
Contents 5-1

CHAPTER 5

Contents

Control Manager

Introduction to Controls 5-4
Buttons 5-5
Checkboxes 5-5
Radio Buttons 5-6
Pop-Up Menus 5-6
Scroll Bars 5-7
Other Controls 5-11
Active and Inactive Controls 5-11
The Control Definition Function 5-14

About the Control Manager 5-14
Using the Control Manager 5-15

Creating and Displaying a Control 5-15
Creating a Button, Checkbox, or Radio Button 5-17
Creating Scroll Bars 5-21
Creating a Pop-Up Menu 5-25
Updating a Control 5-29

Responding to Mouse Events in a Control 5-30
Determining a Mouse-Down Event in a Control 5-31
Tracking the Cursor in a Control 5-35

Determining and Changing Control Settings 5-37
Scrolling Through a Document 5-43

Scrolling in Response to Events in the Scroll Box 5-53
Scrolling in Response to Events in Scroll Arrows and Gray Areas 5-57
Drawing a Scrolled Document Inside a Window 5-62

Moving and Resizing Scroll Bars 5-65
Defining Your Own Control Definition Function 5-71

Control Manager Reference 5-72
Data Structures 5-72

The Control Record 5-73
The Auxiliary Control Record 5-76

CHAPTER 5

5-2 Contents

The Pop-Up Menu Private Data Record 5-77
The Control Color Table Record 5-77

Control Manager Routines 5-80
Creating Controls 5-81
Drawing Controls 5-85
Handling Mouse Events in Controls 5-88
Changing Control Settings and Display 5-93
Determining Control Values 5-102
Removing Controls 5-108

Application-Defined Routines 5-109
Defining Your Own Control Definition Function 5-109
Defining Your Own Action Procedures 5-115

Resources 5-117
The Control Resource 5-118
The Control Color Table Resource 5-121
The Control Definition Function 5-123

Summary of the Control Manager 5-124
Pascal Summary 5-124

Constants 5-124
Data Types 5-126
Control Manager Routines 5-127
Application-Defined Routines 5-129

C Summary 5-129
Constants 5-129
Data Types 5-131
Control Manager Routines 5-132
Application-Defined Routines 5-134

Assembly-Language Summary 5-134
Data Structures 5-134
Global Variables 5-135

CHAPTER 5

5-3

Control Manager

This chapter describes how your application can use the Control Manager to create
and manage controls. Controls are onscreen objects that the user can manipulate with
the mouse. By manipulating controls, the user can take an immediate action or change
settings to modify a future action. For example, a scroll bar control allows a user to
immediately change the portion of the document that your application displays, whereas
a pop-up menu control for baud rate might allow the user to change the rate by which
your application handles subsequent data transmissions.

Read this chapter to learn how and when to implement controls. Virtually all applica-
tions need to implement controls, at least in the form of scroll bars for document
windows. You use Control Manager routines, resources, and data structures to imple-
ment scroll bars in your application’s document windows.

The other standard Macintosh controls are buttons, checkboxes, radio buttons, and
pop-up menus. You can use the Control Manager to create and manage these controls,
too. Alternatively, you can use the Dialog Manager to implement these controls in alert
boxes and dialog boxes more easily. (You typically use an alert box to warn a user of
an unusual situation, and you typically use a dialog box to ask the user for information
necessary to carry out a command.) The chapter “Dialog Manager” in this book
describes in detail how to implement controls in alert and dialog boxes. However, in
certain situations—for instance, when you need to implement highly complex dialog
boxes—you may want to use Control Manager routines to manage these types of
controls directly; read this chapter for information on how to do so.

For scrolling lists of graphic or textual information (similar to the list of files that system
software presents after the user chooses the Open command from the File menu), your
application can use the List Manager to implement the scroll bars. See the chapter “List
Manager” in Inside Macintosh: More Macintosh Toolbox for more information.

The Control Manager offers routines for automatically handling user-generated
mouse events in controls and redrawing controls in response to update events. For
further information about events and event handling, see the chapter “Event Manager”
in this book.

You typically use a control resource—a resource of type 'CNTL' —to specify the type,
size, location, and other attributes of a control. See the chapter “Introduction to the
Macintosh Toolbox” in this book for general information about resources; detailed
information about the Resource Manager and its routines is provided in the chapter
“Resource Manager” in Inside Macintosh: More Macintosh Toolbox.

Every control you create must be associated with a particular window. All of the controls
for a window are stored in a control list referenced by the window’s window record. See
the chapter “Window Manager” in this book for general information about windows.
(When you use the Dialog Manager to implement a control, the Dialog Manager
associates it with its respective dialog box or alert box, as described in the chapter
“Dialog Manager.”)

CHAPTER 5

Control Manager

5-4 Introduction to Controls

This chapter provides an introduction to the use of controls, and then discusses how
you can

■ create and display controls

■ determine whether mouse-down events have occurred in controls

■ respond to mouse-down events in controls

■ change the settings in controls

■ use scroll bars to move a document in a window

■ move and resize controls for a window

■ define your own control definition function to create nonstandard controls

Introduction to Controls

The Control Manager provides several standard controls. Figure 5-1 illustrates these
standard controls: buttons, checkboxes, radio buttons, pop-up menus, and scroll bars.
You can also design and implement your own custom controls.

Figure 5-1 Standard controls provided by the Control Manager

Buttons, checkboxes, and radio buttons are the simplest controls. They consist of only a
title and an outline shape, and they respond to only mouse clicks. A pop-up menu is
slightly more complex. This control has a menu attached to its title, and it must respond
when the user drags the cursor across the menu. A scroll bar, because it consists of
different parts that behave differently, is the most complex of the standard controls. Even
though a scroll bar has several parts, it is still only one control.

The Control Manager displays these standard controls in colors that provide aesthetic
consistency across all monitors, from black-and-white displays to 8-bit color displays.
To ensure consistency across applications, you generally shouldn’t change the default

CHAPTER 5

Control Manager

Introduction to Controls 5-5

colors of controls, although the Control Manager does allow you to do so with the
SetControlColor procedure (described on page 5-101) or the control color table
resource (described on page 5-121).

Standard controls and common custom controls are described in the next
several sections.

Buttons
Buttons appear on the screen as rounded rectangles with a title centered inside. When
the user clicks a button, your application should perform the action described by the
button title. Typically, buttons allow the user to perform actions instantaneously—for
example, completing the operations defined by a dialog box or acknowledging an error
message in an alert box.

Make your buttons large enough to surround their titles. In every window or dialog box
in which you display buttons, you should designate one button as the default button by
drawing a thick black outline around it (as shown in Figure 5-2). Your application should
respond to key-down events involving the Enter and Return keys as if the user had
clicked the default button. (In your alert boxes, the Dialog Manager automatically
outlines the default button; you must outline the default button in your dialog boxes.)

Figure 5-2 A default button

You normally use buttons in alert boxes and dialog boxes. See the chapter “Dialog
Manager” for additional details about where to display buttons, what to title them, how
to respond to events involving them, and how to draw an outline around them.

Checkboxes
Checkboxes provide alternative choices. Typically you use checkboxes in dialog boxes so
that users can specify information necessary for completing a command. Checkboxes act
like toggle switches, turning a setting either off or on. Use checkboxes to indicate one or
more options that must be either off or on. A checkbox appears as a small square with a
title alongside it; use the Control Manager procedure SetControlValue to place an X
in the box when the user selects it by clicking it on and to remove the X when the user
deselects it by clicking it off. Figure 5-3 shows a selected checkbox.

Figure 5-3 A selected checkbox

CHAPTER 5

Control Manager

5-6 Introduction to Controls

When you design a dialog box, you can include any number of checkboxes—including
only one. Checkboxes are independent of each other, even when they offer related
options. Within a dialog box, it’s a good idea to group sets of related checkboxes and to
provide some visual demarcation between different groups.

Each checkbox has a title. It can be very difficult to title the option in an unambiguous
way. The title should reflect two clearly opposite states. For example, in a Finder ’s Info
window, a checkbox provides the option to lock a file. The checkbox is titled simply
Locked. The clearly opposite state, when the option is off, is unlocked.

If you can’t devise a checkbox title that clearly implies an opposite state, you might be
better off using two radio buttons. With two radio buttons, you can use two titles,
thereby clarifying the states.

Checkboxes are frequently used in dialog boxes to set or modify future actions instead of
specifying actions to be taken immediately. See the chapter “Dialog Manager” in this
book for a detailed discussion of how and where to display checkboxes in dialog boxes.

Radio Buttons
Like checkboxes, radio buttons retain and display an on-or-off setting. You organize
radio buttons in a group to offer a choice among several alternatives—typically, inside a
dialog box. Radio buttons are small circles; when the user clicks a radio button to turn it
on, use the Control Manager procedure SetControlValue to fill the radio button with
a small black dot. The user can have only one radio button setting in effect at one time.
In other words, radio buttons are mutually exclusive. However, the Control Manager
cannot determine how your radio buttons are grouped; therefore, when the user turns on
one radio button, it is up to your application to use SetControlValue to turn off the
others in that group.

A set of radio buttons normally has two to seven items; each set must always have at
least two radio buttons. Each set of radio buttons must have a label that identifies the
kind of choices the group offers. Also, each button must have a title that identifies what
the radio button does. This title can be a few words or a phrase. A set of radio buttons is
never dynamic—that is, its contents should never change according to the context. (If you
need to display more than seven items, or if the items change as the context changes, you
should use a pop-up menu instead.)

Radio buttons represent choices that are related but not necessarily opposite. For
example, a pair of radio buttons may provide a choice between using the modem port or
the printer port, as shown in Figure 5-1 on page 5-4. If more than one set of radio buttons
is visible at one time, you need to demarcate the sets from one another. For example, you
can draw a dotted line around a set of radio buttons to separate it from other elements in
a dialog box.

Pop-Up Menus
Pop-up menus, introduced in the chapter “Menu Manager” in this book, provide the
user with a simple way to choose from among a list of choices without having to move
the cursor to the menu bar. As an alternative to a group of radio buttons, a pop-up menu

CHAPTER 5

Control Manager

Introduction to Controls 5-7

is particularly useful for specifying a group of settings or values that number five or
more, or whose settings or values might change. Like the items in a set of radio buttons,
the items in a pop-up menu are mutually exclusive—that is, only one choice from the
menu can be in effect at any time. Figure 5-8 on page 5-12 illustrates the choices available
in a pop-up menu that has been selected by the user.

Never use a pop-up menu as a way to provide the user with commands. Pop-up
menus should not list actions (that is, verbs); instead, they should list attributes (that
is, adjectives) or settings from which the user can choose one option.

Scroll Bars
Scroll bars change what portion of a document the user can view within the document’s
window. A scroll bar is a light gray rectangle with scroll arrows at each end. Inside the
scroll bar is a square called the scroll box. The rest of the scroll bar is called the gray
area. Windows can have a horizontal scroll bar, a vertical scroll bar, or both. A vertical
scroll bar lies along the right side of a window. A horizontal scroll bar runs along the
bottom of a window. Figure 5-4 shows the parts of a scroll bar.

Figure 5-4 A vertical scroll bar

If the user drags the scroll box, clicks a scroll arrow, or clicks anywhere in the gray area,
your application “moves” the document accordingly; use Control Manager routines as
appropriate to move the scroll box. Figure 5-5 illustrates, and the next few sections
explain, several key behaviors of a scroll bar.

A scroll bar represents the entire document in one dimension, top to bottom or right to
left. The scroll box shows the position, relative to the whole document, of the visible
portion of the document. If the scroll box is halfway between the top and bottom of the
scroll bar, then what the user sees should be about halfway through the document. Use
the SetControlValue or SetControlMaximum procedure to move the scroll box
whenever your application resizes a window and whenever it scrolls through a
document for any reason other than responding to the user dragging the scroll box.

CHAPTER 5

Control Manager

5-8 Introduction to Controls

After the user drags the scroll box, the Control Manager redraws the scroll box in its new
position. You then use the GetControlValue function to determine the position of the
scroll box, and you display the appropriate portion of the document. By dragging the
scroll box, the user can move quickly through the document. For example, to see the
beginning of the document, the user drags the scroll box to the top of the scroll bar. Your
application then scrolls to the top of the document.

At either end of the scroll bar are scroll arrows that indicate the direction of movement
through the document. For instance, when the user clicks the top scroll arrow, your
application needs to move toward the beginning of the document. Thus, the document
moves down, seemingly in the opposite direction. By clicking the scroll arrow, the user
tells your application, “Show me more of the document that’s hidden in this direction.”

Your application uses the SetControlValue procedure to move the scroll box in the
direction of the arrow being clicked. In this way, the scroll box continues to represent
the approximate position of the visible part of the document in relation to the whole
document. For example, when the user clicks the top scroll arrow, you move the
document down to bring more of the top of the document into view, and you move the
scroll box up, as illustrated in Figure 5-5.

Figure 5-5 Using the scroll box and scroll arrows

CHAPTER 5

Control Manager

Introduction to Controls 5-9

Each click of a scroll arrow should move the document a distance of one unit in the
chosen direction. Your application determines what one unit equals. For example, a
word processor should move one line of text for each click in the arrow. A spreadsheet
should move one row or one column, depending on the direction of the arrow. To ensure
smooth scrolling effects, it’s usually best to specify the same size units within a
document. When the user holds down the mouse button while the cursor is in a scroll
arrow, your application should continuously scroll through the document in the
indicated direction until the user releases the mouse button or your application has
scrolled as far as possible.

The rest of the area within the scroll bar—excluding the scroll box and the scroll arrows—
is called the gray area. When the user clicks the gray area of a scroll bar, your application
should move the displayed area of the document by an entire window of information
minus one scroll unit. For example, if the window displays 15 lines of text and the user
clicks the gray area below the scroll box, your application should move the document up
14 lines so that the bottom line of the previous view appears at the top of the new view.
(This retained line helps the user see the newly displayed material in context.) You must
also move the scroll box an appropriate distance in that direction. For example, when the
user clicks the gray area below the scroll box, move the document view by one window
toward the bottom of the document and use SetControlValue to move the scroll box
accordingly.

When your application scrolls through a document—for example, when the user
manipulates a scroll bar—your application must move the document’s coordinate space
in relation to the window’s coordinate space. Your application uses the scroll box to
indicate the location of the top of the displayed portion of the document relative to the
rest of the document.

For example, if a text window contains 15 lines of text and the user scrolls 30 lines from
the top of the document, the scroll box should be set to a value of 30. The window
displays all of the lines between line 30 and line 45, as shown in Figure 5-6 on the next
page. The scroll box always indicates the displacement between the beginning of the
document and the top of the displayed portion of the document.

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should—for a vertical scroll bar—allow the document to scroll no farther
than the length of the document minus the height of the window, excluding the
15-pixel-deep region for the horizontal scroll bar at the bottom edge of the window.
Likewise, for a horizontal scroll bar, you should allow the document to scroll no farther
than the width of the document minus the width of the window—here, too, excluding
the 15-pixel-wide region for the vertical scroll bar at the right edge of the window.

CHAPTER 5

Control Manager

5-10 Introduction to Controls

Figure 5-6 Spatial relations between a document and a window, and their representation by
a scroll bar

For example, the document shown in Figure 5-6 is 105 lines long. So that the last 15 lines
will fill the window when the user scrolls to the end of the document, the application
does not scroll beyond 90 lines. Because the user has scrolled to line 30 of a maximum
90 lines, the scroll box appears a third of the way down the scroll bar.

“Scrolling Through a Document” beginning on page 5-43 describes in detail how to
scroll through a document in a window.

CHAPTER 5

Control Manager

Introduction to Controls 5-11

Other Controls
If you need controls other than the standard ones provided by the Control Manager,
you can design and implement your own. Typically, the only types of controls you
might need to implement are sliders or dials. Sliders and dials (which differ only in
appearance) are similar to scroll bars in that they graphically represent a range of
values that a user can set. Use an indicator—such as a sliding switch or a dial needle—
to indicate the current setting for the control and to let the user set its value. (For scroll
bars, the scroll box is the indicator.)

If you want to display a value not under the user’s direct control (for example, the
amount of free space remaining on a disk), you should use a status bar or other type
of graphic instead of a slider or dial.

Figure 5-7 illustrates several custom controls, which are used for purposes such as
setting the speaker volume, the gray-scale saturation level, and the relative position
of a slide within a presentation. As in this figure, be sure to include meaningful labels
that indicate the range and the direction of your control’s indicator.

Figure 5-7 Custom slider controls

A scroll bar is a slider representing the entire contents of a window, and the user uses the
scroll box to move to a specific location in that content. Don’t use scroll bars to represent
any other concept (for instance, changing a setting). Otherwise, your departure from the
consistent Macintosh interface might confuse the user.

Active and Inactive Controls
You can make a control become either active or inactive. Figure 5-8 on the next page
shows how the TrackControl function (which you use in response to a mouse-down
event in a control) gives visual feedback when the user moves the cursor to an active
control and presses the mouse button. In particular, TrackControl responds to mouse-
down events in active controls by

■ displaying buttons in inverse video

■ drawing checkboxes and radio buttons with heavier lines

■ highlighting the titles of and displaying the items in pop-up menus

■ highlighting scroll arrows

■ moving outlines of scroll boxes when users drag them

CHAPTER 5

Control Manager

5-12 Introduction to Controls

Figure 5-8 Visual feedback for user selection of active controls

Your application, in turn, should respond appropriately to mouse events involving
active controls. Most often, your application waits until the user releases the mouse
button before taking any action; as long as the user holds down the mouse button when
the cursor is over a control, you typically let TrackControl react to the mouse-down
event; TrackControl then informs your application the moment the user releases the
mouse button when the cursor is over an active control.

As soon as the user releases the mouse button, your application should

■ perform the task identified by the button title when the cursor is over an active button

■ toggle the value of the checkbox when the cursor is over an active checkbox (The
Control Manager then draws or removes the checkmark, as appropriate.)

■ turn on the radio button and turn off all other radio buttons in the group when the
cursor is over an active radio button

■ use the new setting chosen by the user when the cursor is over an active pop-up menu

■ show more of the document in the direction of the scroll arrow when the cursor is
over the scroll arrow or gray area of an active scroll bar, and move the scroll box
accordingly

■ determine where the user has dragged the scroll box when the cursor is over the scroll
box and then display the corresponding portion of the document

Sometimes your application should respond even before the user releases the mouse
button—that is, your application should undertake some continuous action as long as

CHAPTER 5

Control Manager

Introduction to Controls 5-13

the user holds down the mouse button when the cursor is in an active control. Most
typically, when the user moves the cursor to a scroll arrow or gray area and then holds
down the mouse button, your application should continuously scroll through the
document until the user releases the mouse button or until the user can’t scroll any
farther. To perform this kind of action, you define an action procedure and specify it to
TrackControl ; TrackControl calls your action procedure as long as the user holds
down the mouse button.

Whenever it is inappropriate for your application to a respond to a mouse-down event in
a control, you should make it inactive. An inactive control is one that the user can’t use
because it has no meaning or effect in the current context—for example, the scroll bars
in an empty window. The Control Manager continues to display an inactive control so
that it remains visible, but in a manner that indicates its state to the user. As shown in
Figure 5-9, the Control Manager dims inactive buttons, checkboxes, radio buttons, and
pop-up menus, and it lightens the gray area and removes the scroll box from inactive
scroll bars.

Figure 5-9 Inactive controls

You can use the HiliteControl procedure to make any control inactive and then
active again. Except for scroll bars (which you should hide using the HideControl
procedure), you should use HiliteControl to make all other controls inactive when
their windows are not frontmost. You typically use controls other than scroll bars in
dialog boxes. See the chapter “Dialog Manager” in this book for a discussion of how to
make buttons, radio buttons, checkboxes, and pop-up menus inactive and active.

You make scroll bars inactive when the document is smaller than the window in which
you display it. To make a scroll bar inactive, you typically use the SetControlMaximum
procedure to make the scroll bar’s maximum value equal to its minimum value, in which
case the Control Manager automatically makes the scroll bar inactive. To make it active
again, you typically use SetControlMaximum to make its maximum value larger than
its minimum value.

CHAPTER 5

Control Manager

5-14 About the Control Manager

The Control Definition Function

A control definition function determines how a control generally looks and behaves.
Various Control Manager routines call a control definition function whenever they need
to perform some control-dependent action, such as drawing the control on the screen.

Control definition functions are stored as resources of type 'CDEF' . The System file
includes three standard control definition functions, stored with resource IDs of 0, 1,
and 63. The 'CDEF' resource with resource ID 0 defines the look and behavior of
buttons, checkboxes, and radio buttons; the 'CDEF' resource with resource ID 1 defines
the look and behavior of scroll bars; and the 'CDEF' resource with resource ID 63
defines the look and behavior of pop-up menus. (If you want to define nonstandard
controls, you’ll have to write control definition functions for them, as described in
“Defining Your Own Control Definition Function” beginning on page 5-109.)

Just as a window definition function can describe variations of the same basic window, a
control definition function can use a variation code to describe variations of the same
basic control. You specify a particular control with a control definition ID. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. For a given resource ID and
variation code, the control definition ID is derived as follows:

control definition ID = 16 * ('CDEF' resource ID) + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0; because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

 You can use these constants to define the controls provided by the standard control
definition functions:

The control definition function for scroll bars figures out whether a scroll bar is vertical
or horizontal from a rectangle you specify when you create the control.

About the Control Manager

You can use the Control Manager to

■ create and dispose of controls

■ display, update, and hide controls

Constant
Control
defi nition ID Control

pushButProc 0 Button

checkBoxProc 1 Checkbox

radioButProc 2 Radio button

scrollBarProc 16 Scroll bar

popupMenuProc 1008 Pop-up menu

CHAPTER 5

Control Manager

Using the Control Manager 5-15

■ change the size, location, and appearance of controls

■ monitor and respond to the user ’s operation of a control

■ determine and change the settings and other attributes of a control

Your application performs these actions by calling the appropriate Control Manager
routines. The Control Manager carries out the actual operations, but it’s up to you to
decide when, where, and how to carry these out.

Using the Control Manager

To implement a control, you generally

■ use a control resource (that is, a resource of type 'CNTL') to describe the control

■ create and display the control

■ determine when the user presses, clicks, or holds down the mouse button while the
cursor is in the control

■ respond as appropriate to events involving the control—for example, by displaying a
different portion of the document when the user manipulates a scroll bar

■ respond as appropriate to other events in windows that include controls—for
example, by moving and resizing a scroll bar when the user resizes a window, or by
hiding one window’s scroll bars when the user makes a different window active

These tasks are explained in greater detail in the rest of this chapter.

Before using the Control Manager, you must initialize QuickDraw, the Font Manager,
and the Window Manager, in that order, by using the InitGraf , InitFonts , and
InitWindows procedures. (See Inside Macintosh: Imaging for information about
InitGraf and InitFonts ; see the chapter “Window Manager” in this book for
information about InitWindows .)

Creating and Displaying a Control
To create a control in one of your application’s windows, use the GetNewControl or
NewControl function. You should usually use GetNewControl , which takes
information about the control from a control resource (that is, a 'CNTL' resource) in a
resource file. Like window resources, control resources isolate descriptive information
from your application code for ease of modification—especially for translation to other
languages. The rest of this section describes how to use GetNewControl . Although it’s
generally not recommended, you can also use the NewControl function and pass it the
necessary descriptive information in individual parameters instead of using a control
resource. The NewControl function is described on page 5-82.

When you use GetNewControl , you pass it the resource ID of the control resource, and
you pass it a pointer to a window. The function then creates a data structure (called a
control record) of type ControlRecord from the information in the control resource,
adds the control record to the control list for your window, and returns as its function

CHAPTER 5

Control Manager

5-16 Using the Control Manager

result a handle to the control. (You use a control’s handle when referring to the control in
most other Control Manager routines; when you create scroll bars or pop-up menus for a
window, you should store their handles in one of your application’s own data structures
for later reference.)

When you specify in the control resource that a control is initially visible and you use the
GetNewControl function, the Control Manager uses the control’s control definition
function to draw the control inside its window. The Control Manager draws the control
immediately, without using your window’s standard updating mechanism. If you
specify that a control is invisible, you can use the ShowControl procedure when you
want to draw the control. Again, the Control Manager draws the control without using
your window’s standard updating mechanism. (Of course, even when the Control
Manager draws the control, it might be completely or partially obscured from the user
by overlapping windows or other objects.)

When your application receives an update event for a window that contains controls,
you use the UpdateControls procedure in your application’s standard window-
updating code to redraw all the controls in the update region of the window.

Note

When you use the Dialog Manager to implement buttons, radio buttons,
checkboxes, or pop-up menus in alert boxes and dialog boxes, Dialog
Manager routines automatically use Control Manager routines to create
and update these controls for you. If you implement any controls other
than buttons, radio buttons, checkboxes, and pop-up menus in alert or
dialog boxes—and whenever you implement any controls (scroll bars,
for example) in your application’s windows—you must explicitly use
either the GetNewControl or the NewControl function to create the
controls. You must always use the UpdateControls procedure to
update controls you put in your own windows. ◆

When you use the Window Manager procedure DisposeWindow or CloseWindow to
remove a window, either procedure automatically removes all controls associated with
the window and releases the memory they occupy.

When you no longer need a control in a window that you want to keep, you can use the
DisposeControl procedure, described on page 5-108, to remove it from the screen,
delete it from its window’s control list, and release the control record and all other
associated data structures from memory. You can use the KillControls procedure,
described on page 5-108, to dispose of all of a window’s controls at once.

The next section, “Creating a Button, Checkbox, or Radio Button,” provides a general
discussion of the control resource as well as a more detailed description of the use of the
control resource to specify buttons, checkboxes, and radio buttons in your application’s
windows. The two following sections, “Creating Scroll Bars” (beginning on page 5-21)
and “Creating a Pop-Up Menu” (beginning on page 5-25), describe those elements of the
control resource that differ from the control resources for buttons, checkboxes, and radio
buttons. “Updating a Control” beginning on page 5-29 then offers an example of how
you can use the UpdateControls procedure within your window-updating code.

CHAPTER 5

Control Manager

Using the Control Manager 5-17

Note
For the Control Manager to draw a control properly inside a window,
the window must have its upper-left corner at local coordinates (0,0). If
you use the QuickDraw procedure SetOrigin to change a window’s
local coordinate system, be sure to change it back—so that the upper-left
corner is again at (0,0)—before drawing any of its controls. Because
many Control Manager routines can (at least potentially) redraw a
control, the safest policy after changing a window’s local coordinate
system is to change the coordinate system back before calling any
Control Manager routine. ◆

Creating a Button, Checkbox, or Radio Button

Figure 5-10 shows a simple example of a button placed in a window of type
noGrowDocProc —which you normally use to create a modeless dialog box.
Although you usually use the Dialog Manager to create dialog boxes and their
buttons, sometimes you might use the Window Manager and the Control Manager
instead. The chapter “Dialog Manager” in this book explains why the use of the
Window and Control Managers is sometimes preferable for this purpose.

Figure 5-10 A button in a simple window

Listing 5-1 shows an application-defined routine, MyCreatePlaySoundsWindow , that
uses the GetNewControl function to create the button shown in Figure 5-10.

Listing 5-1 Creating a button for a window

FUNCTION MyCreatePlaySoundsWindow: OSErr;
VAR

myWindow: WindowPtr;
BEGIN

MyCreatePlaySoundsWindow := noErr;
myWindow := GetNewWindow(rPlaySoundsModelessWindow, NIL, POINTER(-1));
IF myWindow <> NIL THEN
BEGIN

{use the window's refCon to identify this window}
SetWRefCon(myWindow, LongInt(kMyPlaySoundsWindow));

CHAPTER 5

Control Manager

5-18 Using the Control Manager

SetPort(myWindow);
gMyPlayButtonCtlHandle := GetNewControl(rPlayButton, myWindow);
IF (gMyPlayButtonCtlHandle = NIL) THEN

MyCreatePlaySoundsWindow := kControlErr;
END
ELSE

MyCreatePlaySoundsWindow := kNoSoundWindow;
END;

The MyCreatePlaySoundsWindow routine begins by using the Window Manager
function GetNewWindow to create a window; a pointer to that window is passed to
GetNewControl . Note that, as explained in the chapter “Dialog Manager” in this book,
you could create a modeless dialog box more easily by using the Dialog Manager
function GetNewDialog and specifying its controls in an item list ('DITL') resource.

For the resource ID of a control resource, the MyCreatePlaySoundsWindow routine
defines an rPlayButton constant, which it passes to the GetNewControl function.
Listing 5-2 shows how this control resource appears in Rez input format.

Listing 5-2 Rez input for a control resource

resource 'CNTL' (rPlayButton, preload, purgeable) {
{87, 187, 107, 247}, /*rectangle*/
0, /*initial setting*/
visible, /*make control visible*/
1, /*maximum setting*/
0, /*minimum setting*/
pushButProc, /*control definition ID*/
0, /*reference value*/
"Play" /*title*/

};

You supply the following information in the control resource for a button, checkbox,
radio button, or scroll bar:

■ a rectangle, specified by coordinates local to the window, that determines the control’s
size and location

■ the initial setting for the control

■ a constant (either visible or invisible) that specifies whether the control should
be drawn on the screen immediately

■ the maximum setting for the control

■ the minimum setting for the control

■ the control definition ID

■ a reference value, which your application may use for any purpose

■ the title of the control; or, for scroll bars, an empty string

CHAPTER 5

Control Manager

Using the Control Manager 5-19

As explained in “Creating a Pop-Up Menu” beginning on page 5-25, the values you
supply in a control resource for a pop-up menu differ from those you specify for other
buttons, checkboxes, radio buttons, and scroll bars.

