and their constants are described in the next section.

For each item in the item list resource, you must also instruct the Dialog Manager
whether to report to your application when the item is clicked. In Listing 6-5, the first
item is enabled, because the enabled constant is specified. “Enabled and Disabled
Items” on page 6-36 explains when and how to enable items.

Depending on the type of item in the list, you usually provide a text string or a resource
ID for the item. In Listing 6-5, the string OK is specified as the button title for the first
item. “Resource IDs for Items” beginning on page 6-36 explains what titles and resources
are appropriate for the various item types.

The information that you provide in an item list resource is described more fully in the
next several sections.

CHAPTER 6

Dialog Manager

6-30 Using the Dialog Manager

Item Types

The following list shows the types of items you can include in alert and dialog boxes and
the constants for specifying them in a Rez input file.

The chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox describes how
to create and use items of type HelpItem to provide help balloons for your alert and
dialog boxes. When you specify a help item, make it the last item in the list, as shown in
Listing 6-5 on page 6-27.

The chapter “Finder Interface” in this book describes icon ('ICON') resources and color
icon ('cicn') resources. Inside Macintosh: Imaging describes 'PICT' resources.

The chapter “Control Manager” in this book describes how to create a control with
a 'CNTL' resource. Pop-up menus are easily implemented as controls. “Pop-Up Menus
as Items” beginning on page 6-42 illustrates how to include pop-up menus in your
dialog boxes.

Be aware that alert boxes should contain only buttons (which the user clicks to dismiss
the alert box), static text, icons, and pictures. If you need to present other items, you
should create a dialog box.

The first item in an alert box’s item list resource should be the OK button; if a Cancel
button is necessary, it should be the second item. The Dialog Manager provides these
constants for the first two item numbers:

CONSTok = 1;

cancel = 2;

As described in “Creating Alert Sounds and Alert Boxes” beginning on page 6-18, you
define within the alert resource whether the OK or the Cancel button is the default
button for each alert stage. The Dialog Manager automatically draws a bold outline
around the button that you specify and, if the user presses the Return key or Enter key,

Constant Description

Button A button control

CheckBox A checkbox control (use in dialog boxes only)

Control A control defined in a 'CNTL' resource file (use in dialog
boxes only)

EditText An editable text item (use in dialog boxes only)

HelpItem An invisible item that makes the Help Manager associate help
balloons with the other items defined in the item list resource

Icon An icon whose black-and-white version is stored in an 'ICON'
resource and whose color version is stored in a 'cicn' resource
with the same resource ID as the 'ICON' resource

Picture A QuickDraw picture stored in a 'PICT' resource

RadioButton A radio button control (use in dialog boxes only)

StaticText Static text; that is, text that cannot be edited

UserItem An application-defined item (use in dialog boxes only)

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-31

the Dialog Manager responds—or your event filter function should respond—as if the
default button were clicked. (“Writing an Event Filter Function for Alert and Modal
Dialog Boxes” beginning on page 6-86 describes event filter functions.)

The Dialog Manager does not draw a bold outline around the default button for dialog
boxes. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 shows how your application can outline the default
button in a dialog box. You should normally give every dialog box a default button—
that is, one whose action is invoked when the user presses the Return or Enter key.
“Writing an Event Filter Function for Alert and Modal Dialog Boxes” beginning on
page 6-86 shows how to test for these key-down events and respond as if the user had
clicked the default button. If you don’t provide your own event filter function, the
Dialog Manager treats the first item in an item list resource as the default button. That is,
although the Dialog Manager doesn’t draw a bold outline around the button in a dialog
box, the Dialog Manager does return its item number to your application when the user
presses the Return or Enter key.

Don’t set a default button to perform a dangerous action—for example, one that causes
a loss of user data. If none of the possible actions is safe, don’t display a default border
around any button and provide an event filter function that ignores the Return and Enter
keys. This protects users from accidentally damaging their work by pressing Return or
Enter out of habit. However, you should try to design a safe action that the user can
invoke with a default button, such as a Save button. Figure 6-14 illustrates an alert box
that provides a default button for a safe action.

Figure 6-14 A safe default button in an alert box

Provide a Cancel button whenever you can, and in your event filter function, map the
Command-period key combination and the Esc (Escape) key to the Cancel button.

Don’t display a bold outline around any button if you use the Return key in editable text
items, because using the same key for two different purposes confuses users and makes
the interface less predictable.

CHAPTER 6

Dialog Manager

6-32 Using the Dialog Manager

Display Rectangles

As previously mentioned, the display rectangle determines the location of an item
within an alert box or a dialog box. Use the alert or dialog box’s local coordinates to
specify the display rectangle.

For controls, the display rectangle becomes the control’s enclosing rectangle. To match
a control’s enclosing rectangle to its display rectangle, specify an enclosing rectangle
in the control resource that is identical to the one you specify for the display rectangle in
the item list resource. (The control resource is described in the chapter “Control
Manager” in this book.)

Note

Note that, when an item is a control defined in a control ('CNTL')
resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in
the item list resource. ◆

For an editable text item, the display rectangle becomes the TextEdit destination
rectangle and its view rectangle. Word wrapping occurs within display rectangles that
are large enough to contain multiple lines of text, and the text is clipped if there’s more
than will fit in the rectangle. The Dialog Manager uses the QuickDraw procedure
FrameRect to draw a rectangle three pixels outside the display rectangle. For more
detailed information about TextEdit, see the chapter “TextEdit” in Inside Macintosh: Text.

For a static text item, the Dialog Manager draws the text within the display rectangle just
as it draws editable text items, except that the Dialog Manager doesn’t draw a frame
rectangle outside the display rectangle.

For an icon or a QuickDraw picture larger than its display rectangle, the Dialog Manager
scales the icon or picture to fit the display rectangle.

Although the procedure for an application-defined item can draw outside the item’s
display rectangle, this is not recommended, because if the Dialog Manager receives
an update event involving an area outside the display rectangle but inside the area
where you draw your application-defined item, the Dialog Manager won’t call your
draw procedure.

Note

A click anywhere in the display rectangle is considered a click in that
item. If display rectangles overlap, a click in the overlapping area
is considered a click in whichever item appears first in the item list
resource. ◆

You should display items in functional and consistent locations, both within your
application and across all applications that you develop. In alert boxes and in most
dialog boxes, place the OK button in the lower-right corner and place the Cancel
button to its left. Figure 6-15 shows the recommended location of buttons and text
in an alert box.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-33

Figure 6-15 The consistent spacing of buttons and text in an alert box

Generally, you should use distances of 13 and 23 white pixels to separate the items in
dialog boxes and alert boxes. (When separating the default button from the window
edges and other items, don’t count the pixels that make up its bold outline.) However, be
aware that the Window Manager adds 3 white pixels inside the window frame when it
draws alert boxes and modal dialog boxes. Therefore, specify display rectangle locations
as follows when you use tools like Rez and ResEdit:

■ Place the display rectangle for the lower-right button 10 pixels from the right edge
and 10 pixels from the bottom edge of the alert or modal dialog box; align the display
rectangles for other bottommost and rightmost items with this button.

■ Place the display rectangle for the upper-left icon (or similar item) 10 pixels from the
top edge and 20 pixels from the left of the alert or modal dialog box; align the display
rectangles for other topmost and leftmost items with this item. The Dialog Manager
automatically places the caution, note, and stop alert icons in this position when you
use the CautionAlert , NoteAlert , and StopAlert functions. When you use the
Alert function, you must specify the icon and the location.

■ Place the other elements in the alert or modal dialog box 13 or 23 pixels apart, as
shown in Figure 6-15.

For example, the rectangle for the alert box in Figure 6-15 has a specified height of
85 pixels. The display rectangle for the Save button has a bottom coordinate of 75, and
the display rectangle for the static text item has a top coordinate of 10. The Window
Manager adds 3 white pixels at the top of the alert box and 3 pixels at the bottom, so
the alert box contains 13 white pixels below the Save button and 13 white pixels above
the static text display rectangle. Listing 6-6 shows how the locations for these display
rectangles are specified in a Rez input file.

CHAPTER 6

Dialog Manager

6-34 Using the Dialog Manager

Listing 6-6 Rez input for consistent spacing of display rectangles

resource 'DITL' (200, purgeable) {

{ {55, 288, 75, 348}, Button {enabled, "Save"},

{55, 215, 75, 275}, Button {enabled, "Cancel"},

{55, 72, 75, 156}, Button {enabled, "Don't Save"},

{10, 75, 42, 348}, StaticText {disabled,

"Save changes to the SurfWriter document “^0” before"

" closing?"}

}

};

When specifying display rectangle locations for items in movable modal and modeless
dialog boxes, use the full distance of either 13 or 23 pixels to separate items from the
window edges. For example, if the items in Figure 6-15 were placed in a modeless dialog
box, the top coordinate of the Save button’s display rectangle should be 52 instead of 55,
and its bottom coordinate would be 72 instead of 75.

As explained in the previous section, the default button can be any button; its assign-
ment is secondary to the consistent placement of buttons. This rule keeps the OK button
and the Cancel button consistently placed. Otherwise, the buttons would keep changing
location depending on the default choice.

The Western reader ’s eye tends to move from the upper-left area of the alert or dialog
box to the lower-right area. For Western versions of your software, use the upper-left
area for elements (such as the alert icon) that convey the initial impression that you want
to make. Place the buttons that a user clicks in the lower-right area.

The alignment of the items in an alert box or a dialog box may vary with localization.
Although in Roman script systems these items are generally aligned left to right, items
in Arabic or Hebrew script systems should generally be aligned right to left, because
Arabic and Hebrew are written from right to left. The TextEdit procedure TESetJust ,
described in the chapter “TextEdit” in Inside Macintosh: Text, controls the alignment of
interface elements.

When line alignment is right to left, as in Hebrew and Arabic, the Control Manager
transposes checkboxes—and radio buttons—and their titles. That is, checkboxes and
radio buttons appear to the right of the text instead of to the left, as in Roman script
systems. Therefore, when you create checkboxes, radio buttons, and static text items
that need to align, make sure that their display rectangles are the same size.

The dialog box at the top of Figure 6-16 shows several checkboxes and radio buttons
with display rectangles of different sizes. The next dialog box in the figure illustrates
what happens to the alignment of these items after the Control Manager transposes
the controls with their titles.

The bottom two dialog boxes in Figure 6-16 illustrate how the Control Manager displays
properly sized items when transposing the controls with their titles.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-35

Figure 6-16 Incorrectly and correctly sized display rectangles for alternate script systems

CHAPTER 6

Dialog Manager

6-36 Using the Dialog Manager

Enabled and Disabled Items

For each item in an item list resource, include one of these two constants to specify in a
Rez input file whether the Dialog Manager should inform your application of events
involving that item:

Generally, you should enable only controls. In particular, you should enable buttons,
radio buttons, and checkboxes so that your application knows when they’ve been
clicked. You typically disable editable text and static text items. You normally disable
editable text items because you use the Dialog Manager function GetDialogItemText
to read the information in the items only after the user clicks the OK button. (Listing 6-12
on page 6-49 illustrates how to use the GetDialogItemText function for this purpose.)
You should use static text items only for providing information; users don’t expect to
click them. Likewise, you typically disable icons and pictures that merely provide
information; if you use an icon or a picture as a buttonlike control to receive input,
however, you must enable it. If you create an application-defined item such as a moving
indicator to display information, you typically disable it. If you create an application-
defined item such as a buttonlike control to receive input, you must enable it.

Don’t confuse disabling an item with using the Control Manager procedure
HiliteControl to make a control inactive. When you don’t want the Control Manager
to respond to clicks in a control, you make it inactive; when you don’t want the Dialog
Manager to report clicks in a control, you make it disabled.

The Control Manager displays an inactive control in a way (dimmed, for example) that
shows it’s inactive, whereas the Dialog Manager makes no visual distinction between a
disabled item and an enabled item. Figure 6-17 shows the difference between an inactive
and an active control. The Control Manager procedure HiliteControl has been used
to dim the inactive Eject button. If a user clicks this button, the Control Manager does
not respond. However, when a user clicks the active Desktop button, the Control
Manager inverts the button for 8 ticks.

Buttons and other controls are generally enabled, and disabling them does not alter their
appearance; the enabled radio button in Figure 6-17 would appear the same if it were
disabled. Because the static text reading “Save this document as” in Figure 6-17 is not
a control, the application doesn’t need to respond clicks in the text. Therefore, the
application has disabled it; however, the static text would have the same appearance
if the application were to enable it.

Resource IDs for Items

The final element for an item in an item list resource is usually either a text string or a
resource ID. The choice depends on the type of item.

Constant Description

enabled Informs your application about events involving this item

disabled Doesn’t inform your application about events involving this item

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-37

Figure 6-17 Inactive controls and disabled items

Provide a resource ID for icons, QuickDraw pictures, and controls other than buttons,
checkboxes, and radio buttons. For an icon, provide the ID of an 'ICON' resource; for
a QuickDraw picture, the ID of a 'PICT' resource; and for a control (including a pop-
up menu), the ID of a 'CNTL' resource. In Listing 6-5 on page 6-27, the resource ID of
128 specifies which 'ICON' (and 'cicn') resources to use for the second item in the
item list resource.

For a button, checkbox, radio button, static text item, and editable text item, supply a text
string as the final element for the item in its item list resource. The next several sections
provide guidelines for the text that you should provide.

For your own application-defined items, supply neither a title nor a resource ID.
Listing 6-15 on page 6-57 shows an item list resource that includes an application-
defined item.

Titles for Buttons, Checkboxes, and Radio Buttons

For a button, checkbox, or radio button, provide a text string for the control’s title as the
final element for the item when you specify it in the item list. In Listing 6-5 on page 6-27,
the string OK specifies the button title for the first item in the item list resource.

Use book-title capitalization for these items. In general, this means that you capitalize
one-word titles and, in multiple-word titles, words of four or more letters. Usually you
don’t capitalize words such as in, an, or and. The rules for capitalization of titles appear
in the Apple Publications Style Guide, which is available from APDA.

As explained in the chapter “Control Manager” in this book, the title of a checkbox
should reflect two clearly opposite states, because a checkbox should allow the user to
turn a particular setting either on or off. The opposites should be expressed in an equal
sense in either state. If you can’t devise a checkbox title that clearly implies its opposite
state, you might be better off using radio buttons. With radio buttons, you can use two

CHAPTER 6

Dialog Manager

6-38 Using the Dialog Manager

titles, thereby clarifying the states. Radio buttons should represent related, but not
necessarily opposite, choices. Give each radio button a title consisting of a word or a
phrase that identifies what the button does. Remember that, as described in the chapter
“Control Manager” in this book, the radio buttons in a group are mutually exclusive:
only one button in that group can be on at one time.

Whenever possible, title a button with a verb describing the action that the button
performs. A user typically reads the text in an alert box or a dialog box until it becomes
familiar and then relies on visual cues, such as button titles or positions, to respond.
Buttons such as Save, Quit, or Erase Disk allow users to identify and click the correct
button quickly. These titles are often more clear and precise than OK, Yes, and No. If the
action can’t be condensed into a word or two, OK and Cancel or Yes and No may serve
the purpose. If you use these generic titles, be sure to phrase the wording in the dialog
box so that the action the button initiates is clear. Figure 6-18 shows a dialog box with
appropriate OK and Cancel buttons.

Figure 6-18 A dialog box with OK and Cancel buttons

Cancel means “dismiss this operation with no side effects.” It does not mean “I’ve read
this dialog box” or “stop what you’re doing regardless.” When users click the Cancel
button in your alert boxes, modal dialog boxes, and movable modal dialog boxes, your
application should revoke any actions it took since displaying the alert or dialog box and
then remove the box.

Your application should not remove a modeless dialog box when the user clicks a
button; rather, you should remove the dialog box when the user clicks its close box or
chooses Close from the File menu while the modeless dialog box is active.

When it is impossible to return to the state that existed before an operation began, don’t
use a Cancel button. You can use Stop or OK, which are useful in different situations. A
Stop button may leave the results of a partially complete task intact, whereas a Cancel
button always returns the application and its documents to their previous state. Use OK
for a button that closes the alert box, modal dialog box, or movable modal dialog box
and accepts any changes made while the dialog box was displayed.

Because of the difficulty in revoking the last action invoked from a modeless dialog box,
these dialog boxes typically don’t have Cancel buttons, although they may have Stop
buttons. For example, the movable modal dialog box shown in Figure 6-19 uses a Stop

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-39

button; clicking the button halts the current file copy operation but leaves intact the
copies that were previously made.

Figure 6-19 A movable modal dialog box with a Stop button

In an alert box that requires confirmation, use a button title that describes the result of
accepting the message in the alert box. For example, if an alert box asks “Revert to the
last saved version of the document,” use a Revert button rather than an OK button. Try
to use a verb in the button title; as in the Revert button in Figure 6-20, use the same verb
that you use in your alert message.

Figure 6-20 An alert box with a Revert button

If the alert box presents the user with a situation in which no alternative actions are
available, give the box a single button that’s titled OK. You should interpret the user ’s
clicking this button to mean “I’ve read the alert box.”

A modal dialog box usually cuts the user off from the task. That is, when making choices
in a modal dialog box, the user can’t see the area of the document that changes. The user
sees the changes only after dismissing the dialog box. If the changes aren’t appropriate,
then the user has to repeat the entire operation. To provide better feedback to the user,
you need to give the user a way to see what the changes will be. Therefore, any selection
made in a modal dialog box should immediately update the document contents, or you
should provide a sample area in the dialog box that reflects how the user ’s selections
will change the document. In the case of immediate document updating, the OK button
means “accept this change” and the Cancel button means “undo all changes made
through this dialog box.”

The Dialog Manager displays button titles (as well as all other control titles) in the
system font. To make it easier to localize your application, you should not change
the font.

CHAPTER 6

Dialog Manager

6-40 Using the Dialog Manager

Text Strings for Static Text and Editable Text Items

For an editable text item, if you want the item to display only a blinking cursor, specify
an empty string as the item’s final element in the item list resource or specify a string if
you want to display some default text.

For a static text item, supply a text string as its final element when you specify it in the
item list resource. In the third item in Listing 6-5, the text string SurfWriter 3.0
\nA Swell Text Processor \n\n©My Company, Inc. 1992 specifies the alert
box’s message.

Whenever you provide static text items in alert and dialog boxes, ensure that the
messages make sense to the user. Use simple, nontechnical language and don’t provide
system-oriented information to which the user can’t respond.

Whenever applicable, state the name of the document or application in your alert or
dialog box. For example, the alert box in Figure 6-20 on page 6-39 shows both the name
of the application (SurfWriter) and the name of the document (My Window). This kind
of message helps users who are working with several documents or applications at once
to make decisions about each one individually. “Changing Static Text” beginning on
page 6-46 describes how to use the ParamText procedure to supply the names of
document windows to your alert and dialog boxes dynamically.

Use icons and pictures whenever possible. Images can describe some error situations
better than words, and familiar icons help users distinguish their alternatives better.
However, because experience has shown that it is nearly impossible to create icons that
are comprehensible or inoffensive across all international markets, you should be
prepared to localize any icons or pictures you use. See the chapter “Icons” in Macintosh
Human Interface Guidelines for more information about creating appropriate icons.

For your static text items, it’s generally better to be polite than abrupt, even if it
means lengthening your message. Your message should be helpful, and it may offer
constructive suggestions, but it should not appear to give orders. Its focus should be
to help the user perform the task, not to give an interesting but academic description
of the task itself.

When you localize your application for use with other languages, the text may become
longer or shorter. Translated text is often 50 percent longer than U.S. English text. You
may need to resize your display rectangles and your alert and dialog boxes to
accommodate the translated text.

By default, the Dialog Manager displays static text items in the system font. To make it
easier to localize your application, you should not change the font. Do not use a smaller
font, such as 9-point Geneva; some script systems such as KanjiTalk require 12-point
fonts. You will save yourself future localization effort by leaving all the text in your alert
and dialog boxes in the system script.

In alert boxes, try to include information that tells the user how to resolve the problem at
hand. Never refer the user to external documentation for further clarification.

Stop alerts typically report errors to the user. A good error message explains what
went wrong, why it went wrong, and what the user can do about it. Express this
information in the user ’s vocabulary, not in your programming vocabulary.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-41

Figure 6-21 shows an example of a very poor alert message—the information is
expressed in the programmer’s vocabulary, and the user is offered no clue about
how to remedy the problem.

Figure 6-21 An obscure and useless alert message

Figure 6-22 shows a somewhat better alert message. Although the vocabulary is less
technical, no remedy to the problem is offered.

Figure 6-22 A less obscure alert message

Figure 6-23 illustrates a good alert message. The message is specific, it’s expressed in
nontechnical terms, it explains why the error occurred, and it suggests a solution to
the problem.

Figure 6-23 A clear and helpful alert message

The best way to make an alert message understandable is to think carefully through the
error condition itself. Can the application handle this without an error? Is the message
specific enough so that the user can fix the situation? What are the recommended
solutions?

CHAPTER 6

Dialog Manager

6-42 Using the Dialog Manager

Pop-Up Menus as Items

You can use pop-up menus to present the user with a list of mutually exclusive choices
in a dialog box. Figure 6-24 illustrates a typical use of pop-up menus in a dialog box. As
explained in the chapter “Control Manager” in this book, pop-up menus are especially
useful as an alternative to radio buttons when the user must make one choice from a list
of many or set a specific value, or when you must present a variable list of choices. The
pop-up menu in Figure 6-24 allows the application to present a choice of modem speeds
that vary according to the modem type in the user’s computer.

Figure 6-24 A pop-up menu in a dialog box

In System 7, pop-up menus are implemented as controls. To display a pop-up menu in a
dialog box, you

■ define specific features of the pop-up menu in a control that uses the standard pop-up
control definition function (described in the chapter “Control Manager” in this book)

■ define the menu items of a pop-up menu just as you define items in other menus
(using GetMenu or NewMenu, as described in the chapter “Menu Manager” in
this book)

■ specify the pop-up menu in the dialog box’s item list resource

Using the pop-up control definition function, the Dialog Manager automatically draws
the pop-up box and its drop shadow, inserts the text into the pop-up box, draws a
downward-pointing triangle, and draws the pop-up menu’s title. When the user moves
the cursor to a pop-up menu and presses the mouse button, the pop-up control
definition function highlights the pop-up menu title, displays the pop-up menu, and
handles all user interaction until the user releases the mouse button. When the user
releases the mouse button, the pop-up control definition function closes the pop-up box,
draws the user’s choice in the pop-up box (or restores the previous item if the user
doesn’t make a new choice), and removes the highlighting from the pop-up menu title.
The control definition function then sets the value of the control to the item selected by
the user. Your application can use the Control Manager function GetControlValue
to get the number of the currently selected item.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-43

The modal dialog box shown in Figure 6-24 is created by defining a dialog resource that
describes the dialog box and by defining an item list resource that describes the dialog
items, including a control whose 'CNTL' resource uses the standard pop-up control
definition function. Listing 6-7 shows the dialog resource and item list resource for this
modal dialog box.

Listing 6-7 Rez input for a dialog resource and an item list resource for a dialog box that
includes a pop-up menu

resource 'DLOG' (kModemDialog, purgeable) {
{62, 184, 216, 416}, dBoxProc, visible, noGoAway, 0x0,

kModemDialogDITL, "", alertPositionMainScreen

};

resource 'DITL' (kModemDialogDITL, purgeable) {
{ {123, 152, 144, 222}, Button {enabled, "OK"},

{123, 69, 144, 139}, Button {enabled, "Cancel"},

{13, 70, 33, 204}, StaticText {enabled, "Modem Setup"},

{41, 23, 61, 64}, StaticText {enabled, "Port:"},
{41, 67, 59, 186}, RadioButton {enabled, "Modem Port"},

{59, 67, 77, 186}, RadioButton {enabled, "Printer Port"},

{90,18,109,198}, Control {disabled, kPopUpCNTL},

{123, 152, 144, 222}, UserItem {disabled} /*outline OK button*/
{0,0,0,0}, HelpItem {disabled, HMScanhdlg{kModemHelp}}

/*Balloon Help*/

}

};

Listing 6-8 shows the 'CNTL' and 'MENU' resources for the Speed pop-up menu shown
in Figure 6-24. Notice that the display rectangle specified for the control in the item list
resource is the same as the enclosing rectangle specified in the control resource. See the
chapter “Control Manager” in this book for a complete description of how to specify
values for a pop-up menu’s control resource.

Listing 6-8 Rez input for a control resource and a menu resource for a pop-up menu

resource 'CNTL' (kPopUpCNTL, preload, purgeable) {

{90, 18, 109, 198}, /*enclosing rectangle of control*/

popupTitleLeftJust, /*title positio n* /

visible, / *make control visibl e* /

50, / *p ixel width of titl e* /

kPopUpMenu, / *' MENU' resource I D*/

popupMenuCDEFProc, / *p op-up control definition I D*/

0, / *r eference valu e* /

"Speed:" / *c ontrol titl e* /

};

CHAPTER 6

Dialog Manager

6-44 Using the Dialog Manager

resource 'MENU' (kPopUpMenu, preload, purgeable) {

mPopUp, textMenuProc,

0b1111111111111111111111111111111,

enabled, "Speed",

{

"300 bps" , noicon, nokey, nomark, plain;

"1200 bps" , noicon, nokey, nomark, plain;

"2400 bps" , noicon, nokey, nomark, plain;

"9600 bps" , noicon, nokey, nomark, plain;

"19200 bps" , noicon, nokey, nomark, plain

}

};

Keyboard Navigation Among Items

Your dialog boxes may have several items, such as editable text items and scrolling lists,
that can accept input from the keyboard. You need to give users a visual cue indicating
which item is currently accepting input from the keyboard. Each item type has its own
distinct indicator. The Dialog Manager automatically displays a blinking cursor in an
editable text item to indicate that it is accepting keyboard input. You can also use the
SelectDialogItemText procedure (explained on page 6-131) to indicate a selected
text range within an editable text item.

When a scrolling list is accepting keyboard input, you should indicate it by a rectangular
border of two black pixels, separated from the list by one pixel of white space. In
Figure 6-25, the AppleTalk Zones scrolling list is the item currently accepting keyboard
input in the Chooser dialog box. See the chapter “List Manager” in Inside Macintosh:
More Macintosh Toolbox for details about creating lists in dialog boxes.

Because all typing goes to the active window, there should be only one active area and
only one indicator at any time. If only one element in a dialog box can accept keyboard
input and that element is a scrolling list, it’s not necessary to place a border around it.

The Dialog Manager automatically handles mouse-down events and keyboard events
for the Tab key. Thus, the user can select any item that accepts keyboard input by
clicking the desired item or by pressing the Tab key to cycle through the available items.
When the user presses the Tab key, the Dialog Manager accepts the changes made to the
current item and selects the next item—as listed in the item list—that accepts keyboard
input. When the user clicks another item, the Dialog Manager accepts the changes made
to the current item and selects the newly clicked item.

Manipulating Items
In many cases, you won’t have to make any changes to alerts or dialog boxes after you
define them in your resource file. However, if you should want to modify an item, you
can use several Dialog Manager routines to do so.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-45

Figure 6-25 A selected scrolling list

For example, you can use the ParamText procedure to supply text strings (such as
document titles) to alert and dialog boxes dynamically. For most other types of item
manipulation, you must first call the GetDialogItem procedure to get the information
about the item. You then use other routines to manipulate that item. For example, you
can use the SetDialogItem procedure to change the item, or—to get a text string that
the user has entered in an editable text item after clicking the OK button—you can use
the GetDialogItemText procedure.

The Dialog Manager routines for manipulating items are summarized in the
following list.

Routine Description

AppendDITL Adds items to a dialog box.

CountDITL Counts the number of items in a dialog box.

FindDialogItem Finds an item that contains a specified point within a
dialog box.

GetAlertStage Returns the stage of the last occurrence of an alert.

GetDialogItem Returns the item type, the display rectangle, and the
control handle or application-defined procedure of a
given item in a dialog box.

GetDialogItemText Returns the text of a given editable text or static
text item.

HideDialogItem Hides the given item.

ParamText Substitutes up to four different text strings in static
text items.

ResetAlertStage Resets the stage of the last occurrence of an alert.

CHAPTER 6

Dialog Manager

6-46 Using the Dialog Manager

The next several sections describe the most frequently used of these routines. The next
section, “Changing Static Text,” explains the use of the ParamText procedure to
manipulate the text in static text items. “Getting Text From Editable Text Items”
beginning on page 6-48 describes how to use the GetDialogItemText procedure
to determine what the user types in an editable text item. Using the AppendDITL
procedure is explained in “Adding Items to an Existing Dialog Box” beginning on
page 6-51. “Using an Application-Defined Item to Draw the Bold Outline for a Default
Button” beginning on page 6-56 describes how to use SetDialogItem to install
application-defined items. For additional information about all of the previously listed
routines, see “Manipulating Items in Alert and Dialog Boxes” beginning on page 6-120
and “Handling Text in Alert and Dialog Boxes” beginning on page 6-129.

Changing Static Text

As previously explained, it is often useful to state the name of a document in an alert box
or a dialog box. For example, Figure 6-26 shows an alert box that an application might
display when the user closes a window that contains unsaved changes.

Figure 6-26 An alert box that displays a document name

You can use the ParamText procedure to supply the names of document windows to
your alert and dialog boxes dynamically, as illustrated in the application-defined routine
MyCloseDocument shown in Listing 6-9.

SelectDialogItemText Selects the text of an editable text item.

SetDialogItem Sets the item type and the display rectangle of an item,
or (for application-defined items) the draw procedure
of an item.

ShortenDITL Removes items from a dialog box.

ShowDialogItem Redisplays the item previously hidden by
HideDialogItem .

Routine Description

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-47

Listing 6-9 Using the ParamText procedure to substitute text strings

PROCEDURE MyCloseDocument (myData: MyDocRecHn d) ;

VAR

title : Str255;

item : I nteger;

docWindow : WindowPtr ;

event: EventRecord; {dummy parameter for calling DialogSelect}

myErr: OSErr;

BEGIN

docWindow := FrontWindow; {point to active window}

IF (myData^^.windowDirty) THEN {document has been changed}

BEGIN

GetWTitle (docWindow, title); {get title of window}

MyStringCheck(title);

ParamText(title, '', '', ''); {pass the title in 1st parameter}

DoActivate (docWindow, FALSE , event) ; {deactivate the active window}

item := CautionAlert(kSaveAlertID, @MyEventFilter); {display alert box}

IF item = kCancel THEN

Exit(MyCloseDocument);

IF item = kSave THEN

DoSaveCmd; {save the document}

myErr := DoCloseFile(myData); {close the file}

END; {let click in Don't Save fall through}

CloseWindow(docWindow);

DisposPtr(Ptr(docWindow));

END;

In this example, the Window Manager function FrontWindow returns a pointer to
the active window. Another Window Manager function, GetWTitle , returns the title
of that window. The MyCloseDocument routine passes this string to the ParamText
procedure, which takes four text strings as parameters. In this example, only one string
is needed (the window title), which is passed in the first parameter; empty strings are
passed for the remaining three parameters.

