
Contents 4-1

CHAPTER 4

Contents

Window Manager

Introduction to Windows 4-4
Active and Inactive Windows 4-6
Types of Windows 4-8
Window Regions 4-12
Dialog Boxes and Alert Boxes 4-13
Controls 4-14
Windows on the Desktop 4-15

About the Window Manager 4-16
Graphics Ports 4-17
Window Records 4-19
Color Windows 4-20
Events in Windows 4-21

Using the Window Manager 4-22
Managing Multiple Windows 4-23
Creating a Window 4-25

Defining a Window Resource 4-25
Creating a Window From a Resource 4-27
Positioning a Document Window on the Desktop 4-30

Drawing the Window Contents 4-39
Updating the Content Region 4-40
Maintaining the Update Region 4-41
Handling Events in Windows 4-41

Handling Mouse Events in Windows 4-42
Handling Keyboard Events in Windows 4-47
Handling Update Events 4-48
Handling Activate Events 4-50

Moving a Window 4-53
Zooming a Window 4-53
Resizing a Window 4-57
Closing a Window 4-60

CHAPTER 4

4-2 Contents

Hiding and Showing a Window 4-62
Window Manager Reference 4-64

Data Structures 4-65
The Color Window Record 4-65
The Window Record 4-69
The Window State Data Record 4-70
The Window Color Table Record 4-71
The Auxiliary Window Record 4-73
The Window List 4-74

Window Manager Routines 4-74
Initializing the Window Manager 4-74
Creating Windows 4-75
Naming Windows 4-85
Displaying Windows 4-86
Retrieving Window Information 4-91
Moving Windows 4-94
Resizing Windows 4-99
Zooming Windows 4-101
Closing and Deallocating Windows 4-103
Maintaining the Update Region 4-106
Setting and Retrieving Other Window Characteristics 4-109
Manipulating the Desktop 4-112
Manipulating Window Color Information 4-114
Low-Level Routines 4-116

Application-Defined Routine 4-120
The Window Definition Function 4-120

Resources 4-124
The Window Resource 4-124
The Window Definition Function Resource 4-127
The Window Color Table Resource 4-127

Summary of the Window Manager 4-130
Pascal Summary 4-130

Constants 4-130
Data Types 4-132
Window Manager Routines 4-134
Application-Defined Routine 4-136

C Summary 4-137
Constants 4-137
Data Types 4-139
Window Manager Routines 4-140
Application-Defined Routine 4-143

Assembly-Language Summary 4-144
Data Types 4-144
Global Variables 4-145

CHAPTER 4

4-3

Window Manager

This chapter describes how your application can use the Window Manager to create and
manage windows.

A Macintosh application uses windows for most communication with the user, from
discrete interactions like presenting and acknowledging alert boxes to open-ended
interactions like creating and editing documents. Users generally type words and
formulas, draw pictures, or otherwise enter data in a window on the screen. Your
application typically lets the user save this data in a file, open saved files, and view
the saved data in a window. See the chapter “Introduction to File Management” in
Inside Macintosh: Files for more information about handling files.

A window can be any size or shape, and the user can display any number of windows,
within the limits of available memory, on the screen at once.

The Window Manager defines a set of standard windows and provides a set of routines
for managing them. The Window Manager helps your application display windows that
are consistent with the Macintosh user interface. See Macintosh Human Interface Guidelines
for a detailed description of windows and their behavior.

You typically store information about your windows in resources. This chapter describes
the standard window resources. For general information on resources, see the chapter
“Introduction to the Macintosh Toolbox” in this book. For information on Resource
Manager routines, see the chapter “Resource Manager” in Inside Macintosh: More
Macintosh Toolbox.

The Window Manager itself depends on QuickDraw, the part of the Macintosh system
software that handles quick manipulation of graphics. QuickDraw supports drawing
into graphics ports, which are individual and complete drawing environments with
independent coordinate systems. Each window represents a graphics port, which is
described in Inside Macintosh: Imaging.

To maintain its windows, your application needs to know what actions the user is taking
on the desktop. It receives this information through events, which are messages that
describe user actions and report on the processing status of your application. This
chapter describes the events that affect window display and considers mouse-down and
keyboard events as they relate to windows. For a complete description of events and
how your application handles them, see the chapter “Event Manager” in this book.

Most document windows contain controls , which are screen images the user
manipulates to control the display or the behavior of the application. This chapter
illustrates the controls most commonly used in windows. For more information on
creating and responding to controls, see the chapter “Control Manager” in this book.

You use the Window Manager to create and display a new window when the user
creates a new document or opens an existing document. When the user clicks or holds
down the mouse button while the cursor is in a window created by your application,
you use the Window Manager to determine the location of the mouse action and to
alter the window display as appropriate. When the user closes a window, you use the
Window Manager to remove the window from the screen.

CHAPTER 4

Window Manager

4-4 Introduction to Windows

This chapter describes how the Window Manager supports windows and then explains
how you can use the Window Manager to

■ create and display windows

■ handle events in windows

■ change the display when the user moves or resizes windows

■ remove windows

Introduction to Windows

A window is a user interface element, an area on the screen in which the user can enter
or view information.

The user can have multiple windows on the desktop at once, from a number of different
applications. The user can change the size and location of most windows and can place
windows entirely or partially in front of other windows. Figure 4-1 shows a few
windows on the desktop.

Figure 4-1 Multiple windows

Your application typically creates document windows that allow the user to enter and
display text, graphics, or other information. For an illustration of a document window in
full color, see Plate 1 at the beginning of this book.

CHAPTER 4

Window Manager

Introduction to Windows 4-5

A document window is a view into the document—if the document is larger than the
window, the window is a view of a portion of the document. Your application can put
one or more windows on the screen, each window showing a view of a document or of
auxiliary information used to process the document.

The Window Manager defines and supports a set of standard window elements through
which the user can manipulate windows. It’s important that your application follow the
standard conventions for drawing, moving, resizing, and closing windows. By
presenting the standard interface, you make experienced users instantly familiar with
many aspects of your application, allowing them to focus on learning its unique features.

Figure 4-2 illustrates a standard document window and its elements.

Figure 4-2 A document window

The title bar displays the name of the window and indicates whether it’s active or not.
The Window Manager displays the title of the window in the center of the title bar, in the
system font and system font size. If the system font is in the Roman script system, the
title bar is 20 pixels high.

When the user creates a new document, you ordinarily display a new document window
with the title “untitled”, spelled in lowercase letters. If the user creates a second new
document window without saving the first, you title the second window “untitled 2”,
with a space between the word and the number. Continue to add 1 to the number in the
title as long as the user continues to create new windows without saving previously
numbered, untitled windows.

When the user opens a saved document, you assign the document’s filename to the
window in which it is displayed.

The user expects to move a window by dragging it by its title bar. You can support
moving the window by calling the Window Manager’s DragWindow procedure, as
described in “Moving a Window” on page 4-53.

CHAPTER 4

Window Manager

4-6 Introduction to Windows

The close box offers the user a quick way to close a window. You can use the
TrackGoAway function to track mouse activity in the close box and the CloseWindow
and DisposeWindow procedures to close windows. Closing windows is described in
“Closing a Window” beginning on page 4-60.

The zoom box offers the user a quick way to switch between two different window sizes.
You use the TrackBox function to track mouse activity in the zoom box and the
ZoomWindow procedure to zoom windows. Zooming windows is described in
“Zooming a Window” beginning on page 4-53.

The size box lets the user change the size and dimensions of the window. You use the
GrowWindow function to track mouse activity in the size box and the SizeWindow
procedure to resize windows. Sizing windows is described in “Resizing a Window”
beginning on page 4-57.

The scroll bars let the user see different parts of a document that contains more
information than can be displayed at once in the window. Although the Macintosh user
interface guidelines specify that you place scroll bars on the right and lower edges of a
window that needs them, scroll bars are not part of the window structure. You create and
control the scroll bars through the Control Manager, described in the chapter “Control
Manager” in this book.

The content region is the part of the window in which your application displays the
contents of a document, the size box, and the window controls.

The window frame is the part of the window drawn automatically by the Window
Manager—the title bar, including the close box and zoom box, and the window’s outline.

The structure region is the entire screen area occupied by a window, including the frame
and content region. (See Figure 4-10 on page 4-12.)

Active and Inactive Windows
The window in which the user is currently working is the active window. The active
window is the frontmost window on the desktop. It is identified visually by the “racing
stripes” in its title bar.

The active window is the target of keyboard activity. It often contains a blinking
insertion point (also called the caret) marking the place where new text or graphics will
appear. When the user selects text in an active window, your application should
highlight the text with inverse video; if the window becomes inactive, you remove the
highlighting. You can use a secondary selection technique, such as an outline, to mark a
selection in an inactive window. You display scroll bars only in the active window.
Figure 4-3 illustrates a sample document window in active and inactive states.

Except for the active window, all document windows on the desktop, whether they
belong to your application or another, are inactive. Your application can process
documents in inactive windows, but only the active window interacts with the user.
For example, if the user chooses Save from the File menu, your application saves
only the document in the active window.

CHAPTER 4

Window Manager

Introduction to Windows 4-7

Figure 4-3 Active and inactive document windows

To make a window active, the user clicks anywhere in its contents or frame. When
the user activates one of your windows, you call the Window Manager to highlight
the window frame and title bar; you activate the controls and window contents.
As a window becomes active, it appears to the user to move forward, in front of all
other windows.

When the user clicks in an inactive document window, you should make the window
active but not make any selections in the window in response to the click. To make a
selection in the window, the user must click again. This behavior protects the user from
losing an existing selection unintentionally when activating a window.

Note

The Finder makes selections in response to the first click in an inactive
window, because this action is more natural for the way Finder
windows are used. You might find that users expect the first click to
cause a selection in some other special-purpose windows created by
your application. This behavior is seldom appropriate in document
windows. ◆

When a window that belongs to your application becomes inactive, the Window
Manager redraws the frame, removing the highlighting from the title bar and hiding
the close and zoom boxes. Your application hides the controls and the size box and
removes highlighting from application-controlled elements.

When the user reactivates a window, reinstate the window as it was before it was
deactivated. Draw the scroll box in the same position and restore the insertion point or
highlight the previous selection.

CHAPTER 4

Window Manager

4-8 Introduction to Windows

Types of Windows
Because windows have so many uses, their appearances vary. The Window Manager
defines a number of window types that meet the basic needs of most applications. A
window type is the general description of how a window looks and behaves. Some
windows have title bars and others don’t, for example, and windows can have almost
any combination of the window-manipulation elements: close box, zoom box, and
size box.

This section describes the nine basic window types supported by the Window Manager
and their uses. You can create windows of these types by specifying one of the window
type constants: zoomDocProc , dBoxProc , altDBoxProc , plainDBoxProc ,
movableDBoxProc , noGrowDocProc , documentProc , zoomNoGrow, and rDocProc .
For instructions for creating windows, see “Creating a Window” beginning on page 4-25.