Buttons are drawn to fit the rectangle exactly. To allow for the tallest characters in
the system font, there should be at least a 20-point difference between the top and
bottom coordinates of the rectangle. Listing 5-2 uses a rectangle with coordinates
(87,187,107,247) to describe the size and location of the control within the window.
Remember that the Control Manager will not draw controls properly unless the
upper-left corner of the window coincides with the coordinates (0,0).

In Listing 5-2, the initial and minimum settings for the button are 0 and the maximum
setting is 1. In control resources for buttons, checkboxes, and radio buttons, supply these
values as the initial settings:

■ For buttons, which don’t retain a setting, specify a value of 0 for the initial and
minimum settings and 1 for the maximum setting.

■ For checkboxes and radio buttons, which retain an on-or-off setting, specify a value of
0 when you want to the control to be initially off. To turn a checkbox or radio button
on, assign it an initial setting of 1. In response, the Control Manager places an X in a
checkbox or a black dot in a radio button.

Because the visible identifier is specified in this example, the control is drawn
immediately in its window. If you use the invisible identifier, your control is not
drawn until your application uses the ShowControl procedure. When you want to
make a visible control invisible, you can use the HideControl procedure.

In Listing 5-2, the maximum setting for the button is 1, which you, too, should specify in
your control resources as the maximum setting for buttons, checkboxes, and radio
buttons. In Listing 5-2, the minimum setting for the button is 0, which you, too, should
specify in your control resources as the minimum setting for buttons, checkboxes, and
radio buttons.

In Listing 5-2, the pushButProc constant is used to specify the control definition ID.
Use the checkBoxProc constant to specify a checkbox and the radioButProc
constant to specify a radio button.

Listing 5-2 specifies a reference value of 0. Your application can use this value for any
purpose (except when you add the popupUseAddResMenu variation code to the
popupMenuProc control definition function, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

Finally, the string "Play" is specified as the title of the control. Buttons, checkboxes,
and radio buttons require a title that communicates their purpose to the user. (The
chapter “Dialog Manager” in this book offers extensive guidelines on appropriate titles
for buttons.)

When specifying a title, make sure it fits in the control’s rectangle; otherwise, the
Control Manager truncates the title. For example, it truncates the titles of checkboxes
and radio buttons on the right in Roman scripts, and it centers and truncates both ends
of button titles.

CHAPTER 5

Control Manager

5-20 Using the Control Manager

If you localize your application for use with worldwide versions of system software, the
titles may become longer or shorter. Translated text is often 50 percent longer than U.S.
English text. You may need to resize your controls to accommodate the translated text.

By default, the Control Manager displays control titles in the system font. To make it
easier to localize your application for use with worldwide versions of system software,
you should not change the font. Do not use a smaller font, such as 9-point Geneva; some
script systems, such as KanjiTalk, require 12-point fonts. You can spare yourself future
localization effort by leaving all control titles in the system font.

Follow book-title style when you capitalize control titles. In general, capitalize one-word
titles and capitalize nouns, adjectives, verbs, and prepositions of four or more letters in
multiple-word titles. You usually don’t capitalize words such as in, an, or and. For
capitalization rules, see the Apple Publications Style Guide, available from APDA.

The Control Manager allows button, checkbox, and radio button titles of multiple lines.
When specifying a multiple-line title, end each line with the ASCII character code $0D
(carriage return). If the control is a button, each line is horizontally centered, and the
font leading is inserted between lines. (The height of each line is equal to the distance
from the ascent line to the descent line plus the leading of the font used. Be sure to make
the total height of the rectangle greater than the number of lines times this height.) If
the control is a checkbox or a radio button, the text is justified as appropriate for the
user’s current script system, and the checkbox or button is vertically centered within
its rectangle.

Figure 5-11 shows the Play Sounds window with four additional controls: radio buttons
titled Droplet, Quack, Simple Beep, and Wild Eep.

Figure 5-11 Radio buttons in a simple window

Only one of these radio buttons can be on at a time. Listing 5-3 initially sets the Droplet
radio button to 1, turning it on by default. This listing also shows the control resources
for the other buttons, all initially set to 0 to turn them off.

For a checkbox or a radio button, always allow at least a 16-point difference between the
top and bottom coordinates of its rectangle to accommodate the tallest characters in the
system font.

CHAPTER 5

Control Manager

Using the Control Manager 5-21

Listing 5-3 Rez input for the control resources of radio buttons

resource 'CNTL' (cDroplet, preload, purgeable) {

{13, 23, 31, 142}, /*rectangle of control*/

1, /*initial setting*/

visible, /*make control visible*/

1, /*maximum setting*/

0, /*minimum setting*/

radioButProc, /*control definition ID*/

0, /*reference value*/

"Droplet" /*control title*/

};

resource 'CNTL' (cQuack, preload, purgeable) {

{31, 23, 49, 142}, /*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Quack"};

resource 'CNTL' (cSimpleBeep, preload, purgeable) {

{49, 23, 67, 142}, /*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Simple Beep"};

resource 'CNTL' (cWildEep, preload, purgeable) {

{67, 23, 85, 142}, /*rectangle of control*/

0, /*initial setting*/

visible, 1, 0, radioButProc, 0, "Wild Eep"};

Creating Scroll Bars

When you define the control resource for a scroll bar, specify the scrollBarProc
constant for the control definition ID. Typically, you make the scroll bar invisible and
specify an initial value of 0, a minimum value of 0, and a maximum value of 0, and you
supply an empty string for the title.

After you create a window, use the GetNewControl function to create the scroll bar
you’ve defined in the control resource and to attach that scroll bar to the window. Use
the MoveControl , SizeControl , SetControlMaximum , and SetControlValue
procedures to adjust the location, size, and settings of the scroll bars, and then use the
ShowControl procedure to display the scroll bars.

In your window-handling code, make the maximum setting the maximum area you
want to allow the user to scroll. Most applications allow the user to drag the size box and
click the zoom box to change the size of windows, and they allow the user to add
information to and remove it from documents. To allow users to perform these actions,
your application needs to calculate a changing maximum setting based upon the
document’s current size and its window’s current size. For new documents that have no

CHAPTER 5

Control Manager

5-22 Using the Control Manager

content to scroll to, assign an initial value of 0 as the maximum setting in the control
resource; the control definition function automatically makes a scroll bar inactive when
its minimum and maximum settings are identical. Thereafter, your window-handling
routines should set and maintain the maximum setting, as described in “Determining
and Changing Control Settings” beginning on page 5-37.

By convention, a scroll bar is 16 pixels wide, so there should be a 16-point difference
between the left and right coordinates of a vertical scroll bar’s rectangle and between the
top and bottom coordinates of a horizontal scroll bar’s rectangle. (If you don’t provide a
16-pixel width, the Control Manager scales the scroll bar to fit the width you specify.) A
standard scroll bar should be at least 48 pixels long, to allow room for the scroll arrows
and scroll box.

The Control Manager draws lines that are 1 pixel wide for the rectangle enclosing the
scroll bar. As shown in Figure 5-12, the outside lines of a scroll bar should overlap the
lines that the Window Manager draws for the window frame.

Figure 5-12 How a scroll bar should overlap the window frame

To determine the rectangle for a vertical scroll bar, perform the following calculations and
use their results in your control resource. (Do not include the area of the title bar in your
calculations.)

■ top coordinate = combined height of any items above the scroll bar – 1

■ left coordinate = width of window – 15

■ bottom coordinate = height of window – 14

■ right coordinate = width of window + 1

CHAPTER 5

Control Manager

Using the Control Manager 5-23

To determine the rectangle for a horizontal scroll bar, perform the following calculations
and use their results in your control resource.

■ top coordinate = height of window – 15

■ left coordinate = combined width of any items to the left of the scroll bar – 1

■ bottom coordinate = height of window + 1

■ right coordinate = width of window – 14

The top coordinate of a vertical scroll bar is –1, and the left coordinate of a horizontal
scroll bar is –1, unless your application uses part of the window’s typical scroll bar areas
(in particular, those areas opposite the size box) for displaying information or specifying
additional controls. For example, your application may choose to display the current
page number of a document in the lower-left corner of the window—that is, in a small
area to the left of its window’s horizontal scroll bar. See Macintosh Human Interface
Guidelines for a discussion of appropriate uses of a window’s scroll bar areas for
additional items and controls.

Just as the maximum settings of a window’s scroll bars change when the user resizes the
document’s window, so too do the scroll bars’ coordinate locations change when the user
resizes the window. Although you must specify an initial maximum setting and location
in the control resource for a scroll bar, your application must be able to change them
dynamically—typically, by storing handles to each scroll bar in a document record when
you create a window, and then by using Control Manager routines to change control
settings (as described in “Determining and Changing Control Settings” beginning on
page 5-37) and sizes and locations of controls (as described in “Moving and Resizing
Scroll Bars” beginning on page 5-65).

Listing 5-4 shows a window resource (described in the chapter “Window Manager” in
this book) for creating a window, and two control resources for creating the window’s
vertical and horizontal scroll bars. The rectangle for the initial size and shape of the
window is specified in global coordinates, of course, and the rectangles for the two scroll
bars are specified in coordinates local to the window.

Listing 5-4 Rez input for resources for a window and its scroll bars

/*initial window*/

resource 'WIND' (rDocWindow, preload, purgeable) {

{64, 60, 314, 460}, /*initial rectangle for window*/

zoomDocProc, invisible, goAway, 0x0, "untitled"

};

/*initial vertical scroll bar*/

resource 'CNTL' (rVScroll, preload, purgeable) {

{-1, 385, 236, 401}, /*initial rectangle for control*/

/*initial setting, visibility, max, min, ID, refcon, title*/

0, invisible, 0, 0, scrollBarProc, 0, ""

};

CHAPTER 5

Control Manager

5-24 Using the Control Manager

/*initial horizontal scroll bar*/

resource 'CNTL' (rHScroll, preload, purgeable) {

{235, -1, 251, 386}, /*initial rectangle for control*/

/*initial setting, visibility, max, min, ID, refcon, title*/

0, invisible, 0, 0, scrollBarProc, 0, ""

};

Listing 5-5 shows an application-defined procedure called DoNew that uses the
GetNewWindow and GetNewControl functions to create a window and its scroll bars
from the resources in Listing 5-4.

Listing 5-5 Creating a document window with scroll bars

PROCEDURE DoNew (newDocument: Boolean; VAR window: WindowPtr);

VAR

good : Boolean;

windStorage : Ptr;

myData : MyDocRecHnd;

BEGIN

{use GetNewWindow or GetNewCWindow to c reate the window here}

myData := MyDocRecHnd(NewHandle(SIZEOF(MyDocRec))); {create document rec}

{ test for errors along the way; if there are none, create the scroll }

{ bars and save their handles i n myData}

IF good THE N

BEGIN { create the vertical scroll bar and save its handle }

myData^^.vScrollBar := GetNewControl(rVScroll, window) ;

{ create the horizontal scroll bar and save its handle }

myData^^.hScrollBar := GetNewControl(rHScroll, window) ;

good := (vScrollBar <> NIL) AND (hScrollBar <> NIL) ;

END;

IF good THE N

BEGIN { adjust size, location, settings, and visibility of scroll bars }

MyAdjustScrollBars(window, FALSE);

{ perform other initialization here }

I F NOT newDocument T HEN

ShowWindow(window) ;

END;

{clean up here}

END; {DoNew }

The DoNew routine uses Window Manager routines to create a window; its window
resource specifies that the window is invisible. The window resource specifies an initial
size and location for the window, but because the window is invisible, this window is
not drawn.

CHAPTER 5

Control Manager

Using the Control Manager 5-25

Then DoNew creates a document record and stores a handle to it in the myData variable.
The SurfWriter sample application uses this document record to store the data that the
user creates in this window—as well as handles to the scroll bars that it creates. The
SurfWriter sample application later uses these control handles to handle scrolling
through the document and to move and resize the scroll bars when the user resizes the
window. (See the chapter “Window Manager” in this book for more information about
creating such a document record.)

To create scroll bars, DoNew uses GetNewControl twice—once for the vertical scroll bar
and once for the horizontal scroll bar. The GetNewControl function returns a control
handle; DoNew stores these handles in the vScrollBar and hScrollBar fields of its
document record for later reference.

Because the window and the scroll bars are invisible, nothing is drawn onscreen
yet for the user. Before drawing the window and its scroll bars, DoNew calls
another application-defined procedure, MyAdjustScrollBars . In turn,
MyAdjustScrollBars calls other application-defined routines that move and
resize the scroll bars to fit the window and then calculate the maximum settings of
these controls. (Listing 5-14 on page 5-39 shows the MyAdjustScrollBars procedure.)

After creating the window and its scroll bars, and then sizing and positioning them
appropriately, DoNew uses the Window Manager procedure ShowWindow to display the
window with its scroll bars.

Creating a Pop-Up Menu

The values you specify in a control resource for a pop-up menu differ from those you
specify for other controls. The control resource for a pop-up menu contains the
following information:

■ a rectangle, specified by coordinates local to the window, that determines the size and
location of the pop-up title and pop-up box

■ the alignment of the pop-up title with the pop-up box

■ a constant (either visible or invisible) that specifies whether the control should
be drawn on the screen immediately

■ the width of the pop-up title

■ the resource ID of the 'MENU' resource describing the pop-up menu items

■ the control definition ID

■ a reference value, which your application may use for any purpose

■ the title of the control

Figure 5-13 on the next page shows a pop-up menu; Listing 5-6 shows the control
resource that creates this pop-up menu. (The chapter “Menu Manager” in this book
recommends typical uses of pop-up menus and describes the relation between pop-up
menus and menus you display in the menu bar.)

CHAPTER 5

Control Manager

5-26 Using the Control Manager

Figure 5-13 A pop-up menu

Listing 5-6 Rez input for the control resource of a pop-up menu

resource 'CNTL' (kPopUpCNTL, preload, purgeable) {

{90, 18, 109, 198}, /*rectangle of control*/

popupTitleLeftJust, /*title position*/

visible, /*make control visible*/
50, /*pixel width of title*/

kPopUpMenu, /*'MENU' resource ID*/

popupMenuCDEFProc, /*control definition ID*/

0, /*reference value*/
"Speed:" /*control title*/

};

Listing 5-6 specifies a rectangle with the coordinates (90,18,109,198). Figure 5-14
illustrates the rectangle for this pop-up menu.

Figure 5-14 Dimensions of a sample pop-up menu

Listing 5-6 uses the popupTitleLeftJust constant to specify the position of the
control title. Specify any combination of the following constants (or their values) to
inform the Control Manager where and how to draw the pop-up menu’s title:

Setting Constant Description

$0000 popupTitleLeftJust Place title left of the pop-up box

$0001 popupTitleCenterJust Center title over the pop-up box

$00FF popupTitleRightJust Place title right of the pop-up box

$0100 popupTitleBold Use boldface font style

$0200 popupTitleItalic Use italic font style

CHAPTER 5

Control Manager

Using the Control Manager 5-27

If GetNewControl completes successfully, it sets the value of the contrlValue field
of the control record by assigning to that field the item number of the first menu item.
When the user chooses a different menu item, the Control Manager changes the
contrlValue field to that item number.

When you create pop-up menus, your application should store the handles for them; for
example, in a record pointed to by the refCon field of a window record or a dialog
record. (See the chapters “Window Manager” and “Dialog Manager” in this book for
more information about the window record and the dialog record.) Storing these
handles, as shown in the following code fragment, allows your application to respond
later to users’ choices in pop-up menus:

myData: MyDocRecHnd;
window: WindowPtr;

myData^^.popUpControlHandle := GetNewControl(kPopUpCNTL, window);

Listing 5-6 specifies 50 pixels (in place of a maximum setting) as the width of the control
title. After it creates the control, the Control Manager sets the maximum value in the
pop-up menu’s control record to the number of items in the pop-up menu. Figure 5-14
illustrates this title width for the pop-up menu.

Listing 5-6 uses a kPopUpMenu constant to specify the resource ID of a 'MENU' resource
(in place of a minimum setting for the control). (See the chapter “Menu Manager” in this
book for a description of the 'MENU' resource type.) After it creates the control, the
Control Manager assigns 1 as the minimum setting in the pop-up menu’s control record.

IMPORTANT

When using the ResEdit application, version 2.1.1, you must use the
same resource ID when specifying the menu resource and the control
resource that together define a pop-up menu. ▲

You can also specify a different control definition ID by adding any or all of the
following constants (or the variation codes they represent) to the popupMenuProc
constant:

CONSTpopupFixedWidth = $0001; {use fixed-width control}

popupUseAddResMenu = $0004; {use resource for menu items}

popupUseWFont = $0008; {use window font}

Setting Constant Description

$0400 popupTitleUnderline Use underline font style

$0800 popupTitleOutline Use outline font style

$1000 popupTitleShadow Use shadow font style

$2000 popupTitleCondense Use condensed characters

$4000 popupTitleExtend Use extended characters

$8000 popupTitleNoStyle Use monostyle font

CHAPTER 5

Control Manager

5-28 Using the Control Manager

The reference value that you specify in the control resource (and stored by the Control
Manager in the contrlRfCon field of the control record) is available for your
application’s use. However, if you specify popupUseAddResMenu as a variation code,
the Control Manager coerces the value in the contrlRfCon field of the control record
to the type ResType and then uses AppendResMenu to add items of that type to the
pop-up menu. For example, if you specify a reference value of LongInt('FONT') as
the reference value, the control definition function appends a list of the fonts installed
in the system to the menu associated with the pop-up menu. After the control has been
created, your application can use the control record’s contrlRfCon field for whatever
use it requires. You can determine which menu item is currently chosen by calling
GetControlValue .

Whenever the pop-up menu is redrawn, its control definition function calls the Menu
Manager procedure CalcMenuSize . This procedure recalculates the size of the
menu associated with the control (to allow for the addition or deletion of items in the
menu). The pop-up control definition function may also update the width of the pop-
up menu to the sum of the width of the pop-up title, the width of the longest item in the
menu, the width of the downward-pointing arrow, and a small amount of white space.
As previously described, your application can override this behavior by adding the
variation code popupFixedWidth to the pop-up control definition ID.

You should not use the Menu Manager function GetMenuHandle to obtain a handle to
a menu associated with a pop-up control. If necessary, you can obtain the menu handle
(and the menu ID) of a pop-up menu by dereferencing the contrlData field of the
pop-up menu’s control record. The contrlData field of a control record is a handle to a

Constant Description

popUpFixedWidth Uses a constant control width. If your application specifies
this value, the pop-up control definition function does not
resize the control horizontally to fit long menu items. The
width of the pop-up box is set to the width of the control,
minus the width of the pop-up title your application
specifies when it creates the control. If a menu item in a
pop-up box does not fit in the space provided, the text is
truncated to fit, and three ellipsis points (...) are appended
at the end. If you do not specify this variation code, the
pop-up control definition function may resize the control
horizontally.

popupUseAddResMenu Gets menu items from a resource other than the 'MENU'
resource. If your application specifies this value when
creating a pop-up menu, the control definition function
interprets the value in the contrlRfCon field of the
control record as a value of type ResType . The control
definition function uses the Menu Manager procedure
AppendResMenu to add resources of that type to the menu.

popupUseWFont Uses the font of the specified window. If your application
specifies this value, the pop-up control definition function
draws the pop-up menu title using the font and size of
the window containing the control instead of using the
system font.

CHAPTER 5

Control Manager

Using the Control Manager 5-29

block of private information. For pop-up menu controls, this field is a handle to a pop-up
private data record, which is described on page 5-77.

Updating a Control

Your program should use the UpdateControls procedure upon receiving an update
event for a window that contains controls such as scroll bars. (Window Manager routines
such as SelectWindow , ShowWindow, and BringToFront do not automatically
call UpdateControls to display the window’s controls. Instead, they merely add
the appropriate regions to the window’s update region. This in turn generates an
update event.)

Note
The Dialog Manager automatically updates the controls you use in alert
boxes and dialog boxes. ◆

When your application receives an update event for a window that contains controls, use
the UpdateControls procedure in your window-updating code to redraw all the
controls in the update region of the window. Call UpdateControls after using the
Window Manager procedure BeginUpdate and before using the Window Manager
procedure EndUpdate .

When you call UpdateControls , you pass it parameters specifying the window to
be updated and the window area that needs updating. Use the visible region of
the window’s graphics port, as referenced in the port’s visRgn field, to specify the
window’s update region.

Listing 5-7 shows an application-defined routine, DoUpdate , that responds to an update
event. The DoUpdate routine calls the Window Manager procedure BeginUpdate . To
redraw this portion of the window, DoUpdate then calls another of its own procedures,
MyDrawWindow.

Listing 5-7 Responding to an update event for a window

PROCEDURE DoUpdate (window: WindowPtr);
VAR

windowType: Integer;
BEGIN

windowType := MyGetWindowType(window);
CASE windowType OF
kMyDocWindow:

BEGIN
BeginUpdate(window);
MyDrawWindow(window);
EndUpdate(window);

END; {of updating document windows}
{handle other window types——modeless dialogs, etc.——here}
END; {of windowType CASE}

END; {of DoUpdate}

CHAPTER 5

Control Manager

5-30 Using the Control Manager

Listing 5-8 illustrates how the SurfWriter sample application updates window controls
and other window contents by using its own application-defined routine,
MyDrawWindow. To draw only those controls in the window’s update region,
MyDrawWindow calls UpdateControls . To draw the size box in the lower-right corner
of the window, MyDrawWindow calls the Window Manager procedure DrawGrowIcon .
Finally, MyDrawWindow redraws the appropriate information contained in the user’s
document. Because the SurfWriter application uses TextEdit for all text editing in the
window contents, Listing 5-8 calls the TextEdit procedure TEUpdate . (TextEdit is
described in detail in Inside Macintosh: Text.)

Listing 5-8 Redrawing the controls in the update region

PROCEDURE MyDrawWindow (w indow: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN {draw the contents of the window}

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window) ;

TEUpdate(portRect, myData^^.editRec) ; {redraw text}

END;

HUnLock(Handle(myData));

END; {MyDrawWindow}

For more information about updating window contents, see the chapter “Window
Manager” in this book.

Responding to Mouse Events in a Control
The Control Manager provides several routines to help you detect and respond to mouse
events involving controls. For mouse events in controls, you generally perform the
following tasks:

1. In your event-handling code, use the Window Manager function FindWindow to
determine the window in which the mouse-down event occurred.

2. If the mouse-down event occurred in the content region of your application’s active
window, use the FindControl function to determine whether the mouse-down
event occurred in an active control and, if so, which control.

3. Call TrackControl to handle user interaction for the control for as long as the user
holds the mouse button down. For scroll arrows and the gray areas of scroll bars, you

CHAPTER 5

Control Manager

Using the Control Manager 5-31

must define an action procedure for TrackControl to use. This action procedure
should cause the document to scroll as long as the user holds down the mouse button.
For pop-up menus, you pass Pointer(-1) in a parameter to TrackControl to
use the action procedure defined in the pop-up control definition function. For the
scroll box in scroll bars and for the other standard controls, you pass NIL in a
parameter to TrackControl to get the Control Manager ’s standard response to
mouse-down events.

4. When TrackControl reports that the user has released the mouse button with the
cursor in a control, respond appropriately. This may require you to use other Control
Manager routines, such as GetControlValue and SetControlValue , to determine
and change control settings.

These and other routines for responding to events involving controls are described in the
next several sections.

Note

The Dialog Manager procedure ModalDialog automatically calls
FindWindow , FindControl , and TrackControl for mouse-down
events in the controls of alert and modal dialog boxes. You can use the
Dialog Manager function DialogSelect , which automatically calls
FindWindow , FindControl , and TrackControl , to help you handle
mouse events in your movable modal and modeless dialog boxes. ◆

Determining a Mouse-Down Event in a Control

When your application receives a mouse-down event, use the Window Manager
function FindWindow to determine the window in which the event occurred. If the
cursor was in the content region of your application’s active window when the user
pressed the mouse button, use the FindControl function to determine whether the
mouse-down event occurred in an active control and, if so, which control.

When the mouse-down event occurs in a visible, active control, FindControl returns a
handle to that control as well as a part code identifying the control’s part. (Note that
when the mouse-down event occurs in an invisible or inactive control, or when the
cursor is not in a control, FindControl sets the control handle to NIL and returns 0 as
its part code.)

A simple control such as a button or checkbox might have just one “part”; a more
complex control can have as many parts as are needed to define how the control
operates. A scroll bar has five parts: two scroll arrows, the scroll box, and the two gray
areas on either side of the scroll box. Figure 5-4 on page 5-7 shows the five parts of a
scroll bar.

A part code is an integer from 1 through 253 that identifies a part of a control. To allow
different parts of a multipart control to respond to mouse events in different ways, many
of the Control Manager routines accept a part code as a parameter or return one as
a result. Part codes are assigned to a control by its control definition function. The
standard control definition functions define the following part codes. Also listed are the
constants you can use to represent them.

CHAPTER 5

Control Manager

5-32 Using the Control Manager

The pop-up control definition function does not define part codes for pop-up menus.
Instead (as explained in “Creating a Pop-Up Menu” beginning on page 5-25), your
application should store the handles for your pop-up menus when you create them.
Your application should then test the handles you store against the handles returned
by FindControl before responding to users’ choices in pop-up menus; this is described
in more detail later in the next section.

Listing 5-9 illustrates an application-defined procedure, DoMouseDown, that an
application might call in response to a mouse-down event. The DoMouseDown routine
first calls the Window Manager function FindWindow , which returns two values: a
pointer to the window in which the mouse-down event occurred and a constant that
provides additional information about the location of that event. If FindWindow returns
the inContent constant, then the mouse-down event occurred in the content area of
one of the application’s windows.

Listing 5-9 Detecting mouse-down events in a window

PROCEDURE DoMouseDown (event: EventRecord);

VAR

part: Integer;

thisWindow: WindowPtr;

BEGIN {handle mouse-down event}

part := FindWindow(event.where, thisWindow);

CASE part OF

inMenuBar:

; {mouse-down in menu bar, respond appropriately here}

inContent:

IF thisWindow <> FrontWindow THEN

{mouse-down in an inactive window; use SelectWindow }

{ to make it active here}

Constant Part code Control part

inButton 10 Button

inCheckBox 11 Entire checkbox or radio button

inUpButton 20 Up scroll arrow for a vertical scroll bar, left scroll
arrow for a horizontal scroll bar

inDownButton 21 Down scroll arrow for a vertical scroll bar, right
scroll arrow for a horizontal scroll bar

inPageUp 22 Gray area above scroll box for a vertical scroll
bar, gray area to left of scroll box for a horizontal
scroll bar

inPageDown 23 Gray area below scroll box for a vertical scroll bar,
gray area to right of scroll box for a horizontal
scroll bar

inThumb 129 Scroll box

CHAPTER 5

Control Manager

Using the Control Manager 5-33

ELSE {mouse-down in the active window}

DoContentClick(thisWindow, event);

{handle other cases here}

END; {of CASE statement}

END; {DoMouseDown}

In Listing 5-9, when FindWindow reports a mouse-down event in the content region of a
window containing controls, DoMouseDown calls another application-defined procedure,
DoContentClick , and passes it the window pointer returned by the FindWindow
function as well as the event record.

Listing 5-10 shows an application-defined procedure, DoContentClick , that uses this
information to determine whether the mouse-down event occurred in a control.

Listing 5-10 Detecting mouse-down events in a pop-up menu and a button

PROCEDURE DoContentClick (window: WindowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window); {get window type}

CASE windowType OF

kPlaySoundsModelessDialogBox:

BEGIN

SetPort(window);

mouse := event.where; {get the mouse location}

GlobalToLocal(mouse); {convert to local coordinates}

part := FindControl(mouse, window, control);

IF control = gSpeedPopUpControlHandle THEN

{mouse -down in Modem Speed pop-up menu}

DoPopUpMenu(mouse, control);

CASE part OF

inButton : {mous e-down i n Play button}

DoPlayButton(mouse, control);

inCheckBox : {mouse -down i n checkbox}

DoDrumRollCheckBox(mouse, control);

OTHERWISE

;

END; {of CASE for control part codes}

CHAPTER 5

Control Manager

5-34 Using the Control Manager

END; {of kPlaySoundsModelessDialogBox case}

{handle other window types, such as document windows , h ere}

END; {of CASE for window types}

END; {of DoContentClick}

Figure 5-15 shows the Play Sounds window; DoContentClick uses the FindControl
function to determine whether the mouse-down event occurred in the pop-up menu, the
Play button, or the Add Drum Roll checkbox.

First, however, DoContentClick uses the event record to determine the cursor
location, which is specified in global coordinates. Because the FindControl function
expects the cursor location in coordinates local to the window, DoContentClick uses
the QuickDraw procedure GlobalToLocal to convert the point stored in the where
field of the event record to coordinates local to the current window. The
GlobalToLocal procedure takes one parameter, a point in global coordinates—where
the upper-left corner of the entire bit image is coordinate (0,0). See Inside Macintosh:
Imaging for more information about the GlobalToLocal procedure.

Figure 5-15 Three controls in a window

When it calls FindControl , DoContentClick passes the cursor location in the
window’s local coordinates as well as the pointer returned earlier by the FindWindow
function (shown in Listing 5-9 on page 5-32).

If the cursor is in a control, FindControl returns a handle to the control and a part
code indicating the control part. Because the pop-up control definition function does
not define control parts, DoContentClick tests the control handle returned by
FindControl against a pop-up menu’s control handle that the application stores
in its own global variable. If these are handles to the same control, DoContentClick
calls another application-defined routine, DoPopUpMenu.

After checking whether FindControl returns a control handle to a pop-up menu,
DoContentClick uses the part code that FindControl returns to determine whether
the cursor is in one of the other two controls. If FindControl returns the inButton
constant, DoContentClick calls another application-defined routine, DoPlayButton .
If FindControl returns the inCheckBox constant, DoContentClick calls another
application-defined routine, DoDrumRollCheckBox .