You can use ParamText to supply up to four text strings for a single alert or dialog box.
In the item list resource for the alert or dialog box, specify where each of these strings
should go by inserting the special characters ^0 through ^3 in any of the items where
you can specify text. The ParamText procedure dynamically replaces ^0 with the string
you pass in its first parameter, ^1 with the string in the second parameter, and so forth,
when you display the alert or dialog box.

CHAPTER 6

Dialog Manager

6-48 Using the Dialog Manager

IMPORTANT

To avoid recursion problems in versions of system sofware earlier than
7.1, you have to ensure that you do not include the characters ^0
through ^3 in any strings you pass to ParamText . This is why
MyCloseDocument uses another application-defined routine,
MyStringCheck , to filter these characters out of the window titles
passed to ParamText . ▲

Listing 6-10 shows a portion of an item list resource. When the application calls
CautionAlert , the Dialog Manager uses the first parameter passed previously to the
ParamText procedure to replace the characters ̂ 0 in the static text with the title of the
document window.

Listing 6-10 Specifying where ParamText should substitute text in an alert box message

resource 'DITL' (kSaveAlertID, purgeable) {

{ /*Save button information goes here*/

/*Cancel button information goes here*/

/*Don't Save button information goes here*/

{10, 75, 42, 348},

StaticText { /*ask the user to save changes to the document--*/

disabled, /* filename inserted with ParamText*/

"Save changes to the SurfWriter document “^0” before closing?"

},

/*help item information goes here*/

}

};

Getting Text From Editable Text Items

The application displaying the modeless dialog box shown in Figure 6-27 uses the
GetDialogItem and GetDialogItemText procedures after the user clicks the
Change button.

Figure 6-27 Two editable text items in a modeless dialog box

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-49

This dialog box prompts the user for two text strings: one to search for and another
to take the place of the first string. Listing 6-11 shows the item list resource for this
dialog box. The fifth item in the list is the editable text item where the user enters the text
string being sought; the sixth item is the item where the user enters the replacement
text string.

Listing 6-11 Specifying editable text items in an item list

resource 'DITL' (kGlobalChangesDITL, purgeable) {

{ /*ITEM NO. 1*/

{70, 213, 90, 271} , Butto n { enabled,"Change"},

/*ITEM NO. 2*/

{70, 142, 90, 200} , Butto n { enabled,"Stop"},

/*ITEM NO. 3*/

{10, 23, 27, 98} , StaticTex t { disabled, "Find What:"},

/*ITEM NO. 4*/

{40, 23, 57, 98}, StaticTex t { disabled,"Change To:"},

/*ITEM NO. 5*/

{10, 117, 27, 271} , EditTex t { disabled, ""},

/*ITEM NO. 6*/

{40, 117, 57, 271} , EditTex t { disabled, ""}

/*ITEM NO. 7: for drawing outline around Change button*/

{63, 205, 97, 278} , UserIte m { disabled, },

/*ITEM NO. 8: help item goes here*/

}

};

Listing 6-12 shows how the application handles a click in the Change button.
(Subsequent sections of this chapter explain how to handle events in a modeless
dialog box.)

Listing 6-12 Getting the text entered by the user in an editable text item

PROCEDURE MyHandleModelessDialogs(theEvent: EventRecord);

VAR

myDialog: DialogPtr;

itemHit, itemType: Integer;

searchStringHandle: Handle;

replaceStringHandle: Handle;

searchString: Str255;

replaceString: Str255;

itemRect: Rect;

CHAPTER 6

Dialog Manager

6-50 Using the Dialog Manager

BEGIN

{use DialogSelect, then determine whether the event occurred }

{ in the Global Changes dialog box; if so, respond to mouse }

{ clicks as follows}

CASE itemHit OF

kChange: {user clicked the Change button}

BEGIN

GetDialogItem(myDialog, kFind, itemType,

 searchStringHandle, itemRect);

GetDialogItemText(searchStringHandle, searchString);

GetDialogItem(myDialog, kReplace, itemType,

 replaceStringHandle, itemRect);

GetDialogItemText(replaceStringHandle, replaceString);

{get a handle to the Stop button}

GetDialogItem(myDialog, kStop, itemType,

 itemHandle, itemRect);

{make the Stop button active during the operation}

HiliteControl(ControlHandle(itemHandle), 0);

{get a handle to the Change button}

GetDialogItem(myDialog, kChange, itemType,

 itemHandle, itemRect);

{make the Change button inactive during the operation}

HiliteControl(ControlHandle(itemHandle), 255);

DoReplace(searchString, replaceString);

{when the operation is complete, dim Stop and make }

{ Change active here}

END;

kStop: {user clicked the Stop button}

BEGIN

{cancel operation, then make Stop button }

{ inactive and Change button active again}

END;

END;

END;

In Listing 6-12, when the user clicks the Change button, the GetDialogItem procedure
returns a handle to the item containing the search string. Because this is a handle to an
editable text item, the application can pass the handle to the GetDialogItemText
procedure, which then returns the item’s text string in its second parameter. These two
procedures are then used to get the string in the item containing the replacement string.
These two strings are then passed to an application-defined routine that replaces all

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-51

instances of the first string with the characters of the second string. Note that when the
user clicks Change, the Control Manager procedure HiliteControl is used to make
the Stop button active and to make the Change button inactive—that is, dimmed. This
indicates that the user can use the Stop button but not the Change button while the
change operation is taking place.

Adding Items to an Existing Dialog Box

You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. When you create a dialog box, the Dialog
Manager creates a dialog record. The Dialog Manager then reads in the item list resource
and stores a handle to it in the items field of the dialog record. Because every dialog
box you create has its own dialog record, you can define dialog boxes whose items are
defined by the same item list resource. The AppendDITL and ShortenDITL procedures
are especially useful if several dialog boxes share the same item list resource and you
want to add or remove items as appropriate for individual dialog boxes.

When you call the AppendDITL procedure, you specify a dialog box, and you specify a
new item list resource to append to the dialog box’s existing item list resource. You also
specify where the Dialog Manager should display the new items. You can use one of
these constants to designate where AppendDITL should display the appended items:

CONSToverlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

TYPE DITLMethod = Integer;

Figure 6-28 illustrates an existing dialog box and a pair of items to be appended.

Figure 6-28 An existing dialog box and items to append

CHAPTER 6

Dialog Manager

6-52 Using the Dialog Manager

If you specify the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the display
rectangles for the appended items (as specified in their item list resource) as local
coordinates within the dialog box. Figure 6-29 shows the result of overlaying the items
upon the dialog box illustrated in Figure 6-28.

Figure 6-29 The dialog box after items are overlaid

If you specify the appendDITLRight constant, AppendDITL appends the items to the
right side of the dialog box, as illustrated in Figure 6-30, by positioning the display
rectangles of the appended items relative to the upper-right coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

Figure 6-30 The dialog box after items are appended to the right

If you specify the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box, as illustrated in Figure 6-31, by positioning the display
rectangles of the appended items relative to the lower-left coordinate of the dialog box.
The AppendDITL procedure automatically expands the dialog box to accommodate the
new dialog items.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-53

Figure 6-31 The dialog box after items are appended to the bottom

As an alternative to passing the overlayDITL , appendDITLRight , or
appendDITLBottom constant, you can pass a negative number to AppendDITL , which
appends the items relative to an existing item in the dialog box. The absolute value of
this number is interpreted as the item in the dialog box relative to which the new items
are to be positioned. For example, if you pass –2 to AppendDITL , the display rectangles
of the appended items are offset from the upper-left corner of item number 2 in the
dialog box. Figure 6-12 on page 6-24 shows a simple dialog box with two checkboxes.
Figure 6-32 shows the same dialog box after an additional item is appended relative to
the first checkbox, so that the new item appears between the two existing checkboxes.

Figure 6-32 A dialog box with an item appended relative to an existing item

The application-defined routine called DoSpellBoxWithSpanish , which is shown in
Listing 6-13 on the next page, illustrates the use of the AppendDITL procedure to add
the new item.

CHAPTER 6

Dialog Manager

6-54 Using the Dialog Manager

Listing 6-13 Appending an item to an existing dialog box

FUNCTION DoSpellBoxWithSpanish: OSErr;

VAR

theDialog: DialogPtr;

myNewItem: Handle ;

docWindow: WindowPtr ;

event: EventRecord;

BEGIN

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

myNewItem := GetResource('DITL', kSpanishDITL);

IF myNewItem <> NIL THEN

BEGIN

AppendDITL(theDialog, myNewItem, kAppendItem); {kAppendItem = -3}

ReleaseResource(myNewItem) ;

docWindow : = FrontWindow; {get the front window}

{if there's a front window, deactivate it}

I F docWindow < > NIL THEN

DoActivate (docWindow, FALSE , event);

ShowWindow(theDialog); {show dialog box with appended item}

MyAdjustMenus; {adjust menus as needed }

REPEAT

ModalDialog(@MyEventFilter, itemHit);

{handle clicks in checkboxes here}

UNTIL ((itemHit = kSpellCheck) OR (itemHit = kCancel));

{handle clicks in buttons here}

DisposeDialog(theDialog);

DoSpellBoxWithSpanish : = kSuccess;

END

ELSE

DoSpellBoxWithSpanish : = kFailed;

END

ELSE DoSpellBoxWithSpanish : = kFailed;

END;

The DoSpellBoxWithSpanish routine uses GetNewDialog to create a dialog box.
As you’ll see in Listing 6-14, the dialog resource passed to GetNewDialog has a
resource ID of 402, and this dialog resource in turn specifies an item list resource with
resource ID 402. The DoSpellBoxWithSpanish routine then uses the Resource
Manager function GetResource to obtain a handle to a second item list resource; this
item list resource contains the “Include Spanish Dictionary” checkbox. By setting a value
of –3 in the last parameter of AppendDITL , the DoSpellBoxWithSpanish routine

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-55

appends the items in the second item list resource relative to item number 3 (the “Ignore
Words in All Caps” checkbox) in the dialog box. Listing 6-14 shows the dialog resource
for the dialog box, its regular item list resource, and the item list resource that
AppendDITL adds to it.

Listing 6-14 Rez input for a dialog box and the item appended to it

define kSpellCheckID 402 /*resource ID for Spell Check dialog box*/

define kSpellCheckDITL 402 /*resource ID for item list resource*/

define kSpanishDITL 257 /*resource ID for item list resource to append*/

define kAppendHelp 257 /*resource ID for 'hdlg' for appended item*/

resource 'DLOG' (kSpellCheckID, purgeable) { /*Spell Check dialog box*/

{62, 184, 216, 448},

dBoxProc, /*make it modal*/

invisible, /*make it initially invisible*/

noGoAway, 0x0, kSpellCheckDITL, "Spellcheck Options",

alertPositionParentWindow /*place over the document window*/

};

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*items for Spell Check dialog box*/

/*ITEM NO. 1, the "Spell Check" button, goes here*/

/*ITEM NO. 2, the "Cancel" button, goes here*/

/*ITEM NO. 3*/

{48, 23, 67, 202}, CheckBox {enabled, "Ignore Words in All Caps"},

/*ITEM NO. 4*/

{83, 23, 101, 196}, CheckBox {enabled, "Ignore Slang Terms"},

/*static text, help item, etc. go here*/

};

/*add this item list resource to Spell Check dialog box only when */

/* Spanish language dictionary is installed*/

resource 'DITL' (kSpanishDITL, purgeable) {

{ {18, 0, 36, 209},CheckBox {enabled,"Include Spanish Dictionary"},

{0,0,0,0}, HelpItem {disabled, HMScanAppendhdlg{kAppendHelp}} /*help*/

}

};

The dialog resource specifies that the dialog box is invisible so that the application
can add the new item to the dialog box before displaying it. In Listing 6-13, the
DoSpellBoxWithSpanish routine uses the Window Manager procedure
ShowWindow to display the dialog box after its new item has been appended.
(“Displaying Alert and Dialog Boxes” beginning on page 6-61 describes more fully
how to display dialog boxes.)

CHAPTER 6

Dialog Manager

6-56 Using the Dialog Manager

The appended item list resource includes a help item that causes the Help Manager to
use the help resource associated with that item list resource in addition to the help
resource originally associated with the dialog box. See the chapter “Help Manager” in
Inside Macintosh: More Macintosh Toolbox for information about using the
HMScanAppendhdlg identifier in a help item.

Listing 6-13 uses the Resource Manager procedure ReleaseResource . The
AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application needs to use ReleaseResource to release the memory occupied by the
appended item list. Otherwise, if your application calls AppendDITL to add items to
that dialog box again, the dialog box will remain modified by your previous call—for
example, it will still be longer at the bottom if you previously used the
appendDITLBottom constant.

When you can call the ShortenDITL procedure to remove items from the end of a
dialog item list, you specify a pointer to the dialog box and the number of items to
remove from the end of the item list. Note that ShortenDITL does not automatically
resize the dialog box; you can use the Window Manager procedure SizeWindow if you
need to resize the dialog box. You can use the CountDITL function to determine the
number of items in the item list resource for a dialog box.

Using an Application-Defined Item to Draw the Bold Outline
for a Default Button
You can define your own type of item for dialog boxes. You might wish, for example,
to display a clock with the current time in a dialog box. You can also use application-
defined items to draw a bold outline around the default button in a dialog box.

You should not use application-defined items in an alert box because they add
unnecessary programming complications. If you need an application-defined item,
use a dialog box instead.

To define your own item, include an item of type UserItem in your item list resource;
it should have a display rectangle, but no text and no resource ID associated with
it. The dialog resource that uses this item list resource must specify the invisible
constant. This makes the dialog box invisible while you install a draw procedure for
your application-defined item. After installing the procedure that draws the application-
defined item, you display the dialog box by using the Window Manager procedure
ShowWindow.

For example, Figure 6-32 on page 6-53 illustrates a dialog box that outlines the default
button (Spell Check). To outline the button, the application must add an item of type
UserItem to the item list resource for that dialog box.

So that an application-defined drawing procedure can draw a border around the Spell
Check button, the item list resource in Listing 6-15 specifies a larger display rectangle for
the application-defined item than for the Spell Check button.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-57

Listing 6-15 Rez input for an application-defined item in an item list

resource 'DITL' (kSpellCheckDITL, purgeable) {

/*ITEM NO. 1: OK button--the default*/

{ {123, 170, 144, 254}, Button {enabled,"Spell Check"},

/*ITEMs 2-5 go here: Cancel button, two checkboxes, and static text*/

/*ITEM NO. 6: application-defined item*/

{115, 164, 152, 260}, /*6th item*/

UserItem { /*draw procedure for item draws an outline*/

disabled, /*1st item lies inside this--1st is enabled*/

}

}

};

The application-defined item is disabled because the Spell Check button, which lies
within the application-defined item, is enabled. Because the Spell Check button is listed
before the application-defined item in this item list resource, the Dialog Manager reports
when the user clicks the Spell Check button. However, note that when application-
defined items are enabled, the Dialog Manager reports their item numbers when the
user clicks them.

Note

Although the draw procedure for an application-defined item can draw
outside the item’s display rectangle, this is not recommended because
if the Dialog Manager receives an update event involving an area
outside the display rectangle but inside the area where you draw
your application-defined item, the Dialog Manager won’t call your
draw procedure. ◆

Listing 6-14 on page 6-55 shows the dialog resource for the dialog box. Notice that the
invisible constant in the dialog resource specifies that the dialog box should initially
be invisible.

You must provide a procedure that draws your application-defined item. Your draw
procedure must have two parameters: a dialog pointer and an item number from the
dialog box’s item list resource. For example, this is how you should declare the draw
procedure if you were to name it MyDrawDefaultButtonOutline :

PROCEDURE MyDrawDefaultButtonOutline (theDialog: DialogPtr;

 theItem: Integer);

The parameter theDialog is a pointer to the dialog box containing the application-
defined item. (If your procedure draws in more than one dialog box, this parameter tells
your procedure which dialog box to draw in.) The parameter theItem is a number
corresponding to the position of an item in the item list resource for the dialog box. (In
case the procedure draws more than one item, this parameter tells the procedure which
one to draw.)

CHAPTER 6

Dialog Manager

6-58 Using the Dialog Manager

To install this draw procedure, use the GetDialogItem and SetDialogItem
procedures. Use GetDialogItem to return a handle to the application-defined item
specified in the item list resource. Then use SetDialogItem to replace this handle
with a pointer to your draw procedure. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. The Dialog Manager
then calls your procedure to draw the application-defined item as necessary—for
instance, when you display the dialog box and whenever the Dialog Manager receives
an update event for the dialog box.

Listing 6-16 illustrates how to install the procedure that draws a bold outline. In this
listing, GetDialogItem gets a handle to the application-defined item (which is
the sixth item in the item list resource from Listing 6-15). The procedure pointer
@MyDrawDefaultButtonOutline , which is coerced to a handle, is then passed
to SetDialogItem , which sets the draw procedure into the dialog record.

Listing 6-16 Installing the draw procedure for an application-defined item

FUNCTION DisplayMyDialog (VAR theDialog: DialogPtr): OSErr;

VAR

i temType: Integer;

itemHandle: Handle;

itemRect: Rect ;

docWindow: WindowPtr;

event: EventRecord;

BEGIN

{begin by creating an invisible dialog box}

theDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF theDialog <> NIL THEN

BEGIN

{get a handle to the application-defined item (i.e., userItem)}

GetDialogItem(theDialog, kUserItem, itemType, itemHandle, itemRect);

{install the drawing procedure for the application-defined item}

SetDialogItem(theDialog, kUserItem, itemType,

 Handle(@MyDrawDefaultButtonOutline) , itemRect) ;

docWindow : = FrontWindow; {get the front window}

{if there's a front window, deactivate it}

I F docWindow < > NIL THEN

DoActivate (docWindow, FALSE , event);

ShowWindow(theDialog); {display the dialog box}

MyAdjustMenus; {adjust menus as needed}

DisplayMyDialog := kSuccess;

END

ELSE DisplayMyDialog := kFailed;

{call ModalDialog and handle events in dialog box here}

END;

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-59

Use the Window Manager procedure ShowWindow to display the previously invisible
dialog box. When ShowWindow is called in this example, a bold outline is drawn inside
the application-defined item and around the Spell Check button.

Listing 6-17 shows a procedure that draws a bold outline around a button of any size
and shape. This procedure can be used to draw the outline around the Spell Check
button from the previous example.

Listing 6-17 Creating a draw procedure that draws a bold outline around the default button

PROCEDURE MyDrawDefaultButtonOutline(theDialog: DialogPtr; theItem: Integer);

CONST

kButtonFrameInset = -4;

kButtonFrameSize = 3;

kCntrActivate = 0;

VAR

itemType: Integer; {returned item type}

itemRect : Rect; {returned display rectangle}

itemHandle: Handle; {returned item handle}

curPen: PenState;

buttonOval: Integer;

fgSaveColor: RGBColor;

bgColor: RGBColor;

newfgColor: RGBColor;

newGray: Boolean;

oldPort: WindowPtr;

isColor: Boolean;

targetDevice: GDHandle;

BEGIN

{get the default button & draw a bold border around it}

GetDialogItem(theDialog, kDefaultButton, itemType, itemHandle, itemRect) ;

GetPort(oldPort);

SetPort(ControlHandle(itemHandle)^^.contrlOwner);

GetPenState(curPen);

PenNormal;

InsetRect(itemRect , kButtonFrameInset, kButtonFrameInset) ;

FrameRoundRect(itemRect, 16, 16) ;

buttonOval := (itemRect.bottom - itemRect.top) DIV 2 + 2;

IF ((CGrafPtr(ControlHandle(itemHandle)^^.contrlOwner)^.portVersion) =

 kIsColorPort) THEN

isColor := TRUE

ELSE

isColor := FALSE;

IF (ControlHandle(itemHandle)^^.contrlHilite <> kCntrlActivate) THEN

CHAPTER 6

Dialog Manager

6-60 Using the Dialog Manager

BEGIN {control is dim med, so draw gray default button outline}

newGray := FALSE;

IF isColor THEN

BEGIN

GetBackColor(bgColor);

GetForeColor(fgSaveColor);

newfgColor := fgSaveColor;

{get the device on which this dialog box is displayed}

targetDevice :=

 MyGetDeviceFromRect(ControlHandle(itemHandle)^^.contrlRect);

{use the gray defined by the display device}

newGray := GetGray(targetDevice, bgColor, newfgColor);

END;

IF newGray THEN

RGBForeColor(newfgColor)

ELSE

PenPat(gray);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

IF isColor THEN

RGBForeColor(fgSaveColor);

END

ELSE {control is acti ve , so draw default button outline in black}

BEGIN

PenPat(black);

PenSize(kButtonFrameSize, kButtonFrameSize);

FrameRoundRect(itemRect, buttonOval, buttonOval);

END;

SetPenState(curPen);

SetPort(oldPort);

END;

Listing 6-17 uses GetDialogItem to get the Spell Check button and then uses
several QuickDraw routines to draw a black outline around that button’s display
rectangle when the button is active. If the button is inactive (that is, dimmed),
MyDrawDefaultButtonOutline draws a gray outline.

Before drawing a gray outline, MyDrawDefaultButtonOutline determines whether
the dialog box uses a color graphics port. As explained in “Including Color in Your Alert
and Dialog Boxes” beginning on page 6-75, you can supply a dialog box with a color
graphics port by creating a dialog color table ('dctb') resource with the same resource
ID as the dialog resource. If the dialog box uses a color graphics port,
MyDrawDefaultButtonOutline uses the Color QuickDraw function GetGray to
return a blended gray based on the foreground and background colors. Then

CHAPTER 6

Using the Dialog Manager 6-61

Dialog Manager

MyDrawDefaultButtonOutline uses this gray for outlining the dimmed default
button. Otherwise, MyDrawDefaultButtonOutline uses the QuickDraw procedure
PenPat to draw a gray outline on black-and-white monitors.

Displaying Alert and Dialog Boxes
You typically define alerts and dialog boxes in resources, as described in “Creating Alert
Sounds and Alert Boxes” beginning on page 6-18 and in “Creating Dialog Boxes”
beginning on page 6-23. To create an alert or a dialog box, you use a Dialog Manager
function—such as Alert or GetNewDialog —that incorporates information from your
item list resource and from your alert resource or dialog resource into a data structure,
called a dialog record, in memory. The Dialog Manager creates a dialog record, which is a
data structure of type DialogRecord , whenever your application creates an alert or a
dialog box.

The Dialog Manager automatically displays alert boxes at the appropriate alert stages; it
also automatically displays those dialog boxes that you specify as visible in their dialog
resources. But you must use a Window Manager routine such as ShowWindow to display
dialog boxes that you specify as invisible in their dialog resources.

When you use a function that creates an alert (namely, Alert , StopAlert , NoteAlert ,
or CautionAlert), the Dialog Manager automatically displays the alert box at the alert
stages that you specify with the visible constant in your alert resource. You do not use
any routines other than the Alert , StopAlert , NoteAlert , and CautionAlert
functions to display an alert box.

When you specify the visible constant in a dialog resource, the Dialog Manager
immediately displays the dialog box when you use the GetNewDialog function. If
you instead specify the invisible constant so that the dialog box is initially invisible
when you call GetNewDialog , use the Window Manager procedure ShowWindow
to display it. This is useful if you need to manipulate a dialog item dynamically using
GetDialogItem and SetDialogItem before you display the dialog box. For example,
if you want to install an application-defined draw procedure for a dialog box, you
specify the invisible constant in a dialog resource, pass the resource ID of that dialog
resource in a parameter to GetNewDialog , use GetDialogItem and SetDialogItem
to install the application-defined draw procedure, then call ShowWindow to display the
dialog box, as previously shown in Listing 6-16 on page 6-58.

You should always specify Pointer(-1) as a parameter to GetNewDialog to display a
dialog box as the active (that is, frontmost) window.

You should perform the following tasks in conjunction with displaying an alert box or a
dialog box:

■ Specify an appropriate screen position at which to display the alert box or dialog box.

■ Deactivate the frontmost window (if one exists) before displaying an alert box or a
modal dialog box.

■ Determine whether you’ve already created a modeless dialog box and, if so, select it
instead of creating a new instance of it.

■ Adjust your menus appropriately for a modal dialog box with editable text items and
for any movable modal and modeless dialog box you wish to display.

Using Using

CHAPTER 6

Dialog Manager

6-62 Using the Dialog Manager

The DialogSelect function uses the QuickDraw procedure SetPort to make the alert
or dialog box the current graphics port. The ModalDialog procedure and the functions
that create alert boxes use DialogSelect to respond to update and activate events. You
can also use DialogSelect to respond to update and activate events in your modeless
and movable modal dialog boxes. In response to update events, you can instead use the
UpdateDialog function, which also makes the dialog box the current graphics port.
In these cases, it’s generally not necessary for your application to call SetPort when
displaying, updating, or activating alert boxes and dialog boxes. See Inside Macintosh:
Imaging for more information about SetPort .

These and other related issues are explained in detail in the next several sections of
this chapter.

Positioning Alert and Dialog Boxes

As previously described in “Creating Alert Sounds and Alert Boxes” beginning on
page 6-18 and “Creating Dialog Boxes” beginning on page 6-23, you specify a rectangle
in every alert resource and dialog resource. The dimensions of this rectangle determine
the dimensions of the alert box or dialog box. You can also let the rectangle coordinates
serve as the global coordinates that determine the position of the alert box or dialog box,
or you can let the Dialog Manager automatically locate it for you according to three
standard positions. To specify these standard positions in System 7, your application can
use the following constants in the Rez input files for alert resources and dialog resources:

If your application positions alert or dialog boxes on its own, don’t use these
constants, because your code may conflict with the Dialog Manager. If you do use
these constants, use them to specify the positions of both alert boxes and dialog boxes.

The next three figures illustrate various alert boxes that might appear when the user is
working on two monitors: a 12-inch monitor (the main screen) that displays the menu
bar and a full-page monitor that displays a document window. These figures show
where the Dialog Manager places an alert box according to the position specified in
the alert resource.

Figure 6-33 shows an alert box displayed in response to an error made by the
user while working on a document; the alert resource specifies the
alertPositionParentWindow constant, which tells the Dialog Manager to
position the alert box over the frontmost window so that the window’s title bar
appears. This position is appropriate for an alert box or a dialog box that relates
directly to the frontmost window. You should always try to position alert boxes
and dialog boxes where the user is working.

Constant Description

alertPositionParentWindow Position the alert or dialog box over
the frontmost window

alertPositionMainScreen Position the alert or dialog box on
the main screen

alertPositionParentWindowScreen Position the alert or dialog box on
the screen containing the frontmost
window

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-63

Figure 6-33 An alert box in front of a document window

Not all alert boxes or dialog boxes relate to the frontmost window. Some may relate
only to actions the user performs on the main screen. For example, Figure 6-34
illustrates an alert box displayed when the user chooses the About command from
the Apple menu. For an alert box or dialog box such as this, you should specify the
alertPositionMainScreen constant in the alert or dialog resource. Figure 6-34
shows how the Dialog Manager centers such an alert box near the top of the main screen.

Figure 6-34 An alert box on the main screen

CHAPTER 6

Dialog Manager

6-64 Using the Dialog Manager

Sometimes you may need to display an alert box or a dialog box that applies neither to
the frontmost window nor to an action performed on the main screen. To catch the user ’s
attention, you should position such an alert or dialog box on the screen where the user is
working. For example, if you need to alert the user that available disk space is low, you
should specify the alertPositionParentWindowScreen constant. Figure 6-35
shows how the Dialog Manager displays such an alert box or dialog box when a
document window appears on a screen other than the main screen.

Figure 6-35 An alert box in the alert position of the document window screen

If you don’t specify a positioning constant, the Dialog Manager uses the rectangle
coordinates in your alert resource or dialog resource as global coordinates specifying
where to position your alert or dialog box. If you wish to specify the position yourself in
this manner, you should generally try to center alert and dialog boxes between the left
and right margins of the screen or the window where the user is working, whichever is
most appropriate. If you don’t use the positioning constants, you should also place the
tops of alert and dialog boxes (including the title bars of modeless and movable modal
dialog boxes) below the menu bar. You can use the GetMBarHeight function, described
in the chapter “Menu Manager” in this book, to determine the height of the menu bar.

Deactivating Windows Behind Alert and Modal Dialog Boxes

For alert and modal dialog boxes, the ModalDialog procedure traps all events before
they are passed to your event loop, which normally handles activate events for your
windows. Thus, if a window is active, you must explicitly deactivate it before displaying
an alert box or a modal dialog box.

Your modeless dialog boxes and movable modal dialog boxes never use the
ModalDialog procedure. Therefore, you do not have to deactivate the frontmost
window explicitly before displaying a modeless or a movable modal dialog box.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-65

Instead, the Event Manager continues sending your application activate events for
your windows as needed, which you typically handle in your normal event loop. (The
chapters “Event Manager” and “Window Manager” in this book explain how to
activate and deactivate windows.)

Plate 2 at the front of this book shows an alert box that an application displays when the
user chooses the About command in the Apple menu. Listing 6-18 shows an application-
defined routine, ShowMyAboutBox , that displays this alert box.

Listing 6-18 Deactivating the front window before displaying an alert box

PROCEDURE ShowMyAboutBox;
VAR

itemHit: Integer;
docWindow: WindowPtr;

event: EventRecord;
BEGIN

docWindow := FrontWindow; {get the front window}
{if there's a front window, deactivate it}

IF docWindow <> NIL THEN
DoActivate(docWindow, FALSE, event);

{then show the alert box}
itemHit := Alert(kAboutBoxID, @MyEventFilter);

END;

The ShowMyAboutBox routine uses the Window Manager function FrontWindow . If
FrontWindow returns a valid pointer, ShowMyAboutBox calls its DoActivate
procedure to deactivate that window before calling the Alert function to display the
alert box. When the user clicks the OK button, the alert box is dismissed. The Event
Manager then sends the application update events so that it can update the contents of
any windows as appropriate, and the Event Manager sends the application an activate
event so that it can activate the previously frontmost window again. The application
handles these events in its normal event loop.

If your application does not display an alert box during certain alert stages, use the
GetAlertStage function to test for those stages before deactivating the active window.
The GetAlertStage function returns the last occurrence of an alert as a number from
0 to 3. Figure 6-36 shows an alert box that appears only after the user repeats an error
three consecutive times.

Figure 6-36 An alert box displayed only after the third alert stage

CHAPTER 6

Dialog Manager

6-66 Using the Dialog Manager

Listing 6-19 shows how you might use GetAlertStage to determine if such an alert
needs to be displayed before deactivating the document window.