To give the user maximum flexibility and control, you can use the zoomDocProc
window type for your document windows. A zoomDocProc window supports all of the
window-manipulation elements shown in Figure 4-2 on page 4-5: title bar, close box,
zoom box, and size box. The Window Manager does not necessarily draw the close box
and size box, however. You must call the Window Manager’s DrawGrowIcon procedure
to draw the size box, and you can optionally suppress the close box when you create the
window. For more information on defining a window’s characteristics, see “Creating a
Window” beginning on page 4-25.

Figure 4-4 illustrates a window of type zoomDocProc with a close box, as drawn by the
Window Manager before you add the size box and scroll bars.

Figure 4-4 A window of type zoo mDocProc

In most cases, a window of type zoomDocProc should contain both a close box and a
size box. When the related document contains more data than fits in the window, you
activate the scroll bars and adjust them to show where in the document the user is
working. Figure 4-5 illustrates a window of type zo omDocProc with a size box and
scroll bars.

CHAPTER 4

Window Manager

Introduction to Windows 4-9

Figure 4-5 A window of type zo omDocProc , with size box and inactive scroll bars

You also use windows to display alert boxes and dialog boxes. This section describes the
window types used for alert boxes and dialog boxes. For more thorough descriptions of
the different kinds of alert boxes and dialog boxes, see the chapter “Dialog Manager” in
this book.

Alert boxes and fixed-position modal dialog boxes contain no window-manipulation
elements. The user cannot move, resize, zoom, or close them manually. An alert box or a
modal dialog box remains on the screen as the active window until the Dialog Manager
or your application removes it—usually when the user completes the interaction by
clicking one of the buttons. Figure 4-6 illustrates the three window types available for
alert boxes and fixed-position modal dialog boxes.

Figure 4-6 Window types for alert boxes and fixed-position modal dialog boxes

When you want to let the user move a modal dialog box window—in order, for example,
to see text that might be obscured by the window—you can implement a movable modal
dialog box. A movable modal dialog box cannot be resized, closed, or zoomed, but it can
be moved. Figure 4-7 on the next page illustrates the movableDBoxProc window type.
Like a fixed-position modal dialog box, the movable modal dialog box remains active
until the user completes the dialog.

CHAPTER 4

Window Manager

4-10 Introduction to Windows

Figure 4-7 A window of type movableDB oxProc

Whenever possible, avoid modal dialog boxes and instead use modeless dialog boxes,
which allow the user to perform other tasks without dismissing the dialog box.
Windows of type noGrowDocProc , used for displaying modeless dialog boxes, can be
moved or closed but not resized or zoomed. You can implement modeless dialog boxes
with other window types if necessary, but it’s easier to conform to the user interface
guidelines if you keep your dialog box windows as simple as possible. Figure 4-8
illustrates the modeless dialog box window.

Figure 4-8 A window of type noGrowDocProc

The Window Manager also supports a few window types that are seldom used. The
documentProc window type, for example, has a title bar and supports a close box and
size box but no zoom box. The zoomNoGrow window type is virtually never appropriate:
zoomNoGrow supports a close box and a zoom box, but not a size box. The rDocProc
window type is a rounded-corner window with a title bar and a close box; it is used by
desk accessories. Figure 4-9 illustrates these three seldom-used window types.

The window definition function defines the general appearance and behavior of a
window. The system software and various Window Manager routines call a window’s
window definition function when they need to perform certain window-dependent
actions, such as drawing or resizing a window’s frame.

CHAPTER 4

Window Manager

Introduction to Windows 4-11

Figure 4-9 Seldom-used window types

The Window Manager supplies two standard window definition functions that handle
the nine standard window types. A window definition function draws the window’s
frame, draws the close box and window title (if any), determines which region the cursor
is in within the window, calculates the window’s structure and content regions, draws
the window’s zoom box (if any), draws the window’s size box (if any), and performs any
special initialization or disposal tasks.

A single window definition function can support up to 16 different window types. The
window definition function defines a variation code, an integer from 0 through 15, for
each window type it supports.

A window definition ID is a single value incorporating both the window’s definition
function and its variation code. (The resource ID of the window definition function
is stored in the upper 12 bits of the integer, and the variation code is stored in the
lower 4 bits.) The window-type constants described in this section are in fact window
definition IDs.

You can provide your own window definition function if you need a window with
unusual characteristics, as described in “The Window Definition Function” beginning
on page 4-120. Always be careful to conform window behavior to the guidelines in
Macintosh Human Interface Guidelines.

Constant
Window
defi nition ID Description

documentProc 0 movable, sizable window, no zoom box

dBoxProc 1 alert box or modal dialog box

plainDBox 2 plain box

altDBoxProc 3 plain box with shadow

noGrowDocProc 4 movable window, no size box or zoom box

movableDBoxProc 5 movable modal dialog box

zoomDocProc 8 standard document window

zoomNoGrow 12 zoomable, nonresizable window

rDocProc 16 rounded-corner window

CHAPTER 4

Window Manager

4-12 Introduction to Windows

Window Regions
The Window Manager recognizes a number of different special-purpose window
regions, which are defined by either the Window Manager or the window definition
functions.

The most obvious window regions are the parts of the visible window that the user
manipulates to control the display. These window regions correspond to the standard
window parts. The drag region is the area occupied by the title bar, except for the close
box and zoom box. (The user moves the window by dragging it by its title bar.) The size
region, close region, and zoom region are the areas occupied by the size box, close box,
and zoom box, respectively.

When the user presses the mouse button while the cursor is in one of your windows, you
use the Window Manager function FindWindow to determine the region in which the
mouse-down event occurred. (The FindWindow function calls the window’s window
definition function, which defines and interprets the window-manipulation regions.)
Depending on the result, you then call the appropriate Window Manager routine or your
own routine for handling the event. For more information about determining where the
cursor is when the user presses the mouse button, see “Handling Mouse Events in
Windows” on page 4-42. For discussions of how to use the Window Manager routines
for moving, sizing, closing, and zooming windows, see “Moving a Window” beginning
on page 4-53 and the sections that follow it.

The Window Manager also makes a broad distinction between the parts of the window
it draws automatically and the parts drawn by your application. The Window Manager
draws the window frame—the title bar, including the close box and zoom box, and
the window’s outline. (The Window Manager also draws the size box, but only when
your application calls the DrawGrowIcon procedure.) Your application is responsible for
drawing the content region—that is, the part of the window in which the contents
of a document, the size box, and the window controls (including the scroll bars)
are displayed.

The entire screen area occupied by a window, including the window outline, title bar,
and content region, is the structure region. Figure 4-10 illustrates the frame, content
region, and structure region of a window.

Figure 4-10 Window frame, content region, and structure region

CHAPTER 4

Window Manager

Introduction to Windows 4-13

The drawing region of a graphics port associated with a window encompasses only the
window’s content region.

As the user creates, moves, resizes, and closes windows on the desktop, portions of
windows may be obscured and uncovered. The Window Manager keeps track of these
changes, accumulating a dynamic region known as the update region for each window.
The update region contains all areas of a window’s content region that need updating.
The Event Manager periodically scans the update regions of all windows on the desktop,
generating update events for windows whose update regions are not empty. When your
application receives an update event, it redraws the update region. Both your application
and the Window Manager can manipulate a window’s update region. The sections
“Updating the Content Region” on page 4-40 and “Maintaining the Update Region” on
page 4-41 describe how the Window Manager and your application track and use the
update region.

Dialog Boxes and Alert Boxes
Macintosh applications use alert boxes and dialog boxes to give the user messages and
to solicit information. A text-processing application, for example, might display an
alert box telling the user that a newly inserted graphic does not fit within the page
boundaries. It might display a dialog box in which the user can specify margins, tabs,
and other formatting information. (The chapter “Dialog Manager” in this book explains
how to use the various kinds of alert boxes and dialog boxes.)

Alert boxes and dialog boxes are merely special-purpose windows. You can handle all
alert boxes and most modal dialog boxes through the Dialog Manager, which itself calls
the Window Manager. You supply the Dialog Manager with lists of the items in your
alert boxes and dialog boxes, and the Dialog Manager displays the windows, tells you
which items the user is manipulating, and disposes of the windows when the user is
done. Your application provides the code that responds to the user’s selections in the
alert and dialog boxes.

Although you can specify any window type for your alert boxes and modal dialog
boxes, the Dialog Manager functions that handle alert boxes and modal dialog boxes do
not support window manipulation. You should therefore use one of the window types
without a title bar or size box, most typically the dBoxProc window type, for alert boxes
and modal dialog boxes. (When the user is responding to a modal dialog box,
mouse-down events outside the menu bar or the content region of the dialog box result
only in the sounding of the system alert. Note that the Process Manager does not
perform major switching while the ModalDi alog procedure is handling events.)

You use the movableDBox window type for movable modal dialog boxes. As described
in the chapter “Dialog Manager” in this book, your application can use the Dialog
Manager to help handle events in a movable modal dialog box. Your application,
however, must handle window-manipulation events—ordinarily only the moving of the
movable modal dialog box window.

CHAPTER 4

Window Manager

4-14 Introduction to Windows

Use the noGrowDocProc window type for modeless dialog boxes. You typically use
the Dialog Manager to handle events in a modeless dialog box, much like events in
a movable modal dialog box. Your application handles window-manipulation events in
modeless dialog boxes just as it handles them in document windows.

If you use complex dialog boxes, you might find it’s more efficient to use the Window
Manager and other parts of the Toolbox, instead of the Dialog Manager, to create and
manage your own dialog box windows. Again, see the chapter “Dialog Manager” in this
book for a list of characteristics to consider when evaluating the complexity of a dialog
box and for examples of customized dialog boxes.

Controls
Most windows contain controls, which are screen images that the user manipulates to
control the display or the behavior of the application. The most common control in a
document window is the scroll bar, illustrated in Figure 4-11.

Figure 4-11 Scroll bars

You use scroll bars to show the relative position, within the entire document, of the
portion of the document displayed in the window. You should allow the user to drag the
scroll box or click in the gray areas or the scroll arrows to move parts of the document
into and out of the window. You activate scroll bars in a window any time there is more
data than can be shown at one time in the space available.

You use the Control Manager to create, display, and manipulate the scroll bars and any
other controls in your windows. Each control “belongs” to a window and is displayed
within the graphics port that represents that window. For each window your application
creates, the Window Manager maintains a control list, a series of entries pointing to the
descriptions of the controls associated with the window.

CHAPTER 4

Window Manager

Introduction to Windows 4-15

Most alert boxes and dialog boxes contain buttons, rounded rectangles that cause
an immediate or continuous action when clicked, and most dialog boxes contain
additional screen images, like radio buttons, that display and retain settings. Figure 4-12
illustrates a dialog box with buttons, radio buttons, and a number of other controls and
dialog items.

Figure 4-12 Controls in a dialog box

Buttons ordinarily appear only in alert boxes and dialog boxes. Most of the other
elements illustrated in Figure 4-12 appear only in dialog boxes. If you use the Dialog
Manager to create your alert boxes and dialog boxes, it draws your controls for you and
lets you know when the user has clicked one of them. You can, however, call the Control
Manager yourself to display and track buttons and other controls in any windows your
application creates. You can also write your own control definition functions to create
and control other kinds of controls. For a complete description of how to create and
support controls, see the chapter “Control Manager” in this book.