CHAPTER 5

Control Manager

Using the Control Manager 5-35

As described in the next section, all three of these application-defined routines—
DoPopUpMenu, DoPlayButton , and DoDrumRollCheckBox —in turn use the
TrackControl function to follow and respond to the user’s mouse movements in
the control reported by FindControl .

Tracking the Cursor in a Control

After using the FindControl function to determine that the user pressed the mouse
button when the cursor was in a control, use the TrackControl function first to follow
and respond to the user’s mouse movements, and then to determine which control part
contains the cursor when the user releases the mouse button.

Generally, you use TrackControl after using the FindControl function to determine
that the mouse-down event occurred in a control. You pass to TrackControl the
control handle returned by the FindControl function, and you also pass to
TrackControl the same point you passed to FindControl (that is, a point in
coordinates local to the window).

The TrackControl function follows the movements of the cursor in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackControl depends on the control part in which the mouse-down event
occurred. When highlighting the control is appropriate—in a button, for example—
TrackControl highlights the control part (and removes the highlighting when the user
releases the mouse button). When the user presses the mouse button while the cursor is
in an indicator (such as the scroll box of a scroll bar) and then moves the mouse,
TrackControl responds by dragging a dotted outline of the indicator. Figure 5-8 on
page 5-12 illustrates how TrackControl provides visual feedback.

You can also use an action procedure to undertake additional actions as long as the user
holds down the mouse button. For example, if the user is working in a text document
and holds down the mouse button while the cursor is in a scroll arrow, your action
procedure should continuously scroll through the document one line (or some
equivalent measure) at a time until the user releases the button or reaches the end of the
document. You pass a pointer to this procedure to TrackControl . (“Scrolling in
Response to Events in Scroll Arrows and Gray Areas” beginning on page 5-57 describes
how to do this.)

The TrackControl function returns the control’s part code if the user releases
the mouse button while the cursor is inside the control part, or 0 if the user releases the
mouse button while the cursor is outside the control part. Unless TrackControl
returns 0 as its function result, your application should then respond as appropriate to
a mouse-up event in that control part. When TrackControl returns 0 as its function
result, your application should do nothing.

Listing 5-11 on the next page shows an application-defined procedure, DoPlayButton ,
that uses TrackControl to track mouse-down events in the Play button shown in
Figure 5-15. The DoPlayButton routine passes, to TrackControl , the control handle
returned by FindControl . The DoPlayButton routine also passes to TrackControl
the same cursor location it passed to FindControl (that is, a point in local coordinates).
Because buttons don’t need an action procedure, NIL is passed as the final parameter
to TrackControl .

CHAPTER 5

Control Manager

5-36 Using the Control Manager

Listing 5-11 Using the TrackControl function with a button

PROCEDURE DoPlayButton (mouse: Point; control: ControlHandle);

BEGIN

IF TrackControl(control, mouse, NIL) <> 0 THEN {user clicks Play }

BEGIN

IF gPlayDrumRoll = TRUE THEN {user clicked Play Drum Roll checkbox }

DoPlayDrumRoll; { so play a drum roll first}

SysBeep(30); {always play system alert sound when user clicks Play }

END;

END;

When the user presses the mouse button when the cursor is in the Play button,
TrackControl inverts the Play button. If the user releases the mouse button after
moving the cursor outside the control part, TrackControl stops inverting the
button and returns the value 0, in which case DoPlayButton does nothing.

If, however, the user releases the mouse button with the cursor in the Play button,
TrackControl stops inverting the Play button and returns the value for the inButton
constant. Then DoPlayButton calls the Sound Manager procedure SysBeep to play the
system alert sound (which is described in the chapter “Dialog Manager” in this book).
Before releasing the mouse button, the user can move the cursor away from the control
part and then return to it, and TrackControl will still return the part code when the
user releases the mouse button.

For buttons, checkboxes, radio buttons, and the scroll box in a scroll bar, your application
typically passes NIL to TrackControl to use no action procedure. However,
TrackControl still responds visually to mouse events in active controls. That is, when
the user presses the mouse button with the cursor over a control whose action procedure
is set to NIL , TrackControl changes the control’s display appropriately until the user
releases the mouse button.

For scroll arrows and for the gray areas of a scroll box, you need to define your own
action procedures. You pass a pointer to the action procedure as one of the parameters to
TrackControl , as described in “Scrolling in Response to Events in Scroll Arrows and
Gray Areas” beginning on page 5-57.

For a pop-up menu, you must pass Pointer(-1) to TrackControl for its action
procedure; this causes TrackControl to use the action procedure defined in the pop-up
control definition function.

Listing 5-10 on page 5-33 calls an application-defined routine, DoPopUpMenu, when
FindControl reports a mouse-down event in a pop-up menu. Listing 5-12 shows how
DoPopUpMenu uses TrackControl to handle user interaction in the pop-up menu. By
passing Pointer(-1) to TrackControl , DoPopUpMenu uses the action procedure
defined in the pop-up control definition function.

CHAPTER 5

Control Manager

Using the Control Manager 5-37

Listing 5-12 Using TrackControl with a pop-up menu

PROCEDURE DoPopUpMenu (mouse: Point; control: ControlHandle);
VAR

menuItem: Integer;

part: Integer;

BEGIN
part := TrackControl(control, mouse, Pointer(-1));

menuItem := GetControlValue(control);

IF menuItem <> gCurrentItem THEN

BEGIN
gCurrentItem := menuItem;

SetMyCommunicationSpeed; {use speed stored in gCurrentItem}

END;

END; {of DoPopUpMenu}

The action procedure for pop-up menus highlights the pop-up menu title, displays the
pop-up menu, and handles all user interaction while the user drags up and down the
menu. When the user releases the mouse button, the action procedure closes the pop-up
box, draws the user’s choice in the pop-up box (or restores the previous item if the user
doesn’t make a new choice), and removes the highlighting of the pop-up title. The
pop-up control definition function then changes the value of the contrlValue field of
the control record to the number of the menu item chosen by the user.

Because buttons do not retain settings, responding to them is very straightforward: when
the user clicks a button, your application should immediately undertake the action
described by the button’s title. For pop-up menus and other types of controls, you must
determine their current settings before responding to the user ’s action. For example,
before responding, you need to know which item the user has chosen in a pop-up menu,
whether a checkbox is checked, or how far the user has moved the scroll box. The action
you take may, in turn, involve changing other control settings. Determining and
changing control settings are described in the next section.

After learning how to determine and change control settings, see “Scrolling Through a
Document” beginning on page 5-43 for a detailed discussion of how to respond to mouse
events in scroll bars.

Determining and Changing Control Settings
Using either the control resource or the parameters to the NewControl function, your
application specifies a control’s various default values—such as its current setting and
minimum and maximum settings—when it creates the control.

When the user clicks a control, however, your application often needs to determine
the current setting and other possible values of that control. When the user clicks a
checkbox, for example, your application must determine whether the box is checked
before your application can decide whether to clear or draw a checkmark inside the
checkbox. When the user moves the scroll box, your application needs to determine what
part of the document to display.

CHAPTER 5

Control Manager

5-38 Using the Control Manager

Applications must adjust some controls in response to events other than mouse events in
the controls themselves. For example, when the user resizes a window, your application
must use the Control Manager procedures MoveControl and SizeControl to move
and resize the scroll bars appropriately.

Your application can use the GetControlValue function to determine the current
setting of a control, and it can use the GetControlMaximum function to determine a
control’s maximum setting.

You can use the SetControlValue procedure to change the control’s setting and
redraw the control accordingly. You can use the SetControlMaximum procedure to
change a control’s maximum setting and to redraw the indicator or scroll box to reflect
the new setting.

In response to user action involving a control, your application often needs to change the
setting and possibly redraw the control. When the user clicks a checkbox, for example,
your application must determine whether the checkbox is currently selected or not, and
then switch its setting. When you use SetControlValue to switch a checkbox setting,
the Control Manager either draws or removes the X inside the checkbox, as appropriate.
When the user clicks a radio button, your application must determine whether the radio
button is already on and, if not, turn the previously selected radio button off and turn
the newly selected radio button on.

Figure 5-15 on page 5-34 shows a checkbox in the Play Sounds window. When the user
clicks the checkbox to turn it on, the application adds a drum roll to the sound it plays
whenever the user clicks the Play button.

Listing 5-13 shows the application-defined routine DoDrumRollCheckBox , which
responds to a click in a checkbox. This routine uses the GetControlValue function to
determine the last value of the checkbox and then uses the SetControlValue
procedure to change it. The GetControlValue function returns a control’s current
setting, which is stored in the contrlValue field of the control record. The
SetControlValue procedure sets the contrlValue field to the specified value and
redraws the control to reflect the new setting. (For checkboxes and radio buttons, the
value 1 fills the control with the appropriate mark, and the value 0 removes the mark.
For scroll bars, SetControlValue redraws the scroll box at the appropriate position
along the scroll bar. For a pop-up menu, SetControlValue displays in its pop-up box
the name of the menu item corresponding to the specified value.)

Listing 5-13 Responding to a click in a checkbox

PROCEDURE DoDrumRollCheckBox (mouse: Point; control: ControlHandle);

VAR

checkbox: Integer;

BEGIN

IF TrackControl(control, mouse, NIL) <> 0 THEN {user clicks checkbox}

BEGIN

checkbox := GetControlValue(control); {get last value of checkbox}

checkbox := 1 - checkbox; {toggle value of checkbox}

CHAPTER 5

Control Manager

Using the Control Manager 5-39

SetControlValue(control, checkbox); {set checkbox to new value}

IF checkbox = 1 THEN {the checkbox is checked}

gPlayDrumRoll := TRUE {play a drum roll next time user clicks Play}

ELSE

gPlayDrumRoll := FALSE;

END;

END;

The DoDrumRollCheckBox routine uses TrackControl to determine which control
the user selects. When TrackControl reports that the user clicks the checkbox,
DoDrumRollCheckBox uses GetControlValue to determine whether the user last
selected the checkbox (that is, whether the control has a current setting of 1) or
deselected it (in which case, the control has a current setting of 0). By subtracting the
control’s current setting from 1, DoDrumRollCheckBox toggles to a new setting
and then uses SetControlValue to assign this new setting to the checkbox. The
SetControlValue procedure changes the current setting of the checkbox and redraws
it appropriately, by either drawing an X in the box if the new setting of the control is 1 or
removing the X if the new setting of the control is 0.

Listing 5-4 on page 5-23 shows the control resources that specify a window’s scroll bars,
and Listing 5-5 on page 5-24 shows an application’s DoNew routine for creating a
document window with these scroll bars. This routine uses the GetNewControl
function to create the scroll bars and then calls an application-defined routine,
MyAdjustScrollBars . Listing 5-14 shows MyAdjustScrollBars , which in turn
calls other application-defined routines that determine the proper sizes, locations,
and maximum settings of the scroll bars.

Listing 5-14 Adjusting scroll bar settings and locations

PROCEDURE MyAdjustScrollBars (window: WindowPtr;
resizeScrollBars: Boolean);

VAR
myData: MyDocRecHnd;

BEGIN
myData := MyDocRecHnd(GetWRefCon(window));
HLock(Handle(myData));
WITH myData^^ DO
BEGIN

HideControl(vScrollBar); {hide the vertical scroll bar}
HideControl(hScrollBar); {hide the horizontal scroll bar}
IF resizeScrollBars THEN {move and size if needed}

MyAdjustScrollSizes(window);
MyAdjustScrollValues(window, NOT resizeScrollBars);
ShowControl(vScrollBar); {show the vertical scroll bar}
ShowControl(hScrollBar); {show the horizontal scroll bar}

END;
HUnLock(Handle(myData));

END; {of MyAdjustScrollbars}

CHAPTER 5

Control Manager

5-40 Using the Control Manager

When calling the DoOpen routine to open an existing document in a window,
SurfWriter also uses this MyAdjustScrollBars procedure to size and adjust the
scroll bars. When the user changes the window’s size, the SurfWriter application
uses MyAdjustScrollBars again.

The MyAdjustScrollBars routine begins by getting a handle to the window’s
document record, which stores handles to the scroll bars as well as other relevant data
about the document. (See the chapter “Window Manager” in this book for information
about creating your application’s own document record for a window.)

Before making any adjustments to the scroll bars, MyAdjustScrollBars passes the
handles to these controls to the Control Manager procedure HideControl , which
makes the controls invisible. The MyAdjustScrollBars routine then calls another
application-defined procedure, MyAdjustScrollSizes (shown in Listing 5-24 on
page 5-67), to move and resize the scroll bars appropriately. After calling yet another
application-defined procedure, MyAdjustScrollValues , to set appropriate current
and maximum settings for the scroll bars, MyAdjustScrollBars uses the Control
Manager procedure ShowControl to display the scroll bars in their new locations.

Listing 5-15 shows how the MyAdjustScrollValues procedure calls another
application-defined routine, MyAdjustHV , which uses Control Manager routines to
assign appropriate settings to the scroll bars.

Listing 5-15 Assigning settings to scroll bars

PROCEDURE MyAdjustScrollValues (window: WindowPtr);

VAR

myData: MyDocRecHnd;

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH myData^^ DO

BEGIN

MyAdjustHV(TRUE, vScrollBar, editRec);

MyAdjustHV(FALSE, hScrollBar, editRec);

END;

HUnLock(Handle(myData));

END; {of MyAdjustScrollValues}

To prevent the user from scrolling past the edge of the document and seeing a blank
window, you should limit the scroll bars’ maximum settings, as illustrated in Figure 5-6
on page 5-10. If the window is larger than the document (which can easily happen with
small documents on large monitors), your application should make the maximum scroll
bar settings identical to their minimum settings. In this case, the Control Manager then
makes the scroll bars inactive, which is appropriate when all the information fits in
the window.

CHAPTER 5

Control Manager

Using the Control Manager 5-41

Listing 5-16 shows the application-defined MyAdjustHV procedure, used for adjusting
the current and maximum settings for a scroll bar. When passed TRUE in the isVert
parameter, MyAdjustHV calculates and adjusts the maximum and current settings for
the vertical scroll bar; when passed FALSE, it calculates and adjusts those settings for the
horizontal scroll bar.

In this example, the document consists of monostyled text stored in a TextEdit edit
record. The viewRect field of a TextEdit edit record specifies the rectangle where the
text is visible; because viewRect already excludes the scroll bar regions, MyAdjustHV
does not need to subtract the scroll bar regions from the window height or width when
calculating the maximum settings for these scroll bars. (For more information about
TextEdit in general and the edit record in particular, see Inside Macintosh: Text.)

Listing 5-16 Adjusting the maximum and current settings for a scroll bar

PROCEDURE MyAdjustHV (isVert: Boolean; control: ControlHandle;

 editRec: TEHandle);

VAR

oldValue, oldMax, width: Integer;

max, lines, value: Integer;

BEGIN

{calculate new maximum and current settings for the vertical or }

{ horizontal scroll bar}

oldMax := GetControlMaximum(control);

oldValue := GetControlValue(control);

MyGetDocWidth(width);

IF isVert THEN {adjust max setting for the vertical scroll bar}

BEGIN

lines := editRec^^.nLines;

{since nLines isn't right if the last character is a carriage }

{ return, check for that case}

IF Ptr(ORD(editRec^^.hText^) + editRec^^.teLength - 1)^ = kCRChar THEN

lines := lines + 1;

max := lines - ((editRec^^.viewRect.bottom - editRec^^.viewRect.top)

 DIV editRec^^.lineHeight);

END

ELSE {adjust max setting for the horizontal scroll bar}

max := width - (editRec^^.viewRect.right - editRec^^.viewRect.left);

IF max < 0 THEN

max := 0; {check for negative settings}

SetControlMaximum(control, max); {set the max value of the control}

IF isVert THEN {adjust current setting for vertical scroll bar}

value := (editRec^^.viewRect.top - editRec^^.destRect.top)

 DIV editRec^^.lineHeight

CHAPTER 5

Control Manager

5-42 Using the Control Manager

ELSE {adjust current setting for the horizontal scroll bar}

value := editRec^^.viewRect.left - editRec^^.destRect.left;

IF value < 0 THEN

value := 0

ELSE IF value > max THEN

value := max; {don't allow current setting to be greater than the }

{ maximum setting}

SetControlValue(control, value);

END; {of MyAdjustHV}

The MyAdjustHV routine first uses the GetControlMaximum and GetControlValue
functions to determine the maximum and current settings for the scroll bar
being adjusted.

Then MyAdjustHV calculates a new maximum setting for the case of a vertical scroll bar.
Because the window displays a text-only document, MyAdjustHV uses the nLines field
of the edit record to determine the total number of lines in—and hence, the length of—
the document. Then MyAdjustHV subtracts the calculated height of the window from
the length of the document, and makes this value the maximum setting for the vertical
scroll bar.

To calculate the total height in pixels of the window, MyAdjustHV begins by subtracting
the top coordinate of the view rectangle from its bottom coordinate. (The upper-left
corner of a window is normally at point [0,0]; therefore the vertical coordinate of a
point at the bottom of a rectangle has a larger value than a point at the top of the
rectangle.) Then MyAdjustHV divides the pixel height of the window by the value of
the edit record’s lineHeight field, which for monostyled text specifies the document’s
line height in pixels. By dividing the window height by the line height of the text,
MyAdjustHV determines the window’s height in terms of lines of text.

The MyAdjustHV routine uses another application-defined routine, MyGetDocWidth ,
to determine the width of the document. To calculate the width of the window,
MyAdjustHV subtracts the left coordinate of the view rectangle from its right coordinate.
By subtracting the window width from the document width, MyAdjustHV derives the
maximum setting for the horizontal scroll bar.

For both vertical and horizontal scroll bars, MyAdjustHV assigns a maximum setting of
0 whenever the window is larger than the document—for instance, when a window is
created for a new document that contains no data yet. In this case, MyAdjustHV assigns
the same value, 0, to both the maximum and current settings for the scroll bar. The
standard control definition function for scroll bars automatically makes a scroll bar
inactive when its minimum and maximum settings are identical. This is entirely
appropriate, because whenever the user has nowhere to scroll, the scroll bar should be
inactive. When you make the maximum setting exceed the minimum, the control
definition function makes the scroll bar active again.

The MyAdjustHV routine then uses the Control Manager procedure
SetControlMaximum to assign the newly calculated maximum settings to either
scroll bar. The SetControlMaximum procedure revises the control to reflect the new
maximum setting; for example, if the user deletes a large portion of the document,

CHAPTER 5

Control Manager

Using the Control Manager 5-43

thereby reducing the maximum setting, SetControlMaximum moves the scroll box
to indicate the new position relative to the smaller document.

When the user adds information to or removes information from a document or adjusts
its window size, your application may need to adjust the current setting of the scroll bar
as well. The MyAdjustHV routine calculates a new current setting for the control and
then uses SetControlValue to assign that setting to the control as well as to reposition
the scroll box accordingly.

The destination rectangle, specified in the destRect field of the edit record, is the
rectangle in which the text is drawn, whereas the view rectangle is the rectangle in which
the text is actually visible. By subtracting the top coordinate of the destination rectangle
from the top coordinate of the view rectangle, and dividing the result by the line height,
MyAdjustHV derives the number of the line currently displayed at the top of the
window. This is the line number MyAdjustHV uses for the current setting of the vertical
scroll bar.

To derive the current setting of the horizontal scroll bar in terms of pixels, MyAdjustHV
subtracts the left coordinate of the destination rectangle from the left coordinate of the
view rectangle.

Scrolling Through a Document
Earlier sections of this chapter explain how to create scroll bars, determine when a
mouse-down event occurs in a scroll bar, track user actions in a scroll bar, and determine
and change scroll bar settings. This section discusses how your application actually
scrolls through documents in response to users’ mouse activity in the scroll bars. For
example, your application scrolls toward the bottom of the document under the
following conditions:

■ When the user drags the scroll box to the bottom of the vertical scroll bar, your
application should display the end of the user’s document.

■ When the user clicks the gray area below the scroll box, your application should move
the document up to display the next window of information toward the bottom of the
document, and it should use SetControlValue to move the scroll box.

■ When the user clicks the down scroll arrow, your application should move the
document up by one line (or by some similar measure) and bring more of the bottom
of the document into view, and it should use SetControlValue to move the
scroll box.

As a first step, your application must determine the distance by which to scroll. When
the user drags a scroll box to a new location on the scroll bar, you scroll a corresponding
distance to a new location in the document.

When the user clicks a scroll arrow, your application determines an appropriate amount
to scroll. In general, a word processor scrolls vertically by one line of text and horizon-
tally by the average character width, and a database or spreadsheet scrolls by one field.
Graphics applications should scroll to display an entire object when possible. (Typically,
applications convert these distances to pixels when using Control Manager, QuickDraw,
and TextEdit routines.)

CHAPTER 5

Control Manager

5-44 Using the Control Manager

When the user clicks a gray area of a scroll bar, your application should scroll by a
distance of just less than the height or width of the window. To determine this height
and width, you can use the contrlOwner field of the scroll bar’s control record. This
field contains a pointer to the window record. When you scroll by a distance of one
window, it is best to retain part of the previous window. This retained portion helps the
user place the material in context. For example, if the user scrolls down by a distance of
one window in a text document, the line at the top of the window should be the one that
previously appeared at the bottom of the window.

The scrolling direction is determined by whether the scrolling distance is expressed as a
positive or negative number. When the user scrolls down or to the right, the scrolling
distance is a negative number; when the user scrolls up or to the left, the scrolling
distance is a positive number. For example, when the user scrolls from the beginning of a
document to a line located 200 pixels down, the scrolling distance is –200 pixels on the
vertical scroll bar. When the user scrolls from there back to the start of the document, the
scrolling distance is 200 pixels.

Determining the scrolling distance is only the first step. In brief, your application should
take the following steps to scroll through a document in response to the user’s
manipulation of a scroll bar.

1. Use the FindControl , GetControlValue , and TrackControl functions to help
calculate the scrolling distance.

2. If you are scrolling for any reason other than the user dragging the scroll box, use the
SetControlValue procedure to move the scroll box a corresponding amount.

3. Use a routine—such as the QuickDraw procedure ScrollRect or the TextEdit
procedure TEPinScroll —to move the bits displayed in the window by the
calculated scrolling distance. Then either use a call that generates an update event
or else directly call your application’s DoUpdate routine, which should perform
the rest of these steps.

4. Use the UpdateControls procedure to update the scroll bars and then call the
Window Manager procedure DrawGrowIcon to redraw the size box.

5. Use the QuickDraw procedure SetOrigin to change the window origin by an
amount equal to the scroll bar settings so that the upper-left corner of the document
lies at (0,0) in the window’s local coordinate system. (You perform this step so that
your application’s document-drawing routines can draw in the correct area of the
window.)

6. Call your application’s routines for redrawing the document inside the window.

7. Use the SetOrigin procedure to reset the window origin to (0,0) so that future
Window Manager and Control Manager routines draw in the correct area of the
window.

8. Return to your event loop.

These steps are explained in greater detail in the rest of this section.

CHAPTER 5

Control Manager

Using the Control Manager 5-45

Note
It is not necessary to use SetOrigin as described in the rest of this
chapter. This procedure merely helps you to offset the window origin
by the scroll bars’ current settings when you update the window, so
that you can locate objects in a document using a coordinate system
where the upper-left corner of the document is always at (0,0). As an
alternative to this approach, your application can leave the upper-left
corner of the window (called the window origin) located at (0,0) and
instead offset the items in your document by an amount equal to the
scroll bars’ settings. The QuickDraw procedures OffsetRect ,
OffsetRgn , SubPt , and AddPt , which are described in Inside
Macintosh: Imaging, are useful if you pursue this alternate approach. ◆

When the user saves a document, your application should store the data in your own
application-defined data structures. (For example, the sample code in this chapter
stores a handle to a TextEdit edit record in a document record. The edit record contains
information about the text, such as it length and its own local coordinate system, and
a handle to the text itself.) You typically store information about the objects your
application displays onscreen by using coordinates local to the document, where the
upper-left corner of the document is located at (0,0).

The left side of Figure 5-16 on the next page illustrates a case in which the user has just
opened an existing document, and the SurfWriter sample application displays the top of
the document. In this example, the document consists of 35 lines of monostyled text, and
the line height throughout is 10 pixels. Therefore, the document is 350 pixels long. When
the user first opens the document, the window origin is identical to the upper-left point
of the document’s space: both are at (0,0).

In this example, the window displays 15 lines of text, which amount to 150 pixels.
Hence, the maximum setting for the scroll bar is 200 because the vertical scroll bar’s
maximum setting is the length of the document minus the height of its window.

Imagine that the user drags the scroll box halfway down the vertical scroll bar. Because
the user wishes to scroll down, the SurfWriter application must move the text of the
document up so that more of the bottom of the document shows. Moving a document up
in response to a user request to scroll down requires a scrolling distance with a negative
value. (Likewise, moving a document down in response to a user request to scroll up
requires a scrolling distance with a positive value.)

Using FindControl , TrackControl , and GetControlValue , the SurfWriter
application determines that it must move the document up by 100 pixels—that is,
by a scrolling distance of –100 pixels. (Using FindControl , TrackControl , and
GetControlValue to determine the scrolling distance is explained in detail in
“Scrolling in Response to Events in the Scroll Box” beginning on page 5-53.)

CHAPTER 5

Control Manager

5-46 Using the Control Manager

Figure 5-16 Moving a document relative to its window

The SurfWriter application then uses the QuickDraw procedure ScrollRect to shift
the bits displayed in the window by a distance of –100 pixels. The ScrollRect
procedure moves the document upward by 100 pixels (that is, by 10 lines); 5 lines from
the bottom of the previous window display now appear at the top of the window,
and the SurfWriter application adds the rest of the window to an update region for
later updating.

The ScrollRect procedure doesn’t change the coordinate system of the window;
instead it moves the bits in the window to new coordinates that are still in the window’s
local coordinate system. For purposes of updating the window, you can think of this
as changing the coordinates of the entire document, as illustrated in the right side of
Figure 5-16.

The ScrollRect procedure takes four parameters: a rectangle to scroll, a horizontal
distance to scroll, a vertical distance to scroll, and a region handle. Typically, when
specifying the rectangle to scroll, your application passes a value representing the
content region minus the scroll bar regions, as shown in Listing 5-17.

CHAPTER 5

Control Manager

Using the Control Manager 5-47

Listing 5-17 Using ScrollRect to scroll the bits displayed in the window

PROCEDURE DoGraphicsScroll (window: WindowPtr;

 hDistance, vDistance: Integer);

VAR

myScrollRect: Rect;

updateRegion: RgnHandle;

BEGIN

{ initially, use the window's portRect as the rectangle to scroll}

myScrollRect := window^.portRect ;

{ subtrac t v ertical and horizontal scroll bars from rectangle}

myScrollRect.right := myScrollRect.right - 15;

myScrollRect.bottom := myScrollRect.bottom - 15;

updateRegion := NewRgn; {always in i tialize the update region}

ScrollRect(myScrollRect, hDistance, vDistance, updateRegion);

InvalRgn(updateRegion);

DisposeRgn(updateRegion);

END; {of DoGraphicsScroll}

IMPORTANT

You must first pass a horizontal distance as a parameter to ScrollRect
and then pass a vertical distance. Notice that when you specify a point
in the QuickDraw coordinate system, the opposite is true: you name the
vertical coordinate first and the horizontal coordinate second. ▲

Although each scroll bar is 16 pixels along its shorter dimension, the
DoGraphicsScroll procedure shown in Listing 5-17 subtracts only 15 pixels
because the edge of the scroll bar overlaps the edge of the window frame, leaving
only 15 pixels of the scroll bar in the content region of the window.

The bits that ScrollRect shifts outside of the rectangle specified by myScrollRect
are not drawn on the screen, and they are not saved—it is your application’s
responsibility to keep track of this data.

The ScrollRect procedure shifts the bits a distance of hDistance pixels horizontally
and vDistance pixels vertically; when DoGraphicsScroll passes positive values in
these parameters, ScrollRect shifts the bits in the myScrollRect parameter to the
right and down, respectively. This is appropriate when the user intends to scroll left or
up, because when the SurfWriter application finishes updating the window, the user sees
more of the left and top of the document, respectively. (Remember: to scroll up or left,
move the document down or right, both of which are in the positive direction.)

When DoGraphicsScroll passes negative values in these parameters, ScrollRect
shifts the bits in the myScrollRect parameter to the left or up. This is appropriate
when the user intends to scroll right or down, because when the SurfWriter application
finishes updating the window, the user sees more of the right and the bottom of the
document. (Remember: to scroll down or right, move the document up or left, both of
which are in the negative direction.)

CHAPTER 5

Control Manager

5-48 Using the Control Manager

In Figure 5-16, the SurfWriter application determines a vertical scrolling distance of –100,
which it passes in the vDistance parameter as shown here:

ScrollRect(myScrollRect, 0, –100, updateRegion);

If, however, the user were to move the scroll box back to the beginning of the document
at this point, the SurfWriter application would determine that it has a distance of
100 pixels to scroll up, and it would therefore pass a positive value of 100 in the
vDistance parameter.

After using ScrollRect to move the bits that already exist in the window, the
SurfWriter application should draw the bits in the update region of the window by using
its standard window-updating code.

As previously explained, ScrollRect in effect changes the coordinates of the document
relative to the local coordinates of the window. In terms of the window’s local coordinate
system, the upper-left corner of the document is now at (–100, 0), as shown on the right
side of Figure 5-16. To facilitate updating the window, the SurfWriter application uses
the QuickDraw procedure SetOrigin to change the local coordinate system of the
window so that the SurfWriter application can treat the upper-left corner of the
document as again lying at (0,0).

The SetOrigin procedure takes two parameters: the first is a new horizontal coordinate
for the window origin, and the second is a new vertical coordinate for the window origin.