Listing 6-19 Using GetAlertStage to determine when to deactivate the front window

PROCEDURE MyAlert;

VAR

itemHit: Integer;

alertStage: Integer;

docWindow: WindowPtr ;

event: EventRecord;

BEGIN

docWindow := FrontWindow;

alertStage := GetAlertStage;

IF (alertStage >= 2) AND (docWindow <> NIL) THEN {at 3rd alert stage, }

DoActivate(docWindow, FALSE , event) ; { deactivate front window & }

itemHit := StopAlert(kStopAlertID, @MyEventFilter); { display alert box}

END;

Displaying Modeless Dialog Boxes

For a modeless dialog box, check to make sure it isn’t already open before you create and
display it. For example, the modeless dialog box shown in Figure 6-37 should appear
when the user chooses the Global Changes command. After invoking this command, the
user may select another window, thereby deactivating the modeless dialog box.

Figure 6-37 A modeless dialog box for changing text in a document

So as not to create multiple versions of this dialog box whenever the user chooses the
Global Changes command, the application-defined routine DoGlobalChangesDialog ,
shown in Listing 6-20, checks whether the dialog box already exists.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-67

Listing 6-20 Ensuring that the modeless dialog box isn’t already open before creating it

FUNCTION DoGlobalChangesDialog: OSErr;

BEGIN

DoGlobalChangesDialog := kSuccess; {assume success}

I F gChangeDialogPtr = NIL THEN {it doesn't exist, so create it }

BEGIN

gChangeDialogPtr : = GetNewDialog(kGlobalChangesDlog, NIL, Pointer(-1)) ;

IF gChangeDialogPtr = NIL THEN {handle failure }

BEGIN

DoGlobalChangesDialog := kFailed ;

EXIT(DoShowModelessFindDialogBox) ;

END;

{ set window refCon to store value that identifies the dbox }

SetWRefCon (gChangeDialogPtr, LongInt(kGlobalChangesDlog)) ;

END

ELSE {it does exist, so display and select it }

BEGIN

ShowWindow(gChangeDialogPtr) ; {it's hidden; so show it }

SelectWindow (gChangeDialogPtr) ; {bring it to the front }

END;

MyAdjustMenus; {adjust the menus}

END;

In this example, a pointer to the modeless dialog box is stored in a global variable. If
the global variable does not contain a pointer, DoGlobalChangesDialog uses
GetNewDialog to create and draw the dialog box. Later, if the user decides to close the
modeless dialog box, the application merely hides it so that when the user needs it again,
DoGlobalChangesDialog can display the dialog box in the same location and with
the same text selected as when the user last used it. Hiding this dialog box is illustrated
later in Listing 6-30 on page 6-94.

If the dialog box has already been created, DoGlobalChangesDialog uses the Window
Manager procedures ShowWindow to make the dialog box visible and SelectWindow
to make it active.

Finally, DoGlobalChangesDialog uses the application-defined routine
MyAdjustMenus to adjust the menus as appropriate for the modeless dialog box.

Listing 6-34 on page 6-98 illustrates an application-defined routine,
DoActivateGlobalChangesDialog , that handles activate events for this
modeless dialog box. The DoActivateGlobalChangesDialog routine in
turn uses DialogSelect , which sets the graphics port to the modeless dialog
box whenever the user makes it active.

CHAPTER 6

Dialog Manager

6-68 Using the Dialog Manager

Adjusting Menus for Modal Dialog Boxes

The Dialog Manager and the Menu Manager interact to provide various degrees of
access to the menus in your menu bar. For alert boxes and modal dialog boxes without
editable text items, you can simply allow system software to provide the appropriate
access to your menu bar.

When your application displays either an alert box or a modal dialog box (that is, a
window of type dBoxProc), these actions occur:

1. System software disables all menu items in the Help menu, except the Show Balloons
(or Hide Balloons) command, which system software enables.

2. System software disables all menu items in the Application menu.

3. If the Keyboard menu appears in the menu bar, system software enables that menu
but disables the About Keyboards command.

When your application displays an alert box or calls the ModalDialog procedure
for a modal dialog box (described in “Responding to Events in Modal Dialog Boxes”
beginning on page 6-82), the Dialog Manager determines whether any of the following
cases is true:

■ Your application does not have an Apple menu.

■ Your application has an Apple menu, but the menu is disabled when the dialog box
is displayed.

■ Your application has an Apple menu, but the first item in that menu is disabled when
the dialog box is displayed.

If none of these cases is true, system software behaves as follows:

1. The Menu Manager disables all of your application’s menus.

2. If the modal dialog box contains a visible and active editable text field—and if the
menu bar contains a menu having commands with the standard keyboard equivalents
Command-X, Command-C, and Command-V—then the Menu Manager enables
those three commands and the menu that contains them. The user can then use either
the menu commands or their keyboard equivalents to cut, copy, and paste text.
(The menu item having keyboard equivalent Command-X must be one of the first
five menu items.)

When your application displays alert boxes and modal dialog boxes with no editable text
items, it can safely allow system software to handle menu bar access as described in
steps 1 and 2.

However, because system software cannot handle the Undo or Clear command (or any
other context-appropriate command) for you, your application should handle its own
menu bar access for modal dialog boxes with editable text items by performing the
following tasks:

■ disable the Apple menu or the first item in the Apple menu (typically, your
application’s About command) in order to take control of its menu bar access
when displaying a modal dialog box

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-69

■ disable all of its menus except the Edit menu, as well as any inappropriate commands
in the Edit menu

■ use the Dialog Manager procedures DialogCut , DialogCopy , DialogPaste ,
and DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable
text items

■ provide your own code for supporting the Undo command

■ enable your application’s items in the Help menu as appropriate (system software
disables all items except the Hide Balloons/Show Balloons command)

You don’t need to do anything else for the system-handled menus—namely, Application,
Keyboard, and Help. System software handles these menus for you automatically.

The DialogCut , DialogCopy , DialogPaste , and DialogDelete procedures are
described beginning on page 6-132. Your application can test whether a dialog box is the
front window when handling mouse-down events in the Edit menu and then call these
routines as appropriate.

Figure 6-38 illustrates how an application disables all of its own menus except its Edit
menu when displaying a modal dialog box containing editable text items. Access to the
Edit menu benefits the user who instead of typing prefers copying from and pasting into
editable text items.

Figure 6-38 Menu access when displaying a modal dialog box

Listing 6-21 on the next page shows an application-defined routine, MyAdjustMenus ,
that the SurfWriter application calls to adjust its menus after it displays a window or
dialog box, but before it calls ModalDialog to handle events in a modal dialog box.
When MyAdjustMenus determines that the frontmost window is a modal dialog box
containing an editable text item, it calls another application-defined routine,
MyAdjustMenusForDialogs , which adjusts the menus appropriately. Listing 6-22 on
the next page shows the MyAdjustMenusForDialogs routine.

CHAPTER 6

Dialog Manager

6-70 Using the Dialog Manager

Listing 6-21 Adjusting menus for various windows

PROCEDURE MyAdjustMenus;

VAR

window : WindowPtr;

windowType : I nteger;

menu: MenuHandle;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow: {document window is in front}

MyAdjustMenusForDocWindows ;

kMyDialogWindow: {a dialog box is in front}

MyAdjustMenusForDialogs ;

kDAWindow: {adjust menus accordingly for a DA window}

MyAdjustMenusForDA;

kNil : { t here isn't a front window}

MyAdjustMenusNoWindows;

END; {of CASE }

DrawMenuBar; {redraw menu bar}

END;

The MyAdjustMenusForDialogs routine in Listing 6-22 first determines what type of
dialog box is in front: modal, movable modal, or modeless. For modal dialog boxes,
MyAdjustMenusForDialogs disables the Apple menu so that the application can take
control of its menus away from the Dialog Manager. The MyAdjustMenusForDialogs
routine then uses the Menu Manager routines GetMenuHandle and DisableItem to
disable all other application menus except the Edit menu. (To provide help balloons that
explain why these menus are unavailable to the user, MyAdjustMenusForDialogs
uses the Help Manager procedure HMSetMenuResID to reassign help resources to these
menus; see the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox for
more information.)

Listing 6-22 Disabling menus for a modal dialog box with editable text items

PROCEDURE MyAdjustMenusForDialogs;

VAR

window : WindowPtr;

windowType : I nteger ;

myErr: OSErr;

menu: MenuHandle;

BEGIN

window := FrontWindow;

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-71

windowType := MyGetWindowType(window);

CASE windowType OF

kMyModalDialogs:

BEGIN

menu := Ge tMenuHandle(mA pple); {get handle to Apple menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Apple menu to get control of menus}

myErr := HMSetMenuResID (mFile, kFileHelpID); {set up help balloons}

menu := Ge tMenuHandle(mF ile) ; { get handle to File menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0) ; { disable File menu}

myErr := HMSetMenuResID (mFile, kFileHelpID); {set up help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

menu := Ge tMenuHandle(mT ools) ; { get handle to Tools menu}

IF menu = NIL THEN

EXIT(MyAdjustMenusForDialogs);

DisableItem(menu, 0); {disable Tools menu}

myErr := HMSetMenuResID (mTools, kToolsHelpID); {help balloons}

IF myErr <> NoErr THEN

EXIT(MyAdjustMenusForDialogs);

MyAdjustEditMenuForModalDialogs ;

END; {of kMyModalDialogs CASE}

kMyGlobalChangesModelessDialog:

; {adjust menus here as needed}

kMyMovableModalDialog:

; {adjust menus here as follows: }

{ disable all menus except Apple, then }

{ call MyAdjustEditMenuForModalDialogs for editable text items}

END; {of CASE}

END;

To adjust the items in the Edit menu, MyAdjus tMenusForD ialogs calls another
application-defined routine, MyAdjustEditMenuForModalDialogs , which is
shown in Listing 6-23 on the next page. The MyAdjustEditMenuForModalDialogs
routine uses application-defined code to implement the Undo command; uses the
Menu Manager procedure EnableItem to enable the Cut, Copy, Paste, and Clear
commands when appropriate; and disables the commands that support Edition
Manager capabilities. Remember that your application should use the Dialog Manager
procedures DialogCut , DialogCopy , DialogPaste , and DialogDelete to support
the Cut, Copy, Paste, and Clear commands in editable text items.

CHAPTER 6

Dialog Manager

6-72 Using the Dialog Manager

Listing 6-23 Adjusting the Edit menu for a modal dialog box

PROCEDURE MyAdjustEditMenuForModalDialogs;
VAR

window: WindowPtr;

menu: MenuHandle;
selection, undo: Boolean;

offset: LongInt;
undoText: Str255;

BEGIN

window := FrontWindow;
menu := GetMenuHandle(mEdit); {get a handle to the Edit menu}

IF menu = NIL THEN {add your own error handling}
EXIT (MyAdjustEditMenuForModalDialogs);

undo := MyIsLastActionUndoable(undoText);

IF undo THEN {if action can be undone}
BEGIN

EnableItem(menu, iUndo);
SetMenuItemText(menu, iUndo, undoText);

END

ELSE {if action can't be undone}
BEGIN

SetMenuItemText(menu, iUndo, gCantUndo);
DisableItem(menu, iUndo);

END;

selection := MySelection(window);
IF selection THEN

BEGIN {enable editing items if there's a selection}
EnableItem(menu, iCut);
EnableItem(menu, iCopy);

END
ELSE

BEGIN {disable editing items if there isn't a selection}
DisableItem(menu, iCut);
DisableItem(menu, iCopy);

END;
IF MyGetScrap(NIL, 'TEXT', offset) > 0 THEN

EnableItem(menu, iPaste) {enable if something to paste}
ELSE

DisableItem(menu, iPaste);{disable if nothing to paste}

DisableItem(menu, iSelectAll);
DisableItem(menu, iCreatePublisher);

DisableItem(menu, iSubscribeTo);
DisableItem(menu, iPubSubOptions);
END;

END;

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-73

See the chapter “Menu Manager” in this book for more information on menus and the
menu bar.

When the user dismisses the alert box or modal dialog box, the Menu Manager restores
all menus to their state prior to the appearance of the alert or modal dialog box—unless
your application handles its own menu bar access, in which case you must restore the
menus to their previous states. You can use a routine similar to MyAdjustMenus , shown
in Listing 6-21 on page 6-70, to adjust the menus appropriately according to the type of
window that becomes the frontmost window.

Adjusting Menus for Movable Modal and Modeless Dialog Boxes

Although it always leaves the Help, Keyboard, and Application menus and their
commands enabled, system software does nothing else to manage the menu bar when
you display movable modal and modeless dialog boxes. Instead, your application
should allow or deny access to the rest of your menus as appropriate to the context. For
example, if your application displays a modeless dialog box for a search-and-replace
command, you should allow access to the Edit menu to assist the user with the editable
text items, and you should allow use of the File menu so that the user can open another
file to be searched. However, you should disable other menus if their commands cannot
be used inside the active modeless dialog box.

When creating a modeless dialog box, your application should perform the following
tasks:

■ disable only those menus whose commands are invalid in the current context

■ if the modeless dialog box includes editable text items, use the Dialog Manager
procedures DialogCut , DialogCopy , DialogPaste , and DialogDelete to
support the Cut, Copy, Paste, and Clear commands in editable text items

When your application creates a movable modal dialog box, it should perform the
following tasks:

■ leave the Apple menu enabled so that the user can open other applications with it

■ if your movable modal dialog box contains editable text items, leave the Edit menu
enabled but use the Dialog Manager procedures DialogCut , DialogCopy ,
DialogPaste , and DialogDelete to support the Cut, Copy, Paste, and
Clear commands

■ disable all of your other menus

Listing 6-21 on page 6-70 shows an application-defined routine, MyAdjustMenus , that
SurfWriter uses to adjust its menus after it displays a window or dialog box. You can use
a similar routine to adjust your menus as appropriate given the nature of the active
window, movable modal dialog box, or modeless dialog box.

CHAPTER 6

Dialog Manager

6-74 Using the Dialog Manager

Displaying Multiple Alert and Dialog Boxes

You should generally present the user with only one modal dialog box or alert box at a
time. Sometimes, you may need to present a modal dialog box and an alert box on the
screen at one time. For example, when the user saves a file with the same name as
another file, the Standard File Package displays an alert box on top of the standard file
dialog box. The alert box asks the user whether to replace the existing file.

Avoid closing a modal dialog box and immediately displaying another modal dialog
box or an alert box in response to a user action. This situation creates a “tunneling modal
dialog box” effect that might confuse the user. Missing the content of the previous
modal dialog box and unable to return to it, the user has difficulty predicting what will
happen next.

 However, the user should never see more than one modal dialog and one alert box on
the screen simultaneously. You can present multiple simultaneous modeless dialog
boxes, just as you can present multiple document windows.

When you remove an alert box or a modal dialog box that overlies the default button
of a previous alert box, the Dialog Manager doesn’t redraw that button’s bold outline.
Therefore, you should not use an alert box if you need to display another overlapping
alert box or dialog box. Instead, you should create a modal dialog box, and you must
provide it with an application-defined item that draws the bold outline around the
default button. The ModalDialog procedure then causes the item to be redrawn after
an update event.

In System 7, the Window Manager automatically dims the window frame of a dialog box
when you deactivate it to display an alert box, another modal dialog box, or a window.
When you deactivate a dialog box, you should use the Control Manager procedure
HiliteControl to make the controls of a dialog box inactive. You should also draw the
outline of the default button of a deactivated dialog box in gray instead of black. Listing
6-16 on page 6-58 shows an application-defined procedure that draws a gray outline
when the default button is inactive; Listing 6-34 on page 6-98 shows how to use
HiliteControl to make buttons inactive and active in response to activate events for a
dialog box.

Displaying Alert and Dialog Boxes From the Background

If you ever need to display an alert box or a modal dialog box while your application is
running in the background or is otherwise invisible to the user, you should use the
Notification Manager to post a notification to the user. For example, if your application
performs lengthy background tasks such as printing many documents or transferring
large amounts of data to other computers, you might wish to inform the user that the
operation is completed. In these cases, you should post a notification request to notify
the user when the operation is completed. Then the Notification Manager automatically
displays an alert box containing whatever message you specify; you do not need to use
the Dialog Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from your
application to the user. There is no provision for carrying information back from the user

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-75

to your application while it is in the background (although it is possible for your applica-
tion to determine if the notification was received). If you need to solicit information from
the user, use the Notification Manager to ask the user to bring your application to the
foreground. The user can then respond to your alert box or modal dialog box. See the
chapter “Notification Manager” in Inside Macintosh: Processes for information about the
Notification Manager.

Including Color in Your Alert and Dialog Boxes

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used
by system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and
window frame are in color, and the buttons and text are black.

When you create alert and dialog resources, your application’s alert and dialog boxes
use the system’s default colors. With the following exceptions, creating alert and dialog
resources is typically all you need to do to provide color for your alert and dialog boxes:

■ When you need to include a color version of an icon in an alert box or a dialog box,
you must create a resource of type 'cicn' with the same resource ID as the
black-and-white 'ICON' resource specified in the item list resource. Plate 2 at the
front of this book shows an alert box that includes a color icon.

■ If you use GetNewDialog or NewDialog to create a dialog box and you need to
produce a blended gray color for outlining the inactive (that is, dimmed) default
button, you must create a dialog color table ('dctb') resource with the same
resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and
use gray to draw the outline for the default button. Because GetNewDialog and
NewDialog supply black-and-white graphics ports for dialog boxes, you can create a
dialog color table resource for the dialog box to force the Dialog Manager to supply a
color graphics port. Then you can use a blended gray color for the outline for the default
button. (NewColorDialog supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. Listing 6-24 shows a dialog color table
resource that leaves the default colors intact but forces the Dialog Manager to supply a
color graphics port.

Listing 6-24 Rez input for a dialog color table resource using the system’s default colors

data 'dctb' (kGlobalChangesDialog, purgeable) {

$"0000 0000 0000 FFFF" / *use default colors* /

};

CHAPTER 6

Dialog Manager

6-76 Using the Dialog Manager

By using the system’s default colors, you ensure that your application’s interface is
consistent with that of the Finder and other applications. However, if you feel absolutely
compelled to break from this consistency, the Dialog Manager offers you the ability to
specify colors other than the default colors. Be aware, however, that nonstandard colors
in your alert and dialog boxes may initially confuse your users.

Also be aware that despite any changes you make, users can alter the colors of alert and
dialog boxes anyway by changing the settings in the Color control panel.

Your application can specify its own colors in an alert color table ('actb') resource
with the same resource ID as the alert resource or in a dialog color table ('dctb')
resource with the same resource ID as the dialog resource. Both of these resources have
exactly the same format as a window color table ('wctb') resource, described in the
chapter “Window Manager” in this book.

▲ WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not specify colors for these elements if you
wish to maintain backward compatibility. ▲

You don’t have to call any new routines to change the colors used in alert or dialog
boxes. When you call the GetNewDialog function, for example, the Dialog Manager
automatically attempts to load a dialog color table resource with the same resource ID
as the dialog resource.

Likewise, you can change the system default colors for controls and the color, style,
typeface, and size of text used in an alert box or a dialog box by creating an item color
table ('ictb') resource with the same resource ID as the item list resource. You don’t
have to call any routines to create color items. When you use the GetNewDialog
function, the Dialog Manager looks first for an item color table resource with the same
resource ID as that of the item list resource.

Note

If you want to provide an item color table resource for an alert box or
a dialog box, you must create an alert color table resource or a dialog
color table resource, even if the item color table resource has no actual
color information and describes only static text and editable text style
changes. You cannot use an item color table resource to set the font on
computers that do not support Color QuickDraw. Also, be aware that
changing the default system font makes your application more difficult
to localize. ◆

Even if you provide your own 'dctb' , 'actb' , or 'ictb' resources, you do not
need to test whether your application is running on a computer that supports Color
QuickDraw in order to use these resources.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-77

Handling Events in Alert and Dialog Boxes
The next two sections explain how the Dialog Manager uses the Control Manager to
handle events in controls automatically and how it uses TextEdit to handle events in
editable text items automatically. The information in these two sections, “Responding to
Events in Controls” and “Responding to Events in Editable Text Items,” applies to all
alert boxes and all types of dialog boxes: modal, modeless, and movable modal.

To display and handle events in alert boxes, you can use the Dialog Manager functions
Alert , NoteAlert , CautionAlert , and StopAlert . The Dialog Manager handles all
of the events generated by the user until the user clicks a button (typically the OK or
Cancel button). When the user clicks a button, the alert box functions invert the button
that was clicked, close the alert box, and report the user’s selection to your application.
Your application is responsible for performing the appropriate action associated with
that button. This is described in detail in “Responding to Events in Alert Boxes”
beginning on page 6-81.

For modal dialog boxes, you use the ModalDialog procedure. The Dialog Manager
handles most of the user interaction until the user selects an item. The ModalDialog
procedure then reports that the user selected an enabled item, and your application is
responsible for performing the action associated with that item. Your application
typically calls ModalDialog repeatedly, responding to clicks on enabled items as
reported by ModalDialog , until the user clicks OK or Cancel. This is described in detail
in “Responding to Events in Modal Dialog Boxes” beginning on page 6-82.

For alert boxes and modal dialog boxes, you should also supply an event filter function
as one of the parameters to the alert box functions or the ModalDialog procedure. As
the user interacts with the alert or modal dialog box, these routines pass events to your
event filter function before handling each event. Your event filter function can handle
any events not handled by the Dialog Manager or, if necessary, can choose to handle
events normally handled by the Dialog Manager. This is described in detail in “Writing
an Event Filter Function for Alert and Modal Dialog Boxes” beginning on page 6-86.

To handle events in modeless or movable modal dialog boxes, you can use the
IsDialogEvent function to determine whether the event occurred while a dialog box
was the frontmost window. For every type of event that occurs when the dialog box is
active (including null events), IsDialogEvent returns TRUE; otherwise, it returns
FALSE. When IsDialogEvent returns TRUE, you can use the DialogSelect function
to handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
then respond appropriately to clicks in your active items.

Alternatively, you can handle events in modeless and movable modal dialog boxes much
as you handle events in other windows. That is, when you receive an event you can first
determine the type of event that occurred and then take the appropriate action according
to which window is in front. If a modeless or movable modal dialog box is in front, you
can provide code that takes any actions specific to that dialog box and call the
DialogSelect function to handle any events that your code doesn’t handle. The
sections “Responding to Mouse Events in Modeless and Movable Modal Dialog Boxes”

CHAPTER 6

Dialog Manager

6-78 Using the Dialog Manager

beginning on page 6-89, “Responding to Keyboard Events in Modeless and Movable
Modal Dialog Boxes” beginning on page 6-94, and “Responding to Activate and Update
Events in Modeless and Movable Modal Dialog Boxes” beginning on page 6-97 all take
this alternate approach.

Responding to Events in Controls

The Dialog Manager greatly simplifies the work necessary for you to implement buttons,
checkboxes, pop-up menus, and radio buttons. For alert boxes and all types of dialog
boxes—modal, modeless, and movable modal—the Dialog Manager uses Control
Manager routines to display controls automatically, highlight controls appropriately, and
report to your application when mouse-down events occur within controls. For example,
when the user moves the cursor to an enabled button and holds down the mouse button,
the Dialog Manager uses the Control Manager function TrackControl to invert the
button. When the user releases the mouse button with the enabled button still inverted,
the Dialog Manager uses TrackControl to report which item was clicked. Your
application then responds appropriately—for example, by performing the operation
associated with the OK button, by deselecting any other radio button when a radio
button is clicked, or by canceling the current operation when the Cancel button is clicked.

For clicks in checkboxes, pop-up menus, and radio buttons, your application usually
uses the Control Manager routines GetControlValue and SetControlValue
to get and appropriately set the items’ values. The chapter “Control Manager” in this
book explains these routines in detail, but this chapter also offers examples of how
to use these routines in your alert and dialog boxes. Because the Control Manager does
not know how radio buttons are grouped, it doesn’t automatically turn one off when
the user clicks another one. Instead, it’s up to your application to handle this by using
the GetControlValue and SetControlValue routines.

When the user clicks the OK button, your application performs whatever action is
necessary according to the values returned by GetControlValue for each of the
various checkboxes and radio buttons displayed in your alert or dialog box.

When ModalDialog and DialogSelect call TrackControl , they do not allow you
to specify any special action procedures necessary for anything more complex than a
button, radio button, or checkbox. If you need a more complex control that, for example,
measures how long the user holds down the mouse button or how far the user has
moved an indicator, you can create your own control (or picture or application-defined
item that draws a control-like object) in your dialog box. If you use the ModalDialog
procedure, you must then provide an event filter function that appropriately handles
events within that item, and if you use the DialogSelect function, you must test for
and respond to those events yourself. Alternatively, you can use Window Manager
routines to display an appropriate window and then use the Control Manager to create
and manage such complex controls yourself. See the chapters “Window Manager” and
“Control Manager” in this book for more information.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-79

Responding to Events in Editable Text Items

When the user enters or edits text in an editable text item in your dialog boxes, the
Dialog Manager calls TextEdit to handle the events automatically. (You generally
shouldn’t include editable text items in alert boxes.) You typically disable editable text
items because you generally don’t need to be informed every time the user types a
character or clicks one of them. Instead you need to determine the text only when the OK
button is clicked. As illustrated in Listing 6-12 on page 6-49, use GetDialogItemText
to determine the final value of the editable text item after the user clicks the OK button.

When you use the ModalDialog procedure to handle events in modal dialog boxes and
when you use the DialogSelect function for modeless or movable modal dialog
boxes, the Dialog Manager calls TextEdit to handle keystrokes and mouse actions within
editable text items, so that

■ when the user clicks the item, a blinking vertical bar appears that indicates an
insertion point where text may be entered

■ when the user drags over text in the item, the text is highlighted; when the user
double-clicks a word, the word is highlighted; the highlighted selection is then
replaced by what the user types

■ when the user holds down the Shift key while clicking or dragging, the highlighted
selection is extended or shortened appropriately

■ when the user presses the Backspace key, the highlighted selection or the character
preceding the insertion point is deleted

■ when the user presses the Tab key, the cursor automatically advances to the next
editable text item in the item list resource, wrapping around to the first if there are no
more items

If your modeless or movable modal dialog box contains any editable text items, call
DialogSelect even when WaitNextEvent returns FALSE. This is necessary because
the DialogSelect function calls the TEIdle procedure to make the text cursor blink
within your editable text items during null events; otherwise, the text cursor will not
blink. Listing 6-25 illustrates an application-defined routine, DoIdle , that calls
DialogSelect whenever the application receives null events while its modeless
dialog box is the frontmost window.

Listing 6-25 Using DialogSelect during null events

PROCEDURE DoIdle (event: EventRecord);

VAR

window: WindowPtr;

windowType : Integer;

itemHit: Integer ;

result: Boolean;

BEGIN

window := FrontWindow ;

{ determine which type of window--document, }

CHAPTER 6

Dialog Manager

6-80 Using the Dialog Manager

{ m odeless dialog box , etc. --is in front }

windowType := MyGetWindowType(window);

CASE windowType O F

kMyDocWindow: {document window is frontmost}

; {s ee examples in "Event Manager" chapter }

kMyGlobalChangesModelessDialog: {modeless dialo g i s frontmost }

r esult := DialogSelect(event, window, itemHit);

END; {of CASE}

END;

Generally, your application should handle menu bar access when you display dialog
boxes containing editable text items. Leave your Edit menu enabled, and use the
DialogCut , DialogCopy , DialogPaste , and DialogDelete procedures to support
the Cut, Copy, Paste, and Clear commands and their keyboard equivalents. You should
also provide your own code to support the Undo command. “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73 describe how to allow users to access your
Edit menu when you display dialog boxes.

If you don’t supply your own event filter function and the user presses the Return or
Enter key while a modal dialog box is onscreen, the Dialog Manager treats the event as a
click on the default button (that is, the first item in the list) regardless of whether the
dialog box contains an editable text item. If your event filter function responds to the
user pressing Return and Enter by moving the cursor in editable text items, don’t display
a bold outline around any buttons. If your event filter function responds to the user
pressing Return and Enter as if the user clicks the default button, then you should
display a bold outline around the default button. See “Writing an Event Filter Function
for Alert and Modal Dialog Boxes” beginning on page 6-86 for an example of how to
map the Return and Enter keys to the default button in your dialog boxes.

Initially, an editable text item may contain default text or no text. You can provide
default text either by specifying a text string as the last element for that item in the item
list resource or by using the SetDialogItemText procedure, which is described on
page 6-131.

When a dialog box that contains editable text items is first displayed, the insertion
point usually appears in the first editable text item in the item list resource. You may
instead want to use the SelectDialogItemText procedure so that the dialog box
appears with text selected, or so that an insertion point or a text selection reappears if
the user makes an error while entering text. For example, the user who accidentally
types nonnumeric input when a number is required can be given the opportunity to type
the entry again. The SelectDialogItemText procedure is described in detail on
page 6-131.

By default, the Dialog Manager displays editable text items in the system font. To
maintain visual consistency across applications for your users and to make it easier to
localize your application, you should not change the font or font size.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-81

Responding to Events in Alert Boxes

After displaying an alert box or playing an alert sound, the Alert , StopAlert ,
CautionAlert , and NoteAlert functions call the ModalDialog procedure to handle
events automatically for you.

The ModalDialog procedure, in turn, gets each event by calling the Event Manager
function GetNextEvent . If the event is a mouse-down event outside the content region
of the alert box, ModalDialog emits the system alert sound and gets the next event.

The Alert , StopAlert , CautionAlert , and NoteAlert functions continue calling
ModalDialog until the user selects an enabled control (typically a button). At this time
these functions remove the alert box from the screen and return the item number of the
selected control. Your application then responds as appropriate for a click on this item.

For example, the code that supports the alert box displayed in Figure 6-39 must respond
to three different events—one for each button that the user may click.

Figure 6-39 Three buttons for which CautionAlert reports events

Listing 6-9 on page 6-47 shows an application-defined routine, named
MyCloseDocument , for the Close command. If the document has been modified
since the last save, MyCloseDocument displays the alert box illustrated in Figure 6-39
before closing the window. After MyCloseDocument displays the caution alert, it
tests for the item number that CautionAlert returns after it removes the alert box.
If the user clicks the Save button, CautionAlert returns its item number, and
MyCloseDocument calls other application-defined routines to save the file, close the
file, and close the window. If the user clicks the Don’t Save button, MyCloseDocument
closes the window without saving the file. The only other possible response is for the
user to click the Cancel button, in which case MyCloseDocument does nothing—the
Dialog Manager removes the alert box, and MyCloseDocument simply leaves the
document window as it is.

The standard event filter function allows users to press the Return or Enter key in lieu of
clicking the default button. When one of these keys is pressed, the standard event filter
function returns TRUE to ModalDialog , which in turn causes Alert , StopAlert ,
CautionAlert , and NoteAlert to return the item number of the default button. When
you write your own event filter function, it should emulate the standard filter function
by responding in this way to keyboard events involving the Return and Enter keys.