Windows on the Desktop
Multiple windows, from different applications, can appear simultaneously on the
desktop. The Window Manager tracks all windows, using its own private data structure
called the window list. Entries appear in the window list in their order on the desktop,
beginning with the frontmost, active window. When the user changes the ordering of
windows on the desktop, the Window Manager generates events telling your application
to activate, deactivate, and redraw windows as necessary. The Window Manager
prevents you from drawing accidentally in the windows of other applications.

CHAPTER 4

Window Manager

4-16 About the Window Manager

The user can interact with only one application at a time. The application with which the
user is interacting (that is, the application that owns the window in which the user is
working) is the active application, or foreground process, and the others are inactive
applications, or background processes. One way the user can switch applications is by
clicking in a window that belongs to a background process. The Process Manager then
generates events telling the previously active application that it’s about to be suspended
and telling the newly active application that it can resume processing. (For more infor-
mation about the workings of foreground and background processes and about the
events that support simultaneous running of multiple applications, see the chapter
“Event Manager” in this book.)

Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog box windows, and possibly some other
special-purpose windows. The section “Managing Multiple Windows” beginning on
page 4-23 suggests a technique for keeping track of multiple windows.

On the original Macintosh computer, the desktop area was limited to a single screen of
known dimensions. Contemporary systems, however, can support multiple monitors of
various sizes and capabilities. To place its windows in the appropriate place on the
desktop, your application must pay attention to what screen space is available and
where the user is working. For the rules governing window placement, see Macintosh
Human Interface Guidelines. For techniques for managing windows on multiple screens,
see “Positioning a Document Window on the Desktop” beginning on page 4-30.

The entire area of the desktop—that is, the screen area that is not occupied by the menu
bar—is known as the gray region. The Window Manager maintains a pointer to the gray
region in a global variable named GrayRgn ; you can retrieve a pointer to the gray region
with the Window Manager function GetGrayRgn .

About the Window Manager

The Window Manager provides a complete set of routines for creating, moving, resizing,
and otherwise manipulating windows. It also provides lower-level support by managing
the layering of windows on the desktop and by alerting your application to desktop
changes that affect its windows. Your application and the Window Manager work
together to provide the user with a consistent window interface.

When, for example, the user presses the mouse button while the cursor is in the drag
region of a window’s title bar, you can call the DragWindow procedure, which moves a
dotted outline of the window around the screen in response to mouse movements. When
the user releases the mouse button, DragWindow calls the MoveWindow procedure,
which redraws the window in its new location. If part or all of an inactive window
belonging to your application is exposed by the move, the Window Manager triggers an
update event that tells your application to redraw the exposed region.

Similarly, if the user clicks in an inactive window, you can call the SelectWindow
procedure. SelectWindow adjusts the window highlighting and layering and

CHAPTER 4

Window Manager

About the Window Manager 4-17

also generates activate events that tell your application which windows to activate
and deactivate.

The Window Manager has built-in support for the nine basic window types described in
“Types of Windows” beginning on page 4-8. When you are using one of these window
types, the Window Manager draws the window’s frame, determines what region of the
window the cursor is in, calculates the window’s structure and content regions, draws
the window’s size box, draws the window’s close box and zoom box, and performs any
special initialization or disposal tasks. If necessary, you can write your own window
definition function to handle other types of windows.

Graphics Ports
Each window represents a QuickDraw graphics port, which is a drawing environment
with its own coordinate system. (See Inside Macintosh: Imaging for a complete description
of graphics ports and coordinate systems.) When you create a window, the Window
Manager creates a graphics port in which the window’s contents are displayed.

The location of a window on the screen is defined in global coordinates—that is,
coordinates that reflect the entire potential drawing space. QuickDraw and Color
QuickDraw recognize a coordinate plane whose origin is the upper-left corner of the
main screen, whose positive x-axis extends rightward, and whose positive y-axis extends
downward. In QuickDraw, the horizontal offset is ordinarily labeled h, and the vertical
offset v. Figure 4-13 illustrates the QuickDraw global coordinate system.

Figure 4-13 The QuickDraw global coordinate plane

CHAPTER 4

Window Manager

4-18 About the Window Manager

Note
The orientation of the vertical axis, while convenient for computer
graphics, differs from mathematical convention. Also, the coordinate
plane is bounded by the limits of QuickDraw coordinates, which range
from –32,768 to 32,767.

QuickDraw stores points and rectangles in its own data structures of
type Point and Rect . In these structures, the vertical coordinate (v)
appears first, followed by the horizontal coordinate (h). Most, but not
all, QuickDraw routines that handle points require you to specify the
coordinates in this order. ◆

When QuickDraw creates a new graphics port (usually because you’ve created a new
window through the Window Manager), it defines a bounding rectangle for the port, in
global coordinates. Ordinarily, the bounding rectangle represents the entire area of the
screen on which the window appears. The bounding rectangle is stored in the graphics
port data structure, in the bounds field of a structure called a pixel map in Color
QuickDraw and a bitmap in QuickDraw.

The graphics port data structure also includes a field called portRect , which defines
a rectangle to be used for drawing. In a graphics port that represents a window, the
portRect rectangle represents the window’s content region.

Note

When you place a window on the screen, you specify the location of its
content region, in global coordinates. Remember to allow space for
the window’s title bar. On the main screen, remember to leave space for
the menu bar. In the Roman script system, both the standard document
title bar and the menu bar are 20 pixels high. You can determine the
height of the menu bar with the Menu Manager GetMBarHeight
function. You can calculate the height of the title bar by comparing the
top of the window’s structure region with the top of the window’s
content region. See Listing 4-12 on page 4-55 for a sample procedure that
considers the menu bar and title bar when placing a window on the
screen. ◆

Within the port rectangle, the drawing area is described in local coordinates—that is, in
the coordinate system defined by the port rectangle. You draw into a window in local
coordinates, without regard to the window’s location on the screen (which is described
in global coordinates). Figure 4-14 illustrates the local and global coordinate systems for
a sample window 180 pixels high by 300 pixels wide, placed with its content region
70 pixels down and 60 pixels to the right of the upper-left corner of the screen.

When the Window Manager creates a window, it places the origin of the local coordinate
system at the upper-left corner of the window’s port rectangle. You can redefine
the coordinates of the port rectangle’s upper-left corner with the QuickDraw
procedure SetOrigin .

The Event Manager describes mouse events in global coordinates, and you do most of
your window manipulation in global coordinates. You generally display user data and
manipulate your controls in local coordinates. When you need to convert between the
two, you can call the QuickDraw functions GlobalToLocal and LocalToGlobal ,
described in Inside Macintosh: Imaging.

CHAPTER 4

Window Manager

About the Window Manager 4-19

Figure 4-14 A window’s local and global coordinate systems

Window Records

Each window has a number of descriptive characteristics such as a title, control list, and
visibility status. The Window Manager stores this information in a window record,
which is a data structure of type WindowRecord .

The window record includes

■ the window’s graphics port data structure

■ the window’s class, which specifies whether it was created directly through the
Window Manager or indirectly through the Dialog Manager

■ the window title

■ a series of flags that specify whether the window is visible, whether it’s highlighted,
whether it has a zoom box, and whether it has a close box

■ pointers to the structure, content, and update regions

■ a handle to the window’s definition function

■ a handle to the window’s control list

■ an optional handle to a picture of the window’s contents

■ a reference constant field that your application can use as needed

The window record is described in detail in “The Color Window Record” beginning on
page 4-65.

The first field in the window record is the window’s graphics port. The WindowPtr data
type is therefore defined as a pointer to a graphics port.

TYPE WindowPtr = GrafPtr;

CHAPTER 4

Window Manager

4-20 About the Window Manager

You draw into a window by drawing into its graphics port, passing a window pointer to
the QuickDraw drawing routines. You also pass window pointers to most Window
Manager routines.

You don’t usually need to access or directly modify fields in a window record. When you
do, however, you can refer to them through the WindowPeek data type, which is a
pointer to a window record.

TYPE WindowPeek = ^WindowRecord;

The close box, drag region, zoom box, and size box are not included in the window
record because they don’t necessarily have the formal data structure for regions
as defined in QuickDraw. The window definition function determines where these
regions are.

Your application seldom accesses a window record directly; the Window Manager
automatically updates the window record when you make any changes to the window,
such as changing its title. The Window Manager also supplies routines for changing and
reading some parts of the window record.

Color Windows
Since the introduction of Color QuickDraw, the Window Manager has supported color
windows. Color windows are displayed in color graphics ports, as described in Inside
Macintosh: Imaging. The color window record is exactly like the window record described
in “Window Records” on page 4-19, except that it contains a color graphics port instead
of a monochrome graphics port.

Whether or not your application uses color explicitly, and whether or not a color monitor
is currently installed, your application should work with color windows whenever Color
QuickDraw is available. Once you have created a window, you can use the window
record and window pointer for a color window interchangeably with the window record
and window pointer for a monochrome window.

On a monitor that is set to display 4-bit color or greater, the Window Manager
automatically displays the window title and parts of the frame and controls in color (or
gray scale, depending on the capabilities of the monitor). The user can adjust these colors
through the Color control panel. Except in unusual circumstances, your application
should not try to change the colors of the window frame. On a monitor that’s set to
display 1-bit color, the Window Manager draws the window title, frame, and controls in
black and white.

Various elements of a window’s colors are controlled by the window color table, which
contains a series of part codes for different window elements and the RGB values
associated with each part.

Because the user can select window display colors for the entire desktop, and because
the Window Manager performs some complex display calculations automatically if you
don’t override it, your application typically uses the default system window color table.

CHAPTER 4

Window Manager

About the Window Manager 4-21

If your application explicitly controls the colors used in a window, however, you can
define your own window color tables.

You define a window color table for a window by providing a window color table
resource (that is, a resource of type 'wctb') with the same resource ID as the window’s
'WIND' resource. The Window Manager creates a window color table when it creates
the window record. The Window Manager maintains its own linked list, using auxiliary
window records, which associates your application’s windows with their corresponding
window color tables. The window color table and the auxiliary window record are
described in “The Window Color Table Record” beginning on page 4-71 and “The
Auxiliary Window Record” beginning on page 4-73.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should use the Palette Manager,
as described in Inside Macintosh: Imaging. If your application provides its own window
and control definition functions, they should apply the user’s desktop color choices just
as the default definition functions do.

Events in Windows
Events are messages that describe user actions and report on the processing status of
your application. The Window Manager generates two kinds of events: activate
events and update events. Activate events tell your application that a specified
window is becoming active or inactive. Update events tell your application that it
must redraw part or all of a window’s content region. The section “Handling Events in
Windows” beginning on page 4-41 describes when these events occur and how your
application responds.

One of the basic functions of the Window Manager is to report where the cursor is
when your application receives a mouse-down event. The Window Manager function
FindWindow tells your application whether the cursor is in a window and, if it’s in
a window, which window it’s in and where in that window (that is, the title bar, the
drag region, and so on). You can use the FindWindow function as a first filter for
mouse-down events, separating events that merely affect the window display from
events that manipulate user data.