IMPORTANT

Like ScrollRect , SetOrigin requires you to pass a horizontal
coordinate and then a vertical coordinate. Notice that when you
specify a point in the QuickDraw coordinate system, the opposite
is true: you name the vertical coordinate first and the horizontal
coordinate second. ▲

Any time you are ready to update a window (such as after scrolling it), you can use
GetControlValue to determine the current setting of the horizontal scroll bar and
pass this value as the new horizontal coordinate for the window origin. Then use
GetControlValue to determine the current setting of the vertical scroll bar and pass
this value as the new vertical coordinate for the window origin. Using SetOrigin in
this fashion shifts the window’s local coordinate system so that the upper-left corner of
the document is always at (0,0) when you redraw the document within its window.

For example, after the user manipulates the vertical scroll bar to move (either up or
down) to a location 100 pixels from the top of the document, the SurfWriter application
makes the following call:

SetOrigin(0, 100);

Although the scrolling distance was –100, which is relative, the current setting for the
scroll bar is now at 100. (Because you specify a point in the QuickDraw coordinate
system by its vertical coordinate first and then its horizontal coordinate, the order of
parameters to SetOrigin may be initially confusing.)

CHAPTER 5

Control Manager

Using the Control Manager 5-49

The left side of Figure 5-17 shows how the SurfWriter application uses the SetOrigin
procedure to move the window origin to the point (100,0) so that the upper-left corner of
the document is now at (0,0) in the window’s local coordinate system. This restores the
document’s original coordinate space and makes it easier for the application to draw in
the update region of the window.

Figure 5-17 Updating the contents of a scrolled window

After restoring the document’s original coordinates, the SurfWriter application updates
the window, as shown on right side of Figure 5-17. The application draws lines 16
through 24, which it stores in its document record as beginning at (160,0) and ending
at (250,0).

To review what has happened up to this point: the user has dragged the scroll box
one-half of the distance down the vertical scroll bar; the SurfWriter application
determines that this distance amounts to a scroll distance of –100 pixels; the SurfWriter
application passes this distance to ScrollRect , which shifts the bits in the window
100 pixels upward and creates an update region for the rest of the window; the
SurfWriter application passes the vertical scroll bar’s current setting (100 pixels) in a
parameter to SetOrigin so that the document’s local coordinates are used when the
update region of the window is redrawn; and, finally, the SurfWriter application draws
the text in the update region of the window.

However, the window origin cannot be left at (100,0); instead, the SurfWriter application
must use SetOrigin to reset it to (0,0) after performing its own drawing, because the

CHAPTER 5

Control Manager

5-50 Using the Control Manager

Window and Control Managers always assume the window’s upper-left point is at (0,0)
when they draw in a window. Figure 5-18 shows how the application uses SetOrigin
to set the window origin back to (0,0) at the conclusion of its window-updating routine.
After the update, the application begins processing events in its event loop again.

Figure 5-18 Restoring the window origin to (0,0)

The left side of Figure 5-19 illustrates what happens when the user scrolls all the way
to the end of the document—a distance of another 10 lines, or 100 pixels. After the
SurfWriter application calls ScrollRect , the bottom 5 lines from the previous window
display appear at the top of the new window and the bottom of the window becomes
a new update region. Because the user has scrolled a total distance of 200 pixels, the
application uses SetOrigin to change the window origin to (200,0), as shown on the
right side of Figure 5-19.

The left side of Figure 5-20 shows the SurfWriter application drawing in the update
region of the window; the right side of the figure shows the SurfWriter application
restoring the window origin to (0,0).

CHAPTER 5

Control Manager

Using the Control Manager 5-51

Figure 5-19 Scrolling to the end of a document

Figure 5-20 Updating a window’s contents and returning the window origin to (0,0)

CHAPTER 5

Control Manager

5-52 Using the Control Manager

How your application determines a scrolling distance and how it then moves the bits in
the window by this distance are explained in greater detail in the next two sections,
“Scrolling in Response to Events in the Scroll Box” and “Scrolling in Response to Events
in Scroll Arrows and Gray Areas.” “Drawing a Scrolled Document Inside a Window,”
which follows these two sections, describes what your application should do in its
window-updating code to draw in a window that has been scrolled. You can find more
detailed information about the SetOrigin and ScrollRect procedures in Inside
Macintosh: Imaging.

So far, this discussion has assumed that you are scrolling in response to the user’s
manipulation of a scroll bar. Most of the time, the user decides when and where to scroll.
However, in addition to user manipulation of scroll bars, there are four cases in which
your application must scroll through the document. Your application design must take
these cases into account.

■ When your application performs an operation whose side effect is to make a new
selection or move the insertion point, you should scroll to show the new selection. For
example, when the user invokes a search operation, your application locates the
desired text. If this text appears in a part of the document that isn’t currently visible,
you should scroll to show the selection. Such scrolling might also be necessary after
the user invokes a paste operation. If the insertion point appears after the end of
whatever was pasted, scroll until the selection and the new insertion point are visible.

■ When the user enters information from the keyboard at the edge of a window, you
should scroll to incorporate and display the new information. The user’s focus will be
on the new information, so it doesn’t make sense to maintain the document’s position
and record the new information out of the user’s view. In general, a word processor
scrolls one line of text, and a database or spreadsheet scrolls one field. Graphics
applications should scroll to display an entire object when possible. Otherwise,
determine how quickly your application can redraw the window contents during
scrolling and adjust the scrolling to minimize blinking and redrawing. Try to ensure
that the scrolling is sufficiently fast so as not to annoy users but not so fast as to
confuse them.

■ When the user moves the cursor past the edge of the window while holding down the
mouse button to make an extended selection, you should scroll the window in the
direction of cursor movement. The rate of scrolling can be the same as if the user were
holding down the mouse button on the corresponding scroll arrow. In some cases it
makes sense to vary the scrolling speed so that it is faster as the user moves the cursor
farther away from the edge of the window.

■ Sometimes the user selects something, scrolls to a new location, and then tries to
perform an operation on the selection. In this case, you should scroll so that the
selection is showing before your application performs the operation. Showing the
selection makes it clear to the user what is being changed.

When designing the document-scrolling routines for your application, also try to keep
the following user interface guidelines in mind:

■ Whenever your application scrolls automatically, avoid unnecessary scrolling. Users
want to control the position of documents, so your application should move a
document only as much as necessary. Thus, if part of a selection is already showing in
a window, don’t scroll at all. One exception to this rule is when the hidden part of the

CHAPTER 5

Control Manager

Using the Control Manager 5-53

selection is more important than the visible part; then scroll to show the important
part. For example, suppose a user selects a large block of text and only the bottom is
currently visible. If the user then types a character, your application must scroll to the
location of the newly typed characters so that they are visible.

■ If your application can scroll in one orientation to reveal the selection, don’t scroll in
both orientations. That is, if you can scroll vertically to show the selection, don’t also
scroll horizontally.

■ When you can show context on either side of a selection, it’s useful to do so. It’s
also better to position a selection somewhere near the middle of a window than
against a corner. When the selection is too large to fit in the window, it’s helpful to
display unselected information at either the beginning or the end of the selection
to provide context.

Scrolling in Response to Events in the Scroll Box

“Responding to Mouse Events in a Control” beginning on page 5-30 describes in
general how to use FindControl and TrackControl in your event-handling code.
Listing 5-18 shows how to use these routines to respond in particular to mouse events
in a scroll bar.

Listing 5-18 Responding to mouse events in a scroll bar

PROCEDURE DoContentClick (window: Wi ndowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

myData: MyDocRecHnd;

oldSetting: Integer ;

scrollDistance: Integer;

windowType: Integer;

BEGIN

windowType := MyGetWindowType (window) ;

CASE windowType OF

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon (window)) ;

HLock(Handle(myData));

mouse : = event.where;

GlobalToLocal (mouse) ; {convert to local coordinates}

part := FindControl(mouse, window, control);

CASE part OF

{handle all other parts first; handle scroll bar parts last}

inThumb: {mous e-down i n scroll box}

CHAPTER 5

Control Manager

5-54 Using the Control Manager

BEGIN {get scroll bar setting}

oldSetting := GetControlValue(control) ;

{ let user drag scroll box around}

part := TrackControl(control, mouse, NIL) ;

{ until user releases mouse button }

I F par t = inThumb T HEN

BEGIN {get new distance to scroll}

scrollDistance : = o ldSetting - GetControlValue(control) ;

I F scrollDistance <> 0 THE N

I F control = myData^^.vScrollBar THE N

TEPinScroll(0, scrollDistance *

myData^^.editRec^^.lineHeight,

myData^^.editRec) ;

ELSE

TEPinScroll(scrollDistance, 0 , m yData^^.editRec) ;

END; {of handling mouse-up in scroll box}

END; {of handling mouse-down in scroll box }

inUpButton, inDownButton, inPageUp, in PageDown:

{mouse-down in s croll arrows or gray areas }

IF control = myData^^.vScrollBar THEN

{handle vertical scroll}

part := TrackControl(control, mouse, @MyVerticalActionProc)

ELSE {handle horizontal scroll}

part := TrackControl(control, mouse, @MyHorzntlActionProc) ;

OTHERWISE ;

END; {of CASE part}

HUnLock(Handle(myData));

END; {of kMyDocWindowType}

{handle other window types here}

END; {of CASE windowType}

END;

When the user presses the mouse button while the cursor is in a visible, active scroll box,
FindControl returns as its result the part code for a scroll box. That part code and the
constant you can use to represent it are listed here:

As shown in Listing 5-18, when FindControl returns the value for inThumb , your
application should immediately call GetControlValue to determine the current
setting of the scroll bar. If the user drags the scroll box, you subtract from this setting the
new current setting that becomes available when the user releases the mouse button, and
you use this result for your scrolling distance.

Constan t Part code Control part

inThumb 129 Scroll box

CHAPTER 5

Control Manager

Using the Control Manager 5-55

After using GetControlValue to determine the current setting of the scroll bar, use
TrackControl to follow the movements of the cursor inside the scroll box and to drag
a dotted outline of the scroll box in response to the user’s movements.

When the user releases the mouse button, TrackControl returns inThumb if the cursor
is still in the scroll box or 0 if the cursor is outside the scroll box. When TrackControl
returns 0, your application does nothing. Otherwise, your application again uses
GetControlValue to calculate the distance to scroll.

Calculate the distance to scroll by calling GetControlValue and subtracting the new
current setting of the scroll bar from its previous setting, which you determine by calling
GetControlValue before the user releases the mouse button. If this distance is not 0,
you should move the bits in the window by this distance and update the contents of the
rest of the window.

Before scrolling, you must determine if the scroll bar is a vertical scroll bar or a horizon-
tal scroll bar. As previously explained in this chapter, you should store handles to your
scroll bars in a document record, one of which you create for every document. By
comparing the field containing the vertical scroll bar handle, you can determine whether
the control handle returned by FindControl is the handle to the vertical scroll bar. If
so, the user has moved the scroll box of the vertical scroll box. If not, the user has moved
the scroll box of the horizontal scroll bar.

After determining which scroll bar contains the scroll box that the user has dragged, you
move the document contents of the window by the appropriate scrolling distance. That
is, for a positive scrolling distance in the vertical scroll bar, move the bits in the window
down by that distance. When you update the window, this displays more lines from the
top of the document—which is appropriate when the user moves the scroll box up. For a
positive scrolling distance in the horizontal scroll bar, move the bits in the window to the
right by that distance. When you update the window, this displays more lines from the
left side of the document—which is appropriate when the user moves the scroll box to
the left. (Remember: to scroll up or left, move the document down or right, both of which
are in the positive direction.)

For a negative scrolling distance in the vertical scroll bar (such as that shown in
Figure 5-16 on page 5-46), move the bits in the window up by that distance. When you
update the window, this displays more lines from the bottom of the document—which
is appropriate when the user moves the scroll box down. For a negative scrolling distance
in the horizontal scroll bar, move the bits in the window to the left by that distance.
When you update the window, this displays more lines from the right side of the
document—which is appropriate when the user moves the scroll box to the right.
(Remember: to scroll down or right, move the document up or left, both of which are in
the negative direction.)

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store monostyled text created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the
TEPinScroll procedure scrolls through the text in the view rectangle of an edit record
by the number of pixels specified by your application; TEPinScroll stops scrolling
when the last line scrolls into the view rectangle.

CHAPTER 5

Control Manager

5-56 Using the Control Manager

The TEPinScroll procedure takes three parameters: the number of pixels to move the
text horizontally, the number of pixels to move the text vertically, and a handle to an edit
record. Positive values in the first two parameters move the text right and down,
respectively, and negative values move the text left and up.

The DoContentClick procedure, illustrated in Listing 5-18 on page 5-53, passes the
scrolling distance in the second parameter of TEPinScroll for a vertical scroll bar, and
it passes the scrolling distance in the first parameter for a horizontal scroll bar.

Listing 5-16 on page 5-41 shows an application-defined routine, MyAdjustHV , called by
the SurfWriter sample application whenever it creates, opens, or resizes a window. This
routine defines the current and maximum settings for a vertical scroll bar in terms of
lines of text.

The DoContentClick procedure on page 5-53 uses GetControlValue to determine
the control’s current setting—which for the vertical scroll bar DoContentClick
calculates as some number of lines. When determining the vertical scroll bar’s scrolling
distance, DoContentClick again calculates a value representing some number of lines.

However, TEPinScroll expects pixels, not lines, to be passed in its parameters. There-
fore, DoContentClick multiplies the scrolling distance (which it calculates as some
number of lines of text) by the line height (which is maintained in the edit record for
monostyled text as some number of pixels). In this way, DoContentClick passes a
scrolling distance—in terms of pixels—to TEPinScroll , as shown in this code fragment.

IF control = myData^^.vScrollBar THEN

TEPinScroll(0, scrol lDistance * myData^^.editRec^^.lineHeight,

myData^^.editRec);

Figure 5-16 on page 5-46 illustrates a scrolling distance of –10 lines. If the line height
is 10 pixels, the SurfWriter application passes –100 as the second parameter to
TEPinScroll .

The TEPinScroll procedure adds the scrolled-away area to the update region and
generates an update event so that the text in the edit record’s view rectangle can be
updated. In its code that handles update events for windows, the SurfWriter sample
application then uses the TEUpdate procedure—as described in “Drawing a Scrolled
Document Inside a Window” beginning on page 5-62— for its windows that include
TextEdit edit records.

To learn more about TEPinScroll , the TextEdit edit record, and other facilities offered
by TextEdit, see Inside Macintosh: Text.

The QuickDraw procedure ScrollRect is a more general-purpose routine for moving
bits in a window when scrolling. If you use ScrollRect to scroll the bits displayed
in the window, you should define a routine like DoGraphicsScroll , shown in
Listing 5-17 on page 5-47, and use it instead of TEPinScroll , which is used in
Listing 5-18 on page 5-53.

The ScrollRect procedure returns in the updateRegion parameter the area that
needs to be updated. The DoGraphicsScroll procedure shown in Listing 5-17 on
page 5-47 then uses the QuickDraw procedure InvalRgn to add this area to the update

CHAPTER 5

Control Manager

Using the Control Manager 5-57

region, forcing an update event. In your code for handling update events, you draw in
the area of the window from which ScrollRect has moved the bits, as described in
“Drawing a Scrolled Document Inside a Window” beginning on page 5-62.

When a mouse-down event occurs in the scroll arrows or gray areas of the vertical
scroll bar, the DoContentClick routine in Listing 5-18 on page 5-53 calls
TrackControl and passes it a pointer to an application-defined action procedure
called MyVerticalActionProc . For the horizontal scroll bar, DoContentClick
calls TrackControl and passes it a pointer to an action procedure called
MyHorzntlActionProc . These action procedures are described in the next section.

Scrolling in Response to Events in Scroll Arrows and Gray Areas

With each click in a scroll arrow, your application should scroll by a distance of one
unit (that is, by a single line, character, cell, or whatever your application deems
appropriate) in the chosen direction. When the user holds the mouse button down
while the cursor is in a scroll arrow, your application should scroll continuously by
single units until the user releases the mouse button or until your application has
scrolled as far as possible in the document.

With each click in a gray area, your application should scroll in the appropriate direction
by a distance of just less than the height or width of one window to show part of the
previous window (thus placing the newly displayed material in context). When the user
holds the mouse button down while the cursor is in a gray area, your application should
scroll continuously in units of this distance until the user releases the mouse button or
until your application has scrolled as far as possible in the document.

When your application finishes scrolling, it should use SetControlValue to move the
scroll box accordingly.

As previously described in this chapter, you use FindControl to determine when a
mouse-down event has occurred in a control in one of your windows, and you use
TrackControl to follow the movements of the cursor inside the control, to give the
user visual feedback, and then to inform your application when the user releases the
mouse button.

When a mouse-down event occurs in the scroll arrows or the gray areas of an active
scroll bar, FindControl returns as its result the appropriate part code. The part codes
for the scroll arrows and gray areas, and the constants you can use to represent them, are
listed here:

Constant Part code Control part

inUpButton 20 Up scroll arrow for a vertical scroll bar, left scroll arrow
for a horizontal scroll bar

inDownButton 21 Down scroll arrow for a vertical scroll bar, right scroll
arrow for a horizontal scroll bar

inPageUp 22 Gray area above scroll box for a vertical scroll bar, gray
area to left of scroll box for a horizontal scroll bar

inPageDown 23 Gray area below scroll box for a vertical scroll bar, gray
area to right of scroll box for a horizontal scroll bar

CHAPTER 5

Control Manager

5-58 Using the Control Manager

When FindControl returns one of these part codes, your application should
immediately call TrackControl . As long as the user holds down the mouse button
while the cursor is in a scroll arrow, TrackControl highlights the scroll arrow,
as shown in Figure 5-8 on page 5-12. When the user releases the mouse button,
TrackControl removes the highlighting.

For all of the other standard controls, as well as for the scroll box in a scroll bar, your
application doesn’t respond until TrackControl reports a mouse-up event in the same
control part where the mouse-down event initially occurred. However, for scroll arrows
and gray areas, your application must respond by scrolling the document before
TrackControl reports that the user has released the mouse button. When you call
TrackControl for scroll arrows and gray areas, you must define an action procedure
that scrolls appropriately until TrackControl reports that the user has released the
mouse button.

When the user releases the mouse button or moves the cursor away from the scroll
arrow or gray area, TrackControl returns as its result one of the previously listed
values that represent the control part. As shown in Listing 5-18 on page 5-53, the
DoContentClick procedure tests for the part codes inUpButton , inDownButton ,
inPageUp , and inPageDown to determine when a mouse-down event occurs in a
scroll arrow or a gray area.

When the user presses or holds down the mouse button while the cursor is in either
the scroll arrow or the gray area of the vertical scroll bar, DoContentClick calls
TrackControl and passes it a pointer to an application-defined action procedure
called MyVerticalActionProc . For the horizontal scroll bar, DoContentClick
calls TrackControl and passes it a pointer to an action procedure called
MyVerticalActionProc . In turn, TrackControl calls these action procedures to
scroll continuously until the user releases the mouse button.

Note

As an alternative to passing a pointer to your action procedure
in a parameter to TrackControl , you can use the
SetControlAction procedure to store a pointer to the action
procedure in the contrlAction field in the control record. When
you pass Pointer(–1) instead of a procedure pointer to
TrackControl , TrackControl uses the action procedure
pointed to in the control record. ◆

Listing 5-19 shows two sample action procedures: MyVerticalActionProc —which
responds to mouse events in the scroll arrows and gray areas of a vertical scroll bar—
and MyHorzntlActionProc —which responds to those same events in a horizontal
scroll bar. When TrackControl calls these action procedures, it passes a control handle
and an integer representing the part of the control in which the mouse event occurred.
Both MyVerticalActionProc and MyHorzntlActionProc use the constants
inUpButton , inDownButton , inPageUp , and inPageDown to test for the control part
passed by TrackControl .

CHAPTER 5

Control Manager

Using the Control Manager 5-59

Listing 5-19 Action procedures for scrolling through a text document

PROCEDURE MyVerticalActionProc (control: ControlHandle; part: Integer);

VAR

scrollDistance: Integer;

window: WindowPtr;

myData: MyDocRecHnd;

BEGIN

IF part <> 0 THEN

BEGIN

window := control^^.contrlOwner; {get the control's window}

myData := MyDocRecHnd(GetWRefCon(window)) ;

HLock(Handle(myData));

CASE part OF

inUpButton, inDownButton: {get one line to scroll}

scrollDistance := 1;

inPageUp, inPageDown: {get the window's height}

BEGIN

scrollDistance := (myData^^.editRec^^.viewRect.bottom -

myData^^.editRec^^.viewRect.top)

DIV myData^^.editRec^^.lineHeight;

{subtract 1 line so user sees part of previous window}

scrollDistance := scrollDistance - 1;

END;

END; {of part CASE}

IF (part = inDownButton) OR (part = inPageDown) THEN

scrollDistance := -scrollDistance;

MyMoveScrollBox(control, scrollDistance);

IF scrollDistance <> 0 THEN {scroll by line or by window}

TEPinScroll(0, scrollDistance * myData^^.editRec^^.lineHeight,

myData^^.editRec);

HUnLock(Handle(myData));

END;

END; {of MyVerticalActionProc}

PROCEDURE MyHorzntlActionProc (control: ControlHandle; part: Integer);

VAR

scrollDistance: Integer;

window: WindowPtr;

myData: MyDocRecHnd;

BEGIN

IF part <> 0 THEN

BEGIN

window := control^^.contrlOwner; {get the control's window}

CHAPTER 5

Control Manager

5-60 Using the Control Manager

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

CASE part OF

inUpButton, inDownButton: {get a few pixels}

scrollDistance := kButtonScroll;

inPageUp, inPageDown: {get a window's width}

scrollDistance := myData^^.editRec^^.viewRect.right -

 myData^^.editRec^^.viewRect.left;

END; {of part CASE}

IF (part = inDownButton) OR (part = inPageDown) THEN

scrollDistance := -scrollDistance;

MyMoveScrollBox(control, scrollDistance);

IF scrollDistance <> 0 THEN

TEPinScroll(scrollDistance, 0, myData^^.editRe c) ;

HUnLock(Handle(myData));

END;

END; {of MyHorzntlActionProc}

Each action procedure begins by determining an appropriate scrolling distance. For
the scroll arrows in a vertical scroll bar, MyVerticalActionProc defines the
scrolling distance as one line. For the gray areas in a vertical scroll bar,
MyVerticalActionProc determines the scrolling distance in lines by dividing the
window height by the line height; the window height is determined by subtracting
the bottom coordinate of the view rectangle (defined in the edit record) from its top
coordinate. Then MyVerticalActionProc subtracts 1 from this distance so that
when the user presses the mouse button while the cursor is in a gray area,
MyVerticalActionProc scrolls one line less than the total number of lines in
the window.

The MyVerticalActionProc procedure later multiplies these line distances by the
line height to derive pixel distances to pass in parameters to TEPinScroll . Also,
MyVerticalActionProc turns these distances into negative values when the
mouse-down event occurs in the lower scroll arrow or in the gray area below the
scroll box.

For the scrolling distance of the scroll arrows in horizontal scroll bars,
MyHorzntlActionProc uses a predetermined pixel distance—roughly the
document’s average character width. For the scrolling distance of the gray areas
MyHorzntlActionProc uses the window width (which is derived by
subtracting the left coordinate of the view rectangle from its right coordinate). The
MyHorzntlActionProc routine turns these distances into negative values when
the mouse-down event occurs in the right scroll arrow or in the gray area to the
right of the scroll box.

After calling MyMoveScrollBox , an application-defined routine that moves the scroll
box, both action procedures use TEPinScroll to move the text displayed in the
window by the scrolling distance. (In this example, the SurfWriter application is

CHAPTER 5

Control Manager

Using the Control Manager 5-61

scrolling a simple monostyled text document stored as a TextEdit edit record. For
a discussion of using the more general-purpose QuickDraw scrolling routine
ScrollRect , see the previous section, “Scrolling in Response to Events in the Scroll
Box” beginning on page 5-53.)

The TEPinScroll procedure automatically creates an update region and invokes an
update event. In its window-updating code, the SurfWriter application uses the
TEUpdate procedure to draw the text in the update region, as shown in Listing 5-23 on
page 5-65.

The action procedures continue moving the text by the specified distances over and over
until the user releases the mouse button and TrackControl completes. If there is no
more area to scroll through, TEPinScroll automatically stops scrolling, as your
application should if you implement your own scrolling routine.

Listing 5-20 shows how the application-defined procedure MyMoveScrollBox uses
GetControlValue , GetControlMaximum , and SetControlValue to move the scroll
box an appropriate distance while the action procedures scroll through the document.
The MyMoveScrollBox procedure uses GetControlMaximum to determine the
maximum scrolling distance, GetControlValue to determine the current setting for
the scroll box, and SetControlValue to assign the new setting and move the scroll
box. Use of the SetControlMaximum and SetControlValue routines is described in
“Determining and Changing Control Settings” beginning on page 5-37;
GetControlMaximum is described in detail on page 5-104.

Listing 5-20 Moving the scroll box from the action procedures

PROCEDURE MyMoveScrollBox (control: ControlHandle ;

 s crollDistance: Integer);

VAR

oldSetting, setting, max : I nteger;

BEGIN

oldSetting := GetControlValue(control); {get last setting}

max := GetControlMaximum(control); {get maximum setting}

{subtract action procs' scroll amount from last setting to get new setting}

setting := oldSetting - scrollDistance;

IF setting < 0 THEN

setting := 0

ELSE IF setting > max THEN

setting := max;

SetControlValue(control, setting); {assign new current setting }

END; {of MyMoveScrollBox}

The previous two sections have described how to move the bits displayed in the
window; the next section describes how to draw into the update region.

CHAPTER 5

Control Manager

5-62 Using the Control Manager

Drawing a Scrolled Document Inside a Window

The previous two sections have described how to use the QuickDraw procedure
ScrollRect and the TextEdit procedure TEPinScroll in response to the user
manipulating any of the five parts of a scroll bar. After using these or your own routines
for moving the bits in your window, your application must draw into the update region.
Typically, you use your own window-updating code for this purpose.

Both InvalRect and TEPinScroll , which are used in the examples shown earlier in
this chapter, create update regions that cause update events. As described in the chapters
“Window Manager” and “Event Manager” in this book, your application should draw in
the update regions of your windows when it receives update events. If you create your
own scrolling routine to use instead of ScrollRect or TEPinScroll , you should
guarantee that it generates an update event or that it explicitly calls your own
window-updating routine.

Listing 5-21 shows an application-defined routine, DoUpdate , that the SurfWriter
application calls whenever it receives an update event. In this procedure, the application
tests for two different types of windows: windows containing graphics objects and
windows containing text created with TextEdit routines.

Listing 5-21 An application-defined update routine

PROCEDURE DoUpdate (w indow: WindowPtr);

VAR

windowType: Integer;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kMyGraphicsWindow : {window containing graphics objects}

BEGIN

BeginUpdate(window);

MyDrawGraphicsWindow(window);

EndUpdate(window);

END; {of updating graphics windows}

kMyDocWindow: {window containing TextEdit text}

BEGIN

BeginUpdate(window);

MyDrawWindow(window);

EndUpdate(window);

END; {of updating TextEdit document windows}

{handle other window types——modeless dialogs, etc.——here}

END; {of windowType CASE}

END; {of DoUpdate}

CHAPTER 5

Control Manager

Using the Control Manager 5-63

In this example, when the window requiring updating is of type kMyGraphicsWindow ,
DoUpdate uses another application-defined routine called MyDrawGraphicsWindow .
When the window requiring updating is of type kMyDocWindow, DoUpdate uses
another application-defined routine—namely, MyDrawWindow. Listing 5-22 shows
the MyDrawGraphicsWindow routine and Listing 5-23 on page 5-65 shows the
MyDrawWindow routine.

Before drawing into the scrolled-away portion of the window, both of these routines
use the QuickDraw, Window Manager, and Control Manager routines necessary for
updating windows. (“Updating a Control” beginning on page 5-29 describes the
UpdateControls procedure; see the chapter “Window Manager” in this book for a
detailed description of how to use the rest of these routines to update a window.)

Listing 5-22 Redrawing a window containing graphics objects

PROCEDURE MyDrawGraphicsWindow (w indow: WindowPtr);

VAR

myData: MyDocRecHnd;

i: Integer;

BEGIN

SetPort(window);

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN

EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window);

SetOrigin(GetControlValue(myData^^.hScrollBar),

 GetControlValue(myData^^.vScrollBar));

i := 1;

WHILE i <= myData^^.numObjects DO

DrawMyObjects(portRect, myData^^.numObjects[i]);

i := i + 1;

END; {of WHILE}

SetOrigin(0, 0);

END;

HUnLock(Handle(myData));

END; {of MyDrawGraphicsWindow}

The MyDrawGraphicsWindow routine uses the QuickDraw procedure SetOrigin to
change the window origin by an amount equal to the scroll bar settings, so that the
upper-left corner of the document lies at (0,0) in the window’s local coordinate system.
The SurfWriter sample application performs this step so that its own drawing routines
can draw into the correct area of the window.

CHAPTER 5

Control Manager

5-64 Using the Control Manager

Notice that MyDrawGraphicsWindow calls SetOrigin only after calling the necessary
Window Manager and Control Manager routines, because the Window Manager and
Control Manager always expect the window origin to be at (0,0).

By using SetOrigin to change the window origin, MyDrawGraphicsWindow can treat
the objects in its document as being located in a coordinate system where the upper-left
corner of the document is always at (0,0). Then MyDrawGraphicsWindow calls another
of its own routines, DrawMyObjects , to draw the objects it has stored in its document
record for the window.

After performing all its own drawing in the window, MyDrawGraphicsWindow again
uses SetOrigin —this time to reset the window origin to (0,0) so that future Window
Manager and Control Manager routines will draw into the correct area of the window.