CHAPTER 6

Dialog Manager

6-82 Using the Dialog Manager

For events inside the alert box, ModalDialog passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for handling events that ModalDialog doesn’t handle and for overriding events
that ModalDialog would otherwise handle. You should provide a simple event filter
function for every alert box and modal dialog box in your application.

You specify a pointer to your event filter function in the second parameter to the Alert ,
StopAlert , CautionAlert , and NoteAlert functions. In the MyCloseDocument
routine shown on page 6-47, a pointer to the MyEventFilter function is specified. In
most cases, you can use the same event filter function in every one of your alert and
modal dialog boxes. An example of a simple event filter function that allows background
applications to receive update events and performs the other necessary event handling is
provided in “Writing an Event Filter Function for Alert and Modal Dialog Boxes”
beginning on page 6-86.

Unless your event filter function handles the event in its own way and returns TRUE,
ModalDialog handles the event inside the alert box as follows:

■ In response to an activate or update event for the alert box, ModalDialog activates or
updates its window.

■ If the user presses the mouse button while the cursor is in a control, the Control
Manager function TrackControl tracks the mouse. If the user releases the
mouse button while the cursor is in an enabled control, Alert , StopAlert ,
CautionAlert , and NoteAlert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

■ If the user presses the mouse button while the cursor is in any enabled item other than
a control, Alert , StopAlert , CautionAlert , and NoteAlert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

■ If the user presses the mouse button while the cursor is in a disabled item, or if it is
in no item, or if any other event occurs, Alert , StopAlert , CautionAlert , and
NoteAlert do nothing.

Responding to Events in Modal Dialog Boxes

Call the ModalDialog procedure immediately after displaying a modal dialog box.
This procedure repeatedly handles events inside the modal dialog box until an event
involving an enabled item—such as a click in a radio button—occurs. If the event is a
mouse-down event outside the content region of the dialog box, ModalDialog emits
the system alert sound and gets the next event. After receiving an event involving an
enabled item, ModalDialog returns the item number. Normally you then do whatever
is appropriate in response to an event in that item. Your application should continue
calling ModalDialog until the user selects the OK or Cancel button, at which point your
application should close the dialog box.

For example, if the user clicks a radio button, your application should get the value
of that button, turn off any other selected radio button within its group, and call
ModalDialog again to get the next event. If the user clicks the Cancel button, your
application should restore the user’s work to its state just before the user invoked the
dialog box, and then your application should remove the dialog box from the screen.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-83

Note
Do not use ModalDialog for modeless or movable modal
dialog boxes. ◆

The code that supports the modal dialog box shown in Figure 6-40 must respond to
events in four controls: two checkboxes and two buttons.

Figure 6-40 Four items for which ModalDialog reports events

Listing 6-26 illustrates an application-defined routine, MySpellCheckDialog , that
responds to events in these four controls.

Listing 6-26 Responding to events in a modal dialog box

FUNCTION MySpellCheckDialog: OSErr;

VAR

docWindow: WindowPtr;

ignoreCapsCheck: Boolean;

ignoreSlangCheck: Boolean;

spellDialog: DialogPtr;

itemHit, itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

capsVal: Integer;

slangVal: Integer;

event: EventRecord;

BEGIN

capsVal := 0;

slangVal := 0;

ignoreCapsCheck := FALSE;

ignoreSlangCheck := FALSE;

MySpellCheckDialog := kSuccess; {assume success}

docWindow := FrontWindow; {get front window}

IF docWindow <> NIL THEN

CHAPTER 6

Dialog Manager

6-84 Using the Dialog Manager

DoActivate(docWindow, FALSE, event); {deactivate document window}

spellDialog := GetNewDialog(kSpellCheckID, NIL, Pointer(-1));

IF spellDialog = NIL THEN

BEGIN

MySpellCheckDialog := kFailed;

Exit(MySpellCheckDialog);

END;

MyAdjustMenus; {adjust menus as needed}

GetDialogItem(spellDialog, kUserItem, itemType, itemHandle, itemRect);

SetDialogItem(spellDialog, kUserItem, itemType,

 Handle(@MyDrawDefaultButtonOutline), itemRect);

ShowWindow(spellDialog); {show dialog box with default button outlined}

REPEAT

ModalDialog(@MyEventFilter, itemHit); {get events}

IF itemHit = kAllCaps THEN {user clicked Ignore Words in All Caps}

BEGIN

{get the control handle to the checkbox}

GetDialogItem(spellDialog, kAllCaps, itemType, itemHandle,

 itemRect);

{get the last value of the checkbox}

capsVal := GetControlValue(ControlHandle(itemHandle));

{toggle the value of the checkbox}

capsVal := 1 - capsVal;

{set the checkbox to the new value}

SetControlValue(ControlHandle(itemHandle), capsVal);

END;

IF itemHit = kSlang THEN {user clicked Ignore Slang Terms}

BEGIN

{get checkbox's handle, get its value, toggle it, then reset it}

GetDialogItem(spellDialog, kSlang, itemType, itemHandle, itemRect);

slangVal := GetControlValue(ControlHandle(itemHandle));

slangVal := 1 - slangVal;

SetControlValue(ControlHandle(itemHandle), slangVal);

END;

UNTIL ((itemHit = kSpellCheck) OR (itemHit = kCancel));

DisposeDialog(spellDialog); {close the dialog box}

IF itemHit = kSpellCheck THEN {user clicked Spell Check button}

BEGIN

IF capsVal = 1 THEN {user wants to ignore all caps}

ignoreCapsCheck := TRUE;

IF slangVal = 1 THEN {user wants to ignore slang}

ignoreSlangCheck := TRUE;

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-85

{now start the spell check}

SpellCheckMyDoc(ignoreCapsCheck, ignoreSlangcheck);

END;

END;

The MySpellCheckDialog routine calls ModalDialog immediately after using
GetNewDialog to create and display the dialog box. The MySpellCheckDialog
routine repeatedly responds to events in the two checkboxes until the user clicks either
the Spell Check or the Cancel button. When the user clicks either of the checkboxes
(which are the third and fourth items in the item list resource), MySpellCheckDialog
uses the GetDialogItem procedure to get a handle to the checkbox. The
MySpellCheckDialog routine coerces this handle to a control handle and passes
it to the Control Manager function GetControlValue to get the last value of the
control (1 if the checkbox was selected or 0 if it was unselected). Subtracting this
value from 1, MySpellCheckDialog derives a new value for the control. Then
MySpellCheckDialog passes this value to the Control Manager procedure
SetControlValue to set the new value. The Control Manager responds by drawing
an X in the box if the value of the control is 1 or removing the X if the value of the
control is 0.

As soon as the user clicks the Spell Check or Cancel button (which are the first and
second items in the item list resource), MySpellCheckDialog stops responding to
events in the checkboxes. This routine uses the DisposeDialog procedure (which is
explained in “Closing Dialog Boxes” beginning on page 6-100) to remove the dialog box.
If the user clicks the Cancel button, MySpellCheckDialog does no further processing
of the information in the dialog box. If, however, the user clicks the Spell Check button,
MySpellCheckDialog calls another application-defined routine, SpellCheckMyDoc ,
to check the document for spelling errors according to the preferences that the user
communicated in the checkboxes.

For events inside the dialog box, ModalDialog passes the event to an event filter
function before handling the event. In this example, the application specifies a pointer to
its own event filter function, MyEventFilter . As described in the next section, your
application should provide an event filter function. You can use the same event filter
function in most or all of your alert and modal dialog boxes.

Unless your event filter function handles the event and returns TRUE, ModalDialog
handles the event as follows:

■ In response to an activate or update event for the dialog box, ModalDialog activates
or updates its window.

■ If the user presses the mouse button while the cursor is in an editable text item,
ModalDialog responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, text entry and editing are handled as described in
“Responding to Events in Editable Text Items” beginning on page 6-79. If the editable
text item is enabled, ModalDialog returns its item number after it receives either the
mouse-down or key-down event. Normally, editable text items are disabled, and you
use the GetDialogItemText procedure to read the information in the items only
after the user clicks the OK button. Listing 6-12 on page 6-49 illustrates this technique.

CHAPTER 6

Dialog Manager

6-86 Using the Dialog Manager

■ If the user presses the mouse button while the cursor is in a control, ModalDialog
calls the Control Manager function TrackControl . If the user releases the mouse
button while the cursor is in an enabled control, ModalDialog returns the control’s
item number. Your application should respond appropriately; for example, Listing
6-26 uses an application-defined routine that checks the spelling of a document when
the user clicks the Spell Check button.

■ If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, ModalDialog returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a complex control—such as one that measures how far a dial is moved—your
application must provide an event filter function to handle mouse events in that item.

■ If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, ModalDialog does nothing.

Writing an Event Filter Function for Alert and Modal Dialog Boxes

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. In early versions of Macintosh system
software, when a single application controlled the computer, the standard event filter
function for alert boxes and most modal dialog boxes was usually sufficient. However,
because the standard event filter function does not permit background applications to
receive or respond to update events, it is no longer sufficient.

Thus, your application should provide a simple event filter function that performs these
functions and also allows inactive windows to receive update events. You can use the
same event filter function in most or all of your alert and modal dialog boxes.

You can also use your event filter function to handle other events that ModalDialog
doesn’t handle—such as the Command-period key-down event, disk-inserted events,
keyboard equivalents, and mouse-down events (if necessary) for application-defined
items that you provide.

For example, the standard event filter function ignores key-down events for the
Command key. When your application allows the user to access your menus after you
display a dialog box, your event filter function should handle keyboard equivalents for
menu commands and return TRUE.

At a minimum, your event filter function should perform the following tasks:

■ return TRUE and the item number for the default button if the user presses the Return
or Enter key

■ return TRUE and the item number for the Cancel button if the user presses the Esc key
or the Command-period key combination

■ update your windows in response to update events (this also allows background
applications to receive update events) and return FALSE

■ return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-87

defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

If it seems that you will spend time replicating much of your primary event loop in this
event filter function, you might consider handling all the events in your main event loop
instead of using the Dialog Manager’s Alert , NoteAlert , StopAlert , and
CautionAlert functions or ModalDialog procedure.

Your own event filter function should have three parameters and return a Boolean value.
For example, this is how to declare an event filter function named MyEventFilter :

FUNCTION MyEventFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, ModalDialog handles the event, which you pass
in the parameter theEvent . (Your function can also change the event to simulate a
different event and return FALSE, which passes the altered event to the Dialog Manager
for handling.) If your function does handle the event, your function should return TRUE
as a function result and, in the itemHit parameter, the number of the item that it
handled. The ModalDialog procedure and, in turn, the Alert , NoteAlert ,
StopAlert , and CautionAlert functions then return this item number in their own
itemHit parameter.

Because ModalDialog calls the GetNextEvent function with a mask that excludes
disk-inserted events, your event filter function can call the Event Manager procedure
SetSystemEventMask to accept disk-inserted events. See the chapter “Event Manager”
in this book for a discussion about handling disk-inserted events.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the item
number of the default button in the itemHit parameter and a function result of TRUE.
Your event filter function should also check whether the Esc key was pressed and, if so,
return the item number for the Cancel button in the itemHit parameter and a function
result of TRUE. Your event filter function should also respond to the Command-period
key-down event as if the user had clicked the Cancel button.

To give visual feedback indicating which item has been selected, you should invert
buttons that are activated by keyboard equivalents for all alert and dialog boxes. A
good rule of thumb is to invert a button for 8 ticks, long enough to be noticeable but
not so long as to be annoying. The Control Manager performs this action whenever
a user clicks a button, and your application should do this whenever a user presses the
keyboard equivalent of a button click.

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands, as explained in “Adjusting Menus for Modal Dialog Boxes” beginning

CHAPTER 6

Dialog Manager

6-88 Using the Dialog Manager

on page 6-68. Your event filter function should then test for and handle mouse-down
events in the menu bar and key-down events for keyboard equivalents of Edit menu
commands. Your application should respond to users’ choices from the Edit menu by
using the procedures DialogCut , DialogCopy , DialogPaste , and DialogDelete to
support the Cut, Copy, Paste, and Clear commands.

Listing 6-27 shows MyEventFilter , which begins by handling update events in
windows other than the alert or dialog box. (By responding to update events for your
application’s own inactive windows in this way, you allow ModalDialog to perform
a minor switch when necessary so that background applications can update their
windows, too.)

Next, MyEventFilter handles activate events. This event filter function then handles
key-down events for the Return and Enter keys as if the user had clicked the default
button, and it handles key-down events for the Esc key as if the user had clicked the
Cancel button. (See Inside Macintosh: Text for information about character codes for the
Return, Enter, and Esc keys.) Your event filter function can then include tests for other
events, such as disk-inserted events and keyboard equivalents.

Listing 6-27 A typical event filter function for alert and modal dialog boxes

FUNCTION MyEventFilter(theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

VAR

key: Char;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

finalTicks: LongInt;

BEGIN

MyEventFilter := FALSE; {assume Dialog Mgr will handle it}

IF (theEvent.what = updateEvt) AND

(WindowPtr(theEvent.message) <> theDialog) THEN

DoUpdate(WindowPtr(theEvent.message)) {update the window behind}

ELSE IF (theEvent.what = activateEvt) AND (WindowPtr(theEvent.message)

<> theDialog) THEN

DoActivate(WindowPtr(theEvent.message),

 (BAnd(theEvent.modifiers, activeFlag) <> 0), theEvent)

ELSE

CASE theEvent.what OF

keyDown, autoKey: {user pressed a key}

BEGIN

key := Char(BAnd(theEvent.message, charCodeMask));

IF (key = Char(kReturnKey)) OR (key = Char(kEnterKey)) THEN

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-89

BEGIN {respond as if user clicked Spell Check}
GetDialogItem(theDialog, kSpellCheck, itemType, itemHandle,

 itemRect);

{invert the Spell Check button for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);
Delay(kVisualDelay, finalTicks); {invert button for 8 ticks}

HiliteControl(ControlHandle(itemHandle), 0);

myEventFilter := TRUE; {event's being handled}

itemHit := kSpellCheck; {return the default button}
END;

IF (key = Char(kEscapeKey)) OR {user pressed Esc key}

(Boolean(BAnd(theEvent.modifiers, cmdKey)) AND

(key = Char(kPeriodKey))) THEN {user pressed Cmd-pd}
BEGIN {handle as if user clicked Cancel}

GetDialogItem(theDialog, kCancel, itemType, itemHandle,

 itemRect);

{invert the Cancel button for user feedback}
HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks); {invert button for 8 ticks}

HiliteControl(ControlHandle(itemHandle), 0);

MyEventFilter := TRUE; {event's being handled}
itemHit := kCancel; {return the Cancel button}

END; {of Cancel}

{handle any other keyboard equivalents here}

END; {of keydown, autokey}
{handle disk-inserted and other events here, as needed}

OTHERWISE

END; {of CASE}

END;

To use this event filter function for an alert box, the application specifies a pointer to
MyEventFilter when it calls one of the Alert functions, as shown in Listing 6-19 on
page 6-66. To use this event filter function for a modal dialog box, the application
specifies a pointer to MyEventFilter when it calls ModalDialog , as shown in
Listing 6-26 on page 6-83.

Responding to Mouse Events in Modeless and
Movable Modal Dialog Boxes

To handle events in modeless and movable modal dialog boxes, you can use the
IsDialogEvent function to determine when events occur while a dialog box is the
frontmost window. For such events, you can then use the DialogSelect function to
handle key-down events in editable text items automatically, to handle update and
activate events automatically, and to report the enabled items that the user clicks. You
must also use additional Toolbox routines to handle other types of keyboard events and
other events in the dialog box.

CHAPTER 6

Dialog Manager

6-90 Using the Dialog Manager

▲ WARNING

The IsDialogEvent and DialogSelect functions are unreliable
when running in versions of system software previous to System 7. ▲

Alternatively, and probably most efficiently, your application can respond to events in
modeless and movable modal dialog boxes by first determining the type of event that
occurred and then taking the appropriate action according to which type of window is
in front. If a modeless or movable modal dialog box is in front, you can provide code
that takes any actions specific to that dialog box. You can then use the DialogSelect
function instead of the Control Manager functions FindControl and TrackControl
to handle mouse events in your dialog boxes. The DialogSelect function also handles
update events, activate events, and events in editable text items. (If your modeless or
movable modal dialog box contains editable text items, you should call DialogSelect
during null events to cause the text cursor to blink.)

If you choose to determine whether events involve movable modal or modeless dialog
boxes without the aid of the IsDialogEvent function, your application should be
prepared to handle the following mouse events:

■ clicks in the menu bar, which your application has adjusted as appropriate for the
dialog box. Be sure to use the procedures DialogCut , DialogCopy , DialogPaste ,
and DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable
text items in your dialog boxes.

■ clicks in the content region of an active movable modal or modeless dialog box. You
can use the DialogSelect function to aid you in handling the event.

■ clicks in the content region of an inactive modeless dialog box. In this case, your
application should make the modeless dialog box active by making it the front-
most window.

■ clicks in the content region of an inactive window whenever a movable modal or
modeless dialog box is active. For movable modal dialog boxes, your application
should emit the system alert sound, whereas for modeless dialog boxes, your
application should bring the inactive window to the front.

■ mouse-down events in the drag region (that is, the title bar) of an active movable
modal or modeless dialog box. Your application should use the Window Manager
procedure DragWindow to move the dialog box in response to the user’s actions.

■ mouse-down events in the drag region of an inactive window when a movable
modal dialog box is active. Your application should not move the inactive window
in response to the user’s actions. Instead, your application should play the system
alert sound.

■ clicks in the close box of a modeless dialog box. Your application should dispose of or
hide the modeless dialog box, whichever action is more appropriate.

Figure 6-41 shows a simple modeless dialog box with editable text items.

Listing 6-28 illustrates an application-defined procedure that handles mouse-down
events for all windows, including the modeless dialog box shown in Figure 6-41.

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-91

Figure 6-41 A modeless dialog box for which DialogSelect reports events

Listing 6-28 Handling mouse-down events for all windows

PROCEDURE DoMouseDown (event: EventRecord);
VAR

part: Integer;
thisWindow: WindowPtr;

BEGIN
{find general location of the cursor at the time of mouse-down event}
part := FindWindow(event.where, thisWindow);
CASE part OF {take action based on the cursor location}
inMenuBar: ; {cursor in menu bar; respond with Menu Manager routines}
inSysWindow: ; {cursor in a DA; use SystemClick here}
inContent: {cursor in the content area of one of this app's windows}

IF thisWindow <> FrontWindow THEN
BEGIN {mouse-down in a window other than the front }

{ window--make the clicked window the front window, }
{ unless the front window is a movable modal dialog box}

IF MyIsMovableModal(FrontWindow) THEN
SysBeep(30) {emit system alert sound}

ELSE
SelectWindow(thisWindow);

END
ELSE {mouse-down in the content area of front window}

DoContentClick(thisWindow, event);
inDrag: {handle mouse-down in drag area}

IF (thisWindow <> FrontWindow) AND (MyIsMovableModal(FrontWindow))
THEN

SysBeep(30) {emit system alert sound}
ELSE
 DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

 inGrow: ; {handle mouse-down in zoom box here}
inGoAway: {handle mouse-down in close box here}

 IF TrackGoAway(thisWindow, event.where) THEN
DoCloseCmd;

 inZoomIn, inZoomOut: ; {handle zoom box region for standard windows}
END; {end of CASE}

END; {of DoMouseDown}

CHAPTER 6

Dialog Manager

6-92 Using the Dialog Manager

The DoMouseDown routine first uses the Window Manager function FindWindow to
determine approximately where the cursor is when the mouse button is pressed. When
the user presses the mouse button while the cursor is in the content area of a window,
DoMouseDown first checks whether the mouse-down event occurs in the currently active
window by comparing the window pointer returned by FindWindow with that returned
by the Window Manager function FrontWindow .

When the mouse-down event occurs in an inactive window, DoMouseDown uses another
application-defined routine, MyIsMovableModal , to check whether the active window
is a movable modal dialog box. If so, DoMouseDown plays the system alert sound.
Otherwise, DoMouseDown uses the Window Manager procedure SelectWindow
to make the selected window active. (Although not illustrated in this book, the
MyIsMovableModal routine uses the Window Manager function GetWVariant to
determine whether the variation code for the front window is movableDBoxProc . If so,
MyIsMovableModal returns TRUE.) See the chapter “Window Manager” in this book
for more information about the SelectWindow and GetWVariant routines.

As in this example, you must ensure that the movable dialog box is modal within your
application. That is, the user should not be able to switch to another of your application’s
windows while the movable modal dialog box is active. Instead, your application should
emit the system alert sound. Notice as well that when the mouse-down event occurs in
the drag region of any window, DoMouseDown checks whether the drag region belongs
to an inactive window while a movable modal dialog box is active. If it does,
DoMouseDown again plays the system alert sound. (However, by clicking other applica-
tions’ windows or by selecting other applications from the Application and Apple
menus, users should be able to switch your application to the background when you
display a movable modal dialog box—an action users cannot perform with fixed-
position modal dialog boxes.)

If a user presses the mouse button while the cursor is in the content region of the active
window, DoMouseDown calls another application-defined routine, DoContentClick ,
to further handle mouse events. Listing 6-29 shows how this routine in turn uses the
DialogSelect function to handle the mouse-down event after the application
determines that it occurs in the modeless dialog box shown in Figure 6-41 on page 6-91.

Listing 6-29 Using the DialogSelect function for responding to mouse-down events

PROCEDURE DoContentClick (thisWindow: windowPtr; event: EventRecord);

VAR

itemHit: Integer;

refCon: Integer;

BEGIN

windowType := MyGetWindowType(thisWindow);

CASE windowType OF

kMyDocWindow: ;

{handle clicks in document window here; see the chapter "Control }

{ Manager" for sample code for this case}

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-93

kGlobalChangesID: {user clicked Global Changes dialog box}

BEGIN

IF DialogSelect(event, DialogPtr(thisWindow), itemHit) THEN

BEGIN

IF itemHit = kChange THEN {user clicked Change}

; {use GetDialogItem and GetDialogItemText to get }

{ the text strings and replace one string with the }

{ other here}

IF itemHit = kStop THEN {user clicked Stop}

; {stop making changes here}

END;

END; {of CASE for kGlobalChangesID}

{handle other window types here}

END; {of CASE}

END;

In this example, when the user clicks the Change button, DialogSelect returns its
item number. Within the user’s document, the application then performs a global search
and replace. (Listing 6-12 on page 6-49 illustrates how an application can use the
GetDialogItem and GetDialogItemText procedures for this purpose.) Generally,
only controls should be enabled in a dialog box; therefore, your application normally
responds only when DialogSelect returns TRUE after the user clicks an enabled
control. For example, if the event is an activate or update event for a dialog box,
DialogSelect activates or updates it and returns FALSE, so your application does not
need to respond to the event.

At this point, you may also want to check for and respond to any special events that you
do not wish to pass to DialogSelect or that require special processing before you pass
them to DialogSelect . You would need to do this, for example, if the dialog box needs
to respond to disk-inserted events.

IMPORTANT

When DialogSelect calls TrackControl , it does not allow you to
specify any action procedures necessary for a more complex control—
for example, a control that measures how long the user holds down
the mouse button or one that measures how far the user has moved
an indicator. For instances like this, you can create a picture or an
application-defined item that draws a control-like object; you must then
test for and respond to those events yourself before passing events to
DialogSelect . Or, you can use the Control Manager functions
FindControl and TrackControl to process the mouse events inside
the controls of your dialog box. ▲

Listing 6-28 on page 6-91 calls one of its application-defined routines, DoCloseCmd,
whenever the user clicks the close box of the active window. If the active window is a
modeless dialog box, you might find it more efficient to hide the window rather than
remove its data structures. Listing 6-30 shows how you can use the Window Manager
routine HideWindow to hide the Global Changes modeless dialog box when the user

CHAPTER 6

Dialog Manager

6-94 Using the Dialog Manager

clicks its close box. The next time the user chooses the Global Changes command, the
dialog box is already available, in the same location and with the same text selected as
when it was last used. (Listing 6-20 on page 6-67 illustrates how first to create and later
redisplay this modeless dialog box.)

Listing 6-30 Hiding a modeless dialog box in response to a Close command

PROCEDURE DoCloseCmd;
VAR

myWindow: WindowPtr;
myData: MyDocRecHnd;

windowType: Integer;

BEGIN
myWindow := FrontWindow;

windowType := MyGetWindowType(myWindow);
CASE windowType OF

kMyGlobalChangesModelessDialog:

HideWindow(myWindow);
kMySpellModelessDialog:

HideWindow(myWindow);
kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));
MyCloseDocument(myData);

END; {of kMyDocWindow case}
kDAWindow:

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

END; {of CASE}
END;

Responding to Keyboard Events in Modeless and
Movable Modal Dialog Boxes

If you adopt the previously described strategy of determining—without the aid of the
IsDialogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle the following keyboard events:

■ keyboard equivalents, such as Command-C to copy, to which your application should
respond appropriately

■ key-down events for the Return and Enter keys, to which your application should
respond as if the user had clicked the default button

■ key-down events for the Esc or Command-period keystrokes, to which your
application should respond as if the user had clicked the Cancel button

■ key-down and auto-key events in editable text items, for which your application can
use the DialogSelect function, which in turn calls TextEdit to handle keystrokes
within editable text items automatically

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-95

Listing 6-31 illustrates how an application can check for keyboard equivalents whenever
it receives key-down events. If the user holds down the Command key while pressing
another key, the application calls another of its application-defined procedures,
DoMenuCommand, which handles keyboard equivalents for menu commands. See the
chapter “Menu Manager” in this book for an example of a DoMenuCommand procedure.
Remember that when a movable modal dialog box or a modeless dialog box is active,
your application should adjust the menus appropriately, and use the procedures
DialogCut , DialogCopy , DialogPaste , and DialogDelete to support the Cut,
Copy, Paste, and Clear commands in editable text items.

Listing 6-31 Checking for key-down events involving the Command key

PROCEDURE DoKeyDown (event: EventRecord);

VAR

key: Char;

BEGIN

key := CHR(BAnd(event.message, charCodeMask));

IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}

IF event.what = keyDown THEN

BEGIN

MyAdjustMenus ; {adjust the menus as needed}

DoMenuCommand(MenuKey(key)) ; { handle the menu command}

END;

END

ELSE

MyHandleKeyDown(event);

END;

After determining that a key-down event does not involve a keyboard equivalent,
Listing 6-31 calls another of its own routines, MyHandleKeyDown , which is shown
in Listing 6-32.

Listing 6-32 Checking for key-down events in a modeless dialog box

PROCEDURE MyHandleKeyDown (event: EventRecord);

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

CHAPTER 6

Dialog Manager

6-96 Using the Dialog Manager

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN {key-down in doc window}

BEGIN {handle keystrokes in document window here}

END

ELSE {key-down in modeless dialog box}

MyHandleKeyDownInModeless(event, windowType);

END;

The MyHandleKeyDown routine determines what type of window is active when
the user presses a key. If a modeless dialog box is the frontmost window,
MyHandleKeyDown automatically calls another application-defined routine,
MyHandleKeyDownInModeless , to respond to key-down events in modeless dialog
boxes. The MyHandleKeyDownInModeless routine is shown in Listing 6-33.

Listing 6-33 Responding to key-down events in a modeless dialog box

PROCEDURE MyHandleKeyDownInModeless(event: EventRecord; windowType: Integer);
VAR

key: Char;
itemType: Integer;

itemHandle: Handle;
itemRect: Rect;

finalTicks: LongInt;
handled: Boolean;

item: Integer;
theDialog: DialogPtr;

BEGIN
handled := FALSE;

theDialog := FrontWindow;
CASE windowType OF

kGlobalChangesID: {key-down in Global Changes dialog box}
BEGIN

key := Char(BAnd(event.message, charCodeMask));
IF (key = Char(kReturnKey)) OR (key = Char(kEnterKey)) THEN

BEGIN {respond as if user clicked Change}
GetDialogItem(theDialog, kChange, itemType, itemHandle,

 itemRect);
{invert the Change button for 8 ticks for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);
Delay(kVisualDelay, finalTicks);

HiliteControl(ControlHandle(itemHandle), 0);
{use GetDialogItem and GetDialogItemText to get the text }

{ strings and replace one string with the other here}
handled := TRUE; {event's been handled}

END;

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-97

IF (key = Char(kEscapeKey)) OR {user pressed Esc key}

(Boolean(BAnd(event.modifiers, cmdKey)) AND

(key = Char(kPeriodKey))) THEN {user typed Cmd-pd}

BEGIN {handle as if user clicked Stop}

GetDialogItem(theDialog, kStop, itemType, itemHandle,

 itemRect);

{invert the Stop button for 8 ticks for user feedback}

HiliteControl(ControlHandle(itemHandle), inButton);

Delay(kVisualDelay, finalTicks);

HiliteControl(ControlHandle(itemHandle), 0);

{cancel the current operation here}

handled := TRUE; {event's been handled}

END;

IF NOT handled THEN {let DialogSelect handle keydown events in }

{ editable text items}

handled := DialogSelect(event, theDialog, item);

END; {of case kGlobalChangesID}

{handle other modeless and movable modal dialog boxes here}

END; {of CASE}

END;

When MyHandleKeyDownInModeless determines that the front window is the Global
Changes modeless dialog box, it checks whether the user pressed Return or Enter. If so,
MyHandleKeyDownInModeless responds as if the user had clicked the default button:
Change. The MyHandleKeyDownInModeless routine uses the Control Manager
procedure HiliteControl to highlight the Change button for 8 ticks. (Listing 6-27 on
page 6-88 illustrates how to use HiliteControl to highlight the button from within a
modal dialog box’s event filter function.)

When the user presses Esc or Command-period, MyHandleKeyDownInModeless
responds as if the user had clicked the Cancel button.

Finally, MyHandleKeyDownInModeless uses the DialogSelect function, which in
turn calls TextEdit to handle keystrokes within editable text items.

Responding to Activate and Update Events in Modeless and Movable
Modal Dialog Boxes

If you adopt the previously described strategy of determining—without the aid of the
IsDialogEvent function—whether events involve movable modal or modeless dialog
boxes, your application should be prepared to handle activate and update events for
both movable modal and modeless dialog boxes. You can use DialogSelect to assist
you in handling activate and update events. For faster performance, you may instead
want to use the UpdateDialog function when handling update events. Both
DialogSelect and UpdateDialog use the QuickDraw procedure SetPort to make
the dialog box the current graphics port before redrawing or updating it.

CHAPTER 6

Dialog Manager

6-98 Using the Dialog Manager

You should use the Control Manager procedure HiliteControl to make the buttons
and other controls inactive in a modeless or movable modal dialog box when you
deactivate it. The HiliteControl procedure dims inactive buttons, radio buttons,
checkboxes, and pop-up menus to indicate to the user that clicking these items has no
effect while the dialog box is in the background. When you activate a modeless or
movable modal dialog box again, you should use HiliteControl to make the controls
active again.