The Window Manager also provides a set of routines that help you implement the
standard window-manipulation conventions:

User action Application response

Dragging the title bar Moves the window

Dragging the size box Resizes the window

Clicking the zoom box Toggles the window between two sizes and locations,
known as the user state and the standard state

Clicking the close box Closes the window

CHAPTER 4

Window Manager

4-22 Using the Window Manager

The next section, “Using the Window Manager,” describes how you can use the Window
Manager to move, resize, zoom, and close windows.

You can call the Control Manager to handle events in window controls, as described in
the chapter “Control Manager” in this book. If you use the Dialog Manager for your alert
boxes and modal dialog boxes, the Dialog Manager handles keyboard activity and
mouse events in these windows. You can also use the Dialog Manager to handle
keyboard activity and mouse events in the content region of movable modal dialog
boxes and modeless dialog boxes. Your application, however, must handle mouse events
in the title bar and close box of a movable modal or modeless dialog box.

When your application is active, a mouse-down event in a window belonging to any
other application, including the Finder, switches your application to the background
(unless there’s an alert box or a modal dialog box pending, in which case the Dialog
Manager merely sounds the system alert).

Using the Window Manager

Virtually every Macintosh application uses the Window Manager, both to simplify
the display and management of windows and to retrieve basic information about
user activities.

Your application works in conjunction with the Window Manager to present the
standard user interface for windows. When the user clicks in an inactive window
belonging to your application, for example, you can call the procedure SelectWindow ,
which highlights the newly active window, removes the highlighting from the
previously active window, and generates the activate events that trigger the activation
and deactivation of the two affected windows.

Your application can also use Window Manager routines to handle direct window
manipulation. For example, if the user presses the mouse button when the cursor is in
the title bar of a window, you can call the Drag Window procedure to track the mouse
and drag an outline of the window on the screen until the user releases the mouse button.

You typically create windows from window resources, which are resources of type
'WIND' . The Window Manager supports the nine types of windows described in “Types
of Windows” beginning on page 4-8. (You can also write your own window definition
functions to support your own window types. Window definition functions are stored as
resources of type 'WDEF' .) Alert box windows and dialog box windows use alert
('ALRT'), dialog ('DLOG'), and item list ('DITL') resources; the chapter “Dialog
Manager” describes how to create these resources. Most windows contain controls,
which are defined through control ('CNTL') resources; the chapter “Control Manager”
describes how to create control resources.

CHAPTER 4

Window Manager

Using the Window Manager 4-23

Your application typically uses the Window Manager in conjunction with both the
Control Manager and the Dialog Manager. You use the Control Manager to define, draw,
and manipulate controls in your windows. If your window includes scroll bars, for
example, you can use the TrackControl function to track the mouse while the user
drags the scroll box. You can use the Dialog Manager to create, display, and track events
in alert boxes and dialog boxes.

System 7 provides help balloons for the window frame—that is, the title bar, zoom box,
and close box—of a window created with one of the standard window definition
functions. You should provide help balloons for your window content region—that is,
the size box, controls, and data area—and for the window frames of any window types
you define. See the chapter “Help Manager” in Inside Macintosh: More Macintosh Toolbox
for a description of how to use help balloons.

Before using the Window Manager, you must call the procedure InitGraf to initialize
QuickDraw, the procedure InitFonts to initialize the Font Manager, and finally the
procedure InitWindows to initialize the Window Manager.

Managing Multiple Windows
Your application is likely to have multiple windows on the desktop at once: one or more
document windows, possibly one or more dialog boxes, and possibly some special-
purpose windows of your own. Only one window is active at a time, however.

When your application receives an event, it responds according to what kind of window
is currently active and where the event occurred. When it receives a mouse-down event
in the content region of an active document window, your application follows its own
conventions: inserting text, making a selection, or adding graphics, for example. When it
receives a mouse-down event in the menu bar, your application enables and disables
menu items as appropriate—which again depends on what kind of window is active and
what is selected in that window. If the user has the insertion point in an editable text
field in a modal dialog box, for example, the only menu item available might be Paste in
the Edit menu—and then only if there is something in the scrap to be pasted.

You can use various strategies for keeping track of different kinds of windows. The
refCon field in the window record is set aside specifically for use by applications.
You can use the refCon field to store different kinds of data, such as a number that
represents a window type or a handle to a record that describes the window.

The sample code in this chapter—excerpts from the SurfWriter application used
throughout this book—uses a hybrid strategy:

■ For document windows, the refCon field holds a handle to a document record.

■ For modeless or movable modal dialog boxes, the refCon field holds a number that
represents a type of dialog box.

You may well find other approaches more practical.

CHAPTER 4

Window Manager

4-24 Using the Window Manager

The SurfWriter application stores document information about the user’s data, the
window display, and the file, if any, associated with the data in a document record. The
document record takes this form:

TYPE MyDocRec =

RECORD

editRec: TEHandle; {handle to text being edited}

vScrollBar: ControlHandle; {control handle to the }

{ vertical scroll bars}

hScrollBar: ControlHandle; {control handle to the }

{ horizontal scroll bars}

fileRefNum: Integer; {reference number for file}

fileFSSpec: FSSpec; {FSSpec record for file}

windowDirty : Boolean; {whether data has changed }

{ since last save}

END;

MyDocRecPt r = ^MyDocRec;

MyDocRecHnd = ^MyDocRecPtr;

The SurfWriter application creates a document record every time it creates a document
window, and it stores a handle to the document record in the refCon field of the
window record. (See the chapter “Introduction to File Management” in Inside Macintosh:
Files for a more complete illustration of how to use document records.)

When SurfWriter creates a modeless dialog box or a movable modal dialog box, it stores
a constant that represents that dialog box (that is, it specifies the constant in the dialog
resource, and the Window Manager sets the refCon field to that value when it creates
the window record). For example, a refCon value of 20 might specify a modeless dialog
box that accepts input for the Find command, and a value of 21 might specify a modeless
dialog box that accepts input for the spelling checker.

When SurfWriter receives notification of an event in one of its windows, it first
determines the function of the window and then dispatches the event as appropriate.
Listing 4-1 illustrates an application-defined routine MyGetWindowType that
determines the window’s type.

Note

The MyGetWindowType function determines the type of a window from
among a set of application-defined window types, which reflect the
different kinds of windows the application creates. These window types
are different from the standard window types defined by the definition
functions, which determine how windows look and behave. To find out
which one of the standard window types a window is, call the Window
Manager function GetWVariant . ◆

The sample code later in this chapter calls the MyGetWindowType function as part of its
event-handling procedure, described in the section “Handling Events in Windows”
beginning on page 4-41.

CHAPTER 4

Window Manager

Using the Window Manager 4-25

Listing 4-1 Determining the window type

FUNCTION MyGetWindowType (thisWindow: WindowPtr): Integer;

VAR

myWindowType: Integer;

BEGIN

 IF thisWindow <> NI L THEN

 BEGIN

 myWindowType := WindowPeek(thisWindow)^.windowKind;

 IF myWindowType < 0 THEN {window belongs to }

 MyGetWindowType := kDAWindo w { a desk accessory}

 ELSE

 IF myWindowType = userKind THEN {document window}

 MyGetWindowType := kMyDocWindow

 ELSE {dialog window}

 MyGetWindowType := GetWRefCon(window); {get dialog ID}

 END

 ELSE

MyGetWindowType := kNil;

END;

Notice that MyGetWindowType checks whether the window belongs to a desk accessory.
This step ensures compatibility with older versions of system software. When your
application is running in System 7, it should receive events only for its own windows
and for windows belonging to desk accessories that were launched in its partition. See
Inside Macintosh: Memory for information about partitions and Inside Macintosh: Processes
for information about launching applications and desk accessories.

Creating a Window
You typically specify the characteristics of your windows—such as their initial size,
location, title, and type—in window ('WIND') resources. Once you have defined your
window resources, you can call the function GetNewCWindow (or GetNewWindow) to
create windows.

Defining a Window Resource

You typically define a window resource for each type of window that your application
creates. If, for example, your application creates both document windows and
special-purpose windows, you would probably define two window resources. Defining
your windows in window resources lets you localize your window titles for different
languages by changing only the window resources. (You specify the characteristics of
alert boxes and dialog boxes with the alert and dialog resources, described in the chapter
“Dialog Manager” in this book.)

CHAPTER 4

Window Manager

4-26 Using the Window Manager

Listing 4-2 shows a window resource, in Rez input format, that an application might use
to create a document window. The resource specifies the attributes for windows created
from the resource of type 'WIND' with resource ID 128. The system software loads the
resource into memory immediately after opening the resource file, and the Memory
Manager can purge the memory occupied by the resource.

Listing 4-2 Rez input for a window ('WIND') resource for a document window

#define rDocWindow 128

resource 'WIND' (rDocWindow, preload, purgeable) {
{64, 60, 314, 460}, /*initial window size and location*/

zoomDocProc, /*window definition ID: */

/* incorporates definition function */

/* and variation code*/
invisible, /*window is initially invisible*/

goAway, /*window has close box*/

0x0, /*reference constant*/

"untitled", /*window title*/
staggerParentWindowScreen

/*optional positioning specification*/

};

The four numbers in the first element of this resource specify the upper-left and lower-
right corners, in global coordinates, of a rectangle that defines the initial size and
placement of the window’s content region. Your application can change this rectangle
before displaying the window, either programmatically or through an optional
positioning code described later in this section. When specifying a window’s position on
the desktop, remember to leave room for the window’s frame and, on the main screen,
for the menu bar.

The second element contains the window’s definition ID, which specifies both the
window definition function that will handle the window and an optional variation code
that defines a window type. If you are using one of the standard window types
(described in “Types of Windows” beginning on page 4-8), you need to specify only one
of the window-type constants listed in “The Window Resource” beginning on page 4-124.

The third element in the window resource specifies whether the window is initially
visible or invisible. This element determines only whether the Window Manager
displays the window when it first creates it, not whether the window can be seen on the
screen. (A window entirely covered by other windows, for example, might be “visible,”
even though the user cannot see it.) You typically create new windows in an invisible
state, build the content area of the window, and then display the completed window by
calling ShowWindow to make it visible.

CHAPTER 4

Window Manager

Using the Window Manager 4-27

The fourth element in the window resource specifies whether the window has a close
box. Only some of the standard window types (zoomDocProc , noGrowDocProc ,
documentProc , zoomNoGrow, and rDocProc) support close boxes. The close-box
element has no effect if the second field of the resource specifies a window type that does
not support a close box. The Window Manager draws the close box when it draws the
window frame.

The fifth element in the window resource is a reference constant, in which your
application can store whatever data it needs. When it builds a new window record, the
Window Manager stores in the refCon field whatever value you specify here. You can
also put a placeholder here (such as 0x0 , in this example) and then set the refCon field
yourself by calling the SetWRefCon procedure.

The sixth element in the window resource is a string that specifies the window title.