Figure 5-16 through Figure 5-20 earlier in this chapter help to illustrate how to use
SetOrigin to offset the window’s coordinate system so that you can treat the objects
in your document as fixed in the document’s own coordinate space. However, it is not
necessary for your application to use SetOrigin . Your application can leave the
window’s coordinate system fixed and instead offset the items in your document by the
amount equal to the scroll bar settings. The QuickDraw procedures OffsetRect ,
OffsetRgn , SubPt , and AddPt , which are described in Inside Macintosh: Imaging,
are useful if you pursue this approach.

Note

The SetOrigin procedure does not move the window’s clipping
region. If you use clipping regions in your windows, use the QuickDraw
procedure GetClip to store your clipping region immediately after
your first call to SetOrigin . Before calling your own window-drawing
routine, use the QuickDraw procedure ClipRect to define a new
clipping region—to avoid drawing over your scroll bars, for example.
After calling your own window-drawing routine, use the QuickDraw
procedure ClipRect to restore the original clipping region. You
can then call SetOrigin again to restore the window origin to (0,0)
with your original clipping region intact. See Inside Macintosh:
Imaging for detailed descriptions of clipping regions and of these
QuickDraw routines. ◆

The previous examples in this chapter have shown an application that uses a TextEdit
edit record to store the information created by the user. For simple text-handling
needs, TextEdit provides many routines that simplify your work; for example, the
TEPinScroll procedure (used in Listing 5-18 on page 5-53 and Listing 5-19 on
page 5-59) resets the view rectangle of text stored in an edit record by the amount of
pixels specified by the application. The TEPinScroll procedure then generates an
update event for the window. The TextEdit procedure TEUpdate should then be called
in an application’s update routine to draw the update region of the scrolled window.

Listing 5-23 shows an application-defined procedure, MyDrawWindow, that uses
TEUpdate to update the text in windows of type kMyDocWindow. The TEUpdate
procedure manages all necessary shifting of coordinates during window updating, so
MyDrawWindow does not have to call SetOrigin as it does when it uses ScrollRect .

CHAPTER 5

Control Manager

Using the Control Manager 5-65

Listing 5-23 Redrawing a window after scrolling a TextEdit edit record

PROCEDURE MyDrawWindow (window: WindowPtr);
VAR

myData: MyDocRecHnd;

BEGIN

SetPort(window);
myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH window^ DO

BEGIN
EraseRect(portRect);

UpdateControls(window, visRgn);

DrawGrowIcon(window);

TEUpdate(portRect, myData^^.editRec);
END;

HUnLock(Handle(myData));

END; {of MyDrawWindow}

Moving and Resizing Scroll Bars
As described earlier in “Creating Scroll Bars” beginning on page 5-21, your application
initially defines the location of a scroll bar within a window—and the size of the scroll
bar—by specifying a rectangle in a control resource or in a parameter to NewControl .
However, your application must be able to size and move the scroll bar dynamically in
response to the user’s resizing of your windows.

The chapter “Window Manager” in this book describes how to size windows when
your application opens them and how to resize them—for example, in response to
the user dragging the size box or clicking the zoom box. This section describes how to
move and resize your scroll bars so that they fit properly on the right and bottom edges
of your windows.

When resizing your windows, your application should perform the following steps to
adjust each scroll bar.

1. Resize the window.

2. Use the HideControl procedure to make each scroll bar invisible.

3. Use the MoveControl procedure to move the vertical scroll bar to the right edge of
the window, and use the MoveControl procedure to move the horizontal scroll bar
to the bottom edge of the window.

4. Use the SizeControl procedure to lengthen or shorten each scroll bar, so that each
extends to the size box in the lower-right corner of the window.

5. Recalculate the maximum settings for the scroll bars and use SetControlMaximum
to update the settings and to redraw the scroll boxes appropriately. (Remember, you
derive a scroll bar’s maximum setting by subtracting the length or width of its
window from the length or width of the document.)

CHAPTER 5

Control Manager

5-66 Using the Control Manager

6. Use the ShowControl procedure to make each scroll bar visible in its new location.

Figure 5-21 illustrates how to move and resize scroll bars in a resized window; if your
application neglected to use the HideControl procedure, the user would see each of
these steps as it took place.

Figure 5-21 Moving and resizing scroll bars

CHAPTER 5

Control Manager

Using the Control Manager 5-67

Listing 5-14 on page 5-39 shows an application-defined routine, MyAdjustScrollBars ,
that is called when the user opens a new window, opens an existing document in a
window, or resizes a window.

When it creates a window, MyAdjustScrollBars stores handles to each scroll bar
in a document record. By dereferencing the proper fields of the document record,
MyAdjustScrollBars passes handles for the vertical and horizontal scroll bars to
the HideControl procedure, which makes the scroll bars invisible. By making the scroll
bars invisible until it has finished manipulating them, MyAdjustScrollBars ensures
that the user won’t see the scroll bars blinking in different locations onscreen.

When MyAdjustScrollBars needs to adjust the size or location of either of the scroll
bars, it calls another application-defined routine, MyAdjustScrollSizes , which is
shown in Listing 5-24.

Listing 5-24 Changing the size and location of a window’s scroll bars

CONST

kScrollbarWidth = 1 6; {conventional width}

kScrollbarAdjust = k ScrollbarWidth - 1; {to align with window frame}

kScrollTweek = 2; { to align scroll bars with size box}

PROCEDURE MyAdjustScrollSizes (window: WindowPtr);

VAR

teRect : Rect;

myData : MyDocRecHnd;

teTop, teRight, teBottom,teLeft : I nteger;

BEGIN

MyGetTERect(window, teRect); {calculate the teRect based on the }

{ portRect, adjusted for the scroll bars}

myData := MyDocRecHnd(GetWRefCon(window)) ;

HLock(Handle(myData));

WITH window^.portRect DO

BEGIN

teTop := top;

teRight := right;

teBottom := bottom;

teLeft := left;

END;

WITH myData^^ DO

BEGIN

editRec^^.viewRect := teRect; {set the viewRect}

MyAdjustViewRect(editRec); {snap to nearest line}

{move the controls to match the new window size}

MoveControl(vScrollBar, teRight - kScrollbarAdjust, -1);

CHAPTER 5

Control Manager

5-68 Using the Control Manager

SizeControl(vScrollBar, kScrollbarWidth, (teBottom - teTop) -

(kScrollbarAdjust - kScrollTweek));

MoveControl(hScrollBar, -1 , te Bottom - kScrollbarAdjust);

SizeControl(hScrollBar, (teRight - teLeft) -

(kScrollbarAdjust - kScrollTweek), kScrollbarWidth);

END;

HUnLock(Handle(myData));

END; {of MyAdjustScrollSizes}

The MyAdjustScrollSizes routine uses the boundary rectangle of the window’s
content region—which is stored in the portRect field of the window record—to
determine the size of the window. To move the scroll bars to the edges of the window,
MyAdjustScrollSizes uses the MoveControl procedure.

The MoveControl procedure takes three parameters: a handle to the control being
moved, the horizontal coordinate (local to the control’s window) for the new location of
the upper-left corner of the control’s rectangle, and the vertical coordinate for that new
location. The MoveControl procedure moves the control to this new location and
changes the rectangle specified in the controlRect field of the control’s control record.

In Listing 5-24, MyAdjustScrollSizes passes to MoveControl the handles to the
scroll bars. (The SurfWriter sample application stores the handle in its document record
for the window.)

Figure 5-22 illustrates the location of a vertical scroll bar before it is moved to a new
location within its resized window.

To determine a new horizontal (that is, left) coordinate of the upper-left corner of the
vertical scroll bar, MyAdjustScrollSizes subtracts 15 from the right coordinate of
the window. As shown in Figure 5-23, this puts the right edge of the 16-pixel-wide scroll
bar directly over the 1-pixel-wide window frame on the right side of the window.

In Listing 5-24 on page 5-67, MyAdjustScrollSizes specifies –1 as the vertical (that is,
top) coordinate of the upper-left corner of the vertical scroll bar. As shown in Figure 5-23,
this places the top edge of the scroll bar directly over the 1-pixel-wide line at the bottom
of the title bar. (The bottom line of the title bar has a vertical value of –1 in the window’s
local coordinate system.)

The MyAdjustScrollSizes routine specifies –1 as the horizontal coordinate of the
upper-left corner of the horizontal scroll bar; this puts the left edge of the horizontal
scroll bar directly over the 1-pixel-wide window frame. (The left edge of the window
frame has a horizontal value of –1 in the window’s local coordinate system.)

To fit your scroll bars inside the window frame properly, you should set the top
coordinate of a vertical scroll bar at –1 and the left coordinate of a horizontal scroll bar
at –1, unless your application uses part of the window’s scroll regions opposite the size
box for displaying information or additional controls. For example, you may choose to
display the current page number of the document in the lower-left corner of a window.
In this case, specify a left coordinate so that the horizontal scroll bar doesn’t obscure
this area.

CHAPTER 5

Control Manager

Using the Control Manager 5-69

Figure 5-22 A vertical scroll bar before the application moves it within a resized window

Figure 5-23 A vertical scroll bar after the application moves its upper-left point

CHAPTER 5

Control Manager

5-70 Using the Control Manager

See Macintosh Human Interface Guidelines for a discussion of appropriate uses of a
window’s scroll areas for items other than scroll bars.

To determine a new vertical coordinate for the upper-left corner of the horizontal scroll
bar, MyAdjustScrollSizes subtracts 15 from the bottom coordinate of the window;
this puts the bottom edge of the scroll bar directly over the window frame at the bottom
of the window.

The MoveControl procedure moves the upper-left corner of a scroll bar so that it’s in
the proper location within its window frame. To make the vertical scroll bar fit the height
of the window, and to make the horizontal scroll bar fit the width of the window,
MyAdjustScrollSizes then uses the SizeControl procedure.

The SizeControl procedure takes three parameters: a handle to the control being
sized, a width in pixels for the control, and a height in pixels for the control. When
resizing a vertical scroll bar, you adjust its height; when resizing a horizontal scroll bar,
you adjust its width.

When using SizeControl to adjust the vertical scroll bar, MyAdjustScrollSizes
passes a constant representing 16 pixels for the vertical scroll bar’s width, which is the
conventional size.

To determine the proper height for this scroll bar, MyAdjustScrollSizes first derives
the height of the window by subtracting the top coordinate of the window’s rectangle
from its bottom coordinate. Then MyAdjustScrollSizes subtracts 13 pixels from this
window height and passes the result to SizeControl as the height of the vertical scroll
bar. The MyAdjustScrollSizes routine subtracts 13 pixels from the window height to
leave room for the 16-pixel-high size box (at the bottom of the window) minus three
1-pixel overlaps: one at the top of the window frame, one at the top of the size box, and
one at the bottom of the size box.

When using SizeControl to adjust the horizontal scroll bar, MyAdjustScrollSizes
passes a constant representing 16 pixels—the conventional height of the horizontal scroll
bar. To determine the proper width of this scroll bar, MyAdjustScrollSizes first
derives the width of the window by subtracting the left coordinate of the window’s
rectangle from its right coordinate. From this window width, MyAdjustScrollSizes
then subtracts 13 pixels to allow for the size box (just as it does when determining the
height of the vertical scroll bar).

When MyAdjustScrollSizes completes, it returns to MyAdjustScrollBars ,
which then uses another of its own routines, MyAdjustScrollValues . In
turn, MyAdjustScrollValues calls MyAdjustHV (shown in Listing 5-16 on
page 5-41), which recalculates the maximum settings for the scroll bars and uses
SetControlMaximum to update the maximum settings and redraw the scroll
boxes appropriately.

When MyAdjustHV completes, it eventually returns to the SurfWriter application’s
MyAdjustScrollBars procedure, which then uses the ShowControl procedure
to make the newly adjusted scroll bars visible again.

CHAPTER 5

Control Manager

Using the Control Manager 5-71

Defining Your Own Control Definition Function
The Control Manager allows you to implement controls other than the standard ones
(buttons, checkboxes, radio buttons, pop-up menus, and scroll bars). To implement
nonstandard controls, you must define your own control definition functions. Typically,
the only types of controls you might need to implement are sliders or dials, which are
similar to scroll bars in that they graphically represent a range of values the user can set.
As scroll bars have scroll boxes, your sliders and dials should have indicators for setting
values and indicating current settings.

Dials and sliders display the value, magnitude, or position of something, typically in
some pseudo-analog form—for instance, the position of a sliding switch, the reading on
a scale, or the angle of a needle on a gauge; the setting may be displayed digitally as
well. The user should be able to change the control’s setting by dragging its indicator.

Figure 5-24 illustrates a control supported by an application-defined control definition
function. This control might be used to play back a sound or a QuickTime movie. The
application might wish to define the control so that it plays the sound or movie at
normal speed when the user clicks the control part on the left. The application might
use the indicator along the slider to show what portion of the entire sound or movie
sequence is currently playing. The application also allows the user to move quickly
forward and backward through the sequence by dragging the indicator. Finally, the
application might wish to define the two control parts on the far right so that they play
backward (that is, “rewind”) and play forward quickly (that is, “fast forward”),
respectively, when the user clicks them.

Figure 5-24 A custom control

Note
When you design a dial or slider, be sure to include meaningful labels
that indicate to users the range and the direction of the indicator. ◆

Rather than create such a control yourself, you might be tempted to use a scroll bar for
this purpose. Do not do so. Using a scroll bar for any purpose other than scrolling
through a window compromises the consistency of the Macintosh interface.

To define your own nonstandard control, you must write a control definition function,
compile it as a resource of type 'CDEF' , and include it in your resource file. (For more
information about creating resources, see the chapter “Resource Manager” in Inside
Macintosh: More Macintosh Toolbox.)

CHAPTER 5

Control Manager

5-72 Control Manager Reference

When you use Control Manager routines, they in turn call your control definition
function as necessary. For example, for the control in Figure 5-24 to work properly, its
control definition function must be able to

■ draw the control—including repositioning its indicator, making it inactive or active,
and highlighting its control parts appropriately when mouse events occur in them

■ determine when a mouse-down event occurs in a control part

■ calculate the region of the control and its indicator

■ move the indicator and update the control record with a new setting

You can also use your control definition function to modify or expand certain Control
Manager behaviors; for example, you can implement your own manner of dragging an
indicator, and you can perform your own type of control initialization.

For details about writing a control definition function, see “Defining Your Own Control
Definition Function” beginning on page 5-109.

Control Manager Reference

This section describes the data structures, routines, and resources that are specific to the
Control Manager.

The “Data Structures” section shows the data structures for the control record, the
auxiliary control record, the pop-up menu private data record, and the control color table
record. The “Control Manager Routines” section describes Control Manager routines for
creating controls, drawing controls, handling mouse events in controls, changing control
settings and display, determining control settings, and removing controls. The
“Application-Defined Routines” section describes the control definition function, which
you need to provide when defining your own controls. The “Application-Defined
Routines” section also describes the action procedure, which defines an action to be
performed repeatedly as long as the user holds down the mouse button while the cursor
is in a control. The “Resources” section describes the control resource and the control
color table resource.

Data Structures
This section describes the control record, the auxiliary control record, the pop-up menu
private data record, and the control color table record.

Your application doesn’t specifically create the control record, the auxiliary control
record, or the pop-up menu private data record; rather, your application simply
creates any necessary resources and uses the appropriate Control Manager routines.
The Control Manager creates these records as necessary.

CHAPTER 5

Control Manager Reference 5-73

Control Manager

You can use Control Manager routines to change values in the control record, or you
can access and change its fields yourself; normally, you don’t change the values in
the auxiliary control record. However, both the control record and the auxiliary
control record have fields in which your application can store information as you
deem appropriate.

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the control record, which, for pop-up
menu controls, contains a handle to a pop-up private data record. This record contains
the menu handle and the menu ID for the associated menu.

You use a control color table record only when you want to use nonstandard colors for a
control that you create while your application is running. Your application probably
shouldn’t ever create a control color table record because you should use the system’s
default colors to ensure consistency of the interface across applications.

The Control Record

When you create a control, the Control Manager incorporates the information you
specify (either in the control resource or in the parameters of the NewControl function)
into a control record, which is a data structure of type ControlRecord . The Control
Manager functions you use for creating a control, GetNewControl and NewControl ,
return a handle to a newly allocated control record. Thereafter, your application
normally refers to the control by this handle, because most other Control Manager
routines expect a control handle as their first parameter.

You can use Control Manager routines to determine and change several of the values in
the control record, or you can access and change its fields yourself.

TYPE ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;

Contr

CHAPTER 5

Control Manager

5-74 Control Manager Reference

Field descriptions

nextControl A handle to the next control associated with this control’s window.
All the controls belonging to a given window are kept in a linked
list, beginning in the controlList field of the window record and
chained together through the nextControl fields of the individual
control records. The end of the list is marked by a NIL value; as new
controls are created, they’re added to the beginning of the list.

contrlOwner A pointer to the window to which this control belongs.
contrlRect The rectangle that completely encloses the control, in the local

coordinates of the control’s window. You can use the MoveControl
and SizeControl procedures to change the rectangle stored in
this field.

contrlVis The invisible/visible state for the control. When the value of this
field is 0, the Control Manager does not draw the control (its state is
invisible); when the value of this field is 255, the Control Manager
draws the control (its state is visible). Note that even when a control
is visible, it might still be obscured from sight by an overlapping
window or some other object. You can use the HideControl
procedure to change this field from visible to invisible, and you can
use the ShowControl procedure to change this field from invisible
to visible.

contrlHilite Specifies whether and how the control is to be displayed, indicating
whether it’s active or inactive and, if active, whether it’s selected.
The value of 0 signifies an active control that is not selected. A value
from 1 through 253 signifies a part code designating the part of
the (active) control to highlight, indicating that the user is pressing
the mouse button while the cursor is in that part. The value
255 signifies that the control is to be made inactive and drawn
accordingly. The HiliteControl procedure lets you change the
value of this field.

contrlValue The control’s current setting. For buttons, checkboxes, and radio
buttons, 0 means the control is off and 1 means it’s on. For scroll
bars and other sliders, contrlValue may take any value within
the range specified in the contrlMin and contrlMax fields. For
pop-up menus, this value is the item number of the menu item
chosen by the user; if the user hasn’t chosen a menu item, it is the
item number of the first menu item. For other controls, you can use
this field as you wish. You can use the GetControlValue function
to determine the value of this field, and you can use the
SetControlValue procedure to change the value of this field.

contrlMin The control’s minimum possible setting. For on-and-off controls—
like checkboxes and radio buttons—this value should be 0 (meaning
that the control is off). For scroll bars and other sliders, this can be
any appropriate minimum value. For controls—like buttons—
that don’t retain a setting, this value should be 0. For pop-up
menus, the Control Manager sets this field to 1. For other
controls, you can use this field as you wish. You can use the
GetControlMinimum function to determine the value of this field,
and you can use the SetControlMinimum procedure to change
the value of this field.

CHAPTER 5

Control Manager

Control Manager Reference 5-75

contrlMax The control’s maximum possible setting. For on-and-off controls
like checkboxes and radio buttons, this value should be 1 (meaning
that the control is on). For scroll bars and other sliders, this can be
any appropriate maximum value. When you make the maximum
setting of a scroll bar equal to its minimum setting, the control
definition function automatically makes the scroll bar inactive.
When you make the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again. For
controls—like buttons—that don’t retain a setting, this value should
be 1. For pop-up menus, the Control Manager sets this value to the
number of items in the menu. For other controls, you can use this
field as you wish. You can use the GetControlMaximum function
to determine the value of this field, and you can use the
SetControlMaximum procedure to change the value of this field.

contrlDefProc A handle to the control definition function for this type of
control. When you create a control, you identify its type with
a control definition ID, which is converted into a handle to the
control definition function and stored in this field. Thereafter,
the Control Manager uses this handle to access the definition
function; you should never need to refer to this field directly.

Note

In systems running in 24-bit mode, the high-order byte of the
contrlDefProc field contains the variant, which the Control
Manager gets from the control definition ID. ◆

contrlData Reserved for use by the control definition function, typically to hold
additional information specific to a particular control type. For
example, the control definition function for scroll bars uses this field
for a handle to the region containing the scroll box. (If no more than
4 bytes of additional information are needed, the definition function
may store the information directly in the contrlData field rather
than using a handle.) The control definition function for pop-up
menus uses this field to store a pop-up private data record, which is
described on page 5-77.

contrlAction A pointer to the control’s action procedure, if any. The
TrackControl function may call this procedure to respond to
the user’s dragging of the control, and this procedure responds
by repeatedly performing some action as long as the user holds
down the mouse button. See the description of TrackControl
on page 5-90 for more information about the action procedure.
You can use the GetControlAction function to determine the
current value of this field and the SetControlAction procedure
to change it.

contrlRfCon The control’s reference value, which your application may use
for any purpose. You can use the GetControlReference
function to determine the current value of this field and the
SetControlReference procedure to change it.

contrlTitle The control title, if any. You can use the GetControlTitle
procedure to determine the current value of this field and the
SetControlTitle procedure to change it.

CHAPTER 5

Control Manager

5-76 Control Manager Reference

The Auxiliary Control Record

For drawing all controls on systems running in 32-bit mode (which users can select using
the Memory control panel), and for drawing controls that use colors other than the
system default, the Control Manager creates and maintains a linked list of auxiliary
control records, beginning in the global variable AuxCtlHead . (There is only one global
list for all controls in all windows, not a separate one for each window. Each window
record, by contrast, has a handle to the list of its own controls.)

An auxiliary control record is a data structure of type AuxCtlRec . Your application
doesn’t create and generally shouldn’t manipulate an auxiliary control record for a
control; rather, you let the Control Manager create and manipulate the auxiliary control
record. To create controls using colors other than the system default colors, use the
SetControlColor procedure (described on page 5-101) or create a control color table
resource (described on page 5-121) and let the Control Manager create the necessary
auxiliary control records. There is, however, a field in the auxiliary control record that
you can use to store information as you see fit; to get a handle to the auxiliary control
record for a control, you can use the GetAuxiliaryControlRecord function
(described on page 5-107).

Each auxiliary control record is relocatable and resides in your application heap. Here is
how an auxiliary control record is defined:

TYPE AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to control color table }

{ record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved for future use}

acRefCon: LongInt; {for use by application}

END;

Field descriptions

acNext A handle to the next record in the auxiliary control list.
acOwner The handle of the control to which this auxiliary record belongs;

used as an ID field.
acCTable The handle to a control color table record. (The control color table

record is described on page 5-77.)
acFlags Reserved for use by the Control Manager.
acReserved Reserved for future expansion.
acRefCon A reference value, which your application may use for any purpose.

On systems using 32-bit mode, every control has its own auxiliary record, and
the acCTable field contains a handle to the default control color table unless
your application uses the SetControlColor procedure or creates a control color
table resource.

CHAPTER 5

Control Manager

Control Manager Reference 5-77

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the auxiliary control record whose acOwner field points
to the control being drawn. If the standard control definition functions find an auxiliary
control record for the control, they use the control color table specified in the acCTable
field. If the standard control definition functions do not find an auxiliary control record
for the control, they use the default system colors.

The Pop-Up Menu Private Data Record

You can obtain the menu handle and the menu ID of the menu associated with a pop-up
menu by dereferencing the contrlData field of the pop-up menu’s control record. The
contrlData field of a control record is a handle to a block of private information. For
pop-up menu controls, this field is a handle to a pop-up private data record, which is a
data structure of type popupPrivateData .

TYPE popupPrivateData =

RECORD

mHandle: MenuHandle; {handle to menu record}

mID: Integer; {menu ID}

mPrivate: ARRAY[0..0] OF SignedByte; {reserved}

END;

Field descriptions

mHandle Contains a handle to the menu.
mID The menu ID of the menu.
mPrivate Reserved.

You can use the standard pop-up control definition function to manage pop-up menus.
For information on creating pop-up menus, see “Creating a Pop-Up Menu” beginning on
page 5-25. See the chapter “Menu Manager” in this book for additional information.

The Control Color Table Record

By creating a control color table record and using the SetControlColor procedure
(described on page 5-101), your application can draw a control that uses colors other
than the system default. (Alternatively, you can use nonstandard colors for a control you
define in a control resource by creating a control color table resource—described on
page 5-121—with the same resource ID as the control resource.) Be aware that controls in
nonstandard colors may initially confuse your users.

A control color table record is a data structure of type CtlCTab ; it is defined as follows:

TYPE CtlCTab =

RECORD

ccSeed: LongInt; {reserved; set to 0}

ccRider: Integer; {reserved; set to 0}

CHAPTER 5

Control Manager

5-78 Control Manager Reference

ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable : ARRAY[0..3] OF ColorSpec;

END;

Field descriptions

ccSeed Reserved in control color tables; set to 0.
ccRider Reserved in control color tables; set to 0.
ctSize The number of ColorSpec records in the next field. For controls

drawn with the standard definition procedure, this field is always 3,
because a standard control has three parts: frame, control body, and
scroll box for scroll bars, and frame, control body, and text for other
controls. If you want to supply ColorSpec records for additional
parts, you must define your own controls, as described in “Defining
Your Own Control Definition Function” beginning on page 5-109.

ctTable An array of ColorSpec records. Each ColorSpec record describes
the color of a different control part. Here is how a ColorSpec
record is defined:

TYPE ColorSpec =

RECORD

partIdentifier : Integer; {control part}

partRGB : RGBColor; {colo r of p art}

END;

The partIdentifier field of the ColorSpec record holds an
integer that associates an RGBColor record with a particular part of
the control.
Three ColorSpec records are used to describe the parts of buttons,
checkboxes, and radio buttons. Here are the constants that are used
in the partIdentifier fields of the three ColorSpec records
used to describe these controls:

{for buttons, checkboxes, and radio buttons}

CONSTcFrameColor = 0; {frame color}

cBodyColor = 1; {fill color for body of }

{ control}

cTextColor = 2; {text color}

When highlighted, buttons exchange their body and text colors;
checkboxes and radio buttons change their appearance without
changing colors. All three types indicate deactivation by dimming
their text with no change in colors.

CHAPTER 5

Control Manager

Control Manager Reference 5-79

A number of ColorSpec records are used to describe the parts
of scroll bars. Here are the constants that are used in the
partIdentifier fields of the ColorSpec records used to
describe the colors in scroll bars:

CONST
cFrameColor = 0; {Used to produce foreground color for scroll arrows }

{ & gray area}
cBodyColor = 1; {Used to produce colors in the scroll box}
cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}
cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}
cThumbLight = 7; {Used to produce colors in scroll box}
cThumbDark = 8; {Used to produce colors in scroll box}
cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}
cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}
cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}
cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}
cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}
cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

When highlighted, scroll arrows are filled with the foreground
color. A deactivated scroll bar shows no scroll box and displays its
gray areas in a solid background color with no pattern.
The ColorSpec records for a control can appear in any order. If
you include a part identifier that is not found, the Control Manager
uses the first ColorSpec record with an identifiable part. If you do
not specify a part identifier, the Control Manager uses the default
color for that part.
The partRGB field of the ColorSpec record specifies an
RGBColor record, which in turn specifies the red, green, and blue
values for the part’s color. Use three 16-bit unsigned integers to give
the intensity values for the three additive primary colors. Here is
how the RGBColor record is defined:

TYPE RGBColor =
RECORD

red: Integer; {red value for control part}
green: Integer; {green value for control part}
blue: Integer; {blue value for control part}

END;

When you create a control color table record, your application should not deallocate it if
another control is still using it.

When drawing a control, the standard control definition functions search the linked list
of auxiliary control records for the record whose acOwner field points to that control.
If a standard control definition function finds such a record, it uses the color table
designated by that record; otherwise, it uses the default system colors. Each control

CHAPTER 5

Control Manager

5-80 Control Manager Reference

using colors other than the system default has its own auxiliary control record, even if
that control uses the same control color table record as another control; two or more
auxiliary records can share the same control color table record. (Auxiliary control records
are described on page 5-76.)

If you create a control definition function (as explained in “Defining Your Own Control
Definition Function” beginning page 5-109), you can use color tables of any desired size
and define their contents in any way you wish, except that part indices 1 through 127 are
reserved for system definition. Any such nonstandard control definition function should
bypass the defaulting mechanism by allocating an explicit auxiliary record for every
control it creates.

Control Manager Routines
This section describes the Control Manager routines for creating controls, drawing
controls, tracking mouse events within controls, changing control display, determining
control values, and removing controls.

Some Control Manager routines can be accessed using more than one spelling of
the routine’s name, depending on the interface files supported by your development
environment. For example, SetControlValue is also available as SetCtlValue .
Table 5-1 provides a mapping between the previous name of a routine and its new
equivalent name.

Table 5-1 Mapping between new and previous names of Control Manager routines

New name Previous name

GetAuxiliaryControlRecord GetAuxCtl

GetControlAction GetCtlAction

GetControlMaximum GetCtlMax

GetControlMinimum GetCtlMin

GetControlReference GetCRefCon

GetControlTitle GetCTitle

GetControlValue GetCtlValue

GetControlVariant GetCVariant

SetControlAction SetCtlAction

SetControlColor SetCtlColor

SetControlMaximum SetCtlMax

SetControlMinimum SetCtlMin

SetControlReference SetCRefCon

SetControlTitle SetCTitle

UpdateControls UpdtControl

CHAPTER 5

Control Manager

Control Manager Reference 5-81

Creating Controls

To create a control, you should generally use the GetNewControl function, which takes
information about the control from a control resource. Like menu resources, control
resources isolate descriptive information from your application code, making your
application easier to modify or translate. However, you can also use the NewControl
function—for which you pass descriptive information in parameters—to create controls.

Both GetNewControl and NewControl return a handle to the control record of the
newly created control. Thereafter, your application normally refers to the control by this
handle, because most other Control Manager routines expect a control handle as their
first parameter. When you create scroll bars and pop-up menus, you should store their
handles in one of your application’s own data structures for later reference.