The application-defined DoActivateGlobalChangesDialog routine shown in
Listing 6-34 illustrates how to use HiliteControl to make the Change button active
when activating a modeless dialog box and how to make the Change and Stop buttons
inactive when deactivating the dialog box.

Listing 6-34 Activating a modeless dialog box

PROCEDURE DoActivateGlobalChangesDialog (window: WindowPtr;

 event: EventRecord);

VAR

activate: Boolean;

handled: Boolean ;

item: Integer ;

itemType: Integer;

itemHandle: Handle;

itemRect: Rect;

BEGIN

MyCheckEvent(event); {get a valid event record to pass to DialogSelect}

activate := (BAnd(event.modifiers, activeFlag) <> 0);

IF activate THEN {activate the modeless dialog box}

BEGIN

{highlight editable text}

SelectDialogItemText(window , kFindText, 0, 32767) ;

{make the Change button active (make the Stop button active }

{ only during a change operation)}

GetDialogItem(DialogPtr(window), kChange, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 0); {make Change active}

{draw a bold outline around the newly activated Change button}

MyDrawDefaultButtonOutline(DialogPtr(window) , kChange) ;

END

ELSE {dim the Change and Stop buttons for a deactivate dialog box}

BEGIN

GetDialogItem(DialogPtr(window), kChange, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255); {dim Change button}

CHAPTER 6

Dialog Manager

Using the Dialog Manager 6-99

{draw a gray outline around the newly dimmed Change button}

MyDrawDefaultButtonOutline(DialogPtr(window), kChange);

GetDialogItem(DialogPtr(window), kStop, itemType, itemHandle,

 itemRect);

HiliteControl(ControlHandle(itemHandle), 255); {dim Stop button}

END;

{let Dialog Manager handle activate events}

handled := DialogSelect(event, window, item);

MyAdjustMenus; {adjust the menus appropriately}

END;

The DoActivateGlobalChangesDialog routine uses DialogSelect to handle
activate events in the modeless dialog box. In response to an activate event,
DialogSelect handles the event and returns FALSE. The DialogSelect function sets
the current graphics port to the modeless dialog box whenever the user makes it active.

Because DialogSelect expects three parameters, one of which must be an event
record, DoActivateGlobalChangesDialog uses the application-defined routine
MyCheckEvent to verify that the event is a valid event. If it’s not, MyCheckEvent
creates and returns a valid event record for an activate event.

Because DialogSelect doesn’t call any draw procedures for items in response to
activate events, DoActivateGlobalChangesDialog calls the application-defined
draw routine MyDrawDefaultButtonOutline to draw either a black outline around
the default button when activating the dialog box or a gray outline when deactivating it.
The MyDrawDefaultButtonOutline routine is shown in Listing 6-17 on page 6-59.

Because users can switch out of your application when you display a movable modal
dialog box, your application must handle activate events for it, too.

You can also use DialogSelect to handle update events. In response to an update
event, DialogSelect calls the Window Manager procedure BeginUpdate , the Dialog
Manager procedure DrawDialog to redraw the entire dialog box, and then the Window
Manager procedure EndUpdate . However, a faster way to update the dialog box is to
use the UpdateDialog procedure, which redraws only the update region of a dialog
box. As shown in Listing 6-35, you should call BeginUpdate before using
UpdateDialog , and then call EndUpdate .

Listing 6-35 Updating a modeless dialog box

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

; {update document windows here}

CHAPTER 6

Dialog Manager

6-100 Using the Dialog Manager

kMyGlobalChangesModelessDialog:

BEGIN

BeginUpdate(window);

UpdateDialog(window, window^.visRgn);

EndUpdate(window);

END;

{handle cases for other window types here}

END; {of CASE}

END;

Closing Dialog Boxes

When you no longer need a dialog box, you can dispose of it by using either the
CloseDialog procedure if you allocated the memory for the dialog box or the
DisposeDialog procedure if you did not. Or, you can merely make it invisible by
using the Window Manager procedure HideWindow .

Generally, your application should not allocate memory for modal dialog boxes or
movable modal dialog boxes, but it should allocate memory for modeless dialog boxes.
Under these circumstances, your application should use DisposeDialog to dispose
of either a fixed or movable modal dialog box when the user clicks the OK or Cancel
button, and it should use CloseDialog to dispose of a modeless dialog box when the
user clicks the close box or chooses Close from the File menu.

You do not close alert boxes; the Dialog Manager does that for you automatically by
calling the DisposeDialog procedure after the user responds to the alert box by
clicking any enabled button.

The CloseDialog procedure removes a dialog box from the screen and deletes it from
the window list. It also releases the memory occupied by

■ the data structures associated with the dialog box (such as its structure, content, and
update regions)

■ all the items in the dialog box (except for pictures and icons, which might be shared
by other resources) and any data structures associated with them—for example, the
region occupied by the scroll box of a scroll bar

The CloseDialog procedure does not dispose of the dialog record or the item list
resource. Unlike GetNewDialog , NewDialog does not use a copy of the item list
resource. So, if you create a dialog box with NewDialog , you may want to use
CloseDialog to keep the item list resource in memory even if you didn’t supply a
pointer to the memory.

The DisposeDialog procedure calls CloseDialog and, in addition, releases the
memory occupied by the dialog’s item list resource and the dialog record. If you passed
NIL as a parameter to GetNewDialog or NewDialog to let the Dialog Manager allocate
memory in the heap, call DisposeDialog when you’re done with a dialog box.

For modeless and movable modal dialog boxes, you might find it more efficient to hide
the dialog box rather than remove its data structures. Listing 6-30 on page 6-94 uses the
Window Manager routine HideWindow to hide the Global Changes modeless dialog box

CHAPTER 6

Dialog Manager Reference 6-101

Dialog Manager

when the user clicks its close box. The next time the user invokes the Global Changes
command, the dialog box is already available, in the same location and with the same
text selected as when it was last used.

If you adjust the menus when you display a dialog box, be sure to return them to an
appropriate state when you close the dialog box, as described in “Adjusting Menus for
Modal Dialog Boxes” beginning on page 6-68 and “Adjusting Menus for Movable Modal
and Modeless Dialog Boxes” on page 6-73.

Dialog Manager Reference

This section describes the data structure, routines, and resources that are specific to the
Dialog Manager.

The “Data Structure” section shows the Pascal data structure for the dialog record, which
the Dialog Manager creates and maintains. The “Dialog Manager Routines” section
describes Dialog Manager routines for invoking alerts, creating and disposing of dialog
boxes, manipulating items in alert and dialog boxes, and handling events in dialog boxes.

The “Application-Defined Routines” section describes routines that your application
must supply when you need to create application-defined items in dialog boxes, to filter
events that the Dialog Manager doesn’t handle, and to define its own alert sounds.

The “Resources” section describes the dialog resource, the alert resource, the item list
resource, the dialog color table resource, the alert color table resource, and the item
color table resource. The summary sections that conclude this chapter include listings
of the constants that define values for the item types in alert and dialog boxes, the OK
and Cancel buttons in alert boxes, and the icons in note alert boxes, caution alert boxes,
and stop alert boxes, along with the constants used by the Gestalt function for the
Dialog Manager.

Data Structure
This section describes the dialog record. Your application doesn’t need to create or use
this record; rather, your application simply uses the appropriate Dialog Manager
routines, creates any necessary resources, and then allows the Dialog Manager to create
and use records of this data type as necessary. The dialog record is described here for
completeness only.

The Dialog Record

To create an alert or a dialog box, you use a Dialog Manager routine—such as Alert or
GetNewDialog —that incorporates information from your item list resource and from
your alert resource or dialog resource into a data structure, called a dialog record, in
memory. The Dialog Manager creates a dialog record, which is a data structure of type
DialogRecord , whenever your application creates an alert or a dialog box. Your
application generally should not create a dialog record or directly access its fields.

CHAPTER 6

Dialog Manager

6-102 Dialog Manager Reference

TYPE DialogPtr = WindowPtr;
DialogPeek = ^DialogRecord

DialogRecord =

RECORD
window: WindowRecord; {dialog window}

items: Handle; {item list resource}

textH: TEHandle; {current editable text item}

editField: Integer; {editable text item number }
{ minus 1}

editOpen: Integer; {used internally; reserved}

aDefItem: Integer; {default button item number}

END;

Field descriptions
window The window record for the alert box or dialog box.
items A handle to the item list resource for the alert or the dialog box.
textH A handle to the current editable text item.
editField The current editable text item.
editOpen Used internally; reserved.
aDefItem The item number of the default button.

Dialog Manager Routines
This section describes the routines for initializing the Dialog Manager, invoking alerts,
creating and disposing of dialog boxes, manipulating items in alert and dialog boxes,
and handling events in alert and dialog boxes.

Some Dialog Manager routines can be accessed using more than one spelling of the
routine’s name, depending on the interface files supported by your development
environment. For example, GetDialogItem is also available as GetDItem .
Table 6-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 6-1 Mapping between new and previous names of Dialog Manager routines

New name Previous name

DialogCopy DlgCopy

DialogCut DlgCut

DialogDelete DlgDelete

DialogPaste DlgPaste

DisposeDialog DisposDialog

FindDialogItem FindDItem

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-103

Initializing the Dialog Manager

Before using the Dialog Manager, you must initialize—in order—QuickDraw, the
Font Manager, the Window Manager, the Menu Manager, and TextEdit. The first
Dialog Manager routine to call is the InitDialogs procedure, which initializes
the Dialog Manager.

At your application’s request, the Dialog Manager uses the system alert sound for
signaling the user during various alert stages. For alerts, if you want the Dialog Manager
to play sounds other than the system alert sound, write your own sound procedure
(described on page 6-144) and call the ErrorSound procedure to make it the current
sound procedure.

By default, the Dialog Manager displays static text and editable text items in the system
font. To make it easier to localize your application for use with worldwide versions of
system software, you should not change the font. However, if you determine that it is
imperative for your application to display static text or editable text in a font other than
the system font, you can use the SetDialogFont procedure.

InitDialogs

Use the InitDialogs procedure to initialize the Dialog Manager.

PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

GetAlertStage GetAlrtStage

GetDialogItem GetDItem

GetDialogItemText GetIText

HideDialogItem HideDItem

NewColorDialog NewCDialog

ResetAlertStage ResetAlrtStage

SelectDialogItemText SelIText

SetDialogFont SetDAFont

SetDialogItem SetDItem

SetDialogItemText SetIText

ShowDialogItem ShowDItem

UpdateDialog UpdtDialog

Table 6-1 Mapping between new and previous names of Dialog Manager routines (continued)

New name Previous name

CHAPTER 6

Dialog Manager

6-104 Dialog Manager Reference

resumeProc
A pointer to a procedure used by the System Error Handler in case a fatal
system error occurs on a system that predates MultiFinder. For System 7,
your application should set this parameter to NIL .

DESCRIPTION

Before using the Dialog Manager, you must initialize QuickDraw, the Font Manager,
the Window Manager, the Menu Manager, and TextEdit, in that order. Then, to
initialize the Dialog Manager, call InitDialogs once before all other Dialog Manager
routines. The InitDialogs procedure does the following initialization:

■ It saves the pointer passed in the resumeProc parameter. For System 7, your
application should set the resumeProc parameter to NIL .

■ It installs the system alert sound. To change the system alert sound, use the
ErrorSound procedure.

■ It passes empty strings to the ParamText procedure.

ErrorSound

To use your own alert sound instead of the system alert sound for signaling the user, use
the ErrorSound procedure.

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

soundProc A pointer to a procedure that generates the desired alert sounds.

DESCRIPTION

The Dialog Manager uses the system alert sound for signaling the user during various
alert stages. The system alert sound, which is a sound resource stored in the System
file, is played whenever system software or your application uses the Sound Manager
procedure SysBeep . By changing the setting in the Sound control panel, the user can
determine which sound is played. If you want to use sounds other than the system
alert sound at various alert stages, write your own sound procedure and call the
ErrorSound procedure to make it the current sound procedure.

SPECIAL CONSIDERATIONS

If you pass NIL in the soundProc parameter, the Dialog Manager neither plays sounds
nor causes the menu bar to blink, and thus the user receives no signal.

SEE ALSO

See the description of MyAlertSound on page 6-144 for a discussion of how to write
the sound procedure pointed to by the soundProc parameter. For examples of how to
incorporate sound alerts into alert stages, see Listing 6-2 on page 6-21 and Listing 6-3 on
page 6-22.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-105

SetDialogFont

Although you generally should not change the font used in static and editable text items,
you can do so with the SetDialogFont procedure. The SetDialogFont procedure is
also available as the SetDAFont procedure.

PROCEDURE SetDialogFont (fontNum: Integer);

fontNum A font ID number. Do not rely on font number constants. Instead, use
the Font Manager function GetFNum to find the font number to pass in
this parameter.

DESCRIPTION

For subsequently created dialog and alert boxes, SetDialogFont sets the font of the
dialog or alert box’s graphics port to the specified font. If you don’t call this procedure,
the system font is used. The SetDialogFont procedure does not affect titles of controls,
which are always displayed in the system font.

SPECIAL CONSIDERATIONS

There are a number of caveats regarding the SetDialogFont procedure.

First, the Standard File Package does not always properly calculate the position of the
standard file dialog box once this procedure has been called; for example, the standard
file dialog box may be partially obscured by a menu bar. Second, be aware that this
procedure affects all static text and editable text items in all of the alert and dialog boxes
you subsequently display. Third, SetDialogFont does not change the font for control
titles. Fourth, you can’t use SetDialogFont to change the font size or font style.
Finally, and most importantly, your application will be much easier to localize if you
always use the system font in your alert and dialog boxes and never use
SetDialogFont .

SEE ALSO

See the chapter “Font Manager” in Inside Macintosh: Text for information about the
GetFNum function.

Creating Alerts

To create an alert—consisting of an alert sound, an alert box, or both—use one of
these functions: NoteAlert , CautionAlert , StopAlert , and Alert . The first
three functions display, respectively, the note, caution, and stop alert icons (see
Figure 6-3, Figure 6-4, and Figure 6-5) in the upper-left corner of the alert box. The
Alert function allows you to display your own icon or to have no icon at all in the
upper-left corner of your alert box.

CHAPTER 6

Dialog Manager

6-106 Dialog Manager Reference

These functions take descriptive information about the alert from an alert resource that
you provide. When you call one of these functions, you pass it the resource ID of the
alert resource and a pointer to an event filter function. These functions create a dialog
record, play an alert sound, and display an alert box according to the alert stages that
you specify in the alert resource.

You should specify a pointer to an event filter function when you call the Alert ,
StopAlert , CautionAlert , and NoteAlert functions. You can use the same
event filter function in most or all of your alert and modal dialog boxes.

If you need to find out the current alert stage—for example, to ensure that your applica-
tion deactivates the frontmost window only if an alert box is to be displayed at that
stage—use the GetAlertStage function. To change the current alert stage, use the
ResetAlertStage procedure.

Your application does not dispose of alert boxes; the Dialog Manager does that for you
automatically.

Alert

To display an alert box (or, if appropriate for the alert stage, to play an alert sound
instead of or in addition to displaying the alert box), you can use the Alert function.
This function does not display a default icon in the upper-left corner of the alert box;
you can leave this area blank, or you can specify your own icon in the alert’s item list
resource, which in turn is specified in the alert resource.

FUNCTION Alert (alertID: Integer;

filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure.

DESCRIPTION

The Alert function creates the alert defined in the specified alert resource. The function
calls the current alert sound procedure and passes it the sound number specified in the
alert resource for the current alert stage. If no alert box is to be drawn at this stage,
Alert returns –1; otherwise, it uses the NewDialog function to create and display the
alert box. The default system window colors are used unless your application provides
an alert color table resource with the same resource ID as the alert resource.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-107

The Alert function uses the ModalDialog procedure, which repeatedly gets and
handles most events for you. The ModalDialog procedure, in turn, gets each event by
calling the Event Manager function GetNextEvent . If the event is a mouse-down event
outside the content region of the alert box, ModalDialog emits an error sound and gets
the next event.

The Alert function continues calling ModalDialog until the user selects an enabled
control (typically a button), at which time the Alert function removes the alert box from
the screen and returns the item number of the selected control. Your application then
responds as appropriate when the user clicks this item.

For events inside the alert box, ModalDialog passes the event to an event filter function
before handling the event. The event filter function provides a secondary event-handling
loop for events that ModalDialog doesn’t handle. You specify a pointer to your event
filter function in the filterProc parameter of the Alert function.

If you set the filterProc parameter to NIL , the Dialog Manager uses the standard
event filter function, which behaves as follows:

■ If the user presses the Return or Enter key, the event filter function returns TRUE and
returns the item number for the default button.

However, your application should provide a simple event filter function that not only
replicates this behavior but also

■ returns TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

■ updates your windows in response to update events (this also allows background
windows to receive update events) and returns FALSE

■ returns FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents.

Unless the event filter function handles the event in its own way and returns TRUE,
ModalDialog handles the event inside the alert box as follows:

■ If the user presses the mouse button while the cursor is in a control, the Control
Manager function TrackControl tracks the cursor. If the user releases the
mouse button while the cursor is in an enabled control, Alert , StopAlert ,
CautionAlert , and NoteAlert remove the alert box and return the control’s
item number. (Generally, buttons should be the only controls you use in alert boxes.)

■ If the user presses the mouse button while the cursor is in any enabled item other than
a control, Alert , StopAlert , CautionAlert , and NoteAlert remove the alert box
and return the item number. (Generally, button controls should be the only enabled
items in alert boxes.)

■ If user presses the mouse button while the cursor is in a disabled item or in no item,
 or if any other event occurs, Alert , StopAlert , CautionAlert , and NoteAlert
do nothing.

CHAPTER 6

Dialog Manager

6-108 Dialog Manager Reference

The Alert function uses the QuickDraw routine SetPort to make the alert box the
current graphics port. It’s not necessary for your application to call SetPort again
before displaying alert boxes, because you can’t draw into any other windows between
the time you create an alert box and the time the Dialog Manager displays it.

SPECIAL CONSIDERATIONS

If you need to display an alert box while your application is running in the background
or is otherwise invisible to the user, you should use the Notification Manager to post a
notification to the user. The Notification Manager automatically displays an alert box
containing whatever message you specify; you will not need to use the Dialog Manager
to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to an alert box
that your application presents.

SEE ALSO

The ModalDialog procedure is described on page 6-135. See “Writing an Event Filter
Function for Alert and Modal Dialog Boxes” beginning on page 6-86 for a discussion of
how to write an event filter function. See “Creating Alert Sounds and Alert Boxes”
beginning on page 6-18 for a discussion of alerts and alert stages. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about button
titles and messages in alert boxes. Alert resources are described on page 6-150. Alert
color table resources are described on page 6-157. The Dialog Manager uses the system
alert sound as the error sound unless you change it by calling the ErrorSound pro-
cedure, described on page 6-104. See “Responding to Events in Alert Boxes” beginning
on page 6-81 for a discussion of how to respond to events returned by the Alert
function. See the chapter “Notification Manager” in Inside Macintosh: Processes for
information about the Notification Manager.

The NoteAlert , CautionAlert , and StopAlert functions are identical to the Alert
function, except that NoteAlert (described on page 6-110), CautionAlert (described
on page 6-111), and StopAlert (described next) display icons in the upper-left corners
of alert boxes.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-109

StopAlert

To display an alert box with a stop icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the StopAlert function.

FUNCTION StopAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL , the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The StopAlert function is the same as the Alert function except that, before drawing
the items in the alert box, StopAlert draws the stop icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The stop icon has the
following resource ID:

CONST stopIcon = 0; {stop icon}

By default, the Dialog Manager uses the standard stop icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a stop alert to inform the user that a problem or situation is so serious that the action
cannot be completed. Stop alerts typically have only a single button (OK), because all the
user can do is acknowledge that the action cannot be completed.

SEE ALSO

Figure 6-5 on page 6-9 illustrates the stop icon in a typical stop alert. Except that it
includes a stop icon in the alert box, StopAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

CHAPTER 6

Dialog Manager

6-110 Dialog Manager Reference

NoteAlert

To display an alert box with a note icon in its upper-left corner (or, if appropriate for the
alert stage, to play an alert sound instead of or in addition to displaying the alert box),
use the NoteAlert function.

FUNCTION NoteAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL , the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The NoteAlert function is the same as the Alert function except that, before drawing
the items in the alert box, NoteAlert draws the note icon in the upper-left corner
(within the rectangle with local coordinates [10,20,42,52]). The note icon has the
following resource ID:

CONST noteIcon = 1; {note icon}

By default, the Dialog Manager uses the standard note icon from the System file. You can
change this icon by providing your own 'ICON' resource with this resource ID number.

Use a note alert to inform users of a minor mistake that won’t have any disastrous
consequences if left as is. Usually this type of alert simply offers information, and the
user responds by clicking an OK button. Occasionally, a note alert may ask a simple
question and provide a choice of responses.

SEE ALSO

Figure 6-3 on page 6-8 illustrates the note icon in a typical note alert. Except that it
includes a note icon in the alert box, NoteAlert is identical to the Alert function. See
the description of the Alert function on page 6-106 for detailed information about the
parameters and behavior of both of these functions.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-111

CautionAlert

To display an alert box with a caution icon in its upper-left corner (or, if appropriate for
the alert stage, to play an alert sound instead of or in addition to displaying the alert
box), use the CautionAlert function.

FUNCTION CautionAlert (alertID: Integer;

 filterProc: ModalFilterProcPtr): Integer;

alertID The resource ID of an alert resource. If the alert resource is missing, the
Dialog Manager returns to your application without creating the
requested alert.

filterProc
A pointer to a function that responds to events not handled by the
ModalDialog procedure. If you set this parameter to NIL , the
Dialog Manager uses the standard event filter function, which allows
users to press the Return or Enter key in lieu of clicking the default
button. However, your application should provide a simple event filter
function that also allows background applications to receive update
events. Pass a pointer to the event filter function in this parameter.

DESCRIPTION

The CautionAlert function is the same as the Alert function except that, before
drawing the items in the alert box, CautionAlert draws the caution icon in the
upper-left corner (within the rectangle with local coordinates [10,20,42,52]). The caution
icon has the following resource ID:

CONST cautionIcon = 2; {caution icon}

By default, the Dialog Manager uses the standard caution icon from the System file.
You can change this icon by providing your own 'ICON' resource with this resource
ID number.

Use a caution alert to alert the user of an operation that may have undesirable results if
it’s allowed to continue. Give the user the choice of continuing the action (by clicking an
OK button) or stopping it (by clicking a Cancel button).

SEE ALSO

Figure 6-4 on page 6-9 illustrates the caution icon in a typical caution alert. Except
that it includes a caution icon in the alert box, CautionAlert is identical to the
Alert function. See the description of the Alert function on page 6-106 for detailed
information about the parameters and behavior of both of these functions.

CHAPTER 6

Dialog Manager

6-112 Dialog Manager Reference

GetAlertStage

To determine the stage of the last occurrence of an alert, use the GetAlertStage
function. The GetAlertStage function is also available as the GetAlrtStage function.

FUNCTION GetAlertStage: Integer;

DESCRIPTION

The GetAlertStage function returns a number from 0 to 3 as the stage of the last
occurrence of an alert. For example, you can use the GetAlertStage function to
ensure that your application deactivates the active window only if an alert box is to be
displayed at that stage.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ACount contains this number. In addition, the global variable
ANumber contains the resource ID of the alert resource of the last alert that occurred.

SEE ALSO

Listing 6-19 on page 6-66 illustrates how to use GetAlertStage to determine whether
to deactivate a window for the current alert stage. Listing 6-2 on page 6-21 illustrates
how to use an alert resource to specify different alert responses according to different
alert stages.

ResetAlertStage

To reset the current alert stage to the first alert stage, use the ResetAlertStage
procedure. The ResetAlertStage procedure is also available as the
ResetAlrtStage procedure.

PROCEDURE ResetAlertStage;

DESCRIPTION

The ResetAlertStage procedure resets every alert to a first-stage alert.

SEE ALSO

Listing 6-2 on page 6-21 illustrates how to use an alert resource to specify different alert
responses according to different alert stages.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-113

Creating and Disposing of Dialog Boxes

To create a dialog box, you should generally use the GetNewDialog function, which
takes information about the dialog from a dialog resource in a resource file. Like window
resources, dialog resources isolate descriptive information from your application code
for ease of modification or translation to other languages. However, you can also use the
NewDialog and NewColorDialog functions—for which you pass descriptive
information in parameters—to create dialog boxes.

The NewColorDialog function is identical to the NewDialog function, except that
NewColorDialog returns a pointer to a color graphics port.

When you no longer need a dialog box, use the CloseDialog procedure if
you allocated the memory for the dialog record of the dialog box and use the
DisposeDialog procedure if you did not. (To merely make the dialog box invisible
to the user, you can use the Window Manager procedure HideWindow .)

GetNewDialog

To create a dialog box from a description in a dialog resource, use the GetNewDialog
function.

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;

behind: WindowPtr): DialogPtr;

dialogID The resource ID of a dialog resource. If the dialog resource is missing,
the Dialog Manager returns to your application without creating the
dialog box.

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager automatically allocates memory for them in your application
heap. For a modeless dialog box, however, you should allocate your
own memory as you would for a window—otherwise, your heap could
become fragmented.

behind A pointer to the window behind which the dialog box is to be placed
on the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

DESCRIPTION

The GetNewDialog function creates a dialog record from the information in the dialog
resource and returns a pointer to it. You can use this pointer with Window Manager or
QuickDraw routines to manipulate the dialog box. If the dialog resource specifies that
the dialog box should be visible, the dialog box is displayed. If the dialog resource
specifies that the dialog box should initially be invisible, use the Window Manager
procedure ShowWindow to display the dialog box.

CHAPTER 6

Dialog Manager

6-114 Dialog Manager Reference

If you supply a dialog color table resource with the same resource ID as the dialog
resource, GetNewDialog uses the NewColorDialog function and returns a pointer
to a color graphics port. If no dialog color table resource is present, GetNewDialog
uses NewDialog to return a pointer to a black-and-white graphics port, although
system software draws the window frame using the system’s default colors.

The dStorage and behind parameters of GetNewDialog have the same meaning as
they do in the Window Manager function GetNewWindow. Always set the behind
parameter to Pointer(-1) to bring the dialog box to the front.

The dialog resource contains the resource ID of the dialog box’s item list resource. After
calling the Resource Manager to read the item list resource into memory (if it’s not
already in memory), GetNewDialog makes a copy of the item list resource and uses
that copy; thus you may have several dialog boxes with identical items.

If you provide a dialog color table resource, GetNewDialog copies it before passing it to
the Window Manager routine SetWinColor unless the number-of-entries element of
the dialog color table resource is set to –1, in which case the default window colors are
used instead. The GetNewDialog function makes the copy so that the dialog color table
resource can be purged without affecting the dialog box.

SPECIAL CONSIDERATIONS

The GetNewDialog function doesn’t release the memory occupied by the resources.
Therefore, your application should mark all resources used for a dialog box as purgeable.

If either the dialog resource or the item list resource can’t be read, the function result is
NIL ; your application should test to ensure that NIL is not returned before performing
any more operations with the dialog box or its items.

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus,
if one of your application’s windows is active when you use GetNewDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager to
post a notification to the user. The Notification Manager automatically displays an alert
box containing whatever message you specify; you do not use the Dialog Manager to
create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The GetNewDialog function uses either NewDialog or NewColorDialog , each of
which generates an update event for the entire window contents. Thus, with the

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-115

exception of controls, items aren’t drawn immediately. The Dialog Manager calls the
Control Manager to draw controls, and the Control Manager draws them immediately.
So the controls won’t be drawn twice, the Dialog Manager calls the Window Manager
procedure ValidRect for the enclosing rectangle of each control. If you find that there
is too great a lag between the drawing of controls and the drawing of other items, try
making the dialog box initially invisible and then calling the Window Manager
procedure ShowWindow to show it.

SEE ALSO

See “Creating Dialog Boxes” beginning on page 6-23 and “Displaying Alert and Dialog
Boxes” beginning on page 6-61 for discussions and examples of how to use
GetNewDialog .

The GetNewWindow and ShowWindow procedures are described in the chapter
“Window Manager” of this book. The Notification Manager is described in the
chapter “Notification Manager” in Inside Macintosh: Processes.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes.

NewColorDialog

To create a dialog box, you can use the NewColorDialog function, which returns a
pointer to a color graphics port. Generally, you should instead use GetNewDialog to
create a dialog box, because GetNewDialog takes information about the dialog box
from a dialog resource in a resource file. (Like window resources, dialog resources isolate
descriptive information from your application code for ease of modification or transla-
tion to other languages.) The NewColorDialog function is also available as the
NewCDialog function.

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;
 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;
 items: Handle): CDialogPtr;

dStorage A pointer to the memory for the dialog record. If you set this parameter to
NIL for modal dialog boxes and movable modal dialog boxes, the Dialog
Manager allocates memory for them on your application heap. For a
modeless dialog box, however, you should allocate your own memory
as you would for a window—otherwise, your heap could become
fragmented.

CHAPTER 6

Dialog Manager

6-116 Dialog Manager Reference

boundsRect
A rectangle, given in global coordinates, that determines the size and
position of the dialog box; these coordinates specify the upper-left and
lower-right corners of the dialog box.

title A text string used for the title of a modeless or movable modal dialog
box. You can specify an empty string (not NIL) for a title bar that contains
no text.

visible A flag that specifies whether the dialog box should be drawn on the
screen immediately. If you set this parameter to FALSE, the dialog box is
not drawn until your application uses the Window Manager procedure
ShowWindow to display it.

procID The window definition ID for the type of dialog box. Use the dBoxProc
constant to specify modal dialog boxes, the noGrowDocProc constant to
specify modeless dialog boxes, and the movableDBoxProc constant to
specify movable modal dialog boxes.

behind A pointer to the window behind which the dialog box is to be placed on
the desktop. Always set this parameter to the window pointer
Pointer(-1) to bring the dialog box in front of all other windows.

goAwayFlag
A flag to specify whether a modeless dialog box should have a close box
in its title bar when the dialog box is active. If you set this parameter to
TRUE, the dialog window has a close box in its title bar when the window
is active; only modeless dialog boxes should have close boxes.

refCon A value that the Dialog Manager uses to set the refCon field of the
dialog box’s window record. Your application may store any value here
for any purpose. For example, your application can store a number that
represents a dialog box type, or it can store a handle to a record that
maintains state information about the dialog box. You
can use the Window Manager procedure SetWRefCon at any time to
change this value in the dialog record for a dialog box, and you can use
the GetWRefCon function to determine its current value.

items A handle to an item list resource for the dialog box. You can get the
handle by calling the Resource Manager function GetResource to read
the item list resource into memory. Use the Memory Manager procedure
HNoPurge to make the handle unpurgeable while you use it or use the
Operating System utility function HandToHand to make a copy of the
handle and use the copy.