The optional seventh element in the window resource specifies a positioning rule that
overrides the window position specified by the rectangle in the first element. In the
window resource for a document window, you typically specify the positioning constant
staggerParentWindowScreen . For a complete list of the positioning constants and
their effects, see “The Window Resource” beginning on page 4-124.

The positioning constants are convenient when the user is creating a new document or
when you’re handling your own dialog boxes and alert boxes. When you’re creating a
new window to display a previously saved document, however, the new window
should appear, if possible, in the same rectangle as the previous window (that is, the
window used during the last save). For the rules of window placement, see “Positioning
a Document Window on the Desktop” beginning on page 4-30.

Use the function GetNewCWindow or GetNewWindow to create a window from a
'WIND' resource.

Creating a Window From a Resource

You typically create a new window every time the user creates a new document, opens a
previously saved document, or issues a command that triggers a dialog box.

You create document windows from a window resource using the function
GetNewCWindow or GetNewWindow. (Whenever Color QuickDraw is available, use
GetNewCWindow to create color windows, whether or not a color monitor is currently
installed. A color window record is the same size as a window record, and
GetNewCWindow returns a pointer of type WindowPtr , so most code can handle color
windows and monochrome windows identically.)

You can allow GetNewCWindow to allocate the memory for your window record. You
can maintain more control over memory use, however, by allocating the memory
yourself from a block allocated for such purposes during your own initialization routine,
and then passing the pointer to GetNewCWindow.

You typically create the scroll bars from control ('CNTL') resources at the time that you
create a document window and then display them when you make the window visible.

CHAPTER 4

Window Manager

4-28 Using the Window Manager

Listing 4-3 illustrates an application-defined procedure, DoNewCmd, which SurfWriter
calls when the user chooses New from the File menu. Windows are typically invisible
when created and displayed only after all elements are in place.

Listing 4-3 Creating a new window

PROCEDURE DoNewCmd (newDocument: Boolean; VAR window: WindowPtr);
VAR

myData: MyDocRecHnd; {the document's data record}
windStorag e: Ptr; {memory for window record}

destRect, {rectangles for creating }
viewRect: Rect; { TextEdit edit record}

good: Boolean; {success flag}
BEGIN

window := NIL; {no window created yet}
good := FALSE; {no success yet}

{allocate memory for window record from previously allocated block}
windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}
BEGIN {create window}

IF gColorQDAvailable THEN
window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE
window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;
{create document record}

myData := MyDocRecHnd(NewHandle(SIZEOF(MyDocRec)));
IF (window <> NIL) AND (myData <> NIL) THEN {window record and document }

BEGIN { record both allocated}
SetPort(window); {set current port}

HLock(Handle(myData)); {lock handle to doc record}
SetWRefCon(window, LongInt(myData)); {link document record to window}

WITH window^, myData^^ DO {fill in document record}
BEGIN

MyGetTERect(window, viewRect); {set up a viewRect for TextEdit}
destRect := viewRect;

destRect.right := destRect.left + kMaxDocWidth;
editRec := TENew(destRect, viewRect);

IF editRec <> NIL THEN {it's a good edit record}
BEGIN

good := TRUE; {set success flag}
MyAdjustViewRect(editRec); {set up edit record}

TEAutoView(TRUE, editRec);
END

CHAPTER 4

Window Manager

Using the Window Manager 4-29

ELSE
good := FALSE; {clear success flag}

IF good THEN
BEGIN {create scroll bars}

vScrollBar := GetNewControl(rVScroll, window);
hScrollBar := GetNewControl(rHScroll, window);

good := (vScrollBar <> NIL) AND (hScrollBar <> NIL);
END;

IF good THEN {it's a good document}
BEGIN

MyAdjustScrollBars(window, FALSE); {adjust scroll bars}
fileRefNum := 0; {no file yet}

windowDirty := FALSE; {no changes yet}
IF newDocument THEN {if it's a new (empty) document, }

ShowWindow(window); { make it visible}
END;

END; {end of WITH statement}
HUnlock(Handle(myData)); {unlock document record}

END; {end of IF (window <> NIL) AND (myData <> NIL)}
IF NOT good THEN

BEGIN
IF windStorage <> NIL THEN {memory for window record was allocated}

DisposePtr(windStorage); {dispose of it}
IF myData <> NIL THEN {memory for document record was allocated}

BEGIN
IF myData^^.editRec <> NIL THEN {edit record was allocated}

TEDispose(myData^^.editRec); {dispose of it}
DisposeHandle(Handle(myData)); {dispose of document record}

END;
IF window <> NIL THEN {window pointer exists, but it's invalid}

CloseWindow(window); {clean up window pointer}
window := NIL; {set window to NIL to indicate failure}

END;
END; {DoNewCmd}

The DoNewCmd procedure first sets the window pointer and success flags to show
that a valid window doesn’t yet exist. Then it calls the application-defined function
MyPtrAllocationProc , which allocates memory for a window record from a block
set aside during program initialization for that purpose. If MyPtrAllocationProc
successfully allocates memory and returns a valid pointer, DoNewCmd creates a window,
specifying the 'WIND' resource with resource ID 128, as specified by the constant
rDocWindow . Using this window resource (defined in Listing 4-2 on page 4-26), the
Window Manager creates an invisible window of type zoomDocProc . Because
the behind parameter to GetNewCWindow or GetNewWindow has the value
WindowPtr(–1) , the Window Manager places the new window in front of all others
on the desktop.

CHAPTER 4

Window Manager

4-30 Using the Window Manager

The DoNewCmd procedure then creates a document record. It locks the document record
in memory while manipulating it, sets the refCon field in the window record so that it
points to the document record, and fills in the document record. While filling in the
document record, DoNewCmd sets up a TextEdit record to hold the user ’s data. If that
succeeds, DoNewCmd sets up horizontal and vertical scroll bars. If that succeeds,
DoNewCmd adjusts the scroll bars (see the chapter “Control Manager” in this book for the
application-defined procedure MyAdjustScrollbars) and fills in the remaining parts
of the document record. If the window is being created to display a new document, that
is, if no user data needs to be read from a disk, DoNewCmd calls the ShowWindow
procedure to make the window visible immediately.

If your window resource specifies that a new window is visible, GetNewCWindow
displays the window immediately. If you’re creating a document window, however,
you’re more likely to create the window in an invisible state and then make it visible
when you’re ready to display it.

■ If you’re creating a window because the user is creating a new document, you can
display the window immediately by calling the procedure ShowWindow to make the
window frame visible. This change in visibility adds to the update region and triggers
an update event. Your application then invokes its own procedure for drawing the
content region in response to the update event.

■ If you’re creating a new window to display a saved document, you must retrieve the
user’s data before displaying it. (See Inside Macintosh: Files for information about
reading saved files.) If possible, the size and location of the window that displays the
document should be the same as when the document was last saved. (See the next
section, “Positioning a Document Window on the Desktop,” for a discussion of
window placement.) Once you have positioned the window and set up its content
region, you can make the window visible by calling ShowWindow, which triggers an
update event. Your application then invokes its own procedure for drawing the
content region.

Positioning a Document Window on the Desktop

Your goal in positioning a window on the desktop is to place it where the user expects it.
For a new document, this usually means just below and to the right of the last document
window in which the user was working. For a saved document, it usually means the
location of the document window when the document was last saved (if it was saved on
a computer with the same screen configuration). This section describes the placement of
document windows. The chapter “Dialog Manager” in this book describes the placement
of alert boxes and dialog boxes. See Macintosh Human Interface Guidelines for a complete
description of window placement.

On Macintosh computers with a single screen of known size, positioning windows
is fairly straightforward. You position the first new document window on the upper-left
corner of the desktop. Open each additional new document window with its upper-
left corner slightly below and to the right of the upper-left corner of its predecessor.
Figure 4-15 illustrates how to position multiple documents on a single screen.

CHAPTER 4

Window Manager

Using the Window Manager 4-31

Figure 4-15 Document window positions on a single screen

If the user closes one or more document windows, display subsequent windows in the
“empty” positions before adding more positions below and to the right. Figure 4-16
illustrates how you fill in an empty position when the user opens a new document after
closing one created earlier.

Figure 4-16 “Filling in” an empty document window position

CHAPTER 4

Window Manager

4-32 Using the Window Manager

On computers with multiple monitors, window placement depends on a number
of factors:

■ the number of screens available and their dimensions

■ the location of the main screen—that is, the screen that contains the menu bar

■ the location of the screen on which the user was most recently working

In general, you place the first new document window on the main screen, and you place
subsequent document windows on the screen that contains the largest portion of the
most recently active document window. That is, if you display a blank document
window when the user starts up your application, you place the window on the main
screen. If the user moves the window to another screen and then creates another new
document, you place the new document window on the other screen. Although the user
is free to place windows so that they cross screen boundaries, you should never display a
new window that spans multiple screens.

When the user opens a saved document, you replicate the size and location of the
window in which the document was last saved, if possible.

The Window Manager recognizes a set of positioning constants in the window
resource that let you position new windows automatically. You typically use the
constant staggerParentWindowScreen for positioning document windows. The
staggerParentWindowScreen constant specifies the basic guidelines for document
window placement: When creating windows from a template that includes
staggerParentWindowScreen , the Window Manager places the first window in
the upper-left corner of the main screen. It places subsequent windows with their
upper-left corners 20 pixels to the right and 20 pixels below the upper-left corner
of the last window in which the user was working. Figure 4-17 illustrates how
the Window Manager positions a new document window when the
staggerParentWindowScreen specification is in effect and the user has been
working in a window off the main screen.

If the user moves or closes a window that occupies one of the interim positions, and the
window template specifies staggerParentWindowScreen , the Window Manager
uses the “empty” slot for the next new window created before moving further down and
to the right.

For a complete list of the positioning constants and their effects, see “The Window
Resource” beginning on page 4-124.

You can usually use the staggerParentWindowScreen positioning constant when
creating a window that is to display a new document. You must perform your own
window-placement calculations, however, when opening saved documents and when
zooming windows.

When the user saves a document, the document window can be in one of two states: the
user state or the standard state.

CHAPTER 4

Window Manager

Using the Window Manager 4-33

Figure 4-17 Document window positions on multiple screens

The user state is the last size and location the user established for the window.

The standard state is what your application determines is the most convenient size for
the window, considering the function of the document and the screen space available.
For a more complete description of the standard state, see “Zooming a Window”
beginning on page 4-53. Your application typically calculates the standard state each
time the user zooms to that state.

The user and standard states are stored in the state data record, whose handle appears in
the dataHandle field of the window record.

TYPE WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by }

{ application}

END;

When the user saves a document, you must save the user state rectangle and the state of
the window (that is, whether the window is in the user state or the standard state). Then,
when the user opens the document again later, you can replicate the window’s status.
You typically store the state data as a resource in the resource fork of the document file.

CHAPTER 4

Window Manager

4-34 Using the Window Manager

Listing 4-4 illustrates an application-defined data structure for storing the window’s user
rectangle and state.

Listing 4-4 Application-defined data structure for storing a window’s state data

TYPE MyWindowState =

RECORD

userStateRect : Rect ; {user state rectangle}

zoomState : Boolean ; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr ;

This structure translates into an application-defined resource that is stored in the
resource fork of the document when the user saves the document.