When you use the Dialog Manager to implement buttons, radio buttons, checkboxes,
and pop-up menus in alert boxes and dialog boxes, the Dialog Manager automatically
uses the Control Manager to create these controls for you. If you implement other
controls in alert or dialog boxes, and whenever you implement controls—such as scroll
bars—in your application’s windows, you must use either GetNewControl or
NewControl to create these controls.

GetNewControl

To create a control from a description in a control resource ('CNTL'), use the
GetNewControl function.

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)

: ControlHandle;

controlID The resource ID of a control resource.

owner A pointer to the window in which you want to attach the control.

DESCRIPTION

The GetNewControl function creates a control record from the information in the
specified control resource, adds the control record to the control list for the specified
window, and returns as its function result a handle to the control. You use this handle
when referring to the control in most other Control Manager routines. After making a
copy of the control resource, GetNewControl releases the memory occupied by the
original control resource before returning.

If you provide a control color table resource with the same resource ID as the control
resource, GetNewControl creates an auxiliary control record that uses the colors you
specify in your control color table resource. If you don’t provide a control color table,
GetNewControl creates an auxiliary control record that uses the default control color
table if the computer is running in 32-bit mode.

CHAPTER 5

Control Manager

5-82 Control Manager Reference

The control resource specifies the rectangle for the control, its initial setting, its visibility
state, its maximum and minimum settings, its control definition ID, a reference value,
and its title (if any). After you use GetNewControl to create the control, you can change
the current setting, the maximum setting, the minimum setting, the reference value, and
the title by using, respectively, the SetControlValue , SetControlMaximum ,
SetControlMinimum , SetControlReference , and SetControlTitle procedures.
You can use the MoveControl and SizeControl procedures to change the control’s
rectangle. You can use the GetControlValue , GetControlMaximum ,
GetControlMinimum , GetControlReference , and GetControlTitle functions to
determine the control values.

If the control resource specifies that the control should be visible, the Control Manager
draws the control. If the control resource specifies that the control should initially be
invisible, you can use the ShowControl procedure to make the control visible.

If GetNewControl can’t read the control resource from the resource file,
GetNewControl returns NIL .

SEE ALSO

See Listing 5-1 on page 5-17 and Listing 5-5 on page 5-24 for examples of how to use
GetNewControl to create, respectively, a button and a scroll bar. For information about
windows’ control lists, see the chapter “Window Manager” in this book.

NewControl

To create a control, you can use the NewControl function, which accepts in its
parameters the information that describes the control. Generally, you should instead use
the GetNewControl function to create a control. The GetNewControl function takes
information about the control from a control resource, and as a result your application is
easier to modify or translate into other languages.

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;

title: Str255; visible: Boolean;

value: Integer; min: Integer; max: Integer;

procID: Integer; refCon: LongInt)

: ControlHandle;

theWindow A pointer to the window in which you want to attach the control. All
coordinates pertaining to the control are interpreted in this window’s
local coordinate system.

boundsRect The rectangle, specified in the given window’s local coordinates, that
encloses the control and thus determines its size and location.

CHAPTER 5

Control Manager

Control Manager Reference 5-83

title For controls that need a title—such as buttons, checkboxes, radio buttons,
and pop-up menus—the string for that title. For controls that don’t use
titles, pass an empty string.

visible The visible/invisible state for the control. If you pass TRUE in this
parameter, NewControl draws the control immediately, without using
your window’s standard updating mechanism. If you pass FALSE, you
must later use the ShowControl procedure to display the control.

value The initial setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, pass 0 in
this parameter for a control that is off, and pass 1 for a control that is on.
For controls—such as scroll bars and sliders—that can take a range of
settings, specify whatever value is appropriate within that range.

min The minimum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 0 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 0
(meaning “off”) for the minimum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever minimum
value is appropriate.

max The maximum setting for the control. For controls—such as buttons—that
don’t retain a setting, pass 1 in this parameter. For controls—such as
checkboxes and radio buttons—that retain an on-or-off setting, use 1
(meaning “on”) for the maximum value. For controls—such as scroll bars
and sliders—that can take a range of settings, specify whatever maximum
value is appropriate. When you make the maximum setting of a scroll bar
equal to its minimum setting, the control definition function
automatically makes the scroll bar inactive; when you make the
maximum setting exceed the minimum, the control definition function
makes the scroll bar active again.

procID The control definition ID, which leads to the control definition function
for this type of control. The control definition function is read into
memory if it isn’t already in memory. The control definition IDs and their
constants for the standard controls are listed here. (You can also define
your own control definition function and specify it the procID
parameter.)

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

 useWFont = 8; {add to above to display }

 { title in w indo w f ont}

scrollBarProc = 16; {scroll bar}

 popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

 { use a fixed-width ctrl}

CHAPTER 5

Control Manager

5-84 Control Manager Reference

popupUseAddResMenu = $0004; {add to popupMenuProc to }

 { specify a value of }

 { type ResType in the }

 { contrlRfCon field of }

 { t he c ontrol record ; }

 { Menu Manager adds }

 { resources of t his t ype }

 { to the men u}

popupUseWFont = $0008 ; { add to popupMenuProc to }

 { display i n window font}

refCon The control’s reference value, which is set and used only by
your application.

DESCRIPTION

The NewControl function creates a control record from the information you specify in
its parameters, adds the control record to the control list for the specified window, and
returns as its function result a handle to the control. You use this handle when referring
to the control in most other Control Manager routines.

The NewControl function creates an auxiliary control record that uses the default
control color table if the computer is running in 32-bit mode.

If you need to use colors other than the default colors for the control, create a control
color table record and use the SetControlColor procedure.

When specifying the rectangle in the boundsRect parameter, keep the following
guidelines in mind:

■ Buttons are drawn to fit the rectangle exactly. To accommodate the tallest characters in
the system font, allow at least a 20-point difference between the top and bottom
coordinates of the rectangle.

■ For checkboxes and radio buttons, there should be at least a 16-point difference
between the top and bottom coordinates.

■ By convention, scroll bars are 16 pixels wide, so there should be a 16-point difference
between the left and right (or top and bottom) coordinates. (If there isn’t, the scroll bar
is scaled to fit the rectangle.) A standard scroll bar should be at least 48 pixels long, to
allow room for the scroll arrows and scroll box.

The Control Manager displays control titles in the system font. When specifying a title
for the control in the title parameter, make sure the title fits in the control’s rectangle;
otherwise, NewControl truncates the title. For example, NewControl truncates the
titles of checkboxes and radio buttons on the right in Roman scripts, and it centers and
truncates both ends of the button titles.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each

CHAPTER 5

Control Manager

Control Manager Reference 5-85

line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

After you use NewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue , SetControlMaximum , SetControlMinimum ,
SetControlReference , and SetControlTitle procedures. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue , GetControlMaximum , GetControlMinimum ,
GetControlReference , and GetControlTitle functions to determine the
control values.

SPECIAL CONSIDERATIONS

The title of a button, checkbox, radio button, or pop-up menu normally appears in the
system font, which in Roman script systems is 12-point Chicago. Do not use a smaller
font; some script systems, such as KanjiTalk, require 12-point fonts. You should generally
use the system font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently associated with the
window’s graphics port, you can add the popupUseWFont constant to the pop-up menu
control definition ID or add the useWFont constant to the other standard control
definition IDs.

SEE ALSO

For information about windows’ control lists, see the chapter “Window Manager” in
this book. Control definition IDs for other controls are discussed in “Defining Your Own
Control Definition Function” beginning on page 5-109.

Drawing Controls

If you specify that a control is initially visible (either in the control resource or in a
parameter to NewControl), the Control Manager draws the control inside its window
when you call either the GetNewControl or the NewControl function. In either case,
the Control Manager draws the control immediately, without using your window’s
standard updating mechanism. If you specify that a control is invisible, you can use the
ShowControl procedure when you want to draw the control.

Note that even a visible control might be completely or partially obscured by
overlapping windows or other objects.

When your application receives an update event for a window that contains controls,
use UpdateControls to redraw the necessary controls in the updated window. Note
that the Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

CHAPTER 5

Control Manager

5-86 Control Manager Reference

ShowControl

To draw a control that is currently invisible, you can use the ShowControl procedure.

PROCEDURE ShowControl (theControl: ControlHandle);

theControl A handle to the control you want to make visible.

DESCRIPTION

If the specified control is invisible, the ShowControl procedure makes it visible and
immediately draws the control within its window without using your window’s
standard updating mechanism. If the control is already visible, ShowControl has
no effect.

You can make a control invisible in several ways:

■ You can specify that it’s invisible in its control resource.

■ You can specify that it’s invisible in a parameter to the NewControl function.

■ You can use the HideControl procedure to change a visible control into an
invisible one.

■ You can directly change the contrlVis field of the control’s control record.

SPECIAL CONSIDERATIONS

The ShowControl procedure draws the control in its window, but the control can still
be completely or partially obscured by overlapping windows or other objects.

SEE ASO

Listing 5-14 on page 5-39 illustrates the use of ShowControl to redisplay scroll bars
after moving and resizing them.

UpdateControls

To update controls in a window, you can use the UpdateControls procedure. The
UpdateControls procedure is also available as the UpdtControl procedure.

PROCEDURE UpdateControls (theWindow: WindowPtr;

 updateRgn: RgnHandle);

theWindow A pointer to the window containing the controls to update.

updateRgn The update region within the specified window.

CHAPTER 5

Control Manager

Control Manager Reference 5-87

DESCRIPTION

The UpdateControls procedure draws those controls that are in the specified update
region. This procedure is faster than the DrawControls procedure, which draws all of
the controls in a window. By contrast, UpdateControls draws only those controls in
the update region.

Your application should call UpdateControls upon receiving an update event for a
window that contains controls. Window Manager routines such as SelectWindow ,
ShowWindow, and BringToFront do not automatically call DrawControls to display
the window’s controls. They just add the appropriate regions to the window’s update
region, generating an update event.

In response to an update event, you normally call UpdateControls after using the
Window Manager procedure BeginUpdate and before using the Window Manager
procedure EndUpdate . You should set the updateRgn parameter to the visible region
of the window’s port, as specified in the port’s visRgn field.

SPECIAL CONSIDERATIONS

If your application draws parts of a control outside of its rectangle, UpdateControls
might not redraw it.

The Dialog Manager handles update events for controls in alert boxes and dialog boxes.

SEE ALSO

Listing 5-8 on page 5-30 illustrates the use of UpdateControls . The BeginUpdate and
EndUpdate procedures are described in the chapter “Window Manager” in this book.
See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

DrawControls

Although you should generally use the UpdateControls procedure to update controls
in a window, you can instead use the DrawControls procedure.

PROCEDURE DrawControls (theWindow: WindowPtr);

theWindow A pointer to a window whose controls you want to display.

DESCRIPTION

The DrawControls procedure draws all controls currently visible in the specified
window. The controls are drawn in reverse order of creation; thus, in case of overlapping
controls, the control created first appears frontmost in the window.

CHAPTER 5

Control Manager

5-88 Control Manager Reference

Because the UpdateControls procedure redraws only those controls that need
updating, your application should generally use it instead of DrawControls upon
receiving an update event for a window that contains controls.

You should call either DrawControls or UpdateControls after calling the Window
Manager procedure BeginUpdate and before calling EndUpdate .

SPECIAL CONSIDERATIONS

The Dialog Manager automatically draws and updates controls in alert boxes and
dialog boxes.

Window Manager routines such as SelectWindow , ShowWindow, and BringToFront
do not automatically update the window’s controls. They just add the appropriate
regions to the window’s update region, generating an update event.

SEE ALSO

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes. See the chapter “Window Manager” in this book
for more information about Window Manager routines.

Draw1Control

Although you should generally use the UpdateControls procedure to update controls,
you can use the Draw1Control procedure to update a single control.

PROCEDURE Draw1Control (theControl: ControlHandle);

theControl A handle to the control you want to draw.

DESCRIPTION

The Draw1Control procedure draws the specified control if it’s visible within its
window. The UpdateControls procedure automatically calls Draw1Control .

Handling Mouse Events in Controls

When the user presses the mouse button, your application receives a mouse-down event.
Use the Window Manager function FindWindow to determine which window contains
the cursor. If the mouse-down event occurred in the content region of your application’s
active window, use the FindControl function to determine whether the cursor was
in an active control and, if so, which control. To follow and respond to the cursor
movements in that control, and then to determine in which part of the control the
mouse-up event occurs, use the TrackControl function.

CHAPTER 5

Control Manager

Control Manager Reference 5-89

FindControl

To determine whether a mouse-down event has occurred in a control and, if so, in which
part of that control, use the FindControl function.

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;

 VAR theControl: ControlHandle): Integer;

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

theWindow A pointer to the window in which the mouse-down event occurred.

theControl A handle to the control in which the mouse-down event occurred.

DESCRIPTION

When the user presses the mouse button while the cursor is in a visible, active control,
FindControl returns as its function result a part code identifying the control’s part; the
function also returns a handle to the control in the parameter theControl . The part
codes that FindControl returns, and the constants you can use to represent them, are
listed here:

CONSTinButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll }

{ bar, left arrow for a horizontal }

{ scroll bar}

inDownButton = 21; {down arrow for a vertical scroll }

{ bar, right arrow for a }

{ horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area }

{ to left of scroll box for a }

{ horizontal scroll bar}

inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area }

{ to right of scroll box for a }

{ horizontal scroll bar}

inThumb = 129; {scroll box}

The pop-up control definition function does not define part codes for pop-up menus.
Instead, your application should store the handles for your pop-up menus when you
create them. Your application should then test the handles you store against the handles
returned by FindControl before responding to users’ choices in pop-up menus.

If the mouse-down event occurs in an invisible or inactive control, or if it occurs outside
a control, FindControl sets theControl to NIL and returns 0 as its function result.

CHAPTER 5

Control Manager

5-90 Control Manager Reference

When a mouse-down event occurs, your application should call FindControl after
using the Window Manager function FindWindow to ascertain that a mouse-down
event has occurred in the content region of a window containing controls.

Before calling FindControl , use the GlobalToLocal procedure to convert the point
stored in the where field (which describes the location of the mouse-down event) of the
event record to coordinates local to the window. Then, when using FindControl , pass
this point in the parameter thePoint .

In the parameter theWindow , pass the window pointer returned by the FindWindow
function.

After using FindControl to determine that a mouse-down event has occurred in
a control, you generally use the TrackControl function, which automatically
follows the movements of the cursor and responds as appropriate until the user releases
the mouse button.

SPECIAL CONSIDERATIONS

The Dialog Manager automatically calls FindControl and TrackControl for
mouse-down events inside controls of alert boxes and dialog boxes.

The FindControl function also returns NIL in the parameter theControl and 0 as
its function result if the window is invisible or if it doesn’t contain the given point.
(However, FindWindow won’t return a window pointer to an invisible window or to
one that doesn’t contain the point where the mouse-down event occurred. As long as
you call FindWindow before FindControl , this situation won’t arise.)

SEE ALSO

Listing 5-10 on page 5-33 illustrates the use of FindControl for detecting mouse-down
events in a pop-up menu and a button; Listing 5-18 on page 5-53 illustrates its use for
detecting mouse-down events in scroll bars.

The FindWindow function is described in the chapter “Window Manager” in this book.
The GlobalToLocal procedure is described in Inside Macintosh: Imaging.

The event record is described in the chapter “Event Manager” in this book. See the
chapter “Dialog Manager” in this book for more information about including controls in
alert boxes and dialog boxes.

TrackControl

To follow and respond to cursor movements in a control and then to determine the
control part in which the mouse-up event occurs, use the TrackControl function.

FUNCTION TrackControl (theControl: ControlHandle;

 thePoint: Point; actionProc: ProcPtr)

 : Integer;

CHAPTER 5

Control Manager

Control Manager Reference 5-91

theControl A handle to the control in which a mouse-down event occurred.

thePoint A point, specified in coordinates local to the window, where the
mouse-down event occurred.

actionProc The action procedure. Typically, you should set this parameter to NIL
for buttons, checkboxes, radio buttons, and the scroll box of a scroll bar;
set this parameter to Pointer(-1) for pop-up menus; and set this
parameter to the pointer to an action procedure for scroll arrows and
gray areas of scroll bars, as well as for any other controls that require
you to define additional actions to take while the user holds down the
mouse button.

DESCRIPTION

The TrackControl function follows the user ’s cursor movements in a control and
provides visual feedback until the user releases the mouse button. The visual feedback
given by TrackControl depends on the control part in which the mouse-down event
occurs. When highlighting is appropriate, for example, TrackControl highlights the
control part (and removes the highlighting when the user releases the mouse button).
When the user holds down the mouse button while the cursor is in an indicator (such as
the scroll box of a scroll bar) and moves the mouse, TrackControl responds by
dragging a dotted outline of the indicator.

The TrackControl function returns as its function result the control’s part code if the
user releases the mouse button while the cursor is inside the control part, or 0 if the user
releases the mouse button while the cursor is outside the control part. For control parts,
the TrackControl function returns the same values (represented by the constants
inButton , inCheckBox , inUpButton , inDownButton , inPageUp , inPageDown ,
and inThumb) returned by the FindControl function, as described on page 5-89.

When TrackControl returns a value other than 0 as its function result, your applica-
tion should respond as appropriate to a mouse-up event in that control part. When
TrackControl returns 0 as its function result, your application should do nothing.

If the user releases the mouse button when the cursor is in an indicator such as a scroll
box, TrackControl calls the control’s control definition function to reposition the
indicator. The control definition function for scroll bars, for example, responds to the
user dragging a scroll box by redrawing the scroll box, calculating the control’s current
setting according to the new relative position of the scroll box, and storing the current
setting in the control record. Thus, if the minimum and maximum settings are 0 and 10,
and the scroll box is in the middle of the scroll bar, 5 is stored as the current setting. For a
scroll bar, your application must then respond by scrolling to the corresponding relative
position in the document.

Generally, you use TrackControl after using the FindControl function. In the
parameter theControl of TrackControl , pass the control handle returned by the
FindControl function, and in the parameter thePoint , supply the same point you
passed to FindControl (that is, a point in coordinates local to the window).

CHAPTER 5

Control Manager

5-92 Control Manager Reference

While the user holds down the mouse button with the cursor in one of the standard con-
trols, TrackControl performs the following actions, depending on the value you pass
in the parameter actionProc . (For other controls, what you pass in this parameter de-
pends on how you define the control.)

■ If you pass NIL in the actionProc parameter, TrackControl uses no action
procedure and therefore performs no additional actions beyond highlighting the
control or dragging the indicator. This is appropriate for buttons, checkboxes, radio
buttons, and the scroll box of a scroll bar.

■ If you pass a pointer to an action procedure in the actionProc parameter, you must
provide the procedure, and it must define some action that your application repeats as
long as the user holds down the mouse button. This is appropriate for the scroll
arrows and gray areas of a scroll bar.

■ If you pass Pointer(–1) in the actionProc parameter, TrackControl looks in
the contrlAction field of the control record for a pointer to the control’s action
procedure. This is appropriate when you are tracking the cursor in a pop-up menu.
(You can use the GetControlAction function to determine the value of this field,
and you can use the SetControlAction procedure to change this value.) If the
contrlAction field of the control record contains a procedure pointer,
TrackControl uses the action procedure it points to; if the field of the control record
also contains the value Pointer(–1) , TrackControl calls the control’s control
definition function to perform the necessary action; you may wish to do this if you
define your own control definition function for a custom control. If the field of the
control record contains the value NIL , TrackControl performs no action.

SPECIAL CONSIDERATIONS

When you need to handle events in alert and dialog boxes, Dialog Manager routines
automatically call FindControl and TrackControl .

ASSEMBLY-LANGUAGE INFORMATION

The TrackControl function invokes the Window Manager function DragGrayRgn , so
you can use the global variables DragHook and DragPattern .

SEE ALSO

See “Defining Your Own Action Procedures” beginning on page 5-115 for information
about an action procedure to specify in the actionProc parameter. See “Defining Your
Own Control Definition Function” beginning on page 5-109 for information about
creating a control definition function.

Listing 5-11 on page 5-36, Listing 5-12 on page 5-37, Listing 5-13 on page 5-38,
and Listing 5-18 on page 5-53 illustrate the use of TrackControl for responding to
mouse-down events in, respectively, a button, a pop-up menu, a checkbox, and a
scroll bar.

See the chapter “Dialog Manager” in this book for more information about including
controls in alert boxes and dialog boxes.

CHAPTER 5

Control Manager

Control Manager Reference 5-93

TestControl

The TestControl function is called by the FindControl and TrackControl
functions—normally you won’t need to call it yourself. However, should you ever need
to determine the control part in which a mouse-down event occurred, you can use the
TestControl function.

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)

 : Integer;

theControl A handle to the control in which the mouse-down event occurred.

thePt The point, in a window’s local coordinates, where the mouse-down
event occurred.

DESCRIPTION

When the control specified by the parameter theControl is visible and active,
TestControl tests which part of the control contains the point specified by the
parameter thePt . For its function result, TestControl returns the part code of the
control part, or 0 if the point is outside the control.

If the control is invisible or inactive, TestControl returns 0.

Changing Control Settings and Display

In response to user actions, you often need to change the settings, highlight states, sizes,
and locations of your controls. Whenever your application calls the TrackControl
function, the Control Manager automatically manipulates control display as appropriate
as the user presses and releases the mouse button. For example, TrackControl calls the
HiliteControl procedure to highlight buttons; for scroll bars, TrackControl calls
the DragControl procedure to move an outline of the scroll box in a scroll bar and the
SetControlValue procedure to change the scroll bar’s current setting and redraw the
scroll box in its new location. (Note that the Dialog Manager automatically calls
TrackControl for controls in alert boxes and dialog boxes. See the chapter “Dialog
Manager” in this book for more information.)

When the user releases the mouse button while the cursor is in a control, your
application often needs to change its setting. When the user clicks a checkbox, for
example, your application must change its setting to on or off, and the Control Manager
automatically draws or removes an X in the checkbox.

There are other instances when you must change the settings and display of a control.
For example, when the user changes the size of a window that contains a scroll bar, you
need to resize and move the scroll bar accordingly.

For controls whose values the user can set, you can use the SetControlValue
procedure to change the control’s setting and redraw the control accordingly. When
you need to change the maximum setting of a scroll bar or a dial, you can use the

CHAPTER 5

Control Manager

5-94 Control Manager Reference

SetControlMaximum procedure; if you need to change the minimum setting, you
can use the SetControlMinimum procedure. If you need to change a control title,
you can use the SetControlTitle procedure. You can use the HideControl
procedure to make a control invisible. When you need to make a control inactive
(such as when its window is not frontmost) or in any other way change the highlighting
of a control, you can use the HiliteControl procedure.

To move a scroll bar, you use the MoveControl and SizeControl procedures.

Although it’s not recommended, you can also change a control’s default colors to those
of your own choosing by using the SetControlColor procedure.

To invoke a continuous action while the user holds down the mouse button, you
can specify an action procedure (described in “Defining Your Own Action Procedures”
beginning on page 5-115) in a parameter to TrackControl . Under certain circum-
stances, you can use the SetControlAction procedure to change the control’s action
procedure, though you should rarely if ever need to.

SetControlValue

To change the current setting of a control and redraw it accordingly, you can use the
SetControlValue procedure. The SetControlValue procedure is also available as
the SetCtlValue procedure.

PROCEDURE SetControlV alue (theControl: ControlHandle;

theValue: Integer);

theControl A handle to the control whose current setting you wish to change.

theValue The new setting for the control.

DESCRIPTION

The SetControlValue procedure changes the contrlValue field of the control
record to the specified value and redraws the control to reflect the new setting. For
checkboxes and radio buttons, the value 1 fills the control with the appropriate mark,
and 0 removes the mark. For scroll bars, SetControlValue redraws the scroll box
where appropriate.

If the specified value is less than the minimum setting for the control,
SetControlValue sets the control to its minimum setting; if the value is greater
than the maximum setting, SetControlValue sets the control to its maximum.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. To determine a control’s current
setting before changing it in response to a user’s click in that control, use the
GetControlValue function.

CHAPTER 5

Control Manager

Control Manager Reference 5-95

SEE ALSO

Listing 5-13 on page 5-38 illustrates the use of SetControlValue to change the setting
of a checkbox. Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use
of SetControlValue to change the setting of a scroll bar.

SetControlMinimum

To change the minimum setting of a control and redraw its indicator or scroll box
accordingly, you can use the SetControlMinimum procedure. The
SetControlMinimum procedure is also available as the SetCtlMin procedure.

PROCEDURE SetControlMinimum (theControl: ControlHandle;

 minValue: Integer);

theControl A handle to the control whose minimum setting you wish to change.

minValue The new minimum setting.

DESCRIPTION

The SetControlMinimum procedure changes the contrlMin field of the control
record to the setting you specify in the minValue parameter and redraws its indicator
or scroll box to reflect its new range.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. To determine a control’s
current minimum setting, use the GetControlMinimum function.

SetControlMaximum

To change the maximum setting of a control and redraw its indicator or scroll
box accordingly, you can use the SetControlMaximum procedure. The
SetControlMaximum procedure is also available as the SetCtlMax procedure.

PROCEDURE SetControlMaximum (theControl: ControlHandle;

 maxValue: Integer);

theControl A handle to the control whose maximum setting you wish to change.

maxValue The new maximum setting.

DESCRIPTION

The SetControlMaximum procedure changes the contrlMax field of the control
record to the setting you specify in the maxValue parameter and redraws its indicator
or scroll box to reflect its new range.

CHAPTER 5

Control Manager

5-96 Control Manager Reference

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. To determine a control’s
current maximum setting, use the GetControlMaximum function.

When you set the maximum setting of a scroll bar equal to its minimum setting, the
control definition function makes the scroll bar inactive; when you make the maximum
setting exceed the minimum, the control definition function makes the scroll bar active
again.

SEE ALSO

Listing 5-16 on page 5-41 illustrates the use of SetControlMaximum to specify the
maximum setting for a scroll bar.

SetControlTitle

To change the title of a control and redraw the control accordingly, use the
SetControlTitle procedure. The SetControlTitle procedure is also available as
the SetCTitle procedure.

PROCEDURE SetControlTitle (theControl: ControlHandle;

title: Str255);

theControl A handle to a control, the title of which you want to change.

title The new title for the control.

DESCRIPTION

The SetControlTitle procedure changes the contrlTitle field of the control
record to the given string and redraws the control, using the system font for the
control title.

The Control Manager allows multiple lines of text in the titles of buttons, checkboxes,
and radio buttons. When specifying a multiple-line title, separate the lines with the
ASCII character code $0D (carriage return). If the control is a button, each line is
horizontally centered, and the font leading is inserted between lines. (The height of each
line is equal to the distance from the ascent line to the descent line plus the leading of the
font used. Be sure to make the total height of the rectangle greater than the number of
lines times this height.) If the control is a checkbox or a radio button, the text is justified
as appropriate for the user’s current script system, and the checkbox or button is
vertically centered within its rectangle.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. To determine a control’s current title,
use the GetControlTitle procedure.

CHAPTER 5

Control Manager

Control Manager Reference 5-97

HideControl

To make a control invisible, before adjusting its size and location, for example, use the
HideControl procedure.

PROCEDURE HideControl (theControl: ControlHandle);

theControl A handle to the control you want to hide.

DESCRIPTION

The HideControl procedure makes the specified control invisible by changing the
value of the contrlVis field of the control record and removing the control from the
screen. To fill the region previously occupied by the control, HideControl uses the
background pattern of the window’s graphics port. It also adds the control’s rectangle to
the window’s update region, so that anything else that was previously obscured by the
control will reappear on the screen. If the control is already invisible, HideControl has
no effect.

To make the control visible again, you can use the ShowControl procedure.

SPECIAL CONSIDERATIONS

The MoveControl and SizeControl procedures both call HideControl and
ShowControl automatically. However, so that the control will not blink on the screen
when you make both of these calls, you should use HideControl to make the control
invisible until you are finished manipulating it, and then use ShowControl .

SEE ALSO

Listing 5-14 on page 5-39 illustrates the use of HideControl before adjusting scroll bar
settings and locations.

MoveControl

To move a control within its window, you can use the MoveControl procedure.

PROCEDURE MoveControl (theControl: ControlHandle ;

 h: Integer; v: Integer);

theControl A handle to the control you wish to move.

h The horizontal coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

v The vertical coordinate (local to the control’s window) of the new
location of the upper-left corner of the control’s rectangle.

CHAPTER 5

Control Manager

5-98 Control Manager Reference

DESCRIPTION

The MoveControl procedure moves the control to the new location specified by the h
and v parameters, using them to change the rectangle specified in the contrlRect field
of the control’s control record. When the control is visible, MoveControl first hides it
and then redraws it at its new location.

For example, if the user resizes a document window that contains a scroll bar, your
application can use MoveControl to move the scroll bar to its new location.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of MoveControl to change the location of a
scroll bar.

SizeControl

To change the size of a control’s rectangle, use the SizeControl procedure.

PROCEDURE SizeControl (theControl: ControlHandle;

 h: Integer; v: Integer);

theControl A handle to the control you wish to resize.

w The new width, in pixels, of the resized control.

h The new height, in pixels, of the resized control.

DESCRIPTION

The SizeControl procedure changes the rectangle specified in the contrlRect field
of the control’s control record. The lower-right corner of the rectangle is adjusted so
that it has the width and height specified by the w and h parameters; the position of the
upper-left corner is not changed. If the control is currently visible, it’s first hidden and
then redrawn in its new size. The SizeControl procedure uses HideControl , which
changes the window’s update region.

SEE ALSO

Listing 5-24 on page 5-67 illustrates the use of SizeControl to change the size of a
scroll bar.

HiliteControl

If you need to change the highlighting of a control, you can use the HiliteControl
procedure.