DESCRIPTION

The NewColorDialog function creates a dialog box as specified by its parameters
and returns a pointer to a color graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewCWindow, which creates the dialog box. You can use this pointer with Window
Manager or QuickDraw routines to manipulate the dialog box.

The Dialog Manager uses the default window colors for the dialog box. By using the
system’s default colors, you ensure that your application’s interface is consistent with

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-117

that of the Finder and other applications. However, if you absolutely feel compelled to
break from this consistency, you can use the Window Manager procedure SetWinColor
to use your own dialog color table resource that specifies colors other than the default
colors. Be aware, however, that nonstandard colors in your alert and dialog boxes may
initially confuse your users.

The Window Manager creates an auxiliary window record for the color dialog box. You
can access this record with the Window Manager function GetAuxWin . (The
dialogCItemhandle field of the auxiliary window record points to the dialog box’s
item color table resource.) If the dialog box’s content color isn’t white, it’s a good idea
to call NewColorDialog with the visible flag set to FALSE. After the color table
and color item list resource are installed, use the Window Manager procedure
ShowWindow to display the dialog box if it’s the frontmost window. If the dialog box
is a modeless dialog box that is not in front, use the Window Manager procedure
ShowHide to display it.

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of
the menu bar.

SPECIAL CONSIDERATIONS

For modal dialog boxes, the Dialog Manager function ModalDialog traps all events.
This prevents your event loop from receiving activate events for your windows. Thus, if
one of your application’s windows is active when you use NewColorDialog to create
a modal dialog box, you must explicitly deactivate that window before displaying the
modal dialog box.

If you ever need to display a dialog box while your application is running in the back-
ground or is otherwise invisible to the user, you should use the Notification Manager
to post a notification to the user. The Notification Manager automatically displays an
alert box containing whatever message you specify; you do not need to use the Dialog
Manager to create the alert box yourself.

Note that the Notification Manager provides a one-way communications path from
your application to the user. There is no provision for carrying information back from
the user to your application while it is in the background (although it is possible for
your application to determine if the notification was received). If you need to solicit
information from the user, use the Notification Manager to inform the user to bring
your application to the foreground, where the user can then respond to the dialog box
that your application presents.

The NewColorDialog function generates an update event for the entire window
contents. Thus, with the exception of controls, items aren’t drawn immediately. The
Dialog Manager calls the Control Manager to draw controls, and the Control Manager
draws them immediately. So that the controls won’t be drawn twice, the Dialog Manager

CHAPTER 6

Dialog Manager

6-118 Dialog Manager Reference

calls the Window Manager procedure ValidRect for the enclosing rectangle of each
control. If you find that there is too great a lag between the drawing of controls and the
drawing of other items, try making the dialog box initially invisible and then calling the
Window Manager procedure ShowWindow to show it.

SEE ALSO

Window Manager routines are described in the chapter “Window Manager” in this book.
The Notification Manager is described in the chapter “Notification Manager” in Inside
Macintosh: Processes. See Inside Macintosh: Memory for a description of HNoPurge . See
Inside Macintosh: Operating System Utilities for a description of HandToHand.

“Adjusting Menus for Modal Dialog Boxes” beginning on page 6-68 and “Adjusting
Menus for Movable Modal and Modeless Dialog Boxes” on page 6-73 discuss menu bar
adjustment when your application displays dialog boxes. See “Titles for Buttons,
Checkboxes, and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text
and Editable Text Items” beginning on page 6-40 for recommendations about messages
and control titles in dialog boxes. The GetResource function is described in the chapter
“Resource Manager” of Inside Macintosh: More Macintosh Toolbox.

NewDialog

To create a dialog box, you can use the NewDialog function, which returns a pointer to a
black-and-white graphics port (although system software draws the window frame of
the dialog box using the system’s default window colors). Generally, you should instead
use GetNewDialog to create a dialog box; GetNewDialog takes information about the
dialog from a dialog resource in a resource file. (Like window resources, dialog resources
isolate descriptive information from your application code for ease of modification or
translation to other languages.)

The NewDialog function is identical to the NewColorDialog function, except that
NewDialog returns a pointer to a black-and-white graphics port. See the discussion
of NewColorDialog on page 6-115 for descriptions of the parameters that you also
pass to NewDialog .

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect;

 title: Str255; visible: Boolean;
 procID: Integer; behind: WindowPtr;

 goAwayFlag: Boolean; refCon: LongInt;
 items: Handle): DialogPtr;

DESCRIPTION

The NewDialog function creates a dialog box as specified by its parameters and returns
a pointer to a black-and-white graphics port for the new dialog box. The first eight
parameters (dStorage through refCon) are passed to the Window Manager function
NewWindow, which creates the dialog box.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-119

When specifying the size and position of the dialog box in the boundsRect parameter,
you should generally try to center dialog boxes between the left and right margins of the
screen or the window where the user is working, whichever is more appropriate. Also
ensure that the tops of dialog boxes (including the title bars of modeless and movable
modal dialog boxes) lie below the menu bar when you position them on the main screen.
You can use the Menu Manager function GetMBarHeight to determine the height of the
menu bar.

SEE ALSO

If you use a dialog color table resource to change the default window colors, use the
NewColorDialog function, which returns a pointer to a color graphics port. See the
description of NewColorDialog on page 6-115 for additional information common to
both the NewDialog and NewColorDialog functions.

CloseDialog

To dismiss a dialog box for whose dialog record you allocated memory, use the
CloseDialog procedure.

PROCEDURE CloseDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The CloseDialog procedure removes a dialog box from the screen and deletes it from
the window list. The CloseDialog procedure releases the memory occupied by

■ the data structures associated with the dialog box (such as its structure, content, and
update regions)

■ all the items in the dialog box (except for pictures and icons, which might be shared
by other resources) and any data structures associated with them

Generally, you should provide memory for the dialog record of modeless dialog boxes
when you create them. (You can let the Dialog Manager provide memory for modal and
movable modal dialog boxes.) You should then use CloseDialog to close a modeless
dialog box when the user clicks the close box or chooses Close from the File menu.

Because CloseDialog does not dispose of the dialog resource or the item list
resource, it is important to make these resources purgeable. Unlike GetNewDialog ,
NewColorDialog does not use a copy of the item list resource. Thus, if you
use NewColorDialog to create a dialog box, you may want to use CloseDialog to
keep the item list resource in memory even if you didn’t supply a pointer to the memory.

CHAPTER 6

Dialog Manager

6-120 Dialog Manager Reference

SEE ALSO

If you let the Dialog Manager allocate memory for the dialog box (by passing NIL in the
dStorage parameter to the GetNewDialog , NewColorDialog , or NewDialog
function), use the DisposeDialog procedure, described next, instead of CloseDialog .

DisposeDialog

To dismiss a dialog box for which the Dialog Manager supplies memory, use the
DisposeDialog procedure. The DisposeDialog procedure is also available
as the DisposDialog procedure.

PROCEDURE DisposeDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DisposeDialog procedure calls the CloseDialog procedure and, in addition,
releases the memory occupied by the dialog box’s item list resource and the dialog
record. Call DisposeDialog when you’re done with a dialog box if you pass NIL in
the dStorage parameter to GetNewDialog , NewColorDialog , or NewDialog .

Generally, your application should not allocate memory for the dialog records of modal
dialog boxes or movable modal dialog boxes. In these cases your application should use
DisposeDialog when the user clicks the OK or Cancel button.

SEE ALSO

If you allocate memory for the dialog box (for example, by passing a pointer in the
dStorage parameter to the GetNewDialog , NewColorDialog , or NewDialog
function), use CloseDialog , described on page 6-119, instead of DisposeDialog .

Manipulating Items in Alert and Dialog Boxes

In many cases, you won’t have to make any changes to alert or dialog boxes after you
define them in the resource file. If you do need to make changes, use the Dialog Manager
routines described in this section.

For most item manipulation, first call the GetDialogItem procedure to get the
information about the item. You can then use other routines to manipulate that item. Use
the SetDialogItem procedure if you use any of these other routines to change the
item. You must also use SetDialogItem to install any of your own application-defined
draw procedures. If you use SetDialogItem , make the dialog box initially invisible,
change the item as appropriate, then make the dialog box visible by using the Window
Manager procedure ShowWindow. (For information about manipulating text in an
alert box or a dialog box, see “Handling Text in Alert and Dialog Boxes” beginning on
page 6-129.)

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-121

You can dynamically add items to and remove items from a dialog box by using the
AppendDITL and ShortenDITL procedures. These procedures are especially useful
if you share a single item list resource among multiple dialog boxes, because you can
then use AppendDITL or ShortenDITL to add or remove items as appropriate for
individual dialog boxes. You typically make such dialog boxes invisible, use the
AppendDITL and ShortenDITL procedures as appropriate, then make the dialog
boxes visible by using the Window Manager procedure ShowWindow.

GetDialogItem

To get a handle to an item so that you can manipulate it (for example, to determine its
current value, to change it, or to install a pointer to a draw procedure for an
application-defined item), use the GetDialogItem procedure. The GetDialogItem
procedure is also available as the GetDItem procedure.

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 VAR itemType: Integer; VAR item: Handle;

 VAR box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item requested in the itemNo
parameter. You can use any of these constants to determine the value
returned in this parameter:

 CONST

ctrlItem = 4 ; {add this constant to the next }

{ four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a 'CNTL'}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to }

{ disable it}

CHAPTER 6

Dialog Manager

6-122 Dialog Manager Reference

item For an application-defined draw procedure, a pointer to the draw
procedure (coerced to a handle), returned for the item specified in the
itemNo parameter; for all other item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box),
returned for the item specified in the itemNo parameter.

DESCRIPTION

The GetDialogItem procedure returns in its parameters the following information
about the item numbered itemNo in the item list resource of the specified dialog box:
in the itemType parameter, the item type; in the item parameter, a handle to the item
(or, for application-defined draw procedures, the procedure pointer); and in the box
parameter, the display rectangle for the item.

For most item manipulation, first use the GetDialogItem procedure to get the informa-
tion about the item. You can then use other routines, such as GetDialogItemText and
SetDialogItem , to determine and change the value of that item.

SEE ALSO

Listing 6-12 on page 6-49 illustrates the use of GetDialogItem in conjunction with
GetDialogItemText to retrieve the text entered by a user in an editable text item.
Listing 6-16 on page 6-58 illustrates the use of GetDialogItem in conjunction with
SetDialogItem to install the draw procedure for an application-defined item into
a dialog box. Listing 6-26 on page 6-83 illustrates the use of GetDialogItem to
determine the current value of a checkbox in a dialog box.

SetDialogItem

After using the GetDialogItem procedure to get a handle to an item from a dialog box,
use the SetDialogItem procedure to set or change the item. The SetDialogItem
procedure is also available as the SetDItem procedure.

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;

 itemType: Integer; item: Handle;

 box: Rect);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

itemType A value that represents the type of item in the itemNo parameter. To
specify the value for this parameter, you can use any of the constants
listed on page 6-121 for the itemType parameter of the GetDialogItem
procedure.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-123

item For an application-defined item, a pointer to the draw procedure (coerced
to a handle) for the item specified in the itemNo parameter; for all other
item types, a handle to the item.

box The display rectangle (described in coordinates local to the dialog box) for
the item specified in the itemNo parameter.

DESCRIPTION

The SetDialogItem procedure sets the item specified by the itemNo parameter for the
specified dialog box. This procedure installs the item without drawing it; typically you
create an invisible dialog box, use SetDialogItem , then use the Window Manager
procedure ShowWindow to draw the dialog box and its items.

SEE ALSO

Listing 6-16 on page 6-58 illustrates how to use SetDialogItem to install an
application-defined draw procedure. The ShowWindow procedure is described in the
chapter “Window Manager” of this book.

HideDialogItem

Although you should rarely need to do so, you can make an item in a dialog box
invisible by using the HideDialogItem procedure. The HideDialogItem procedure
is also available as the HideDItem procedure.

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The HideDialogItem procedure hides the item specified by itemNo by giving it a
display rectangle that’s off the screen. Specifically, if the left coordinate of the item’s
display rectangle is less than 8192 (hexadecimal $2000), HideDialogItem adds 16,384
(hexadecimal $4000) to both the left and right coordinates of the rectangle. If the item is
already hidden (that is, if the left coordinate is greater than 8192), HideDialogItem
does nothing. To redisplay an item that’s been hidden by HideDialogItem , you can
use the ShowDialogItem procedure.

CHAPTER 6

Dialog Manager

6-124 Dialog Manager Reference

SPECIAL CONSIDERATIONS

If your application needs to display a number of dialog boxes that are similar except for
one or two items, it’s generally easier to modify the common elements using the
AppendDITL and ShortenDITL procedures than to use the HideDialogItem and
ShowDialogItem procedures.

The rectangle for a static text item must always be at least as wide as the first character of
the text.

You generally shouldn’t use HideDialogItem to make an editable text item invisible,
because as the user presses the Tab key, the Dialog Manager attempts to move the cursor
to the hidden editable text item, where the user’s subsequent keystrokes will be placed.

ShowDialogItem

To redisplay an item that has been hidden by the HideDialogItem procedure, use the
ShowDialogItem procedure. The ShowDialogItem procedure is also available as the
ShowDItem procedure.

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer);

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an item in the dialog box’s
item list resource.

DESCRIPTION

The ShowDialogItem procedure redisplays the item specified in itemNo by restoring
the display rectangle the item had prior to the HideDialogItem call. Specifically, if
the left coordinate of the item’s display rectangle is greater than 8192, ShowDialogItem
subtracts 16,384 from both the left and right coordinates of the rectangle. If the item
is already visible (that is, if the left coordinate is less than 8192), ShowDialogItem
does nothing.

The ShowDialogItem procedure adds the rectangle that contained the item to the
update region so that it will be drawn. Note that if the item is a control you define in a
control ('CNTL') resource, the rectangle added to the update region is the rectangle
defined in the control resource, not the display rectangle defined in the item list resource.
If the item is an editable text item, ShowDialogItem activates it by calling the TextEdit
procedure TEActivate .

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-125

FindDialogItem

To determine the item number of an item at a particular location in a dialog box, use the
FindDialogItem function. The FindDialogItem function is also available as the
FindDItem function.

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point)

 : I nteger;

theDialog A pointer to a dialog record.

thePt A point, specified in coordinates local to the dialog box.

DESCRIPTION

If the point specified in the parameter thePt lies within an item, FindDialogItem
returns a number corresponding to the position of that item in the dialog box’s item list
resource. If the point doesn’t lie within the item’s rectangle, FindDialogItem returns
–1. If items overlap, FindDialogItem returns the item number of the first item, in the
item list resource, containing the point.

This function is useful for changing the cursor when it’s over a particular item.

The FindDialogItem function returns 0 for the first item in the item list resource,
1 for the second, and so on. To get the proper item number before calling the
GetDialogItem or SetDialogItem procedure, add 1 to FindDialogItem ’s
function result, as shown here:

theItem := FindDialogItem(theDialog, thePoint) + 1;

Note that FindDialogItem returns the item number of disabled items as well as
enabled items.

AppendDITL

To add items to an existing dialog box while your application is running, use the
AppendDITL procedure.

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;

 theMethod: DITLMethod);

theDialog A pointer to a dialog record. This is the dialog record to which you will
add the item list resource specified in the parameter theDITL .

theDITL A handle to the item list resource whose items you want to append to the
dialog box.

CHAPTER 6

Dialog Manager

6-126 Dialog Manager Reference

theMethod The manner in which you want the new items to be displayed in the
existing dialog box. You can pass a negative value to offset the appended
items from a particular item in the existing dialog box. You can also pass
any of these constants:

CONST

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

DESCRIPTION

The AppendDITL procedure adds the items in the item list resource specified in the
parameter theDITL to the items of a dialog box. This procedure is especially useful if
several dialog boxes share a single item list resource, because you can use AppendDITL
to add items that are appropriate for individual dialog boxes. Your application can use
the Resource Manager function GetResource to get a handle to the item list resource
whose items you wish to add.

In the parameter theMethod , you specify how to append the new items, as follows:

■ If you use the overlayDITL constant, AppendDITL superimposes the appended
items over the dialog box. That is, AppendDITL interprets the coordinates of the
display rectangles for the appended items (as specified in their item list resource) as
local coordinates within the dialog box.

■ If you use the appendDITLRight constant, AppendDITL appends the items to the
right of the dialog box by positioning the display rectangles of the appended items
relative to the upper-right coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

■ If you use the appendDITLBottom constant, AppendDITL appends the items to the
bottom of the dialog box by positioning the display rectangles of the appended items
relative to the lower-left coordinate of the dialog box. The AppendDITL procedure
automatically expands the dialog box to accommodate the new dialog items.

■ You can also append a list of items relative to an existing item by passing a negative
number in the parameter theMethod . The absolute value of this number is
interpreted as the item in the dialog box relative to which the new items are to be
positioned. For example, if you pass –2, the display rectangles of the appended
items are offset relative to the upper-left corner of item number 2 in the dialog box.

You typically create an invisible dialog box, call the AppendDITL procedure, then make
the dialog box visible by using the Window Manager procedure ShowWindow.

SPECIAL CONSIDERATIONS

The AppendDITL procedure modifies the contents of the dialog box (for instance, by
enlarging it). To use an unmodified version of the dialog box at a later time, your
application should use the Resource Manager procedure ReleaseResource to release
the memory occupied by the appended item list resource. Otherwise, if your application
calls AppendDITL to add items to that dialog box again, the dialog box remains

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-127

modified by your previous call—for example, it will still be longer at the bottom if you
previously used the appendDITLBottom constant.

The AppendDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling AppendDITL , you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then AppendDITL is available.

SEE ALSO

Listing 6-13 on page 6-54 and Listing 6-14 on page 6-55 illustrate a typical use
of AppendDITL . Figure 6-29 on page 6-52 shows the result of using the
overlayDITL constant, Figure 6-30 on page 6-52 shows the result of using the
appendDITLRight constant, Figure 6-31 on page 6-53 shows the result of using
the appendDITLBottom constant, and Figure 6-32 on page 6-53 shows the result
of using a negative number in the parameter theMethod .

The chapter “Resource Manager” in Inside Macintosh: More Macintosh Toolbox describes
the GetResource and ReleaseResource routines. The Gestalt function is
described in the chapter “Gestalt Manager” of Inside Macintosh: Operating System Utilities.
See the chapter “Window Manager” in this book for information about ShowWindow.

ShortenDITL

To remove items from an existing dialog box while your application is running, use the
ShortenDITL procedure.

PROCEDURE ShortenDITL (theDialog: DialogPtr;

 numberItems: Integer);

theDialog A pointer to a dialog record.

numberItems
The number of items to remove (starting from the last item in the item
list resource).

DESCRIPTION

The ShortenDITL procedure removes the specified number of items from the dialog
box. This procedure is especially useful if several dialog boxes share a single item list
resource, because you can use ShortenDITL to remove items as necessary for
individual dialog boxes.

You typically create an invisible dialog box, call the ShortenDITL procedure, then
make the dialog box visible by using the Window Manager procedure ShowWindow.
Note that ShortenDITL does not automatically resize the dialog box; you can use
the Window Manager procedure SizeWindow if you need to resize the dialog box.

CHAPTER 6

Dialog Manager

6-128 Dialog Manager Reference

SPECIAL CONSIDERATIONS

The ShortenDITL procedure is available in System 7 and in earlier versions of the
Communications Toolbox. Before calling ShortenDITL , you should make sure that it
is available by using the Gestalt function with the gestaltDITLExtAttr selector.
Test the bit indicated by the gestaltDITLExtPresent constant in the response
parameter. If the bit is set, then ShortenDITL is available.

SEE ALSO

You can use the CountDITL function, described next, to determine the number of items
in the dialog box’s item list resource. See the chapter “Window Manager” in this book
for information on the ShowWindow and SizeWindow procedures. The Gestalt
function is described in the chapter “Gestalt Manager” in Inside Macintosh: Operating
System Utilities.

CountDITL

You can determine the number of items in a dialog box by using the CountDITL
function.

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

theDialog A pointer to a dialog record.

DESCRIPTION

The CountDITL function returns the number of current items in a dialog box. You
typically use CountDITL in conjunction with ShortenDITL to remove items from a
dialog box.

SPECIAL CONSIDERATIONS

The CountDITL function is available in System 7 and in earlier versions of the Commu-
nications Toolbox. Before calling CountDITL , you should make sure that it is available
by using the Gestalt function with the gestaltDITLExtAttr selector. Test the bit
indicated by the gestaltDITLExtPresent constant in the response parameter. If the
bit is set, then CountDITL is available.

SEE ALSO

The Gestalt function is described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-129

Handling Text in Alert and Dialog Boxes

The Dialog Manager provides several routines for manipulating text. You can use the
ParamText procedure to supply text strings, such as document titles, dynamically
in the static text items of alert and dialog boxes. The GetDialogItemText and
SetDialogItemText procedures are useful for determining and changing text in both
static text and editable text items. You can use the SelectDialogItemText procedure
to select and highlight text in an editable text item.

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command, the DialogCopy procedure to handle
the Copy command, the DialogPaste procedure to handle the Paste command, and
the DialogDelete procedure to handle the Clear command.

Once you determine that an event occurs in a modeless or movable modal dialog box,
you can use the DialogSelect function, which is described on page 6-139, to handle
key-down events in editable text items automatically. The ModalDialog procedure
uses DialogSelect to handle key-down events in the editable text items of modal
dialog boxes.

ParamText

To substitute text strings in the static text items of your alert or dialog boxes while your
application is running, use the ParamText procedure.

PROCEDURE ParamText (param0: Str255; param1: Str255;

param2: Str255; param3: Str255);

param0 A text string to substitute for the special string ^0 in the static text items
of all subsequently created alert and dialog boxes.

param1 A text string to substitute for the special string ^1 in the static text items
of all subsequently created alert and dialog boxes.

param2 A text string to substitute for the special string ^2 in the static text items
of all subsequently created alert and dialog boxes.

param3 A text string to substitute for the special string ^3 in the static text items
of all subsequently created alert and dialog boxes.

DESCRIPTION

The ParamText procedure replaces the special strings ^0 through ^3 in the static text
items of all subsequently created alert and dialog boxes with the text strings you pass as
parameters. Pass empty strings (not NIL) for parameters not used.

SPECIAL CONSIDERATIONS

The strings used in ParamText are stored in the low-memory global variable
DAStrings , which specifies a set of string handles used by the Dialog Manager.

CHAPTER 6

Dialog Manager

6-130 Dialog Manager Reference

If the user launches a desk accessory in your application’s partition and the desk
accessory calls ParamText , it may change the text in your application’s dialog box.

You should be very careful about using ParamText in modeless dialog boxes. If a
modeless dialog box using ParamText is onscreen and you display another dialog box
or alert box that also uses ParamText , both boxes will be affected by the latest call
to ParamText .

The strings you pass in the parameters to ParamText cannot contain the special strings
^0 through ^3 , or else the procedure will enter an endless loop of substitutions in
versions of system software earlier than 7.1.

Note that you should try to store text strings in resource files to facilitate translation into
other languages; therefore, ParamText is best used for supplying text strings, such as
document names, that the user specifies. To avoid problems with grammar and sentence
structure when you localize your application, you should use ParamText to supply
only one text string per screen message.

SEE ALSO

Listing 6-9 on page 6-47 and Listing 6-10 on page 6-48 show an example of how you can
use ParamText to supply the title of the user’s current document to your alert and
dialog boxes. If you need to supply a default text string to an editable text item while
your application is running, use SetDialogItemText . The SetDialogItemText
procedure also allows you to set or change the entire text string for a static text item.

GetDialogItemText

After using the GetDialogItem procedure to get a handle to an editable text item or a
static text item in a dialog box, you can use the GetDialogItemText procedure to get
the text string contained in that item. The GetDialogItemText procedure is also
available as the GetIText procedure.

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text contained within the item.

DESCRIPTION

The GetDialogItemText procedure returns, in the text parameter, the text of the
given editable text or static text item.

SPECIAL CONSIDERATIONS

If the user types more than 255 characters in an editable text item,
GetDialogItemText returns only the first 255.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-131

SEE ALSO

Listing 6-12 on page 6-49 illustrates how to use GetDialogItemText to retrieve
the text that a user types into an editable text item.

SetDialogItemText

After using the GetDialogItem procedure to get a handle to an editable text item or
a static text item in a dialog box, you can use the SetDialogItemText procedure to
display a particular text string in that item. The SetDialogItemText procedure is also
available as the SetIText procedure.

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

item A handle to an editable text item or a static text item in a dialog box.

text The text to display in the item.

DESCRIPTION

The SetDialogItemText procedure places the specified text in the specified item and
draws the item. This procedure is useful for supplying a default text string—such as a
document name—for an editable text item while your application is running.

SPECIAL CONSIDERATIONS

All strings should be stored in resource files to ease translation into other languages.

SEE ALSO

For static text items, the ParamText procedure, described on page 6-129, is useful when
you need to determine and provide only a portion of a text string while your application
is running.

SelectDialogItemText

To select and highlight text contained in an editable text item, use the
SelectDialogItemText procedure. The SelectDialogItemText procedure
is also available as the SelIText procedure.

PROCEDURE SelectDialogItemText (theDialog: DialogPtr;

 itemNo: Integer;

 strtSel: Integer;

 endSel: Integer);

CHAPTER 6

Dialog Manager

6-132 Dialog Manager Reference

theDialog A pointer to a dialog record.

itemNo A number corresponding to the position of an editable text item in the
dialog box’s item list resource.

strtSel A number representing the position of the first character to begin
selecting.

endSel A number representing one position past the last character to be selected.

DESCRIPTION

If the item in the itemNo parameter is an editable text item that contains text, the
SelectDialogItemText procedure sets the text selection range to extend from
the character position specified in the strtSel parameter up to but not including the
character position specified in the endSel parameter. The selection range is highlighted
unless strtSel equals endSel , in which case a blinking vertical bar is displayed to
indicate an insertion point at that position. If the editable text item doesn’t contain text,
SelectDialogItemText displays the insertion point.

You can select the entire text by specifying the number 0 in the strtSel parameter and
the number 32767 in the endSel parameter.

For example, if the user makes an unacceptable entry in the editable text item, your
application can display an alert box reporting the problem and then use
SelectDialogItemText to select the entire text so it can be replaced by a new
entry. Without this procedure, the user would have to select the item before making
the new entry.

SEE ALSO

For details about text selection range and character position, see the chapter “TextEdit”
in Inside Macintosh: Text.

DialogCut

When a dialog box containing an editable text item is active, use the DialogCut
procedure to handle the Cut editing command. The DialogCut procedure is also
available as the DlgCut procedure.

PROCEDURE DialogCut (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCut procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECut to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-133

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECut procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogCopy

When a dialog box containing an editable text item is active, use the DialogCopy
procedure to handle the Copy editing command. The DialogCopy procedure is also
available as the DlgCopy procedure.

PROCEDURE DialogCopy (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogCopy procedure checks whether the dialog box has any editable text items
and, if so, applies the TextEdit procedure TECopy to the selected text. Your application
should test whether a dialog box is the frontmost window when handling mouse-down
events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TECopy procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogPaste

When a dialog box containing an editable text item is active, use the DialogPaste
procedure to handle the Paste editing command. The DialogPaste procedure is also
available as the DlgPaste procedure.

PROCEDURE DialogPaste (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

CHAPTER 6

Dialog Manager

6-134 Dialog Manager Reference

DESCRIPTION

The DialogPaste procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEPaste to the selected editable text
item. Your application should test whether a dialog box is the frontmost window
when handling mouse-down events in the Edit menu and then call this routine when
appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEPaste procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

DialogDelete

When a dialog box containing an editable text item is active, use the DialogDelete
procedure to handle the Clear editing command. The DialogDelete procedure is also
available as the DlgDelete procedure.

PROCEDURE DialogDelete (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DialogDelete procedure checks whether the dialog box has any editable text
items and, if so, applies the TextEdit procedure TEDelete to the selected text. Your
application should test whether a dialog box is the frontmost window when handling
mouse-down events in the Edit menu and then call this routine when appropriate.

SEE ALSO

For more information about allowing access to your menus when your application
displays dialog boxes, see “Adjusting Menus for Modal Dialog Boxes” beginning on
page 6-68 and “Adjusting Menus for Movable Modal and Modeless Dialog Boxes” on
page 6-73. The TEDelete procedure is described in the chapter “TextEdit” in Inside
Macintosh: Text.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-135

Handling Events in Dialog Boxes

Handling events in an alert box is very simple: after you invoke an alert box, the Dialog
Manager handles most events for you by automatically calling the ModalDialog
procedure. To handle events in a modal dialog box, your application must explicitly call
the ModalDialog procedure after displaying the dialog box. In either case, when an
enabled item is clicked, the Dialog Manager returns the item number. You’ll then do
whatever is appropriate in response to that click. For both alert and modal dialog boxes,
you should also provide a simple event filter function that allows other windows to
respond to update events and that allows your alert or dialog box to respond to a few
key-down events for keys such as Return, Enter, and Esc.

You can use your normal event-handling code to determine whether an event occurs in a
modeless or movable modal dialog box, or you can use the IsDialogEvent function to
learn whether they need to be handled as part of a dialog box. Once you determine that
an event occurs in a modeless or movable modal dialog box, you can use the
DialogSelect function to handle key-down events in editable text items automatically,
to handle update and activate events automatically, and to report the enabled items
clicked by the user. You then respond as appropriate to clicks in your active items. Or
you can use Control Manager, TextEdit, and Window Manager routines (such as
FindWindow , BeginUpdate , EndUpdate , FindControl , TrackControl , and
TEClick) to handle these events without the aid of the Dialog Manager.

ModalDialog

To handle events when you display a modal dialog box, use the ModalDialog
procedure.

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr;

VAR itemHit: Integer);

filterProc
A pointer to an event filter function.

itemHit A number representing the position of the selected item in the item list
resource for the active modal dialog box.

DESCRIPTION

Call the ModalDialog procedure immediately after displaying a modal dialog box. The
ModalDialog procedure assumes that a modal dialog box is displayed as the current
port, and ModalDialog repeatedly handles events inside that port until an event
involving an enabled dialog box item—such as a click in a radio button, for example—
occurs. If the event is a mouse-down event outside the content region of the dialog box,
ModalDialog emits the system alert sound and gets the next event. After receiving an
event involving an enabled item, ModalDialog returns its item number in the itemHit
parameter. Your application should then do whatever is appropriate in response to an
event in that item. Your application should continue calling ModalDialog until the user
selects the OK or Cancel button.

CHAPTER 6

Dialog Manager

6-136 Dialog Manager Reference

For events inside the dialog box, ModalDialog passes the event to the event filter
function pointed to in the filterProc parameter before handling the event. When the
event filter returns FALSE, ModalDialog handles the event. If the event filter function
handles the event, the event filter function returns TRUE, and ModalDialog performs
no more event handling.