Listing 4-5 shows an application-defined routine for saving a document’s state data. The
SurfWriter application calls the procedure MySaveWindowPosition when the user
saves a document.

Listing 4-5 Saving a document window’s position

PROCEDURE MySaveWindowPosition (myWindow: WindowPtr ;

myResFileRefNum: Integer) ;

VAR

l astWindowState : MyWindowState ;

myStateHandle : MyWindowStateHnd ;

curResRefNum: Integer ;

BEGIN

{Set user state provisionally and determine whether window is zoomed.}

lastWindowState.userStateRect := WindowPeek(myWindow)^.contRgn^^.rgnBBox;

lastWindowState.zoomState := EqualRect(lastWindowState.userStateRect ,

 MyGetWindowStdState(myWindow)) ;

{ if window i s in standard state, then set the window's user state fro m }

{ the us erState field in the state data record}

IF l astWindowState.zoomState THEN {window was in standard state}

lastWindowState.userStateRect := MyGetWindowUserState(myWindow);

curResRefNum := CurResFile; {save the refNum of current resource file}

UseResFile(myResFileRefNum); {set the current resource file}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState ,

 kLastWinStateID));

CHAPTER 4

Window Manager

Using the Window Manager 4-35

IF m yStateHandle <> NIL THEN {a state data resource already exists}

BEGIN {update it}

myStateHandle^^ := lastWindowState ;

ChangedResource(Handle(myStateHandle)) ;

END

ELSE {no state data has yet been saved}

BEGIN {add state data resource}

myStateHandle := MyWindowStateHnd(NewHandle(SizeOf(MyWindowState))) ;

IF m yStateHandle <> NIL THEN

BEGIN

myStateHandle^^ := lastWindowState ;

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID ,

' last window state') ;

END;

END;

IF myStateHandle <> NIL THEN

BEGIN

UpdateResFile(myResFileRefNum);

ReleaseResource(Handle(myStateHandle));

END;

UseResFile(curResRefNum);

END;

The MySaveWindowPosition procedure first determines whether the window is in the
user state or the standard state by setting its own user state field from the bounding
rectangle of the window’s content region and comparing that rectangle with the user
state stored in the state data record. (If the two match, the window is in the user state; if
not, the standard state.) If the window is in the standard state, the procedure replaces its
own user state data with the rectangle stored in the userState field of the state data
record. The rest of the procedure saves the application-defined state data record in the
resource fork of the document.

When creating a new window to display a saved document, SurfWriter restores the
saved user state data and recalculates the standard state. Before using the saved
rectangle, however, SurfWriter verifies that the location is reachable on the desktop. (If
the user saves a document on a computer equipped with multiple monitors and then
opens it later on a system with only one monitor, for example, the saved window
location could be entirely or partially off the screen.)

Listing 4-6 on the next page shows MySetWindowPosition , the application-
defined routine that SurfWriter calls when the user opens a saved document. The
MySetWindowPosition procedure retrieves the document’s saved state data and
then calls another application- defined routine, MyVerifyPosition , to verify
that the saved location is practical.

CHAPTER 4

Window Manager

4-36 Using the Window Manager

Listing 4-6 Positioning the window when the user opens a saved document

PROCEDURE MySetWindowPosition (myWindow: WindowPtr);

VAR

myData: MyDocRecHnd;

lastUserStateRect: Rect;

stdStateRect: Rect;

curStateRect: Rect;

myRefNum: Integer;

myStateHandle: MyWindowStateHnd;

resourceGood: Boolean;

savePort: GrafPtr;

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get document record}

HLock(Handle(myData)); {lock the record while manipulating it}

{open the resource fork and get its file reference number}

myRefNum := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

myErr := ResError;

IF myErr <> noErr THEN

Exit(MySetWindowPosition);

{get handle to rectangle that describes document's last window position}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

kLastWinStateID));

IF myStateHandle <> NIL THEN {handle to data succeeded}

BEGIN {retrieve the saved user state}

lastUserStateRect := myStateHandle^^.userStateRect;

resourceGood := TRUE;

END

ELSE

BEGIN

lastUserStateRect.top := 0; {force MyVerifyPosition to calculate }

resourceGood := FALSE; { the default position}

END;

{verify that user state is practical and calculate new standard state}

MyVerifyPosition(myWindow, lastUserStateRect, stdStateRect);

IF resourceGood THEN {document had state resource}

IF myStateHandle^^.zoomState THEN {if window was in standard state }

curStateRect := stdStateRect { when saved, display it in }

{ newly calculated standard state}

ELSE {otherwise, current state is the user state}

curStateRect := lastUserStateRect

ELSE {document had no state resource}

curStateRect := lastUserStateRect; {use default user state}

CHAPTER 4

Window Manager

Using the Window Manager 4-37

{move window}

MoveWindow(myWindow, curStateRect.left, curStateRect.top, FALSE);

{Convert to local coordinates and resize window.}

GetPort(savePort);

SetPort(myWindow);

GlobalToLocal(curStateRect.topLeft);

GlobalToLocal(curStateRect.botRight);

SizeWindow(myWindow, curStateRect.right, curStateRect.bottom, TRUE);

IF resourceGood THEN {reset user state and standard }

BEGIN { state--SizeWindow may have changed them}

MySetWindowUserState(myWindow, lastUserStateRect);

MySetWindowStdState(myWindow, stdStateRect);

END;

ReleaseResource(Handle(myStateHandle)); {clean up}

CloseResFile(myRefNum);

HUnLock(Handle(myData));

END;

The MyVerifyPosition routine, not shown here, compares the saved location against
available screen space. (See Listing 4-12 on page 4-55 for a strategy for comparing the
saved rectangle with the available screen space.) MyVerifyPosition alters the user
state rectangle, if necessary (using the same size, if possible, but placing it on available
screen space) and calculates a new standard state for displaying the window on the
screen containing the user state.

After determining valid user and standard state rectangles, the procedure
MySetWindowPosition sets a temporary positioning rectangle to the appropriate
size and location, based on the state of the document’s window when the document
was saved. The MySetWindowPosition procedure then calls the Window Manager
procedures MoveWindow and SizeWindow to establish the window’s location and
size before cleaning up.

The SurfWriter application calls MySetWindowPosition from its routine for opening
saved documents, after reading the document’s data from its data fork. Listing 4-7 shows
the application-defined DoOpenFile function that SurfWriter calls when the user opens
a saved document.

Listing 4-7 Opening a saved document

FUNCTION DoOpenFile (mySpec: FSSpec): OSErr;

VAR

myWindow: WindowPtr;

myData: MyDocRecHnd;

myFileRefNum: Integer;

myErr: OSErr;

CHAPTER 4

Window Manager

4-38 Using the Window Manager

BEGIN

DoNewCmd(FALSE, myWindow); {FALSE t ells DoNe wCmd not to }

{ s how the window}

IF myWindow = NIL THEN

BEGIN

DoOpenFile := kOpenFileError;

Exit(DoOpenFile);

END;

SetWTitle(myWindow, mySpec.name);

{open the file's data fork, passing the file spe c- - }

{ FSpOpenDF returns a file reference number}

myErr := FSpOpenDF(mySpec, fsRdWrPerm, myFileRefNum);

I F (m yErr <> noEr r) AND (myErr <> opWrErr) T HEN {open failed}

BEGIN {cl ean u p}

Dispose Window(myWindow) ;

DoOpenFile := myErr ;

Exit(DoOpenFile) ;

END;

{get a handle to the window's document record}

myData := MyDocRecHnd(GetWRefCon(myWindow));

myData^^.fileRefNum := myFileRefNum ; { sav e f ile ref num}

myData^^.fileFSSpec := mySpec ; { sav e f sspec}

myErr := DoReadFile(myWindow) ; { rea d f ile's data }

{retrieve saved state data and establish valid position}

MySetWindowPosition(myWindow) ;

{MyResizeWindow invalidates the whole portRgn, guaranteeing }

{ an update even t--t he window's contents are redrawn the n}

MyResizeWindow(myWindow);

ShowWindow(myWindow); {show window}

DoOpenFile := myErr ;

END;

 DoOpenFile first calls the application-defined procedure DoNewCmd to create a new
window, suppressing the immediate display of the window. (Listing 4-3 on page
page 4-28 illustrates the procedure DoNewCmd.) Then DoOpenFile sets the window
title to the name of the document file and reads in the data. Then it calls
MySetWindowPosition to determine where to place the new window. After
establishing a valid position, DoOpenFile calls the application-defined routine
MyResizeWindow (shown in Listing 4-14 on page 4-59) to set up the content region
in the new dimensions, and then it finally makes the window visible.

CHAPTER 4

Window Manager

Using the Window Manager 4-39

Drawing the Window Contents
Your application and the Window Manager work together to display windows on the
screen. Once you have created a window and made it visible, the Window Manager
automatically draws the window frame in the appropriate location. As the user makes
changes to the desktop, moving and resizing different windows, the Window Manager
alters the window frames as necessary. The window frame includes the window outline,
the title bar, and the close and zoom boxes.

Your application is responsible for drawing the window’s content region. It typically
uses the Control Manager to draw the window controls, uses the Window Manager to
draw the size box, and draws the user data itself. The sample code in this chapter uses
the simple model of a content region that contains only controls, the size box, and a
TextEdit record. (See Inside Macintosh: Text for a description of TextEdit.)

Listing 4-8 illustrates an application-defined procedure that draws the content region of
a window.

Listing 4-8 Drawing a window

PROCEDURE MyDrawWindow (w indow: WindowPtr);

VAR

myData: MyDocRecHnd ;

BEGIN

SetPort(window) ;

myData := MyDocRecHnd(GetWRefCon(window)) ;

HLock(Handle(myData)) ;

WITH window^ D O

BEGIN

EraseRect(portRect); {erase content area}

 UpdateControls(window, visRgn) ; { draw window controls }

DrawGrowIcon(window); {draw size box }

{ update window contents as appropriate to your }

{ application (in this case use TextEdit) }

TEUpdate(portRect, myData^^.editRec) ;

 END;

HUnLock(Handle(myData));

END;

The MyDrawWindow procedure first sets the current port to the window’s port and gets a
handle to the window’s document record. Using the data in the document record, the
procedure first erases the content region, draws the controls, and draws the size box.
Finally, it draws the user’s data, in this case the contents of a TextEdit edit record.

CHAPTER 4

Window Manager

4-40 Using the Window Manager

If your application creates a window that contains a static display, you can let the
Window Manager take care of drawing and updating the content region by placing a
handle to a picture in the windowPic field of the window record. See the description
of the SetWindowPic procedure on page 4-110.

Updating the Content Region

The Window Manager helps your application keep the window display current by
maintaining an update region, which represents the parts of your content region
that have been affected by changes to the desktop. If a user exposes part of an inactive
window by dragging an active window to a new location, for example, the Window
Manager adds the newly exposed area of the inactive window to that window’s
update region.

Figure 4-18 illustrates how the Window Manager adds part of a window’s content region
to its update region when the user exposes additional content area.