PROCEDURE HiliteControl (theControl: ControlHandle;

 hiliteState: Integer);

CHAPTER 5

Control Manager

Control Manager Reference 5-99

theControl A handle to the control.

hiliteState
A value from 0 through 255 to signify the highlighting of the control.
The value of 0 signifies no highlighting for the active control. A value
from 1 through 253 signifies a part code designating the part of the
(active) control to highlight. (Part codes are explained in the description
of FindControl on page 5-89.) The value 255 signifies that the control is
to be made inactive and drawn accordingly.

DESCRIPTION

The HiliteControl procedure calls the control definition function to redraw the
control with the highlighting specified in the hiliteState parameter. The
HiliteControl procedure uses the value in this parameter to change the value
of the contrlHilite field of the control’s control record.

Except for scroll bars (which you should hide using the HideControl procedure), you
should use HiliteControl to make all controls inactive when their windows are not
frontmost. The TrackControl function automatically uses the HiliteControl
procedure as appropriate; when you use TrackControl , you don’t need to call
HiliteControl .

SPECIAL CONSIDERATIONS

The value 254 should not be passed in the hiliteState parameter; this value is
reserved for future use.

SEE ALSO

The chapter “Dialog Manager” in this book provides several examples of the use of
HiliteControl .

DragControl

If you need to draw and move an outline of a control or its indicator (such as the scroll
box of a scroll bar) while the user drags it, you can use the DragControl procedure.

PROCEDURE DragControl (theControl: ControlHandle;

 startPt: Point;

 limitRect: Rect; slopRect: Rect;

 axis: Integer);

theControl A handle to the control to drag.

startPt The location of the cursor, expressed in the local coordinates of the
control’s window, at the time the user first presses the mouse button.

CHAPTER 5

Control Manager

5-100 Control Manager Reference

limitRect A rectangle—which should normally coincide with or be contained in the
window’s content region—delimiting the area in which the user can drag
the control’s outline.

slopRect A rectangle that allows some extra space for the user to move the mouse
while still constraining the control within the rectangle specified in the
limitRect parameter.

axis The axis along which the user may drag the control’s outline. The
following list shows the constants you can use—and the values they
represent—for constraining the motion along an axis:

CONST

noConstraint = 0; {no constraint}

 hAxisOnly = 1; { drag along horizontal axis only}

vAxisOnly = 2; { drag along vertical axis only}

DESCRIPTION

The DragControl procedure moves a dotted outline of the control around the screen,
following the movements of the cursor until the user releases the mouse button. When
the user releases the mouse button, DragControl calls MoveControl . In turn,
MoveControl moves the control to the location to which the user dragged it.

The TrackControl function automatically uses the DragControl procedure as
appropriate; when you use TrackControl , you don’t need to call DragControl .

The startPt , limitRect , slopRect , and axis parameters have the same meaning as
for the Window Manager function DragGrayRgn .

SPECIAL CONSIDERATIONS

Before tracking the cursor, DragControl calls the control definition function. If you
define your own control definition function, you can specify custom dragging behavior.

ASSEMBLY-LANGUAGE INFORMATION

Like TrackControl , DragControl invokes the Window Manager function
DragGrayRgn , so you can use the global variables DragHook and DragPattern .

SEE ALSO

For information about creating your own control definition functions, see “Defining Your
Own Control Definition Function” beginning on page 5-109. See the description of the
DragGrayRgn function in the chapter “Window Manager” in this book for a more
complete discussion of the startPt , limitRect , slopRect , and axis parameters,
which are used identically in the DragControl function.

CHAPTER 5

Control Manager

Control Manager Reference 5-101

SetControlColor

To draw a control using colors other than the default colors used by system software,
you can use the SetControlColor procedure. The SetControlColor procedure is
also available as the SetCtlColor procedure.

PROCEDURE SetControlColor (theControl: ControlHandle;

newColorTable: CCTabHandle);

theControl A handle to the control whose colors you wish to change.

newColorTable
A handle to a control color table record.

DESCRIPTION

The SetControlColor procedure changes the color table for the specified control. If
the control currently has no auxiliary control record, SetControlColor creates one
that includes the control color table record specified in the parameter newColorTable
and adds the auxiliary control record to the head of the auxiliary control list. If there
is already an auxiliary record for the control, SetControlColor replaces its color
table with the contents of the control color table record specified in the parameter
newColorTable .

To use nonstandard colors for a control, you must create a control color table, either by
creating a color control table record and calling SetControlColor or by creating a
control color table resource. Generally, you use SetControlColor when you create
a control using NewControl and want to use nonstandard colors for it or when you
change any control’s colors after you’ve created it. When you want to use nonstandard
colors for those controls you create in a control ('CNTL') resource, you should create a
control color table ('cctb') resource with the same resource ID as the control resource.

A control whose colors you set with SetControlColor should initially be invisible.
After using SetControlColor to set the control’s colors, use the ShowControl
procedure to make the control visible.

SPECIAL CONSIDERATIONS

On color monitors, the Control Manager automatically draws controls so that they match
the colors of the controls used by system software. Be aware that nonstandard colors in
your controls may initially confuse your users.

When you create a control color table record, your application should not deallocate it if
another control is still using it.

CHAPTER 5

Control Manager

5-102 Control Manager Reference

SetControlAction

If you set the action procedure to Pointer(-1) when you use TrackControl , you can
use the SetControlAction procedure to set or change the action procedure. The
SetControlAction procedure is also available as the SetCtlAction procedure.

PROCEDURE SetControlAction (theControl: ControlHandle;

 actionProc: ProcPtr);

theControl A handle to the control whose action procedure you wish to change.

actionProc A pointer to an action procedure defining what action your application
takes while the user holds down the mouse button.

DESCRIPTION

The SetControlAction procedure changes the contrlAction field of the control’s
control record to point to the action procedure specified in the actionProc parameter.
If the cursor is in the specified control, TrackControl calls this action procedure
when user holds down the mouse button. You must provide the action procedure, and it
must define some action to perform repeatedly as long as the user holds down the
mouse button. (The TrackControl function always highlights and drags the control
as appropriate.)

SPECIAL CONSIDERATIONS

The value in the contrlAction field of the control’s control record is used
by TrackControl only if you set the action procedure to TrackControl to
Pointer(–1) .

An action procedure is usually specified in a parameter to TrackControl ; you
generally don’t need to call SetControlAction to change it.

SEE ALSO

Action procedures are described in “Defining Your Own Action Procedures” beginning
on page 5-115.

Determining Control Values

Your application sets a control’s various values—such as current setting, minimum and
maximum settings, title, reference value, and action procedure—when it creates the
control. When the user clicks a control, however, your application often needs to
determine the current setting and other possible values of that control. When the user
clicks a checkbox, for example, your application must determine whether the box is
checked before deciding whether to draw a checkmark inside the checkbox or remove
the checkmark.

CHAPTER 5

Control Manager

Control Manager Reference 5-103

You can use the GetControlValue , GetControlTitle , GetControlMinimum ,
GetControlMaximum , GetControlAction , and GetControlReference routines to
determine, respectively, a control’s current setting, title, minimum setting, maximum
setting, action procedure, and reference value. To get a handle to a control’s auxiliary
control record, you can use the GetAuxiliaryControlRecord function; your
application can use the acRefCon field of an auxiliary control record for any purpose.
To determine the variation code that is specified in the control definition function for a
particular control, you can use the GetControlVariant function. This section also
includes a description of the SetControlReference procedure, which allows your
application to change its reference value for a control.

GetControlValue

To determine a control’s current setting, use the GetControlValue function. The
GetControlValue function is also available as the GetCtlValue function.

FUNCTION GetControlValue (theControl: ControlHandle): Integer;

theControl A handle to a control.

DESCRIPTION

The GetControlValue function returns as its function result the specified control’s
current setting, which is stored in the contrlValue field of the control record.

When you create a control, you specify an initial setting either in the control resource or
in the value parameter of the NewControl function. You can change the setting by
using the SetControlValue procedure.

SEE ALSO

Listing 5-12 on page 5-37 and Listing 5-13 on page 5-38 illustrate the use of
GetControlValue for determining the current setting of, respectively, a pop-up
menu and a checkbox. Listing 5-16 on page 5-41, Listing 5-18 on page 5-53, and
Listing 5-20 on page 5-61 illustrate the use of this function for determining the
current setting of a scroll bar.

GetControlMinimum

To determine a control’s minimum setting, use the GetControlMinimum function. The
GetControlMinimum function is also available as the GetCtlMin function.

FUNCTION GetControlMinimum (theControl: ControlHandle): Integer;

theControl A handle to the control whose minimum value you wish to determine.

CHAPTER 5

Control Manager

5-104 Control Manager Reference

DESCRIPTION

The GetControlMinimum function returns as its function result the specified control’s
minimum setting, which is stored in the contrlMin field of the control record.

When you create a control, you specify an initial minimum setting either in the control
resource or in the min parameter of the NewControl function. You can change the
minimum setting by using the SetControlMinimum procedure.

GetControlMaximum

To determine a control’s maximum setting, use the GetControlMaximum function. The
GetControlMaximum function is also available as the GetCtlMax function.

FUNCTION GetControlMaximum (theControl: ControlHandle): Integer;

theControl A handle to the control whose maximum value you wish to determine.

DESCRIPTION

The GetControlMaximum function returns as its function result the specified control’s
maximum setting, which is stored in the contrlMax field of the control record.

When you create a control, you specify an initial maximum setting either in the control
resource or in the max parameter of the NewControl function. You can change the
maximum setting by using the SetControlMaximum procedure.

SEE ALSO

Listing 5-16 on page 5-41 and Listing 5-20 on page 5-61 illustrate the use of
GetControlMaximum for determining the maximum scrolling distance of a scroll bar.

GetControlTitle

To determine the title of a control, use the GetControlTitle procedure. The
GetControlTitle procedure is also available as the GetCTitle procedure.

PROCEDURE GetControlTitle (theControl: ControlHandle;

VAR title: Str255);

theControl A handle to the control whose title you want to determine.

title The title of the control.

CHAPTER 5

Control Manager

Control Manager Reference 5-105

DESCRIPTION

The GetControlTitle procedure returns the specified control title, which is stored in
the contrlTitle field of the control record.

When you create a control, you specify an initial title either in the control resource or in
the title parameter of the NewControl function. You can change the title by using the
SetControlTitle procedure.

GetControlReference

To determine a control’s current reference value, use the GetControlReference
function. The GetControlReference function is also available as the GetCRefCon
function.

FUNCTION GetControlReference (theControl: ControlHandle): LongInt;

theControl A handle to the control whose current reference value you wish
to determine.

DESCRIPTION

The GetControlReference function returns as its function result the current reference
value for the specified control.

When you create a control, you specify an initial reference value, either in the control
resource or in the refCon parameter of the NewControl function. The reference value
is stored in the contrlRfCon field of the control record. You can use this field for any
purpose, and you can use the SetControlReference procedure, described next, to
change this value.

SetControlReference

To change a control’s current reference value, use the SetControlReference
procedure. The SetControlReference procedure is also available as the
SetCRefCon procedure.

PROCEDURE SetControlReference (theControl: ControlHandle;

 data: LongInt);

theControl A handle to the control whose reference value you wish to change.

data The new reference value for the control.

CHAPTER 5

Control Manager

5-106 Control Manager Reference

DESCRIPTION

The SetControlReference procedure sets the control’s reference value to the value
you specify in the data parameter.

When you create a control, you specify an initial reference value, either in the
control resource or in the refCon parameter of the NewControl function. The
reference value is stored in the contrlRfCon field of the control record; you can
use the GetControlReference function to determine the current value. You
can use this value for any purpose.

GetControlAction

To get a pointer to the action procedure stored in the contrlAction field
of the control’s control record, use the GetControlAction function. The
GetControlAction function is also available as the GetCtlAction function.

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr;

theControl A handle to a control.

DESCRIPTION

The GetControlAction function returns as its function result whatever value is
stored in the contrlAction field of the control’s control record. This field specifies
the action procedure that TrackControl uses if you set its actionProc parameter to
Pointer(-1) . The action procedure should define an action to take in response to the
user’s holding down the mouse button while the cursor is in the control. You can use
the SetControlAction procedure to change this action procedure.

SEE ALSO

For information about defining an action procedure, see “Defining Your Own Action
Procedures” beginning on page 5-115.

GetControlVariant

To determine the variation code specified in the control definition function for a
particular control, you can use the GetControlVariant function. The
GetControlVariant function is also available as the GetCVariant function.

FUNCTION GetControlVariant (theControl: ControlHandle): Integer;

theControl A handle to the control whose variation code you wish to determine.

CHAPTER 5

Control Manager

Control Manager Reference 5-107

DESCRIPTION

The GetControlVariant function returns as its function result the variation code for
the specified control.

SEE ALSO

Variation codes are described in “The Control Definition Function” on page 5-14.

GetAuxiliaryControlRecord

 Use the GetAuxiliaryControlRecord function to get a handle to a control’s
auxiliary control record. The GetAuxiliaryControlRecord function is also
available as the GetAuxCtl function.

FUNCTION GetAuxiliaryControlRecord (theControl: ControlHandle;

VAR acHndl: AuxCtlHandle)

: Boolean;

theControl A handle to a control.

acHndl A handle to the auxiliary control record for the control.

DESCRIPTION

In its acHndl parameter, the GetAuxiliaryControlRecord function returns a
handle to the auxiliary control record for the specified control. Your application typically
doesn’t need to access an auxiliary control record unless you need its acRefCon field,
which your application can use for any purpose.

The value that GetAuxiliaryControlRecord returns for a function result depends
on the control’s color control table, as described here:

■ If your application has changed the default control color table for the given control
(either by using the SetControlColor procedure or by creating its own control
color table), the function returns TRUE.

■ If your application has not changed the default control color table, the function
returns FALSE.

■ If you set the parameter theControl to NIL , the Dialog Manager ensures that
the control uses the default color table, and GetAuxiliaryControlRecord
returns TRUE.

CHAPTER 5

Control Manager

5-108 Control Manager Reference

Removing Controls

When you use the Window Manager procedures DisposeWindow and CloseWindow
to remove a window, they automatically remove all controls associated with the window
and release the memory the controls occupy.

When you no longer need a control in a window that you want to keep, you can use the
DisposeControl procedure to remove the control from the window’s control list and
release the memory it occupies. You can use the KillControls procedure to dispose of
all of a window’s controls at once.

DisposeControl

To remove a particular control from a window that you want to keep, use the
DisposeControl procedure.

PROCEDURE DisposeControl (theControl: ControlHandle);

theControl A handle to the control you wish to remove.

DESCRIPTION

The DisposeControl procedure removes the specified control from the screen, deletes
it from its window’s control list, and releases the memory occupied by the control record
and any data structures associated with the control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

To remove all of the controls in a window, use the KillControls procedure, described
next. The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

KillControls

To remove all of the controls in a particular window that you want to keep, use the
KillControls procedure.

PROCEDURE KillControls (theWindow: WindowPtr);

theWindow A pointer to the window containing the controls to remove.

CHAPTER 5

Control Manager

Control Manager Reference 5-109

DESCRIPTION

The KillControls procedure disposes of all controls associated with the specified
window by calling the DisposeControl procedure for each control.

SPECIAL CONSIDERATIONS

The Window Manager procedures CloseWindow and DisposeWindow automatically
dispose of all controls associated with the given window.

SEE ALSO

The CloseWindow and DisposeWindow procedures are described in the chapter
“Window Manager” in this book.

Application-Defined Routines
This section describes how to create your own control definition function—declared
here as MyControl —which your application needs to provide when defining new,
nonstandard controls. This section also describes action procedures—declared here
as MyAction and MyIndicatorAction —which define additional actions to be
performed repeatedly as long as the user holds down the mouse button while the
cursor is in a control. For example, you need to define an action procedure for scrolling
through a document while the user holds down the mouse button and the cursor is
in a scroll arrow.

Defining Your Own Control Definition Function

In addition to the standard controls (buttons, checkboxes, radio buttons, pop-up menus,
and scroll bars), the Control Manager allows you to define new, nonstandard controls as
appropriate for your application. For example, you can define a three-way selector
switch, a memory-space indicator that looks like a thermometer, or a thruster control for
a spacecraft simulator. Controls and their indicators may occupy regions of any shape, as
permitted by QuickDraw.

To define your own type of control, you write a control definition function, compile it as
a resource of type 'CDEF' , and store it in your resource file. (See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for more information about
creating resources.) Whenever you create a control, you specify a control definition ID,
which the Control Manager uses to determine the control definition function. The control
definition ID is an integer that contains the resource ID of the control definition function
in its upper 12 bits and a variation code in its lower 4 bits. Thus, for a given resource ID
and variation code

control definition ID = 16 x resource ID + variation code

For example, buttons, checkboxes, and radio buttons all use the standard control
definition function with resource ID 0. Because they have variation codes of 0, 1,
and 2, respectively, their respective control definition IDs are 0, 1, and 2.

CHAPTER 5

Control Manager

5-110 Control Manager Reference

You can define your own variation codes, which various Control Manager routines pass
to your control definition function. This allows you to use one 'CDEF' resource to
handle several variations of the same general control.

The Control Manager calls the Resource Manager to access your control definition
function with the given resource ID. The Resource Manager reads your control definition
function into memory and returns a handle to it. The Control Manager stores this handle
in the contrlDefProc field of the control record. In 24-bit addressing mode, the
variation code is placed in the high-order byte of this field; in 32-bit mode, the variation
code is placed in the most significant byte of the acReserved field in the control’s
AuxCtlRec record. Later, when various Control Manager routines need to perform a
type-dependent action on the control, they call your control definition function and pass
it the variation code as a parameter.

If you create a control definition function, you can use control color table records of
any desired size and define their contents in any way you wish, except that part indices
1 through 127 are reserved for system definition. Note that in this case, you should
allocate explicit auxiliary records for every control you create.

MyControl

If you wish to define new, nonstandard controls for your application, you must write a
control definition function and store it in a resource file as a resource of type 'CDEF' .
Here’s how you would declare a procedure named MyControl :

FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt): LongInt;

varCode The variation code for this control. To derive the control definition ID for
the control, add this value to the result of 16 multiplied by the resource ID
of the 'CDEF' resource containing this function. The variation code
allows you to specify several control definition IDs within one 'CDEF'
resource, thereby defining several variations of the same basic control.

theControl A handle to the control that the operation will affect.

message A value (from the following list) that specifies which operation your
function must undertake.

CONSTdrawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button }

{ is pressed}

calcCRgns = 2; {calculate region for }

{ control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional }

{ control initialization}

CHAPTER 5

Control Manager

Control Manager Reference 5-111

dispCntl = 4; {perform any additional }

{ disposal actions}

 posCntl = 5; {move indicator and }

{ update its setting}

 thumbCntl = 6; {calculate parameters for }

{ dragging indicator}

dragCntl = 7; {perform any custom dragging }

{ of control or its indicator}

autoTrack = 8; {execute action procedure }

{ specified by your function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for }

{ indicator}

param A value whose meaning depends on the operation specified in the
message parameter.

DESCRIPTION

The Control Manager calls your control definition function under various circumstances;
the Control Manager uses the message parameter to inform your control definition
function what action it must perform. The data that the Control Manager passes in the
param parameter, the action that your control definition function must undertake, and
the function result that your control definition function returns all depend on the value
that the Control Manager passes in the message parameter. The rest of this section
describes how to respond to the various values that the Control Manager passes in the
message parameter.

Drawing the Control or Its Part

When the Control Manager passes the value for the drawCntl constant in the message
parameter, the low word in the param parameter has one of the following values:

■ the value 0, indicating the entire control

■ the value 129, signifying an indicator that must be moved

■ any other value, indicating a part code for the control (Don’t use part code 128, which
is reserved for future use, or part code 129, which the Control Manager uses to signify
an indicator that must be moved.)

Note

For the drawCntl message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. ◆

If the specified control is visible, your control definition function should draw the control
(or the part specified in the param parameter) within the control’s rectangle. If the
control is invisible (that is, if its contrlVis field is set to 0), your control definition
function does nothing.

CHAPTER 5

Control Manager

5-112 Control Manager Reference

When drawing the control or its part, take into account the current values of its
contrlHilite and contrlValue fields of the control’s control record.

If the part code for your control’s indicator is passed in param , assume that the indicator
hasn’t moved; the Control Manager, for example, may be calling your control definition
function so that you may simply highlight the indicator. However, when your applica-
tion calls the SetControlValue , SetControlMinimum , and SetControlMaximum
procedures, they in turn may call your control definition function to redraw the
indicator. Since these routines have no way of determining what part code you chose
for your indicator, they all pass 129 in param , meaning that you should move your
indicator. Your control definition function must detect this part code as a special case and
remove the indicator from its former location before drawing it. If your control has more
than one indicator, you should interpret 129 to mean all indicators.

When passed the value for the drawCntl constant in the message parameter, your
control definition function should always return 0 as its function result.

Testing Where the Mouse-Down Event Occurs

To request your control definition function to determine whether a specified point is
in a visible control, the FindControl function sends the value for the testCntl
constant in the message parameter. In this case, the param parameter specifies a point
(in coordinates local to the control’s window) as follows:

■ The point’s vertical coordinate is contained in the high-order word of the long integer.

■ The point’s horizontal coordinate is contained in the low-order word.

When passed the value for the testCntl constant in the message parameter, your
control definition function should return the part code of the part that contains the
specified point; it should return 0 if the point is outside the control or if the control
is inactive.

Calculating the Control and Indicator Regions

When the Control Manager passes the value for the calcCRgns constant in the
message parameter, your control definition function should calculate the region
occupied by either the control or its indicator. The Control Manager passes a QuickDraw
region handle in the param parameter; it is this region that you calculate. If the
high-order bit of param is set, the region requested is that of the control’s indicator;
otherwise, the region requested is that of the entire control. Your control definition
function should clear the high bit of the region handle before calculating the region.

When the Control Manager passes the value for the calcCntlRgn constant in the
message parameter, your control definition function should calculate the region passed
in the param parameter for the specified control. When the Control Manager passes the
value for the calcThumbRgn constant, calculate the region occupied by the indicator.

When passed the values for the calcCRgns , calcCntlRgn , and calcThumbRgn
constants, your control definition function should always return 0, and it should express
the region in the local coordinate system of the control’s window.

CHAPTER 5

Control Manager

Control Manager Reference 5-113

IMPORTANT

The Control Manager passes the calcCRgns constant when the 24-bit
Memory Manager is in operation. When the 32-bit Memory Manager is
in operation, the Control Manager instead passes the calcCntlRgn
constant or the calcThumbRgn constant. Your control definition
function should respond to all three constants. ▲

Performing Any Additional Initialization

After initializing fields of a control record as appropriate when creating a new control,
the Control Manager passes initCntl in the message parameter to give your control
definition function the opportunity to perform any type-specific initialization you may
require. For example, if you implement the control’s action procedure in its control
definition function, you’ll need to store Pointer(–1) in the contrlAction field of the
control’s control record. Then, in a call to TrackControl for this control, you would
pass Pointer(–1) in the actionProc parameter of TrackControl .

The standard control definition function for scroll bars allocates space for a region to
hold the scroll box and stores the region handle in the contrlData field of the new
control record.

When passed the value for the initCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Performing Any Additional Disposal Actions

The DisposeControl procedure passes dispCntl in the message parameter to give
your control definition function the opportunity to carry out any additional actions
when disposing of a control. For example, the standard definition function for scroll bars
releases the memory occupied by the scroll box region, whose handle is kept in the
contrlData field of the control’s control record.

When passed the value for the dispCntl constant in the message parameter, your
control definition function should ignore the param parameter and return 0 as a
function result.

Moving the Indicator

When a mouse-up event occurs in the indicator of a control, the TrackControl
function calls your control definition function and passes posCntl in the message
parameter. In this case, the param parameter contains a point (in coordinates local to the
control’s window) that specifies the vertical and horizontal offset, in pixels, by which
your control definition function should move the indicator from its current position.
Typically, this is the offset between the points where the cursor was when the user
pressed and released the mouse button while dragging the indicator. The offset point is
specified as follows:

■ The point’s vertical offset is contained in the high-order word of the param parameter.

■ The point’s horizontal offset is contained in the low-order word.

CHAPTER 5

Control Manager

5-114 Control Manager Reference

Your definition function should calculate the control’s new setting based on the
given offset and then, to reflect the new setting, redraw the control and update the
contrlValue field in the control’s control record. Your control definition function
should ignore the param parameter and return 0 as a function result.

Note that the SetControlValue , SetControlMinimum , and SetControlMaximum
procedures do not call your control definition function with the posCntl message;
instead, they pass the drawCntl message.

Calculating Parameters for Dragging the Indicator

When the Control Manager passes the value for thumbCntl in the message parameter,
your control definition function should respond by calculating values (analogous to
the limitRect , slopRect , and axis parameters of DragControl) that constrain
how the indicator is dragged. The param parameter contains a pointer to the following
data structure:

RECORD

limitRect,slopRect: Rect;

axis: Integer;

END;

On entry, the field param^.limitRect.topLeft contains the point where the
mouse-down event first occurred. Your definition function should store the appropriate
values into the fields of the record pointed to by param ; they’re analogous to the
similarly named parameters to the Window Manager function DragGrayRgn .

Performing Custom Dragging

The Control Manager passes dragCntl in the message parameter to give your control
definition function the opportunity to specify its own method for dragging a control (or
its indicator).

The param parameter specifies whether the user is dragging an indicator or the
whole control:

■ A value of 0 means the user is dragging the entire control.

■ Any nonzero value means the user is dragging only the indicator.

If you want to use the Control Manager’s default method of dragging (which is to call
DragControl to drag the control or the Window Manager function DragGrayRgn to
drag its indicator), return 0 as the function result for your control definition function.

If your control definition function returns any nonzero result, the Control Manager does
not drag your control, and instead your control definition function must drag the
specified control (or its indicator) to follow the cursor until the user releases the mouse
button, as follows:

■ If the user drags the entire control, your definition function should use the
MoveControl procedure to reposition the control to its new location after the user
releases the mouse button.

CHAPTER 5

Control Manager

Control Manager Reference 5-115

■ If the user drags the indicator, your definition function must calculate the control’s
new setting (based on the pixel offset between the points where the cursor was when
the user pressed and released the mouse button while dragging the indicator) and
then, to reflect the new setting, redraw the control and update the contrlValue field
in the control’s control record. Note that, in this case, the TrackControl function
returns 0 whether or not the user changes the indicator’s position. Thus, you must
determine whether the user has changed the control’s setting, for instance, by
comparing the control’s value before and after the call to TrackControl .

Executing an Action Procedure

You can design a control whose action procedure is specified by your control definition
function. When you create the control, your control definition function must first
respond to the initCntl message by storing Pointer(–1) in the contrlAction
field of the control’s control record. (As previously explained, the Control Manager
sends the initCntl message to your control definition function after initializing
the fields of a new control record.) Then, when your application passes Pointer(–1)
in the actionProc parameter to the TrackControl function, TrackControl
calls your control definition function with the autoTrack message. The param
parameter specifies the part code of the part where the mouse-down event occurs.
Your control definition function should then use this information to respond as an action
procedure would.

Note

For the autoTrack message, the high-order word of the param
parameter may contain undefined data; therefore, evaluate only
the low-order word of this parameter. ◆

ASSEMBLY-LANGUAGE INFORMATION

The function’s entry point must be at the beginning.

SEE ALSO

The TrackControl function is described on page 5-90; creating an action procedure is
described in the next section.

Defining Your Own Action Procedures

When a mouse-down event occurs in a control, the TrackControl function responds as
appropriate by highlighting the control or dragging the indicator as long as the user
holds down the mouse button. You can define other actions to be performed repeatedly
during this interval. To do so, define your own action procedure and point to it in the
actionProc parameter of the TrackControl function.

When calling your action procedure for a control part other than an indicator,
TrackControl passes your action procedure (1) a handle to the control and (2) the
control’s part code. Your action procedure should then respond as appropriate. For

CHAPTER 5

Control Manager

5-116 Control Manager Reference

example, if the user is working in a text document and holds down the mouse button
while the cursor is in the lower scroll arrow, your application should scroll continuously
one line at a time until the user releases the mouse button or reaches the end of
the document.

For a control part other than an indicator, you declare an action procedure that takes two
parameters: a handle to the control in which the mouse-down event occurred and an
integer that represents the part of the control in which the mouse-down event occurred.
Such an action procedure is declared as MyAction in the following section.

If the mouse-down event occurs in an indicator, your action procedure should take no
parameters, because the user may move the cursor outside the indicator while dragging
it. Such an action procedure, declared here as MyIndicatorAction , is described on
page 5-117.

Because it will be called with either zero or two parameters, according to whether the
mouse-down event occurred in an indicator or elsewhere, your action procedure can be
defined for only one case or the other. The only way to specify actions in response to all
mouse-down events in a control, regardless of whether they’re in an indicator, is to
define your own control definition function, as described in “Defining Your Own Control
Definition Function” beginning on page 5-109.

MyAction

Here’s how to declare an action procedure for a control part other than an indicator if
you were to name the procedure MyAction :

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

theControl A handle to the control in which the mouse-down event occurred.

partCode When the cursor is still in the control part where mouse-down event first
occurred, this parameter contains that control’s part code. When the
user drags the cursor outside the original control part, this parameter
contains 0.

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example,
when a mouse-down event occurs in a scroll arrow or gray area of a scroll bar,
TrackControl calls your action procedure and passes it the part code and a handle
to the scroll bar. Your action procedure should examine the part code to determine
the part of the control in which the mouse-down event occurred. Your action
procedure should then scroll up or down a line or page as appropriate and then call
the SetControlValue procedure to change the control’s setting and redraw the
scroll box.