If you set the filterProc parameter to NIL , the standard event filter function is
executed. The standard event filter function returns TRUE and causes ModalDialog to
return item number 1, which is the number of the default button, when the user presses
the Return key or the Enter key. However, your application should provide a simple
event filter function that

■ returns TRUE and the item number for the default button if the user presses the
Return or Enter key

■ returns TRUE and the item number for the Cancel button if the user presses the Esc
key or the Command-period key combination

■ updates your windows in response to update events (this allows background
applications to receive update events) and return FALSE

■ returns FALSE for all events that your event filter function doesn’t handle

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

You can also use the event filter function specified in the filterProc parameter to test
for and respond to keyboard equivalents and more complex events—for instance, the
user dragging the cursor within an application-defined item.

To handle events, ModalDialog calls the IsDialogEvent function. If the result of
IsDialogEvent is TRUE, then ModalDialog calls the DialogSelect function to
handle the event. Unless the event filter function returns TRUE, ModalDialog handles
the event as follows:

■ In response to an activate or update event for the dialog box, ModalDialog activates
or updates its window.

■ If the user presses the mouse button while the cursor is in an editable text item,
ModalDialog responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If a key-down event occurs and
there’s an editable text item, ModalDialog uses TextEdit to handle text entry and
editing automatically. If the editable text item is enabled, ModalDialog returns its
item number after it receives either the mouse-down or key-down event. Normally,
editable text items are disabled, and you use the GetDialogItemText procedure to
read the information in the items only after the user clicks the OK button.

■ If the user presses the mouse button while the cursor is in a control, ModalDialog
calls the Control Manager function TrackControl . If the user releases the mouse
button while the cursor is in an enabled control, ModalDialog returns the control’s
item number. Your application should respond appropriately—for example, by
performing a command after the user clicks the OK button.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-137

■ If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, ModalDialog returns the item’s number, and your application should
respond appropriately. Generally, only controls should be enabled. If your application
creates a control more complex than a button, radio button, or checkbox, your
application must handle events inside that item with your event filter function.

■ If the user presses the mouse button while the cursor is in a disabled item or in no
item, or if any other event occurs, ModalDialog does nothing.

SPECIAL CONSIDERATIONS

Do not use ModalDialog for movable modal dialog boxes (that is, those created with
the movableDBoxProc window definition ID) or for modeless dialog boxes (that is,
those created with the noGrowDocProc window definition ID). If you want the Dialog
Manager to assist you in handling events for movable modal and modeless dialog boxes,
use the IsDialogEvent and DialogSelect functions instead.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events. To receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask .

When ModalDialog calls TrackControl , it does not allow you to specify the action
procedure necessary for anything more complex than a button, radio button, or
checkbox. If you need a more complex control (for example, one that measures how long
the user holds down the mouse button or how far the user has moved an indicator), you
can create your own control, a picture, or an application-defined item that draws a
control- like object in your dialog box. You must then provide an event filter function
that appropriately handles events in that item.

SEE ALSO

Listing 6-26 on page 6-83 illustrates the use of ModalDialog . “Responding to Events in
Editable Text Items” beginning on page 6-79 describes how ModalDialog uses TextEdit
to handle text entry and editing in editable text items. The IsDialogEvent and
DialogSelect functions (which your application may use instead of ModalDialog
for modeless and movable modal dialog boxes) are described on page 6-138 and
page 6-139, respectively. See the description of MyEventFilter on page 6-145 for
information about the event filter function your application should specify in the
filterProc parameter.

The GetNextEvent and SetSystemEventMask routines are described in the chapter
“Event Manager” in this book. See that chapter as well for a discussion of disk-inserted
events. See “Responding to Events in Controls” on page 6-78 for a description of how
your application should respond to events inside of controls; the TrackControl
function is fully described in the chapter “Control Manager” in this book. Also see that
chapter for information about creating your own nonstandard controls. TextEdit is
described in the chapter “TextEdit” of Inside Macintosh: Text.

CHAPTER 6

Dialog Manager

6-138 Dialog Manager Reference

IsDialogEvent

To determine whether a modeless dialog box or a movable modal dialog box is active
when an event occurs, you can use the IsDialogEvent function.

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent .

DESCRIPTION

If any event, including a null event, occurs when your dialog box is active,
IsDialogEvent returns TRUE; otherwise, it returns FALSE. When IsDialogEvent
returns FALSE, pass the event to the rest of your event-handling code. When
IsDialogEvent returns TRUE, pass the event to DialogSelect after testing for the
events that DialogSelect does not handle.

A dialog record includes a window record. When you use the GetNewDialog ,
NewDialog , or NewColorDialog function to create a dialog box, the Dialog Manager
sets the windowKind field in the window record to dialogKind . To determine whether
the active window is a dialog box, IsDialogEvent checks the windowKind field.

Before passing the event to DialogSelect , you should perform the following tests
whenever IsDialogEvent returns TRUE:

■ Check whether the event is a key-down event for the Return, Enter, Esc, or
Command-period keystrokes. When the user presses the Return or Enter key, your
application should respond as if the user had clicked the default button; when the
user presses Esc or Command-period, your application should respond as if the user
had clicked the Cancel button. Use the Control Manager procedure HiliteControl
to highlight the applicable button for 8 ticks.

■ At this point, you may also want to check for and respond to any special events that
you do not wish to pass to DialogSelect or that require special processing before
you pass them to DialogSelect . You would need to do this, for example, if the
dialog box needs to respond to disk-inserted events.

■ Check whether the event is an update event for a window other than the dialog box
and, if it is, update your window.

■ For complex items that you create, such as pictures or application-defined items that
emulate complex controls, test for and respond to mouse events inside those items as
appropriate. When DialogSelect calls TrackControl , it does not allow you to
specify the action procedure necessary for anything more complex than a button,
radio button, or checkbox. If you need a more complex control (for example, one that
measures how long the user holds down the mouse button or how far the user has
moved an indicator), you can create your own control or a picture or an
application-defined item that draws a control-like object in your dialog box. You must
then test for and respond to those events yourself.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-139

If your application uses IsDialogEvent to help handle events when you display a
movable modal dialog box, perform the following additional tests before passing events
to DialogSelect :

■ Test for mouse-down events in the title bar of the movable modal dialog box and
respond by dragging the dialog box accordingly.

■ Test for and respond to mouse-down events in the Apple menu and, if the movable
modal dialog box includes editable text items, in the Edit menu. (You should disable
all other menus when you display a movable modal dialog box.)

■ Play the system alert sound for every other mouse-down event outside the movable
modal dialog box.

SPECIAL CONSIDERATIONS

Both IsDialogEvent and DialogSelect are unreliable when running in versions of
system software earlier than System 7. You shouldn’t use these routines if you expect
your application to run in earlier versions of system software.

SEE ALSO

The WaitNextEvent function is described in the chapter “Event Manager” in this book.
See Inside Macintosh: Sound for a description of the SysBeep procedure. The
FrontWindow function is described in the chapter “Window Manager” in this book.

DialogSelect

After determining that an event related to an active modeless dialog box or an active
movable modal dialog box has occurred, you can use the DialogSelect function to
handle most of the events inside the dialog box.

FUNCTION DialogSelect (theEvent: EventRecord;

 VAR theDialog: DialogPtr;

 VAR itemHit: Integer): Boolean;

theEvent An event record returned by an Event Manager function such as
WaitNextEvent .

theDialog A pointer to a dialog record for the dialog box where the event occurred.

itemHit A number corresponding to the position of an item within the item list
resource of the active dialog box.

DESCRIPTION

The DialogSelect function handles most of the events relating to a dialog box. If the
event is an activate or update event for a dialog box, DialogSelect activates or
updates it and returns FALSE. If the event involves an enabled item, DialogSelect

CHAPTER 6

Dialog Manager

6-140 Dialog Manager Reference

returns a function result of TRUE. In its itemHit parameter, it returns the item number
of the item selected by the user. In the parameter theDialog , it returns a pointer to
the dialog record for the dialog box where the event occurred. In all other cases, the
DialogSelect function returns FALSE. When DialogSelect returns TRUE, do
whatever is appropriate as a response to the event involving that item in that particular
dialog box; when it returns FALSE, do nothing.

Generally, only controls should be enabled in a dialog box; therefore your application
should normally respond only when DialogSelect returns TRUE after the user clicks
an enabled control, such as the OK button.

The DialogSelect function first obtains a pointer to the window containing the event.
For update and activate events, the event record contains the window pointer. For other
types of events, DialogSelect calls the Window Manager function FrontWindow .
The Dialog Manager then makes this window the current graphics port by calling the
QuickDraw procedure SetPort . Then DialogSelect prepares to handle the event by
setting up text information if there are any editable text items in the active dialog box.

If the event is an update event for a dialog box, DialogSelect calls the Window
Manager procedure BeginUpdate , the Dialog Manager procedure DrawDialog ,
and then the Window Manager procedure EndUpdate . When an item is a control
defined in a control ('CNTL') resource, the rectangle added to the update region is the
rectangle defined in the control resource, not the display rectangle defined in the item
list resource.

The DialogSelect function handles the event as follows:

■ In response to an activate or update event for the dialog box, DialogSelect
activates or updates its window and returns FALSE.

■ If a key-down event or an auto-key event occurs and there’s an editable text item
in the dialog box, DialogSelect uses TextEdit to handle text entry and editing,
and DialogSelect returns TRUE for a function result. In its itemHit parameter,
DialogSelect returns the item number.

■ If a key-down event or an auto-key event occurs and there’s no editable text item in
the dialog box, DialogSelect returns FALSE.

■ If the user presses the mouse button while the cursor is in an editable text item,
DialogSelect responds to the mouse activity as appropriate—that is, either by
displaying an insertion point or by selecting text. If the editable text item is disabled,
DialogSelect returns FALSE. If the editable text item is enabled, DialogSelect
returns TRUE and in its itemHit parameter returns the item number. Normally,
editable text items are disabled, and you use the GetDialogItemText function to
read the information in the items only after the OK button is clicked.

■ If the user presses the mouse button while the cursor is in a control, DialogSelect
calls the Control Manager function TrackControl . If the user releases the mouse
button while the cursor is in an enabled control, DialogSelect returns TRUE for a
function result and in its itemHit parameter returns the control’s item number. Your
application should respond appropriately—for example, by performing a command
after the user clicks the OK button.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-141

■ If the user presses the mouse button while the cursor is in any other enabled item in
the dialog box, DialogSelect returns TRUE for a function result and in its itemHit
parameter returns the item’s number. Generally, only controls should be enabled. If
your application creates a complex control—such as one that measures how far a dial
is moved—your application must handle mouse events in that item before passing the
event to DialogSelect .

■ If the user presses the mouse button while the cursor is in a disabled item, or if it is in
no item, or if any other event occurs, DialogSelect does nothing.

■ If the event isn’t one that DialogSelect specifically checks for (if it’s a null event,
for example), and if there’s an editable text item in the dialog box, DialogSelect
calls the TextEdit procedure TEIdle to make the insertion point blink.

SPECIAL CONSIDERATIONS

Because DialogSelect handles only mouse-down events in a dialog box and
key-down events in a dialog box’s editable text items, you should handle other events
as appropriate before passing them to DialogSelect . Likewise, when DialogSelect
calls TrackControl , it does not allow you to specify any action procedure necessary for
anything more complex than a button, radio button, or checkbox. If you need a more
complex control (for example, one that measures how long the user holds down the
mouse button or how far the user has moved an indicator), you can create your own
control or a picture or an application-defined item that draws a control-like object in
your dialog box. You must then test for and respond to those events yourself.

Within dialog boxes, use the procedures DialogCut , DialogCopy , DialogPaste , and
DialogDelete to support Cut, Copy, Paste, and Clear commands in editable text boxes.

The DialogSelect function is unreliable when running in versions of system software
earlier than System 7. You shouldn’t use this routine if you expect your application to
run under earlier versions of system software.

SEE ALSO

Listing 6-25 on page 6-79 illustrates the use of DialogSelect to make the cursor blink
in editable text items during null events; Listing 6-29 on page 6-92 illustrates the use of
DialogSelect to handle mouse events in a modeless dialog box; Listing 6-33 on
page 6-96 illustrates the use of DialogSelect to handle key-down events in editable
text items; Listing 6-34 on page 6-98 illustrates the use of DialogSelect to handle
activate events in a modeless dialog box.

CHAPTER 6

Dialog Manager

6-142 Dialog Manager Reference

DrawDialog

If you don’t use any other Dialog Manager routines for handling events in a dialog box,
you can use the DrawDialog procedure to draw its entire contents.

PROCEDURE DrawDialog (theDialog: DialogPtr);

theDialog A pointer to a dialog record.

DESCRIPTION

The DrawDialog procedure draws the entire contents of the specified dialog box. The
DrawDialog procedure draws all dialog items, calls the Control Manager procedure
DrawControls to draw all controls, and calls the TextEdit procedure TEUpdate to
update all static and editable text items and to draw their display rectangles. The
DrawDialog procedure also calls the application-defined items’ draw procedures if
the items’ rectangles are within the update region.

The DialogSelect , ModalDialog , Alert , StopAlert , NoteAlert , and
CautionAlert routines use DrawDialog automatically. If you use GetNewDialog
to create a dialog box but don’t use any of these other Dialog Manager routines when
handling events in the dialog box, you can use DrawDialog to redraw the contents of
the dialog box when it’s visible. If the dialog box is invisible, first use the Window
Manager procedure ShowWindow and then use DrawDialog .

SEE ALSO

See the chapters “Window Manager” and “Event Manager” in this book for more
information on update and activate events for windows. The DrawControls procedure
is described in the chapter “Control Manager” in this book. The TEUpdate procedure is
described in the chapter “TextEdit” in Inside Macintosh: Text.

UpdateDialog

You can use the UpdateDialog procedure to redraw the update region of a
specified dialog box. The UpdateDialog procedure is also available as the
UpdtDialog procedure.

PROCEDURE UpdateDialog (theDialog: DialogPtr;

updateRgn: RgnHandle);

theDialog A pointer to a dialog record.

updateRgn A handle to the window region that needs to be updated.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-143

DESCRIPTION

The UpdateDialog procedure redraws only the region in a dialog box specified in the
updateRgn parameter. Because the DialogSelect , ModalDialog , Alert ,
StopAlert , NoteAlert , and CautionAlert routines automatically call DrawDialog
to handle update events in your alert and dialog boxes, your application might never
need to use UpdateDialog .

Instead of drawing the entire contents of the specified dialog box, UpdateDialog
draws only the items in the specified update region. You can use UpdateDialog in
response to an update event, and you should usually bracket it by calls to the Window
Manager procedures BeginUpdate and EndUpdate . The UpdateDialog procedure
uses the QuickDraw procedure SetPort to make the dialog box the current graphics
port. For drawing controls, UpdateDialog uses the Control Manager procedure
UpdateControl s, which is faster than the DrawControls procedure.

SEE ALSO

Listing 6-35 on page 6-99 illustrates the use of UpdateDialog to respond to update
events in a modeless dialog box. See the chapter “Window Manager” in this book for
more information on update and activate events for windows. The UpdateControl s
procedure is described in the chapter “Control Manager” in this book.

Application-Defined Routines
If you supply an application-defined item in a dialog box, you must provide a draw
procedure for the Dialog Manager to use when displaying the item; that procedure is
referred to in this section as MyItem . If you want the Dialog Manager to play sounds
other than the system alert sound, you must provide your own sound procedure,
referred to in this section as MyAlertSound . To supplement the Dialog Manager’s
ability to handle events in the Macintosh multitasking environment, you should provide
an event filter function that the Dialog Manager calls whenever it displays alert boxes
and modal dialog boxes. This function is referred to as MyEventFilter .

MyItem

To draw your own application-defined item in a dialog box, provide a draw procedure
that takes two parameters: a window pointer to the dialog box and an item number from
the dialog box’s item list resource. For example, this is how you should declare the
procedure if you were to name it MyItem :

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

theWindow A pointer to the dialog record for the dialog box containing an
application-defined item. If your procedure can draw in more than
one dialog box, this parameter tells your procedure which one to
draw in.

CHAPTER 6

Dialog Manager

6-144 Dialog Manager Reference

itemNo A number corresponding to the position of an item in the item list
resource for the specified dialog box. If your procedure draws more
than one item, this parameter tells your procedure which one to draw.

DESCRIPTION

The Dialog Manager calls your procedure to draw an application-defined item at the
time you display the specified dialog box. When calling your draw procedure, the Dialog
Manager sets the current port to the dialog box’s graphics port. Normally, you create an
invisible dialog box and then use the Window Manager procedure ShowWindow to
display the dialog box.

Before you display the dialog box, use the SetDialogItem procedure to install this
procedure in the dialog record. Before using SetDialogItem , you must first use the
GetDialogItem procedure to obtain a handle to an item of type userItem .

If you enable the application-defined item that you draw with this procedure, the
ModalDialog procedure and the DialogSelect function return the item’s number
when the user clicks that item. If your application needs to respond to a user action more
complex than this (for example, if your application needs to measure how long the user
holds down the mouse or how far the user drags the cursor), your application must track
the cursor itself. If you use ModalDialog , your event filter function must handle events
inside the item; if you use DialogSelect , your application must handle events inside
the item before handing events to DialogSelect .

SEE ALSO

Listing 6-17 on page 6-59 illustrates a procedure that draws a bold outline around
a button of any size and shape; Listing 6-16 on page 6-58 shows the use of
GetDialogItem and SetDialogItem to install this draw procedure in a dialog
record. The ShowWindow procedure is described in the chapter “Window Manager”
in this book.

MyAlertSound

If you want the Dialog Manager to play sounds other than the system alert sound, write
your own sound procedure and call the ErrorSound procedure to make it the current
sound procedure. For example, you can declare a sound procedure named
MyAlertSound , as shown here:

PROCEDURE MyAlertSound (soundNo: Integer);

soundNo An integer from 0 to 3, representing the four possible alert stages.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-145

DESCRIPTION

For each of the four alert stages that can be reported in the soundNo parameter, your
procedure can emit any sound that you define. When the Dialog Manager calls your
procedure, it passes 0 as the sound number for alert sounds specified by the silent
constant in the alert resource. The Dialog Manager passes 1 for sounds specified by the
sound1 constant, 2 for sounds specified by the sound2 constant, and 3 for sounds
specified by the sound3 constant.

SPECIAL CONSIDERATIONS

When the Dialog Manager detects a click outside an alert box or a modal dialog box, it
uses the Sound Manager procedure SysBeep to play the system alert sound. By
changing settings in the Sound control panel, the user can select which sound to play as
the system alert sound. For consistency with system software and other Macintosh
applications, your sound procedure should call SysBeep whenever your sound
procedure receives sound number 1 (which you can represent with the sound1 constant).

SEE ALSO

Listing 6-3 on page 6-22 illustrates how to use MyAlertSound . The SysBeep procedure
is described in Inside Macintosh: Sound.

MyEventFilter

To supplement the Dialog Manager’s ability to handle events, your application should
provide an event filter function that the Dialog Manager calls when it displays alert
boxes and modal dialog boxes. Your event filter function should have three parameters
and return a Boolean value. For example, this is how you would declare it if you were to
name it MyEventFilter :

FUNCTION MyEventFilter (theDialog: DialogPtr;

VAR theEvent: EventRecord;

VAR itemHit: Integer): Boolean;

theDialog A pointer to a dialog record for an alert box or a modal dialog box.

theEvent An event record returned by an Event Manager function such as
WaitNextEvent .

itemHit A number corresponding to the position of an item in the item list
resource for the alert or modal dialog box.

CHAPTER 6

Dialog Manager

6-146 Dialog Manager Reference

DESCRIPTION

After receiving an event that it does not handle, your function should return FALSE.
When your function returns FALSE, ModalDialog handles the event, which you pass
in the parameter theEvent . (Your function can also change the event to simulate a
different event and return FALSE, which passes the event to the Dialog Manager for
handling.) If your function does handle the event, your function should return TRUE
as a function result, and in the itemHit parameter return the number of the item
that it handled. The ModalDialog procedure and, in turn, the Alert , NoteAlert ,
StopAlert , and CautionAlert functions then return this item number in their own
itemHit parameters.

Your event filter function should perform the following tasks:

■ return TRUE and the item number for the default button if the user presses Return
or Enter

■ return TRUE and the item number for the Cancel button if the user presses Esc or
Command-period

■ update your windows in response to update events (this allows background
applications to receive update events) and return FALSE

■ return FALSE for all events that your event filter function doesn’t handle

You can also use the event filter function to test for and respond to keyboard equivalents
and more complex events—for instance, the user dragging the cursor in an application-
defined item. For example, if you provide an application-defined item that requires you
to measure how long the user holds down the mouse button or how far the user drags
the cursor, use the event filter function to handle events inside that item.

The ModalDialog procedure calls the Event Manager function GetNextEvent with a
mask that excludes disk-inserted events; to receive disk-inserted events, your event filter
function can call the Event Manager procedure SetSystemEventMask .

You can use the same event filter function in most or all of your alert and modal
dialog boxes.

For alert and modal dialog boxes, the Dialog Manager provides a standard event filter
function that checks whether the user has pressed the Enter or Return key and, if so,
returns the item number of the default button. Your event filter function should always
check whether the Return key or Enter key was pressed and, if so, return the number of
the default button in the itemHit parameter and a function result of TRUE.

In all alert and dialog boxes, any buttons that are activated by key sequences should
invert to indicate which item has been selected. Use the Control Manager procedure
HiliteControl to invert a button for 8 ticks, long enough to be noticeable but not so
long as to be annoying. The Control Manager performs this action whenever users click
a button, and your application should do this whenever the user presses the keyboard
equivalent of a button click.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-147

For modal dialog boxes that contain editable text items, your application should handle
menu bar access to allow use of your Edit menu and its Cut, Copy, Paste, Clear, and
Undo commands. Your event filter function should then test for and handle clicks
in your Edit menu and keyboard equivalents for the appropriate commands in your
Edit menu. Your application should respond by using the procedures DialogCut ,
DialogCopy , DialogPaste , and DialogDelete to support the Cut, Copy, Paste, and
Clear commands.

For an alert box, you specify a pointer to your event filter function in a parameter that
you pass to the Alert , StopAlert , CautionAlert , and NoteAlert functions. For a
modal dialog box, specify a pointer to your event filter function in a parameter that you
pass to the ModalDialog procedure.

SEE ALSO

Listing 6-27 on page 6-88 illustrates an event filter function. The functions
GetNextEvent and SetSystemEventMask are described in the chapter
“Event Manager” in this book.

Resources
This section describes resources used by the Dialog Manager for displaying alerts and
dialog boxes. These resources are

■ the dialog ('DLOG') resource, which specifies the window type, display rectangle,
and item list resource for a dialog box

■ the alert ('ALRT') resource, which specifies alert sounds, a display rectangle, and an
item list resource for an alert box

■ the item list ('DITL') resource, which specifies the items—such as buttons and static
text—to display in an alert box or a dialog box

■ the dialog color table ('dctb') resource, which lets you supply a color graphics port
for a dialog box and also use colors other than the default colors in a dialog box

■ the alert color table ('actb') resource, which lets you use colors other than the
default colors in an alert box

■ the item color table ('ictb') resource, which lets you change the default colors,
typeface, font style, and font size of items in an alert box or a dialog box

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see “Using the Dialog Manager” beginning on page 6-17 for
detailed information.

CHAPTER 6

Dialog Manager

6-148 Dialog Manager Reference

The Dialog Resource

You can use a dialog resource to define a dialog box. A dialog resource is a resource of
type 'DLOG' . All dialog resources must be marked purgeable, and they must have
resource ID numbers greater than 128.

To specify the items in a dialog box, you must also provide an item list resource,
described beginning on page 6-151. Use the GetNewDialog function (described on
page 6-113) to create the dialog box defined in the dialog resource.

The format of a Rez input file for a dialog resource differs from its compiled output
format. This section describes the structure of a Rez-compiled dialog resource. If you
are concerned only with creating a dialog resource, see “Creating Dialog Boxes”
beginning on page 6-23.

Figure 6-42 shows the format of a compiled dialog resource.

Figure 6-42 Structure of a compiled dialog ('DLOG') resource

The compiled version of a dialog resource contains the following elements:

■ Rectangle. This determines the dialog box’s dimensions and, possibly, its position.
(The last element in the dialog resource usually specifies a position for the dialog box.)

■ Window definition ID.
■ If the integer 0 appears here (as specified in the Rez input file by the dBoxProc

window definition ID), the Dialog Manager displays a modal dialog box.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-149

■ If the integer 4 appears here (as specified in the Rez input file by the
noGrowDocProc window definition ID), the Dialog Manager displays a
modeless dialog box.

■ If the integer 5 appears here (as specified in the Rez input file by the
movableDBoxProc window definition ID), the Dialog Manager displays
a movable modal dialog box.

These types of dialog boxes are illustrated in Figure 6-6 on page 6-10, Figure 6-8 on
page 6-12, and Figure 6-7 on page 6-11, respectively.

■ Visibility. If this is set to a value of 1 (as specified by the visible constant in the Rez
input file), the Dialog Manager displays this dialog box as soon as you call the
GetNewDialog function. If this is set to a value of 0 (as specified by the invisible
constant in the Rez input file), the Dialog Manager does not display this dialog box
until you call the Window Manager procedure ShowWindow.

■ Close box specification. This specifies whether to draw a close box. Normally, this is
set to a value of 1 (as specified by the goAway constant in the Rez input file) only for a
modeless dialog box to specify a close box in its title bar. Otherwise, this is set to a
value of 0 (as specified by the noGoAway constant in the Rez input file).

■ Reference constant. This contains any value that an application stores here. For
example, an application can store a number that represents a dialog box type, or
it can store a handle to a record that maintains state information about the dialog
box or other window types. An application can use the Window Manager procedure
SetWRefCon at any time to change this value in the dialog record for a dialog box,
and you can use the GetWRefCon function to determine its current value.

■ Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the dialog box.

■ Window title. This is a Pascal string displayed in the dialog box’s title bar only when
the dialog box is modeless.

■ Alignment byte. This is an extra byte added if necessary to make the previous Pascal
string end on a word boundary.

■ Dialog box position. This specifies the position of the dialog box on the screen. (If your
application positions dialog boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
■ If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this dialog box according to the global
coordinates specified in the rectangle element of this resource.

■ If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the dialog box over
the frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

■ If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the dialog box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

■ If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the dialog box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

CHAPTER 6

Dialog Manager

6-150 Dialog Manager Reference

The Alert Resource

You can use an alert resource to define an alert. An alert resource is a resource of type
'ALRT' . All alert resources must be marked purgeable, and they must have resource ID
numbers greater than 128.

To specify the items in an alert box, you must also provide an item list resource,
described beginning on page 6-151. To display the alert, you call either the NoteAlert ,
CautionAlert , StopAlert , or Alert function and pass it the resource ID of the
alert resource. The NoteAlert , CautionAlert , StopAlert , and Alert functions
are described in “Creating Alerts” beginning on page 6-105.

The format of a Rez input file for an alert resource differs from its compiled output
format. This section describes the structure of a Rez-compiled alert resource. If you are
concerned only with creating an alert resource, see “Creating Alert Sounds and Alert
Boxes” beginning on page 6-18.

Figure 6-43 shows the structure of a compiled alert resource.

Figure 6-43 Structure of a compiled alert (' ALRT') resource

The compiled version of an alert resource contains the following elements:

■ Rectangle. This determines the alert box’s dimensions and, possibly, its position. (The
last element in the alert resource usually specifies a position for the alert box.)

■ Item list resource ID. The ID of the item list resource that specifies the items—such as
buttons and static text—to display in the alert box.

■ Fourth-stage alert information. This specifies the response when the user repeats the
action that invokes this alert four or more consecutive times. The Dialog Manager
responds in the manner specified in the 4 bits that make up this element.
■ If the first bit is set, the Dialog Manager draws a bold outline around the second

item in the item list resource (typically, the Cancel button) and—if your application
does not specify an event filter function—returns 2 when the user presses the
Return or Enter key at the fourth consecutive occurrence of the alert. If the first bit
is not set, the Dialog Manager draws a bold outline around the first item in the item
list resource (typically, the OK button) and—if your application does not specify an
event filter function—returns 1 when the user presses the Return or Enter key.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-151

■ If the second bit is set, the Dialog Manager displays the alert box at this stage. If the
second bit is not set, the Dialog Manager doesn’t display the alert box at this stage.

■ If neither of the next 2 bits is set, the Dialog Manager plays no alert sound at this
stage. If bit 3 is set and bit 4 is not set, the Dialog Manager plays the first alert
sound—by default, the system alert sound. If bit 3 is not set and bit 4 is set, the
Dialog Manager plays the second alert sound; by default, it plays the system alert
sound twice. If both bit 3 and bit 4 are set, the Dialog Manager plays the third alert
sound; by default, it plays the system alert sound three times. By defining your
own alert sound (described on page 6-144) and calling the ErrorSound procedure
(described on page 6-104) to make it the current sound procedure, you can specify
your own alert sounds.

■ Third-stage alert information. This specifies the response when the user repeats the
action that invokes this alert three consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

■ Second-stage alert information. This specifies the response when the user repeats the
action that invokes this alert two consecutive times. The Dialog Manager interprets
these 4 bits in the manner described for the fourth-stage alert.

■ First-stage alert information. This specifies the response for the first time that the user
performs the action that invokes this alert. The Dialog Manager interprets these 4 bits
in the manner described for the fourth-stage alert.

■ Alert box position. This specifies the position of the alert box on the screen. (If your
application positions alert boxes on its own, don’t use these constants, because your
code may conflict with the Dialog Manager.)
■ If 0x0000 appears here (as specified by the noAutoCenter constant in the Rez

input file), the Dialog Manager positions this alert box according to the global
coordinates specified in the rectangle element of this resource.

■ If 0xB00A appears here (as specified by the alertPositionParentWindow
constant in the Rez input file), the Dialog Manager positions the alert box over the
frontmost window so that the window’s title bar appears. This is illustrated in
Figure 6-33 on page 6-63.

■ If 0x300A appears here (as specified by the alertPositionMainScreen constant
in the Rez input file), the Dialog Manager centers the alert box near the top of the
main screen. This is illustrated in Figure 6-34 on page 6-63.

■ If 0x700A appears here (as specified in the Rez input file by the
alertPositionParentWindowScreen constant), the Dialog Manager
positions the alert box on the screen where the user is currently working.
This is illustrated in Figure 6-35 on page 6-64.

The Item List Resource

You use an item list resource to specify items—such as buttons and text—in alert boxes
and dialog boxes. An item list resource is a resource with the resource type 'DITL' . All
item list resources must be marked purgeable, and they must have resource ID numbers
greater than 128.