Figure 4-18 Moving one window and adding to another window’s update region

CHAPTER 4

Window Manager

Using the Window Manager 4-41

The Event Manager periodically scans the update regions of all windows on the desktop.
If it finds one whose update region is not empty, it generates an update event for that
window. When your application receives an update event, it redraws as much of the
content area as necessary, as described in the section “Handling Update Events”
beginning on page 4-48.

As the user makes changes to a document, your application must update both the
document data and the document display in the content area of its window. You can
use one of two strategies for updating the display:

■ If your application doesn’t require continuous scrolling or rapid response, you can
add changed areas of the content region to the window’s update region. The Event
Manager then sends your application an update event, and your application invokes
its standard update procedure.

■ For continuous scrolling and a faster response time, you can draw directly into the
content area of the window.

In either case, your application ultimately draws in the graphics port that represents
the window. You draw controls through the Control Manager, and you draw text
and graphics with the routines described in Inside Macintosh: Text and Inside Macintosh:
Imaging.

Maintaining the Update Region
Your application can force and suppress update events by manipulating the update
region, using Window Manager routines provided for this purpose.

Your application usually manipulates the update region, for example, when the user
resizes a window that contains a size box and scroll bars. If the user enlarges the
window, the Window Manager adds the newly exposed area to the window’s update
region but does not add the area formerly occupied by the scroll bars. Before calling the
SizeWindow procedure to resize the window, your application can call the InvalRect
procedure twice to add the scroll bar and size box areas to the update region. The next
time it receives an update event, your application erases the scroll bars and draws
whatever parts of the document content might be visible at that location.

Similarly, you can remove an area from the update region when you know that it is in
fact valid. Limiting the size of the update region decreases time spent redrawing. Listing
4-13 on page 4-58, for example, uses the ValidRect procedure to remove the unaffected
text area from the update region of a window that is being resized.

Handling Events in Windows
Your application must be prepared to handle two kinds of window-related events:

■ mouse and keyboard events in your application’s windows, which are reported by the
Event Manager in direct response to user actions

■ activate and update events, which are generated by the Window Manager and the
Event Manager as an indirect result of user actions

CHAPTER 4

Window Manager

4-42 Using the Window Manager

In System 7 your application receives mouse-down events if it is the foreground process
and the user clicks in the menu bar, a window belonging to your application, or a
window belonging to a desk accessory that was launched in your application’s partition.
(If the user clicks in a window belonging to another application, the Event Manager
sends your application a suspend event and performs a major switch to the other
application—unless the frontmost window is an alert box or a modal dialog box, in
which case the Dialog Manager merely sounds the system alert, and the Process
Manager retains your application as the foreground process.) When it receives a
mouse-down event, your application first calls the FindWindow function to map the
cursor location to a window region, and then it branches to one of its own routines, as
described in the next section, “Handling Mouse Events in Windows.”

The Event Manager sends your application an update event when changes on the
desktop or in a window require that part or all of a window’s content region be updated.
The Window Manager and your application can both trigger update events by adding
regions that need updating to the update region, as described in the section “Handling
Update Events” beginning on page 4-48.

Your application receives activate events when an inactive window becomes active or an
active window becomes inactive. Activate events are an example of the close cooperation
between your application and the Window Manager. When you receive a mouse-down
event in one of your application’s inactive windows, you can call the SelectWindow
procedure, which removes the highlighting from the previously active window and adds
highlighting to the newly active window. It also generates two activate events: one
telling your application to deactivate the previously active window and one to activate
the newly active window. Your application then activates and deactivates the content
regions, as described in the section “Handling Activate Events” beginning on page 4-50.

When the user first clicks in an inactive window, most applications do not make a
selection or otherwise change the window or document, beyond making the window
active. When your application receives a resume event because the user clicked in one of
its windows, you might not even want to receive the mouse-down event that caused
your application to become the foreground process. You control whether or not you
receive this event through the 'SIZE' resource, described in the chapter “Event
Manager” earlier in this book.

Handling Mouse Events in Windows

When your application is active, it receives notice of all keyboard activity and
mouse-down events in the menu bar, in one of its windows, or in any windows
belonging to desk accessories that were launched in its partition.

When it receives a mouse-down event, your application calls the FindWindow function
to map the cursor location to a window region.

The function specifies the region by returning one of these constants:

CONST i nDesk = 0; { none of the following }

i nMenuBar = 1; { in menu bar }

i nSysWindow = 2; { i n d esk accessory window }

CHAPTER 4

Window Manager

Using the Window Manager 4-43

i nContent = 3; { anywhere in content region excep t size }

{ box if w indow is active, }

{ anywhere i ncludin g size box if window }

{ is inactive}

i nDrag = 4; { in drag (title bar) region }

i nGrow = 5; { in size box (active window only) }

i nGoAway = 6; { in close bo x}

i nZoomIn = 7; { in zoo m box (window in standard state)}

i nZoomOut = 8; { in zoo m box (window in user state)}

When the user presses the mouse button while the cursor is in a window, FindWindow
not only returns a constant that identifies the window region but also sets a variable
parameter that points to the window.

In System 7, if FindWindow returns inDesk , the cursor is somewhere other than in the
menu bar, one of your windows, or a window created by a desk accessory launched in
your application’s partition. The function may return inDesk if, for example, the cursor
is in the window frame but not in the drag region, close box, or zoom box. FindWindow
seldom returns the value inDesk , and you can generally ignore the rare instances of this
function result.

If the user presses the mouse button with the cursor in the menu bar (inMenuBar),
you call your own routines for displaying menus and allowing the user to choose
menu items.

The FindWindow function returns the value inSysWindow only when the user presses
the mouse button with the cursor in a window that belongs to a desk accessory launched
in your application’s partition. You can then call the SystemClick procedure, passing it
the event record and window pointer. The SystemClick procedure, documented in the
chapter “Event Manager” in this book, makes sure that the event is handled by the
appropriate desk accessory.

The FindWindow function returns one of the other values when the user presses
the mouse button while the cursor is in one of your application’s windows. Your
response depends on whether the cursor is in the active window and, if not, what
kind of window is active.

When you receive a mouse-down event in the active window, you route the event to the
appropriate routine for changing the window display or the document contents. When
the user presses the mouse button while the cursor is in the zoom box, for example, you
call the Window Manager function TrackBox to highlight the zoom box and track the
mouse until the button is released.

When you receive a mouse-down event in an inactive window, your response depends
on what kind of window is active:

■ If the active window is a movable modal dialog box, you should sound the system
alert and take no other action. (If the active window is a modal dialog box handled by
the ModalDialog procedure, the Dialog Manager doesn’t pass the event to your
application but sounds the system alert itself.)

CHAPTER 4

Window Manager

4-44 Using the Window Manager

■ If the active window is a document window or a modeless dialog box, you can call
SelectWindow , passing it the window pointer. The SelectWindow procedure
removes highlighting from the previously active window, brings the newly activated
window to the front, highlights it, and generates the activate and update events
necessary to tell all affected applications which windows must be redrawn.

Listing 4-9 illustrates an application-defined procedure that handles mouse-down events.

Listing 4-9 Handling mouse-down events

PROCEDURE DoMouseDown (event: EventRecord);
VAR

part: Integer;
thisWindow: WindowPtr;

BEGIN
part := FindWindow(event.where, thisWindow); {find out where cursor is}

CASE part OF
inMenuBar: {cursor is in menu bar}

BEGIN
{make sure menu items are properly enabled/disabled}

MyAdjustMenus;
{let user choose a menu command}

DoMenuCommand(MenuSelect(event.where));
END;

inSysWindow: {cursor is in a desk accessory window}
SystemClick(event, thisWindow);

inContent: {cursor is in the content region of one }
{ of your application's windows}

IF thisWindow <> FrontWindow THEN {cursor is not in front window}
BEGIN

IF MyIsMovableModal(FrontWindow) THEN {front window is }
SysBeep(30) { movable modal}

ELSE {front window is not movable modal}
SelectWindow(thisWindow); {make thisWindow active}

END
ELSE {cursor is in content region of active window}

DoContentClick(thisWindow, event); {handle event in content region}
inDrag: {cursor is in drag area}

{if a movable modal is active, ignore click in an inactive title bar}
IF (thisWindow <> FrontWindow) AND MyIsMovableModal(FrontWindow) THEN

SysBeep(30)
ELSE

{let Window Manager drag window}
DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

inGrow: {cursor is in size box}
DoGrowWindow(thisWindow, event); {change window size}

CHAPTER 4

Window Manager

Using the Window Manager 4-45

inGoAway: {cursor is in close box}
{call TrackGoAway to handle mouse until button is released}

IF TrackGoAway(thisWindow, event.where) THEN
DoCloseCmd; {handle close window}

inZoomIn, inZoomOut: {cursor is in zoom box}
{call TrackBox to handle mouse until button is released}

IF TrackBox(thisWindow, event.where, part) THEN
DoZoomWindow(thisWindow, part); {handle zoom window}

END; {end of CASE statement}
END; {end of DoMouseDownEvent}

The DoMouseDown procedure first calls FindWindow to map the location of the cursor
to a part of the screen or a region of a window.

If the cursor is in the menu bar, DoMouseDown calls other application-defined
procedures for adjusting and displaying menus and accepting menu choices.

If the cursor is in a window created by a desk accessory, DoMouseDown calls the
SystemClick procedure, which handles mouse-down events for desk accessories from
within applications.

If the cursor is in the content area of a window, DoMouseDown first checks to see
whether the cursor is in the currently active window by comparing the window pointer
returned by FindWindow with the result returned by the function FrontWindow . If
the cursor is in an inactive window, DoMouseDown checks to see if the active window
is a movable modal dialog box. (If the front window is an alert box or a fixed-position
modal dialog box, an application does not receive mouse-down events in other
windows.) If the active window is a movable modal dialog box and the cursor is in
another window, DoMouseDown simply sounds the system alert and waits for another
event. If the active window is not a movable modal dialog box, DoMouseDown
calls SelectWindow to activate the window in which the cursor is located. The
SelectWindow procedure relayers the windows as necessary, adjusts the highlighting,
and sends the application a pair of activate events to deactivate the previously active
window and activate the newly active window. DoMouseDown merely activates
the window in which the cursor is located; it does not make a selection in the newly
activated window in response to the first click in that window.

If the cursor is in the content area of the active window, the DoMouseDown procedure
calls another application-defined procedure (DoContentClick) that handles mouse
events in the content area.

If the cursor is in the drag region of a window, DoMouseDown first checks whether the
drag region is in an inactive window while a movable modal dialog box is active. In
that case, DoMouseDown merely sounds the system alert and waits for another event. In
any other case, DoMouseDown calls the Window Manager procedure DragWindow ,
which displays an outline of the window, moves the outline as long as the user continues
to drag the window, and calls MoveWindow to draw the window in its new location
when the user releases the mouse button. After the window is drawn in its new location,
it is the active window, whether or not it was active before.

CHAPTER 4

Window Manager

4-46 Using the Window Manager

If the cursor is in the size box, DoMouseDown calls another application-defined routine
(DoGrowWindow, shown in Listing 4-13 on page 4-58) that resizes the window.