CHAPTER 5

Control Manager

Control Manager Reference 5-117

ASSEMBLY-LANGUAGE INFORMATION

If you store a pointer to a procedure in the global variable DragHook , your procedure is
called repeatedly (with no parameters) as long as the user holds down the mouse button.
The TrackControl function invokes the Window Manager function DragGrayRgn ,
which calls the DragHook procedure. The DragGrayRgn function uses the pattern
stored in the global variable DragPattern for the dragged outline of the indicator.

SEE ALSO

Listing 5-19 on page 5-59 illustrates a pair of action procedures for scrolling through a
text document. As an alternative to passing a pointer to your action procedure in a
parameter to TrackControl , you can use the SetControlAction procedure to
store a pointer to the action procedure in the contrlAction field in the control record.
When you pass Pointer(–1) instead of a procedure pointer to TrackControl ,
TrackControl uses the action procedure pointed to in the control record.

MyIndicatorAction

Here’s how to declare an action procedure for an indicator if you were to name the
procedure MyIndicatorAction :

PROCEDURE MyIndicatorAction;

DESCRIPTION

Your procedure can perform any action appropriate for the control part. For example, if
your application plays music while displaying a volume control slider, your application
should change the volume in response to the user ’s action in the slider switch.

SEE ALSO

See the MyAction procedure described on page 5-116 for other considerations.

Resources
This section describes the control ('CNTL') resource and the control color table
('cctb') resource. You can use the control resource to define a control and use the
control color table resource to change the default colors of a control’s parts.

CHAPTER 5

Control Manager

5-118 Control Manager Reference

The Control Resource

You can use a control resource to define a control. A control resource is a resource of
type 'CNTL' . All control resources must have resource ID numbers greater than 128.
Use the GetNewControl function (described on page 5-81) to create a control defined in
a control resource. The Control Manager uses the information you specify to create a
control record in memory. (The control record is described on page 5-73.)

This section describes the structure of this resource after it is compiled by the Rez
resource compiler, available from APDA. The format of a Rez input file for a control
resource differs from its compiled output form, which is illustrated in Figure 5-25. If you
are concerned only with creating a control resource, see “Creating and Displaying a
Control” beginning on page 5-15.

Figure 5-25 Structure of a compiled control ('CNTL') resource

The compiled version of a control resource contains the following elements:

■ The rectangle, specified in coordinates local to the window, that encloses the control;
this rectangle encloses the control and thus determines its size and location.

■ The initial setting for the control.
■ For controls—such as buttons—that don’t retain a setting, this value should be 0.
■ For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

a value of 0 in this element indicates that the control is initially off; a value of 1
indicates that the control is initially on.

■ For controls—such as scroll bars and dials—that can take a range of settings,
whatever initial value is appropriate within that range is specified in this element.

CHAPTER 5

Control Manager

Control Manager Reference 5-119

■ For pop-up menus, a combination of values instructs the Control Manager where
and how to draw the control title. Appropriate values, along with the constants
used to specify them in a Rez input file, are listed here:

CONSTpopupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font }

{ style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed text}

popupTitleExtend = $00004000; {extended text}

popupTitleNoStyle = $00008000; {monostyle text}

popupTitleLeftJust = $00000000; {place title left }

{ of pop-up box}

popupTitleCenterJust = $00000001; {center title over }

{ pop-up box}

popupTitleRightJust = $000000FF; {place title right }

{ of pop-up box}

■ The visibility of the control. If this element contains the value TRUE, GetNewControl
draws the control immediately, without using the application’s standard updating
mechanism for windows. If this element contains the value FALSE, the application
must use the ShowControl procedure (described on page 5-86) when it’s prepared to
display the control.

■ Fill. This should be set to 0.

■ The maximum setting for the control.
■ For controls—such as buttons—that don’t retain a setting, this value should be 1.
■ For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

this element should contain the value 1 (meaning “on”).
■ For controls—such as scroll bars and dials—that can take a range of settings, this

element can contain whatever maximum value is appropriate; when the
application makes the maximum setting of a scroll bar equal to its minimum
setting, the control definition function automatically makes the scroll bar inactive,
and when the application makes the maximum setting exceed the minimum, the
control definition function makes the scroll bar active again.

■ For pop-up menus, this element contains the width, in pixels, of the control title.

■ The minimum setting for the control.
■ For controls—such as buttons—that don’t retain a setting, this value should be 0.
■ For controls—such as checkboxes or radio buttons—that retain an on-or-off setting,

the value 0 (meaning “off”) should be set in this element.
■ For controls—such as scroll bars and dials—that can take a range of settings, this

element contains whatever minimum value is appropriate.
■ For pop-up menus, this element contains the resource ID of the 'MENU' resource

that describes the menu items.

CHAPTER 5

Control Manager

5-120 Control Manager Reference

■ The control definition ID, which the Control Manager uses to determine the control
definition function for this control. “Defining Your Own Control Definition Function”
beginning on page 5-109 describes how to create control definition functions and their
corresponding control definition IDs. The following list shows the control definition
ID numbers—and the constants that represent them in Rez input files—for the
standard controls.

CONST

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {when added to above, shows }

{ title in the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupFixedWidth = $0001; {add to popupMenuProc to }

{ use fixed-width control}

popupUseAddResMenu = $0004; {add to popupMenuProc to }

{ specify a value of type }

{ ResType in the contrlRfCon }

{ field of the control }

{ record; Menu Manager }

{ adds resources of this }

{ type to the menu}

popupUseWFont = $0008; {if added to popupMenuProc, }

{ shows title in window font}

Note

The title of a button, checkbox, radio button, or pop-up menu normally
appears in the system font, which in Roman script systems is 12-point
Chicago. Do not use a smaller font; some script systems, such as
KanjiTalk, require 12-point fonts. You should generally use the system
font in your controls; doing so will simplify localization effort. However,
if you absolutely need to display a control title in the font currently
associated with the window’s graphics port, you can add the
popupUseWFont constant to the pop-up menu control definition
ID or add the useWFont constant to the other standard control
definition IDs. ◆

■ The control’s reference value, which is set and used only by the application (except
when the application adds the popupUseAddResMenu variation code to the
popupMenuProc control definition ID, as described in “Creating a Pop-Up Menu”
beginning on page 5-25).

CHAPTER 5

Control Manager

Control Manager Reference 5-121

■ For controls—such as buttons, checkboxes, radio buttons, and pop-up menus—that
need a title, the string for that title; for controls that don’t use titles, an empty string.

After you use GetNewControl to create the control, you can change the current setting,
the maximum setting, the minimum setting, the reference value, and the title by using,
respectively, the SetControlValue , SetControlMaximum , SetControlMinimum ,
SetControlReference , and SetControlTitle routines. You can use the
MoveControl and SizeControl procedures to change the control’s rectangle. You
can use the GetControlValue , GetControlMaximum , GetControlMinimum ,
GetControlReference , and GetControlTitle routines to determine the
control values.

The Control Color Table Resource

On color monitors, the Control Manager automatically draws control parts so that they
match the colors of the controls used by system software.

If you feel absolutely compelled to use nonstandard colors, the Control Manager
allows you to do so. Your application can specify these by creating a control color table
('cctb') resource; you must give the control color table resource for a control the
same resource ID as its control ('CNTL') resource, which is described on page 5-118.
When you call the GetNewControl function to create the control, the Control Manager
automatically attempts to load a control color table resource with the same resource ID
as the control resource specified to GetNewControl . The Control Manager also creates
an auxiliary control record for the control; the auxiliary control record is described
on page 5-76.

Note

Using nonstandard colors in your controls may initially confuse
your users. ◆

Generally, you use a control color table resource for a control that you define in a control
resource. To change a control’s colors, or to use nonstandard colors in a control
you create using NewControl , create a control color table record and use the
SetControlColor procedure. The control color table record is described on page 5-77;
the SetControlColor procedure is described on page 5-101.

A control color table resource is of type 'cctb' . All control color table resources must
have resource ID numbers greater than 128. Figure 5-26 on the next page shows the
format of a control color table resource. Note that DisposeControl does not delete
a control color table resource; therefore, you should make each control color table
resource purgeable.

CHAPTER 5

Control Manager

5-122 Control Manager Reference

Figure 5-26 Structure of a compiled control color table ('cctb') resource

You define a control color table resource by specifying these elements in a resource with
the 'cctb' resource type:

■ Reserved. Should always be set to 0.

■ Reserved. Should always be set to 0.

■ Number of control parts. For standard controls other than scroll bars, this should be
set to 3, because these controls consist of a frame, a control body, and text. For scroll
bars, this should be set to 12. A scroll bar consists of a frame, a body, and scroll box;
each part of a scroll bar has various highlight and tinge colors associated with it. To
create a control with more parts, you must create your own control definition function
(as described in “Defining Your Own Control Definition Function” beginning on
page 5-109) that recognizes additional parts.

■ First part identifier. A value or constant that identifies the control’s part to color. The
part identifiers can be listed in any order. The scroll bar control definition function
may use more than one part identifier to produce the actual colors used for each part
of the scroll bar.

CONST

cFrameColor = 0; {frame color; for scroll bars, used to produce }

{ foreground color for scroll arrows & gray area}

cBodyColor = 1; {body color; for scroll bars, used to produce }

{ colors in the scroll box}

cTextColor = 2; {text color; unused for scroll bars}

CHAPTER 5

Control Manager

Control Manager Reference 5-123

cArrowsColorLight = 5; {Used to produce colors in arrows & scroll bar }

{ background color}

cArrowsColorDark = 6; {Used to produce colors in arrows & scroll bar }

{ background color}

cThumbLight = 7; {Used to produce colors in scroll box}

cThumbDark = 8; {Used to produce colors in scroll box}

cHiliteLight = 9; {Use same value as wHiliteColorLight in 'wctb'}

cHiliteDark = 10; {Use same value as wHiliteColorDark in 'wctb'}

cTitleBarLight = 11; {Use same value as wTitleBarLight in 'wctb'}

cTitleBarDark = 12; {Use same value as wTitleBarDark in 'wctb'}

cTingeLight = 13; {Use same value as wTingeLight in 'wctb'}

cTingeDark = 14; {Use same value as wTingeDark in 'wctb'}

■ Red component. An integer that represents the intensity of the red component of
the color to use when drawing this part of the control. In this and the next two
elements, use 16-bit unsigned integers to give the intensity values of three additive
primary colors.

■ Green component. An integer that represents the intensity of the green component of
the color to use when drawing this part of the control.

■ Blue component. An integer that represents the intensity of the blue component of the
color to use when drawing this part of the control.

■ Part identifier and red, green, and blue components for the next control part. You can
list parts in any order in this resource. If the application specifies a part identifier that
cannot be found, the Control Manager uses the colors for the control’s first identifiable
part. If a part is not listed in the control color table, the Dialog Manager draws it in its
default color.

The Control Definition Function

The resource type for a control definition function is 'CDEF' . The resource data is
the compiled or assembled code of the function. See “Defining Your Own Control
Definition Function” beginning on page 5-109 for information about creating a control
definition function.

CHAPTER 5

Control Manager

5-124 Summary of the Control Manager

Summary of the Control Manager

Pascal Summary

Constants

CONST

{control definition IDs}

pushButProc = 0; {button}

checkBoxProc = 1; {checkbox}

radioButProc = 2; {radio button}

useWFont = 8; {add to above to display control title in }

{ the window font}

scrollBarProc = 16; {scroll bar}

popupMenuProc = 1008; {pop-up menu}

popupMenuCDEFproc = popupMenuProc; {synonym for compatibility}

{pop-up menu CDEF variation codes}

popupFixedWidth = $0001; {add to popupMenuProc to use }

{ fixed-width control}

popupUseAddResMenu = $0004 ; {add to popupMenuProc to specify a }

{ value of type ResType in the }

{ contrlRfCon field of the control }

{ record; Menu Manager adds }

{ resources of this type to the menu}

popupUseWFont = $0008; {add to popupMenuProc to show control }

{ title in the window font}

{part codes}

inButton = 10; {button}

inCheckBox = 11; {checkbox or radio button}

inUpButton = 20; {up arrow for a vertical scroll bar, }

{ left arrow for a horizontal scroll bar}

inDownButton = 21; {down arrow for a vertical scroll bar, }

{ right arrow for a horizontal scroll bar}

inPageUp = 22; {gray area above scroll box for a }

{ vertical scroll bar, gray area to }

{ left of scroll box for a horizontal }

{ scroll bar}

CHAPTER 5

Control Manager

Summary of the Control Manager 5-125

inPageDown = 23; {gray area below scroll box for a }

{ vertical scroll bar, gray area to }

{ right of scroll box for a horizontal }

{ scroll bar}

inThumb = 129; {scroll box (or other indicator)}

{pop-up title characteristics}

popupTitleBold = $00000100; {boldface font style}

popupTitleItalic = $00000200; {italic font style}

popupTitleUnderline = $00000400; {underline font style}

popupTitleOutline = $00000800; {outline font style}

popupTitleShadow = $00001000; {shadow font style}

popupTitleCondense = $00002000; {condensed characters}

popupTitleExtend = $00004000; {extended characters}

popupTitleNoStyle = $00008000; {monostyled text}

popupTitleLeftJust = $00000000; {place title left of pop-up box}

popupTitleCenterJust = $00000001; {center title over pop-up box}

popupTitleRightJust = $000000FF; {place title right of pop-up box}

{axis constraints for DragControl procedure}

noConstraint = 0; {no constraint}

hAxisOnly = 1; {drag along horizontal axis only}

vAxisOnly = 2; {drag along vertical axis only}

{constants for the message parameter in a control definition function}

drawCntl = 0; {draw the control or its part}

testCntl = 1; {test where mouse button is pressed}

calcCRgns = 2; {calculate region for control or indicator in }

{ 24-bit systems}

initCntl = 3; {peform any additional control initialization}

dispCntl = 4; {take any additional disposal actions}

posCntl = 5; {move indicator and update its setting}

thumbCntl = 6; {calculate parameters for dragging indicator}

dragCntl = 7; {perform any custom dragging of control or }

{ its indicator}

autoTrack = 8; {execute action procedure specified by your }

{ function}

calcCntlRgn = 10; {calculate region for control}

calcThumbRgn = 11; {calculate region for indicator}

{part identifiers for ColorSpec records in a control color table resource}

cFrameColor = 0; {frame color; for scroll bars, also fore- }

{ ground color for scroll arrows and gray area}

CHAPTER 5

Control Manager

5-126 Summary of the Control Manager

cBodyColor = 1; {for scroll bars, background color for }

{ scroll arrows and gray area; for other }

{ controls, the fill color for body of control}

cTextColor = 2; {text color; unused for scroll bars}

cThumbColor = 3; {Reserved}

Data Types

TYPE ControlPtr = ^ControlRecord;

ControlHandle = ^ControlPtr;

ControlRecord =

PACKED RECORD

nextControl: ControlHandle; {next control}

contrlOwner: WindowPtr; {control's window}

contrlRect: Rect; {rectangle}

contrlVis: Byte; {255 if visible}

contrlHilite: Byte; {highlight state}

contrlValue: Integer; {control's current setting}

contrlMin: Integer; {control's minimum setting}

contrlMax: Integer; {control's maximum setting}

contrlDefProc: Handle; {control definition function}

contrlData: Handle; {data used by contrlDefProc}

contrlAction: ProcPtr; {action procedure}

contrlRfCon: LongInt; {control's reference value}

contrlTitle: Str255; {control's title}

END;

AuxCtlPtr = ^AuxCtlRec;

AuxCtlHandle = ^AuxCtlPtr;

AuxCtlRec =

RECORD

acNext: AuxCtlHandle; {handle to next AuxCtlRec}

acOwner: ControlHandle; {handle to this record's control}

acCTable: CCTabHandle; {handle to color tabl e record}

acFlags: Integer; {reserved}

acReserved: LongInt; {reserved fo r future use}

acRefCon: LongInt; {for use by application}

END;

CHAPTER 5

Control Manager

Summary of the Control Manager 5-127

CCTabPtr = ^CtlCTab;

CCTabHandle = ^CCTabPtr;

CtlCTab =

RECORD

ccSeed: LongInt; {reserved ; set to 0 }

ccRider: Integer; {reserved ; set to 0 }

ctSize: Integer; {number of ColorSpec records in next }

{ field; 3 for standard controls}

ctTable : ARRAY[0..3] OF ColorSpec;

END;

Control Manager Routines

Creating Controls

FUNCTION GetNewControl (controlID: Integer; owner: WindowPtr)
: ControlHandle;

FUNCTION NewControl (theWindow: WindowPtr; boundsRect: Rect;
title: Str255; visible: Boolean;
value: Integer; min: Integer; max: Integer;
procID: Integer; refCon: LongInt)
: C ontrolHandle;

Drawing Controls

{UpdateControls is also spelled as UpdtControl}

PROCEDURE ShowControl (theControl: ControlHandle);

PROCEDURE UpdateControls (theWindow: WindowPtr; updateRgn: RgnHandle);

PROCEDURE DrawControls (theWindow: WindowPtr);

PROCEDURE Draw1Control (theControl: ControlHandle);

Handling Mouse Events in Controls

FUNCTION FindControl (thePoint: Point; theWindow: WindowPtr;
VAR theControl: ControlHandle): Integer;

FUNCTION TrackControl (theControl: ControlHandle; thePoint: Point;
actionProc: ProcPtr): Integer;

FUNCTION TestControl (theControl: ControlHandle; thePt: Point)
: Integer;

CHAPTER 5

Control Manager

5-128 Summary of the Control Manager

Changing Control Settings and Display

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

PROCEDURE SetControlValue (theControl: ControlHandle; theValue: Integer);

PROCEDURE SetControlMinimum (theControl: ControlHandle; minValue: Integer) ;

PROCEDURE SetControlMaximum (theControl: ControlHandle; maxValue: Integer) ;

PROCEDURE SetControlTitle (theControl: ControlHandle; title: Str255) ;

PROCEDURE HideControl (theControl: ControlHandle);

PROCEDURE MoveControl (theControl: ControlHandle; h: Integer;
v: Integer);

PROCEDURE SizeControl (theControl: ControlHandle; w: Integer; h:
Integer);

PROCEDURE HiliteControl (theControl: ControlHandle;
hiliteState: Integer);

PROCEDURE DragControl (theControl: ControlHandle; startPt: Point;
limitRect: Rect; slopRect: Rect;
axis: Integer) ;

PROCEDURE SetControlColor (theControl: ControlHandle; newColorTable:
CCTabHandle) ;

PROCEDURE SetControlAction (theControl: ControlHandle;
actionProc: ProcPtr);

Determining Control Values

{some routines have 2 spellings——see Table 5-1 for the alternate spellings}

FUNCTION GetControlValue (theControl: ControlHandle): Integer ;

FUNCTION Get ControlMinimum (theControl: ControlHandle): Integer ;

FUNCTION Get ControlMaximum (theControl: ControlHandle): Integer ;

PROCEDURE GetControl Title (theControl: ControlHandle; VAR title: Str255) ;

FUNCTION GetControlReference
(theControl: ControlHandle): LongInt;

PROCEDURE SetControlReference
(theControl: ControlHandle; data: LongInt);

FUNCTION GetControlAction (theControl: ControlHandle): ProcPtr ;

FUNCTION GetControlVariant (theControl: ControlHandle): Integer ;

FUNCTION GetAuxiliaryControlRecord
(theControl: ControlHandle;

VAR acHndl: AuxCtlHandle): Boolean;

Removing Controls

PROCEDURE DisposeControl (theControl: ControlHandle);

PROCEDURE KillControls (theWindow: WindowPtr);

CHAPTER 5

Control Manager

Summary of the Control Manager 5-129

Application-Defined Routines

Defining Your Own Control Definition Function
FUNCTION MyControl (varCode: Integer; theControl: ControlHandle;

message: Integer; param: LongInt) : LongInt;

Defining Your Own Action Procedures

PROCEDURE MyAction (theControl: ControlHandle; partCode: Integer);

PROCEDURE MyIndicatorActio n;

C Summary

Constants

enum {

/*control definition IDs*/

pushButProc = 0, /*button*/

checkBoxProc = 1, /*checkbox*/

radioButProc = 2, /*radio button*/

useWFont = 8, /*add to above to display control */

/* title in the window font*/

scrollBarProc = 16, /*scroll bar*/

popupMenuProc = 1008, /*pop-up menu*/

/*pop-up menu CDEF variation codes*/

popupFixedWidth = 1 << 0, /*add to popupMenuProc to use */

/* use fixed-width control* /

popupUseAddResMenu = 1 << 2, /*add to popupMenuProc to specify a */

/* value of type ResType in the */

/* contrlRfCon field of the control */

/* record; Menu Manager adds */

/* resources of this type to the menu*/

popupUseWFont = 1 << 3 /*add to popupMenuProc to display */

/* control title in the window font*/

};

CHAPTER 5

Control Manager

5-130 Summary of the Control Manager

enum {

/*part codes*/

inButton = 10, /*button*/

inCheckBox = 11, /*checkbox or radio button*/

inUpButton = 20, /*up arrow for a vertical scroll bar, */

/* left arrow for a horizontal scroll bar*/

inDownButton = 21, /*down arrow for a vertical scroll bar, */

/* right arrow for a horizontal scroll bar*/

inPageUp = 22, /*gray area above scroll box for a */

/* vertical scroll bar, gray area to */

/* left of scroll box for a horizontal */

/* scroll bar*/

inPageDown = 23, /*gray area below scroll box for a */

/* vertical scroll bar, gray area to */

/* right of scroll box for a horizontal */

/* scroll bar*/

inThumb = 129 /*scroll box (or other indicator)*/

};

enum {

/*pop-up title characteristics*/

popupTitleBold = 1 << 8, /*boldface font style*/

popupTitleItalic = 1 << 9, /*italic font style*/

popupTitleUnderline = 1 << 10, /*underline font style*/

popupTitleOutline = 1 << 11, /*outline font style*/

popupTitleShadow = 1 << 12, /*shadow font style*/

popupTitleCondense = 1 << 13, /*condensed text*/

popupTitleExtend = 1 << 14, /*extended text*/

popupTitleNoStyle = 1 << 15 /*monostyled text*/

};

enum {

/*pop-up title characteristics*/

popupTitleLeftJust = 0x00000000, /*place title left of pop-up box*/

popupTitleCenterJust = 0x00000001, /*center title over pop-up box*/

popupTitleRightJust = 0x000000FF, /*place title right of pop-up box*/

/*axis constraints for DragControl procedure*/

noConstraint = 0, /*no constraint*/

hAxisOnly = 1, /*constrain movement to horizontal axis only*/

vAxisOnly = 2, /*constrain movement to vertical axis only*/

CHAPTER 5

Control Manager

Summary of the Control Manager 5-131

/*constants for the message parameter in a control definition function*/

drawCntl = 0, /*draw the control or control part*/

testCntl = 1, /*test where mouse button was pressed*/

calcCRgns = 2, /*calculate region for control or indicator in */

/* 24-bit systems*/

initCntl = 3, /*do any additional control initialization*/

dispCntl = 4, /*take any additional disposal actions*/

posCntl = 5, /*move indicator and update its setting*/

thumbCntl = 6, /*calculate parameters for dragging indicator*/

dragCntl = 7, /*peform any custom dragging of control or */

/* its indicator*/

autoTrack = 8, /*execute action procedure specified by your */

/* function*/

calcCntlRgn = 10, /*calculate region for control*/

calcThumbRgn = 11, /*calculate region for indicator*/

/*part identifiers for ColorSpec records in a control color table resource*/

cFrameColor = 0, /*frame color; for scroll bars, also foreground */

/* color for scroll arrows and gray area*/

cBodyColor = 1, /*for scroll bars, background color for scroll */

/* arrows and gray area; for other controls, */

/* the fill color for body of control*/

cTextColor = 2, /*text color; for scroll bars, unused* /

cThumbColor = 3 /*Reserved*/

};

Data Types

struct ControlRecord {

struct ControlRecord **nextControl; /*next control*/
WindowPtr contrlOwner; /*control's window*/

Rect contrlRect; /*rectangle*/
unsigned char contrlVis; /*255 if visible*/

unsigned char contrlHilite; /*highlight state*/
short contrlValue; /*control's current setting*/

short contrlMin; /*control's minimum setting*/
short contrlMax; /*control's maximum setting*/

Handle contrlDefProc; /*control definition function*/
Handle contrlData; /*data used by contrlDefProc*/

ProcPtr contrlAction; /*action procedure*/
long contrlRfCon; /*control's reference value*/

Str255 contrlTitle; /*control's title*/
};

CHAPTER 5

Control Manager

5-132 Summary of the Control Manager

typedef struct ControlRecord ControlRecord;

typedef ControlRecord *ControlPtr, **ControlHandle;

struct AuxCtlRec {

Handle acNext; /*handle to next AuxCtlRec*/

ControlHandle acOwner; /*handle to this record's control*/

CCTabHandle acCTable; /*handle to color table record*/

short acFlags; /*reserved*/

long acReserved; /*reserved for future use*/

long acRefCon; /*for use by application*/

};

typedef struct AuxCtlRec AuxCtlRec;

typedef AuxCtlRec *AuxCtlPtr, **AuxCtlHandle;

struct CtlCTab {

long ccSeed; /*reserved; set to 0*/

short ccRider; /*reserved; set to 0*/

short ctSize; /*number of ColorSpec records in next */

/* field; 3 for standard controls*/

ColorSpec ctTable[4];

};

typedef struct CtlCTab CtlCTab;

typedef CtlCTab *CCTabPtr, **CCTabHandle;

Control Manager Routines

Creating Controls

pascal ControlHandle GetNewControl
(short controlID, WindowPtr owner);

pascal ControlHandle NewControl
(WindowPtr theWindow, const Rect *boundsRect,

ConstStr255Param title, Boolean visible,
short value, short min, short max,
short procID, long refCon);

Drawing Controls

/*UpdateControls is also spelled as UpdtControl*/

pascal void ShowControl (ControlHandle theControl) ;

pascal void UpdateControls (WindowPtr theWindow, RgnHandle updateRgn) ;

pascal void DrawControls (WindowPtr theWindow) ;

pascal void Draw1Control (ControlHandle theControl) ;

CHAPTER 5

Control Manager

Summary of the Control Manager 5-133

Handling Mouse Events in Controls

pascal short FindControl (Point thePoint, WindowPtr theWindow,
ControlHandle *theControl);

pascal short TrackControl (ControlHandle theControl, Point thePoint,
ProcPtr actionProc);

pascal short TestControl (ControlHandle theControl, Point thePt);

Changing Control Settings and Display
/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal void SetControlValue (ControlHandle theControl, short theValue);

pascal void SetControlMinimum
(ControlHandle theControl, short minValue);

pascal void SetControlMaximum
(ControlHandle theControl, short maxValue);

pascal void SetControlTitle (ControlHandle theControl,
ConstStr255Param title);

pascal void HideControl (ControlHandle theControl)

pascal void MoveControl (ControlHandle theControl, short h, short v);

pascal void SizeControl (ControlHandle theControl, short w, short h);

pascal void HiliteControl (ControlHandle theControl, short hiliteState);

pascal void DragControl (ControlHandle theControl, Point startPt,
const Rect *limitRect,
const Rect *slopRect, short axis);

pascal void SetControlAction (ControlHandle theControl, ProcPtr actionProc)

pascal void SetControlColor (ControlHandle theControl,
CCTabHandle newColorTable) ;

Determining Control Values

/*some routines have 2 spellings——see Table 5-1 for the alternate spellings*/

pascal short GetControlValue
(ControlHandle theControl);

pascal short GetControlMinimum
(ControlHandle theControl);

pascal short GetControlMaximum
(ControlHandle theControl);

pascal void GetControlTitle (ControlHandle theControl, Str255 title);

pascal long GetControlReference
(ControlHandle theControl);

pascal void SetControlReference
(ControlHandle theControl, long data);

pascal ProcPtr GetControlAction
 (ControlHandle theControl);

CHAPTER 5

Control Manager

5-134 Summary of the Control Manager

pascal short GetControlVariant
(ControlHandle theControl);

pascal Boolean GetAuxiliaryControl Record
(ControlHandle theControl,

AuxCtlHandle *acHndl);

Removing Controls

pascal void DisposeControl (ControlHandle theControl) ;

pascal void KillControls (WindowPtr theWindow) ;

Application-Defined Routines

Defining Your Own Control Definition Function

pascal long MyControl (short varCode, ControlHandle theControl,
short message, long param) ;

Defining Your Own Action Procedures

pascal void MyAction (ControlHandle theControl, short partCode) ;

pascal void MyIndicatorActio n;

Assembly-Language Summary

Data Structures

ControlRecord Data Structure

0 nextControl long handle to next control in control list
4 contrlOwner long pointer to this control’s window
8 contrlRect 8 bytes control’s rectangle

16 contrlVis 1 byte value of 255 if control is visible
17 contrlHilite 1 byte highlight state
18 contrlValue word control’s current setting
20 contrlMin word control’s minimum setting
22 contrlMax word control’s maximum setting
24 contrlDefProc long handle to control definition function
28 contrlData long data used by control definition function
32 contrlAction long address of action procedure
36 contrlRfCon long control’s reference value
40 contrlTitle 256 bytes control title (preceded by length byte)

CHAPTER 5

Control Manager

Summary of the Control Manager 5-135

AuxCtlRec Data Structure

Global Variables

0 acNext long handle to next AuxCtlRec record in control list
4 acOwner long handle to this record’s control
8 acCTable long handle to color table for this control

12 acFlags word miscellaneous flags
14 acReserved long reserved for use by Apple Computer, Inc.
18 acRefCon long for use by application

AuxCtlHead First in a linked list of auxiliary control records
AuxWinHead Contains a pointer to the linked list of auxiliary control records
DragHook Address of procedure to execute during TrackControl and DragControl
DragPattern Pattern of dragged region’s outline (8 bytes)