CHAPTER 6

Dialog Manager

6-152 Dialog Manager Reference

For an alert box, you specify the resource ID of the item list resource in an alert
resource (described beginning on page 6-150). For a dialog box that you create with
the GetNewDialog function, you specify the resource ID of the item list resource in a
dialog resource (described beginning on page 6-148). For a dialog box that you create
with either the NewColorDialog function (described on page 6-115) or the NewDialog
function (described on page 6-118), you use the Resource Manager function
GetResource to read the item list resource into memory and to provide a handle to
the item list resource in memory.

The format of a Rez input file for an item list resource differs from its compiled output
format. This section describes the structure of a Rez-compiled item list resource. If you
are concerned only with creating an item list resource, see “Providing Items for Alert and
Dialog Boxes” beginning on page 6-26.

Figure 6-44 shows the format of a compiled item list resource.

Figure 6-44 Structure of a compiled item list ('DITL') resource

The compiled version of an item list resource contains the following elements:

■ Item count minus 1. This value is 1 less than the total number of items defined in
this resource.

■ A variable number of items.

The format of each item depends on its type. Figure 6-45 shows the format of an item
defined to be a button, a checkbox, a radio button, a static text item, or an editable
text item.
The compiled version of a button, checkbox, radio button, static text item, or editable
text item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the item in the alert box or
dialog box. The display rectangle is specified in coordinates local to the alert box
or dialog box; these coordinates specify the upper-left and lower-right corners of
the item.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-153

Figure 6-45 Structure of compiled button, checkbox, radio button, static text, and editable
text items

■ Enable flag. This specifies whether the item is enabled or disabled. If this bit is set,
the item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

■ Item type.
■ If this bit string is set to 4 (as specified in the Rez input file by the Button

constant), then the item is a button.
■ If this bit string is set to 5 (as specified in the Rez input file by the CheckBox

constant), then the item is a checkbox.
■ If this bit string is set to 6 (as specified in the Rez input file by the RadioButton

constant), then the item is a radio button.
■ If this bit string is set to 8 (as specified in the Rez input file by the StaticText

constant), then the item is static text.
■ If this bit string is set to 16 (as specified in the Rez input file by the EditText

constant), then the item is editable text.

■ Text. This specifies the text that appears in the item. This element consists of a length
byte and as many as 255 additional bytes for the text. (“Titles for Buttons, Checkboxes,
and Radio Buttons” beginning on page 6-37 and “Text Strings for Static Text and
Editable Text Items” beginning on page 6-40 contain recommendations about appro-
priate text in items.)
■ For a button, checkbox, or radio button, this is the title for that control.
■ For a static text item, this is the text of the item.
■ For an editable text item, this can be an empty string (in which case the editable

text item contains no text), or it can be a string that appears as the default string in
the editable text item.

■ Alignment byte. This is added if necessary to make the previous text string end on a
word boundary.

CHAPTER 6

Dialog Manager

6-154 Dialog Manager Reference

Figure 6-46 shows the format for an element defined to be a control, an icon, or a
picture item.

Figure 6-46 Structure of compiled control, icon, and picture items

The compiled version of a control, an icon, or a picture item consists of the following
elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the item in the alert box
or dialog box. The display rectangle is specified in coordinates local to the alert or
dialog box.

■ Enable flag. This specifies whether the item is enabled or disabled. If this bit is set, the
item is enabled and the Dialog Manager reports to your application whenever
mouse-down events occur inside this item.

■ Item type.
■ If this 7-bit string is set to 7 (as specified in the Rez input file by the Control

constant), then the item is a button.
■ If this is set to 32 (as specified in the Rez input file by the Icon constant), then the

item is an icon.
■ If this is set to 64 (as specified in the Rez input file by the Picture constant), then

the item is a QuickDraw picture.

■ Resource ID.
■ For a control item, this is the resource ID of a 'CTRL' resource.
■ For an icon item, this is the resource ID of an 'ICON' resource and, optionally, a

'cicn' resource
■ For a picture item, this is the resource ID of a 'PICT' resource.

Figure 6-47 shows the format for an application-defined item.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-155

Figure 6-47 Structure of a compiled application-defined item

The compiled version of an application-defined item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Display rectangle. This determines the size and location of the application-defined
item in the alert box or dialog box. The display rectangle is specified in coordinates
local to the alert box or dialog box.

■ Enable flag. This specifies whether the application-defined item is enabled or
disabled. If this bit is set, the item is enabled and the Dialog Manager reports to
your application whenever mouse-down events occur inside this item.

■ Item type. This is set to a value of 0 (as specified in the Rez input file by the
UserItem constant).

Figure 6-48 shows the format for a help item. (Help items are described in detail in the
chapter “Help Manager” of Inside Macintosh: More Macintosh Toolbox.)

Figure 6-48 Structure of compiled help items

CHAPTER 6

Dialog Manager

6-156 Dialog Manager Reference

The compiled version of a help item consists of the following elements:

■ Reserved. The Dialog Manager uses the element for storage.

■ Reserved. This should be set to 0.

■ Enable flag. This specifies whether the item is enabled or disabled. For help items, this
bit should never be set, because the Dialog Manager cannot report to your application
when mouse-down events occur inside the item.

■ Item type. This is set to 1 (as specified in the Rez input file by the HelpItem constant).

■ Size. This specifies the number of bytes contained in the rest of this element. This is set
to 4 for an item identified by either the HMScanhdlg or HMScanhrct identifier, or it’s
set to 6 for an item identified by the HMScanAppendhdlg identifier.

■ HelpItem type. This specifies the type of help item defined in the resource.
■ For an item identified by the HMScanhdlg identifier, this element contains the

value 1.
■ For an item identified by the HMScanhrct identifier, this element contains the

value 2.
■ For an item identified by the HMScanAppendhdlg identifier, this element contains

the value 8.

■ Resource ID. This is the resource ID of the resource containing the help messages for
this alert box or dialog box.
■ For an item identified by either the HMScanhdlg or HMScanAppendhdlg

identifier, this is the ID of an 'hdlg' resource.
■ For an item identified by the HMScanhrct identifier, this is the ID of an

'hrct' resource.

■ Item number. This is available only for an item identified by the HMScanAppendhdlg
identifier. This is the item number within the alert box or dialog box after which the
help messages specified in the 'hdlg' resource should be displayed. These help
messages relate to the items that are appended to the alert box or dialog box. (The
item list resource does not contain these 2 bytes for items identified by either the
HMScanhdlg or HMScanhrct identifier.)

The Dialog Color Table Resource

On color monitors, the Dialog Manager automatically adds color to your alert and dialog
boxes so that they match the colors of the windows, alert boxes, and dialog boxes used
by system software. These colors provide aesthetic consistency across all monitors, from
black-and-white displays to 8-bit color displays. On a color monitor, for example, the
racing stripes in the title bar of a modeless dialog box are gray, the close box and
window frame are in color, and the buttons and text are black.

When you create dialog resources, your application’s dialog boxes use the system’s
default colors. Typically, this is all you need to do to provide color for your dialog
boxes—with the following exceptions:

■ When you need to include a color version of an icon in a dialog box, you must create a
resource of type 'cicn' with the same resource ID as the black-and-white 'ICON'
resource specified in the item list resource. Plate 2 at the front of this book shows an
alert box that includes a color icon.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-157

■ When you need to produce a blended gray color for outlining the inactive (that is,
dimmed) default button, you must create a dialog color table ('dctb') resource with
the same resource ID as the dialog resource.

“Using an Application-Defined Item to Draw the Bold Outline for a Default Button”
beginning on page 6-56 explains how to create a draw routine that outlines the default
button of a dialog box. If you deactivate a dialog box, you should dim its buttons and
use gray to draw the outline for the default button. Because GetNewDialog and
NewDialog supply black-and-white graphics ports for dialog boxes, you can create a
dialog color table resource for the dialog box to force the Dialog Manager to supply a
color graphics port. Then you can use a blended gray color for the outline for the default
button. (The NewColorDialog function supplies a color graphics port.)

Even when you create a dialog color table resource for drawing a gray outline, you
should not change the system’s default colors. If you feel absolutely compelled to use
nonstandard colors, you can use the Dialog Manager to specify colors other than the
default colors. Your application can specify its own colors for a dialog box by creating a
dialog color table ('dctb') resource with the same resource ID as the dialog resource
(described beginning on page 6-148). You don’t have to call any new routines to change
the colors used in dialog boxes. When you call the GetNewDialog function, for
example, the Dialog Manager automatically attempts to load a dialog color table
resource with the same resource ID as the dialog resource.

Be aware, however, that nonstandard colors in your dialog boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

▲ WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

A dialog color table resource has exactly the same format as a window color table (that
is, a resource of type 'wctb'), which is described in the chapter “Window Manager” of
this book.

If the dialog box’s content color isn’t white, specify the invisible constant in the
dialog resource. Use the Window Manager procedure ShowWindow to display the dialog
box when it’s the frontmost window. If the dialog box is a modeless dialog box that is
not in front, use the Window Manager procedure ShowHide to display it.

The Alert Color Table Resource

On color monitors, the Dialog Manager automatically adds color to your alert boxes so
that they match the colors of the windows and alerts used by system software. When
you create alert resources, your application’s alert boxes use the system’s default colors.
Typically, this is all you need to do to provide color for your alert boxes. (However, to
include a color version of an icon in an alert box, you must add a resource of type
'cicn' with the same resource ID as the black-and-white 'ICON' resource specified in
the item list resource.)

CHAPTER 6

Dialog Manager

6-158 Dialog Manager Reference

If you feel absolutely compelled to use nonstandard colors, you can use the Dialog
Manager to specify colors other than the default colors. Your application can specify its
own colors for an alert box by creating an alert color table ('actb') resource with the
same resource ID as the alert resource (described beginning on page 6-150). You don’t
have to call any new routines to change the colors used in alert or dialog boxes. When
you call the Alert function, for example, the Dialog Manager automatically attempts to
load an alert color table resource with the same resource ID as the alert resource.

Be aware, however, that nonstandard colors in your alert boxes may initially confuse
your users. Also be aware that despite any changes you may make, users can alter the
colors of dialog boxes anyway by changing settings in the Color control panel.

▲ WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

An alert color table resource has exactly the same format as a window color table
('wctb') resource, which is described in the chapter “Window Manager” of this book.

The Item Color Table Resource

On color monitors, the Dialog Manager automatically draws the items in your dialog
and alert boxes so that they match the colors of the items used by system software in its
dialog and alert boxes. The Dialog Manager also uses the default system font when it
draws the text in the static text and editable text items of your dialog and alert boxes.

If you feel absolutely compelled to use nonstandard fonts and colors, you can use the
Dialog Manager to specify your own colors, typeface, font style, and font size.

Note

The Dialog Manager displays the typeface, font style, and font size you
specify only on color monitors. ◆

Your application can specify these by creating an item color table ('ictb') resource
with the same resource ID as the dialog or alert box’s item list resource , and then
providing a dialog color table resource for a dialog box or an alert color table resource
for an alert box. You don’t have to call any new routines to change the colors, typefaces,
font styles, or font sizes used in dialog boxes. When you call the GetNewDialog
function, for example, the Dialog Manager automatically attempts to load an item color
table resource with the same resource ID as the item list resource.

Note

To make it easier to localize your application for other script
systems, you should not change the font. Do not use a smaller font,
such as 9-point Geneva; some script systems, such as KanjiTalk,
require 12-point fonts. ◆

Also, be aware that nonstandard colors for items in your dialog and alert boxes may
initially confuse your users.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-159

▲ WARNING

Because the behavior of color alert and dialog boxes, color items, and
color icons is unreliable on computers using system software versions
earlier than System 7, do not create these color elements if you wish to
maintain backward compatibility. ▲

If you want to provide an item color table resource for an alert box or a dialog box, you
must create an alert color table resource or a dialog color table resource, even if the item
color table resource has no actual color information and describes only static text and
editable text style changes.

An item color table resource is a resource of type 'ictb' . All item color table resources
must have resource ID numbers greater than 128.

There is no Rez template available for creating item color table resources. When
you compile an item color table resource, it should follow the format illustrated in
Figure 6-49.

Figure 6-49 Structure of a compiled item color table resource

CHAPTER 6

Dialog Manager

6-160 Dialog Manager Reference

You define an item color table resource for a dialog box or an alert box by specifying
these elements in a resource with the 'ictb' resource type:

■ Items. These consist of a variable number of items, corresponding to those in an item
list resource with the same resource ID as this item color table resource.

■ Control color tables and text style tables.
■ A control color table defines the colors used in a control. Several controls can share

the same control color table.
■ A text style table defines the font family, font style, font size, and color of text in an

editable text item or a static text item. Several editable text and static text items can
share the same text style table.

■ Optionally, a list of font families. If you use any text style tables, you generally
conclude the item color table resource with a list of text strings, each of which
specifies a font family. Although you may specify font numbers instead of font names,
it’s much more reliable to specify names, because system software may renumber
these fonts as they are installed and removed. For every editable text item and static
text item listed at the top of the item color table resource, specify a font family at the
bottom of the resource.

The information contained in an element depends on the type of item it describes:

■ Item data. This contains information about how this item is described in the rest of
this resource.
■ For a control, this is the length (in bytes) of its control color table.
■ For a static text item or an editable text item, the bits of this element determine

which elements of the text style table to use and are interpreted as follows:

■ Item offset. The number of bytes from the beginning of the resource to either the
control color table or the text style table that describes this item.

When both the item data and item offset elements are set to 0, then the control or text
item is drawn with the default colors, typeface, font size, and font style. Even if only the
first few items of the dialog box have color style information, there must be room for all
of the items actually in the box (with the item data and item offset elements of the
unused entries set to 0).

Bit Meaning

0 Change the font family.

1 Change the typeface.

2 Change the font size.

3 Change the font foreground color.

4 Add the font size.

13 Change the font background color.

14 Change the font mode.

15 The font element is an offset to the name.

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-161

For controls, the colors are described by a color table identical to a 'cctb' resource used
by the Control Manager. Multiple controls can use the same color table. If the resource
sets both the item data and the item offset element to 0, then the system’s default colors
are used for the control. The format of a control color table is illustrated in Figure 6-50.

Figure 6-50 Structure of a compiled control color table

A control color table consists of the following elements:

■ Reserved. This should always be set to a value of 0.

■ Reserved. Again, should always be set to a value of 0.

■ Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because a standard control uses only three parts: frame, control body, and
text. For scroll bars, this should be set to 12; see the description of the control color
table resource in the chapter “Control Manager” for information on specifying the
colors for a scroll bar. To create a control that uses other parts, you must create a
custom 'CDEF' resource, as described in the chapter “Control Manager” in this book.

CHAPTER 6

Dialog Manager

6-162 Dialog Manager Reference

■ Part identifier. This is a value that identifies a part of the first control. The following
list shows the values and constants they represent for the standard controls other than
scroll bars. For information on the part identifiers for a scroll bar, see the description
of the control color table resource in the chapter “The Control Manager” in this book.
They can be listed in any order in the control color table.

■ Red component. This is an integer that represents the intensity of the red component
of the color to use when drawing this control part.

■ Green component. This is an integer that represents the intensity of the green
component of the color to use when drawing this control part.

■ Blue component. This is an integer that represents the intensity of the blue component
of the color to use when drawing this control part.

■ Part identifier, and the red, green, and blue color components for the next control part.
Specify color components for every part of this control whose color you want to
change. If a part is not listed in the control color table, the Dialog Manager draws it in
its default color.

Figure 6-51 shows the format of a text style table.

Figure 6-51 Structure of a compiled text style table

Constant Value Control part

cFrameColor 0 Frame

cBodyColor 1 Body

cTextColor 2 Text (such as titles)

CHAPTER 6

Dialog Manager

Dialog Manager Reference 6-163

The text style table must be 20 bytes long, as shown in Figure 6-51. Multiple editable text
and static text items can use the same text style record. To display text in the standard
typeface, color, font size, and font style, set the item data and item offset elements for the
item to 0. Allocate space for all fields in the text style table, even if they are not used.

A text style table consists of the following elements (see Inside Macintosh: Text for a
discussion of font families, font style, and point sizes):

■ Typeface. This is the name of the font family to use. If bit 15 in the item data element is
set to 1, then this element contains an offset (in bytes) to a font name element at the
end of the resource. If bit 0 in the item data element is set to 1, then this element
contains the number of a font family. If bit 0 in the item data element is set to 0, this
element is set to 0, and the system default font is used.

■ Font style. This is the font style to use. If bit 1 in the item data element is set to 1, then
this element uses the bits of the low-order byte to describe which styles to apply to the
text. If all bits in the low-order byte are set to 0, the plain font style is used. The bit
numbers and the styles they represent are

■ Font size. This is the point size of the font. If bit 2 in the item data element is set to 1,
this element contains a value representing a point size. If bit 4 in the item data element
is set to 1, this element contains a value to add to the current point size of the text. If
bit 0 in the item data element is set to 0, this element is set to 0, and the system font
size (12) is used.

■ Text red color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the red component of the color to use when
drawing the text.

■ Text green color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the green component of the color to use when
drawing the text.

■ Text blue color. If bit 3 in the item data element is set to 1, this element contains an
integer that represents the intensity of the blue component of the color to use when
drawing the text.

■ Background red color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the red component of the color
to use when drawing the background behind the text.

Bit
value Style

0 Bold

1 Italic

2 Underline

3 Outline

4 Shadow

5 Condensed

6 Extended

CHAPTER 6

Dialog Manager

6-164 Dialog Manager Reference

■ Background green color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the green component of the color
to use when drawing the background behind the text.

■ Background blue color. If bit 13 in the item data element is set to 1, this element
contains an integer that represents the intensity of the blue component of the color
to use when drawing the background behind the text.

■ Mode. If bit 14 in the item data element is set to 1, this element contains an integer
that represents how characters are placed in the bit image. The values that the Dialog
Manager interprets and the constants that represent them are listed here. See Inside
Macintosh: Imaging for a discussion of source transfer modes.

Constant Value

scrOr 1

srcXor 2

srcBic 3

CHAPTER 6

Dialog Manager

Summary of the Dialog Manager 6-165

Summary of the Dialog Manager

Pascal Summary

Constants

CONST

{checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function}

gestaltDITLExtAttr = 'ditl'; {Gestalt selector for AppendDITL, etc.}

gestaltDITLExtPresent = 0; {if this bit's set, then AppendDITL, }

{ ShortenDITL, & CountDITL are available}

{item types for GetDialogItem, SetDialogItem}

ctrlItem = 4; {add this constant to the next four constants}

btnCtrl = 0; {standard button control}

chkCtrl = 1; {standard checkbox control}

radCtrl = 2; {standard radio button}

resCtrl = 3; {control defined in a control resource}

helpItem = 1; {help balloons}

statText = 8; {static text}

editText = 16; {editable text}

iconItem = 32; {icon}

picItem = 64; {QuickDraw picture}

userItem = 0; {application-defined item}

itemDisable = 128; {add to any of the above to disable it}

{item numbers of OK and Cancel buttons in alert boxes}

ok = 1; {first button is OK button}

cancel = 2; {second button is Cancel button}

{resource IDs of alert box icons}

stopIcon = 0;

noteIcon = 1;

cautionIcon = 2;

{constants used for theMethod parameter in AppendDITL}

overlayDITL = 0; {overlay existing items}

appendDITLRight = 1; {append at right}

appendDITLBottom = 2; {append at bottom}

CHAPTER 6

Dialog Manager

6-166 Summary of the Dialog Manager

{constants for procID parameter of NewDialog, NewColorDialog}

dBoxProc = 1; {modal dialog box}

noGrowDocProc = 4; {modeless dialog box}

movableDBoxProc = 5; {movable modal dialog box}

Data Types

TYPE DialogPtr = WindowPtr;

ResumeProcPtr = ProcPtr;

SoundProcPtr = ProcPtr;

ModalFilterProcPtr = ProcPtr;

DialogPeek = ^DialogRecord ;

DialogRecord =

RECORD

window : WindowRecord ; { dialog window}

items : Handle ; { item list resource}

textH : TEHandle ; { current editable text item}

editField : I nteger ; { editable text item number minus 1}

editOpen : I nteger ; { used internally}

aDefItem : I ntege r; { default button item number}

END;

DITLMethod = Integer;

Dialog Manager Routines

Initializing the Dialog Manager

PROCEDURE InitDialogs (resumeProc: ResumeProcPtr);

PROCEDURE ErrorSound (soundProc: SoundProcPtr);

PROCEDURE SetDialogFont (fontNum: Integer); {also spelled SetDAFont}

Creating Alerts

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION Alert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION StopAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION NoteAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION CautionAlert (alertID: Integer; filterProc:
ModalFilterProcPtr): Integer;

FUNCTION GetAlertStage : Integer;

PROCEDURE ResetAlertStage;

CHAPTER 6

Dialog Manager

Summary of the Dialog Manager 6-167

Creating and Disposing of Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

FUNCTION GetNewDialog (dialogID: Integer; dStorage: Ptr;
behind: WindowPtr): DialogPtr;

FUNCTION NewColorDialog (dStorage: Ptr; boundsRect: Rect; title:
Str255; visible: Boolean; procID: Integer;
behind: WindowPtr; goAwayFlag: Boolean;
refCon: LongInt; items: Handle): DialogPtr ;

FUNCTION NewDialog (dStorage: Ptr; boundsRect: Rect; title:
Str255; visible: Boolean; procID: Integer;
behind: WindowPtr; goAwayFlag: Boolean;
refCon: LongInt; items: Handle): DialogPtr;

PROCEDURE CloseDialog (theDialog: DialogPtr);

PROCEDURE DisposeDialog (theDialog: DialogPtr) ;

Manipulating Items in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE GetDialogItem (theDialog: DialogPtr; itemNo: Integer;
VAR itemType: Integer; VAR item: Handle;
VAR box: Rect) ;

PROCEDURE SetDialogItem (theDialog: DialogPtr; itemNo: Integer;
itemType: Integer; item: Handle; box: Rect) ;

PROCEDURE HideDialogItem (theDialog: DialogPtr; itemNo: Integer) ;

PROCEDURE ShowDialogItem (theDialog: DialogPtr; itemNo: Integer) ;

FUNCTION FindDialogItem (theDialog: DialogPtr; thePt: Point): Integer ;

PROCEDURE AppendDITL (theDialog: DialogPtr; theDITL: Handle;
theMethod: DITLMethod);

PROCEDURE ShortenDITL (theDialog: DialogPtr; numberItems: Integer);

FUNCTION CountDITL (theDialog: DialogPtr): Integer;

Handling Text in Alert and Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ParamText (param0: Str255; param1: Str255;
param2: Str255; param3: Str255);

PROCEDURE GetDialogItemText (item: Handle; VAR text: Str255);

PROCEDURE SetDialogItemText (item: Handle; text: Str255);

PROCEDURE SelectDialogItemText
(theDialog: DialogPtr; itemNo: Integer;

strtSel: Integer; endSel: Integer);

PROCEDURE DialogCut (theDialog: DialogPtr);

PROCEDURE DialogCopy (theDialog: DialogPtr);

CHAPTER 6

Dialog Manager

6-168 Summary of the Dialog Manager

PROCEDURE DialogPaste (theDialog: DialogPtr);

PROCEDURE DialogDelete (theDialog: DialogPtr);

Handling Events in Dialog Boxes

{some routines have 2 spellings--see Table 6-1 for the alternate spellings}

PROCEDURE ModalDialog (filterProc: ModalFilterProcPtr; VAR itemHit:
Integer);

FUNCTION IsDialogEvent (theEvent: EventRecord): Boolean;

FUNCTION DialogSelect (theEvent: EventRecord; VAR theDialog:
DialogPtr; VAR itemHit: Integer): Boolean ;

PROCEDURE DrawDialog (theDialog: DialogPtr);

PROCEDURE UpdateDialog (theDialog: DialogPtr; updateRgn: RgnHandle) ;

Application-Defined Routines

PROCEDURE MyItem (theWindow: WindowPtr; itemNo: Integer);

PROCEDURE MyAlertSound (soundNo: Integer);

FUNCTION MyEventFilter (theDialog: DialogPtr; VAR theEvent:
EventRecord; VAR itemHit: Integer): Boolean;

C Summary

Constants

enum {
/*checking for AppendDITL, ShortenDITL, CountDITL using Gestalt function*/

#define gestaltDITLExtAttr 'ditl' /*Gestalt selector*/
gestaltDITLExtPresent = 0 /*if this bit's set, then AppendDITL, */

/* ShortenDITL, & CountDITL are available*/
};

enum {
/*item types for GetDItem, SetDItem*/

ctrlItem = 4, /*add this constant to the next four constants*/

btnCtrl = 0, /*standard button control*/
chkCtrl = 1, /*standard checkbox control*/
radCtrl = 2, /*standard radio button*/
resCtrl = 3, /*control defined in a control resource*/

statText = 8, /*static text*/
editText = 16, /*editable text*/
iconItem = 32, /*icon*/

CHAPTER 6

Dialog Manager

Summary of the Dialog Manager 6-169

picItem = 64, /*QuickDraw picture*/
userItem = 0, /*application-defined item*/
helpItem = 1, /*help balloons*/
itemDisable = 128, /*add to any of the above to disable it*/

/*item numbers of OK and Cancel buttons in alert boxes*/
ok = 1, /*first button is OK button*/
cancel = 2, /*second button is Cancel button*/

/*resource IDs of alert box icons*/
stopIcon = 0,
noteIcon = 1,

cautionIcon = 2
};

enum {

/*constants used for theMethod parameter in AppendDITL*/
overlayDITL = 0, /*overlay existing items*/
appendDITLRight = 1, /*append at right*/
appendDITLBottom = 2 /*append at bottom*/

};

enum {
/*constants for procID parameter of NewDialog, NewColorDialog*/

dBoxProc = 1, /*modal dialog box*/
noGrowDocProc = 4, /*modeless dialog box*/
movableDBoxProc = 5 /*movable modal dialog box*/

};

Data Types

typedef WindowPtr DialogPtr;

typ ede f struct DialogRecord DialogRecord;

typ ede f struct DialogRecord *DialogPeek;

struct DialogRecord {

WindowRecord window; /*dialog window*/

Handle items ; / *item list resource* /

TEHandle textH; / *current editable text item*/

short editField; /*editable text item number minus 1*/

short editOpen ; / *used internally*/

shor t aDefItem; /*default button item number*/

};

CHAPTER 6

Dialog Manager

6-170 Summary of the Dialog Manager

typedef pascal void (*ResumeProcPtr)(void);

typedef pascal void (*SoundProcPtr)(void);

typedef pascal Boolean (*ModalFilterProcPtr)(DialogPtr theDialog,

EventRecord *theEvent, short *itemHit) ;

typedef short DITLMethod;

Dialog Manager Routines

Initializing the Dialog Manager

pascal void InitDialog s (ResumeProcPtr resumeProc) ;

pascal void ErrorSoun d (SoundProcPtr soundProc) ;

pascal void SetDialogFon t (short fontNum); /*also spelled SetDAFont*/

Creating Alerts

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal short Aler t (short alertID, ModalFilterProcPtr filterProc) ;

pascal short StopAler t (short alertID, ModalFilterProcPtr filterProc) ;

pascal short NoteAlert (short alertID, ModalFilterProcPtr filterProc) ;

pascal short CautionAlert (short alertID, ModalFilterProcPtr filterProc) ;

#define GetAlertStage() (* (short*) 0x0A9A);

pascal void ResetAlertStage (void);

Creating and Disposing of Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal DialogPtr GetNewDialog
(short dialogID, void *dStorage,

WindowPtr behind);

pascal DialogPtr NewColorDialog
(void *dStorage, const Rect *boundsRect,

ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon, Handle items);

pascal DialogPtr NewDialog
(void *dStorage, const Rect *boundsRect,

ConstStr255Param title, Boolean visible,
short procID, Win dowPtr behind,
Boolean goAwayFlag, long refCon,
Handle items);

pascal void CloseDialog (DialogPtr theDialog) ;

pascal void DisposeDialog (DialogPtr theDialog);

CHAPTER 6

Dialog Manager

Summary of the Dialog Manager 6-171

Manipulating Items in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void GetDialogItem (DialogPtr theDialog, short itemNo,
short *itemType, Handle *item, Rect *box);

pascal void SetDialogItem (DialogPtr theDialog, short itemNo, short
itemType, Handle item, const Rect *box);

pascal void HideDialogItem (DialogPtr theDialog, short itemNo);

pascal void ShowDialogItem (DialogPtr theDialog, short itemNo) ;

pascal short FindDialogItem (DialogPtr theDialog, Point thePt);

pascal void AppendDITL (DialogPtr theDialog, Handle theDITL,
DITLMethod theMethod) ;

pascal void ShortenDITL (DialogPtr theDialog, short numberItems) ;

pascal short CountDITL (DialogPtr theDialog) ;

Handling Text in Alert and Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ParamText (ConstStr255Param param0,
ConstStr255Param param1,
ConstStr255Param param2,
ConstStr255Param param3) ;

pascal void GetDialogItemText
(Handle item, Str255 text);

pascal void SetDialogItemText
(Handle item, ConstStr255Param text);

pascal void SelectDialogItemText
(DialogPtr theDialog, short itemNo,

short strtSel, short endSel);

pascal void DialogCut (DialogPtr theDialog);

pascal void DialogCopy (DialogPtr theDialog);

pascal void DialogPaste (DialogPtr theDialog);

pascal void DialogDelete (DialogPtr theDialog);

Handling Events in Dialog Boxes

/*some routines have 2 spellings--see Table 6-1 for the alternate spellings*/

pascal void ModalDialog (ModalFilterProcPtr filterProc, short *itemHit) ;

pascal Boolean IsDialogEvent (const EventRecord *theEven t);

pascal Boolean DialogSelect (const EventRecord *theEvent,
DialogPtr *theDialog, short *itemHit);

pascal void DrawDialog (DialogPtr theDialog) ;

pascal void UpdateDialog (DialogPtr theDialog, RgnHandle updateRgn);

CHAPTER 6

Dialog Manager

6-172 Summary of the Dialog Manager

Application-Defined Routines

pascal void MyItem (WindowPtr theWindow, short itemNo);

pascal void MyAlertSound (short soundNo);

pascal Boolean MyEventFilter (DialogPtr theDialog, *EventRecord theEvent,
*short itemHit) ;

Assembly-Language Summary

Data Structures

DialogRecord Data Structure

Global Variables

0 dWindow 156 bytes window record for the alert box or dialog box
156 items long handle to the item list resource for the alert box or dialog box
160 teHandle long handle to the current editable text item
164 editField word current editable text item
166 editOpen word used internally
168 aDefItem word item number of the default button

DAStrings Handles to text strings specified with the ParamText procedure
DABeeper Address of current sound procedure
DlgFont Font number for text in dialog boxes and alert boxes
ACount Alert stage number (0 through 3) of the last alert
ANumber Resource ID of last alert
ResumeProc Address of resume procedure (should not be used in System 7)