If the mouse press occurs in the close box, DoMouseDown calls the TrackGoAway
function, which highlights the close box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the close box, TrackGoAway leaves the close box highlighted, as illustrated
in Figure 4-19. If the user moves the cursor out of the close box, TrackGoAway removes
the highlighting.

Figure 4-19 The close box with and without highlighting

When the user releases the mouse button, TrackGoAway returns TRUE if the
cursor is still in the close box and FALSE if it is not. If TrackGoAway returns TRUE,
DoMouseDown calls the application-defined procedure DoCloseCmd to close the
window. Listing 4-16 on page 4-60 shows the DoCloseCmd procedure.

If the mouse press occurs in the zoom box, the DoMouseDown procedure first calls
TrackBox , which highlights the zoom box and tracks all mouse activity until the user
releases the mouse button. As long as the user holds down the mouse button and leaves
the cursor in the zoom box, TrackBox leaves the zoom box highlighted, as illustrated in
Figure 4-20. If the user moves the cursor out of the zoom box, TrackBox removes the
highlighting.

When the user releases the mouse button, TrackBox returns TRUE if the cursor is still in
the zoom box and FALSE if it is not. If TrackBox returns TRUE, DoMouseDown calls the
application-defined procedure DoZoomWindow to zoom the window. Listing 4-12 on
page 4-55 shows the DoZoomWindow procedure.

CHAPTER 4

Window Manager

Using the Window Manager 4-47

Figure 4-20 The zoom box with and without highlighting

Handling Keyboard Events in Windows

Whenever your application is the foreground process, it receives key-down events
for all keyboard activity, except for the three standard Command–Shift–number key
sequences and any other Command–Shift–number key combinations the user has
installed. (Command–Shift–1 and Command–Shift–2 eject disks, and Command–Shift–3
stores a snapshot of the screen in a TeachText document on the startup volume. Your
application never receives these key combinations, which are handled by the Event
Manager. For more information, see the chapter “Event Manager” in this book.)

In general, the active window is the target of keyboard activity.

When the user presses a key or a combination of keys, your application responds by
inserting data into the document, changing the display, or taking other actions as defined
by your application. To ensure consistent use of and response to keyboard events, follow
the guidelines in Macintosh Human Interface Guidelines. Your application should, for
example, allow the user to choose frequently used menu items by pressing a keyboard
equivalent—usually a combination of the Command key and another key.

When you receive a key-down event, you first check whether the user is holding down
a modifier key (Command, Shift, Control, Caps Lock, and Option, on a standard
keyboard) and another key at the same time. If the Command key and a character key
are held down simultaneously, for example, you adjust your menus, enabling and
disabling items as appropriate, and allow the user to choose the menu item associated
with the Command-key combination.

Typically, your application provides feedback for standard keystrokes by drawing the
character on the screen. It should also recognize arrow keys for moving the cursor within
a text display, and it might add support for function keys or other special keys available
on nonstandard keyboards.

For an example of an application-defined routine for handling keyboard events, see the
chapter “Event Manager” in this book.

CHAPTER 4

Window Manager

4-48 Using the Window Manager

Handling Update Events

The Event Manager sends your application an update event when part or all of your
window’s content region needs to be redrawn. Specifically, the Event Manager checks
each window’s update region every time your application calls WaitNextEvent or
EventAvail (or GetNextEvent) and generates an update event for every window
whose update region is not empty.

The Window Manager typically triggers update events when the moving and relayering
of windows on the screen require that one or more windows be redrawn. If the user
moves a window that covers part of an inactive window, for example, the Window
Manager first calls the window definition function of the inactive window, requesting
that it draw the window frame. It then adds the newly exposed area to the window’s
update region, which triggers an update event asking your application to update the
content region. Your application can also trigger update events itself by manipulating the
update region.

Your application can receive update events when it is in either the foreground or
the background.

The Window Manager ensures that you do not accidentally draw in other windows by
clipping all screen drawing to the visible region of a window’s graphics port. The visible
region is the part of the graphics port that’s actually visible on the screen—that is, the
part that’s not covered by other windows. The Window Manager stores a handle to the
visible region in the visRgn field of the graphics port data structure, which itself is in
the window record.

In response to an update event, your application calls the BeginUpdate procedure,
draws the window’s contents, and then calls the EndUpdate procedure. As illustrated
in Figure 4-21, BeginUpdate limits the visible region to the intersection of the visible
region and the update region. Your application can then update either the visible region
or the entire content region—because QuickDraw limits drawing to the visible region,
only the parts of the window that actually need updating are drawn. The BeginUpdate
procedure also clears the update region. After you’ve updated the window, you call
EndUpdate to restore the visible region in the graphics port to the full visible region.

See Inside Macintosh: Imaging for more information about graphics ports and
visible regions.

CHAPTER 4

Window Manager

Using the Window Manager 4-49

Figure 4-21 The effects of BeginUpdate and EndUpdate on the visible region and
update region

CHAPTER 4

Window Manager

4-50 Using the Window Manager

Listing 4-10 illustrates an application-defined procedure, DoUpdate , that handles
an update event.

Listing 4-10 Handling update events

PROCEDURE DoUpdate (window: WindowPtr);
VAR

windowType: LongInt;
BEGIN

{determine type of window as defined by this application}
windowType := MyGetWindowType(window);

CASE windowType OF
kMyDocWindow: {document window}

BEGIN
BeginUpdate(window);

MyDrawWindow(window);
EndUpdate(window);

END;
OTHERWISE {alert or dialog box}

DoUpdateMyDialog(window);
END; {of CASE}

END;

The DoUpdate procedure first determines whether the window being updated is a
document window or some other application-defined window by calling the
application-defined procedure MyGetWindowType (shown in Listing 4-1 on
page 4-25). If the window is a document window, DoUpdate calls BeginUpdate
to establish the temporary visible region, calls the application-defined procedure
MyDrawWindow (shown in Listing 4-8 on page 4-39) to redraw the content region,
and then calls EndUpdate to restore the visible region.

If the window is an alert box or a dialog box, DoUpdate calls the application-defined
procedure DoUpdateMyDialog , which is not shown here.

Handling Activate Events

Your application activates and deactivates windows in response to activate events,
which are generated by the Window Manager to inform your application that a window
is becoming active or inactive. Each activate event specifies the window to be changed
and the direction of the change (that is, whether it is to be activated or deactivated).

Your application often triggers activate events itself by calling the SelectWindow
procedure. When it receives a mouse-down event in an inactive window, for example,
your application calls SelectWindow , which brings the selected window to the front,
removes the highlighting from the previously active window, and adds highlighting to
the selected window. The SelectWindow procedure then generates two activate events:
the first one tells your application to deactivate the previously active window; the
second, to activate the newly active window.

CHAPTER 4

Window Manager

Using the Window Manager 4-51

When you receive the event for the previously active window, you

■ hide the controls and size box

■ remove or alter any highlighting of selections in the window

When you receive the event for the newly active window, you

■ draw the controls and size box

■ restore the content area as necessary, adding the insertion point in its former location
or highlighting any previously highlighted selections

If the newly activated window also needs updating, your application also receives an
update event, as described in the previous section, “Handling Update Events.”

Note

A switch to one of your application’s windows from a different
application is handled through suspend and resume events, not activate
events. See the chapter “Event Manager” in this book for a description
of how your application can share processing time. ◆

Listing 4-11 illustrates the application-defined procedure DoActivate , which handles
activate events.

Listing 4-11 Handling activate events

PROCEDURE DoActivate (window: WindowPtr; activate: Boolean ;

event: EventRecord) ;

VAR

windowType: Integer;

myData: MyDocRecHnd;

growRect: Rect;

BEGIN

{determine type of window a s defined by this applicatio n}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyFindModelessDialogBox : { modeless Find dialog bo x}

DoActivateFindDBox(window , event) ;

{modeless Check Spelling dialog box}

kMyCheckSpellingModelessDialogBox :

DoActivateCheckSpellDBox(window , event);

kMyDocWindow: {document window}

BEGIN

myData := MyDocRecHnd(GetWRefCon(window)) ; {get document record}

HLock(Handle(myData)); {lock document record}

WITH myData^^ D O

I F activate THE N {window is becoming active}

CHAPTER 4

Window Manager

4-52 Using the Window Manager

BEGIN

{re store selections and insert caret--if using }

{ TextEdit, for example, call TEActivat e}

TEActivate(editRec) ;

MyAdjustMenus ; {adjust menus for window}

{ha ndle the control s}

docVScroll^^.contrlVis := kControlVisible ;

docHScroll^^.contrlVis := kControlVisible ;

I nvalRect(docVScroll^^.contrlRect) ;

I nvalRect(docHScroll^^.contrlRect) ;

growRect := window^.portRect ;

WITH growRect DO {handle the size box }

BEGIN {adjust for the scroll bars}

t op := bottom - kScrollbarAdjust;

left := right - kScrollbarAdjust;

END;

InvalRect(growRect);

END

ELSE {window is becoming inactive}

BEGIN

TEDeactivate(editRec) ; {call TextEdit to deactivate data}

HideControl(docVScroll); {hide the scroll bars}

HideControl(docHScroll);

DrawGrowIcon(window); {draw the size box}

END;

HUnLock(Handle(myData)); {unlock document record}

END; {o f k MyDocWindow statement }

END; {o f CASE s tatement}

END;

The DoActivate procedure first determines the general type of the window; that is,
it calls an application-defined function that returns a constant identifying the type
of the window: a Find dialog box, a Check Spelling dialog box, or a document window.
Listing 4-1 on page 4-25 shows the MyGetWindowType function.

If the target of the activate event is a dialog box window, DoActivate calls other
application-defined routines for activating and deactivating those dialog boxes. The
DoActivateFindDBox and DoActivateCheckSpellDBox routines are not shown
here. (The DoActivate procedure does not check for alert boxes and modal dialog
boxes, because the Dialog Manager’s ModalDialog procedure automatically handles
activate events.)

CHAPTER 4

Window Manager

Using the Window Manager 4-53

If the target is a document window and the activate event specifies that the window is
becoming active, DoActivate highlights any user selections in the window and draws
the insertion point where appropriate. It then makes the controls visible, adds the area
occupied by the scroll bars to the update region, and adds the area occupied by the size
box to the update region. (Placing window area in the update region guarantees an
update event. When the application receives the update event, it calls the application-
defined procedure DoUpdate to draw the update region, which in this case includes the
size box and scroll bars.)

If the target is a document window, and the activate event specifies that the window
is becoming inactive, the DoActivate procedure calls the TextEdit procedure
TEDeactivate to remove highlighting from user selections, calls the Control Manager
procedure HideControl to hide the scroll bars, and calls the Window Manager
procedure DrawGrowIcon to draw the size box and the outline of the scroll bar area.

Moving a Window
When the user drags a window by the title bar (except for the close and zoom box
regions), the window should move, following the cursor as it moves on the
desktop. Your application can easily let the user move the window by calling the
DragWindow procedure.

The DragWindow procedure draws an outline of the window on the screen and
moves the outline as the user moves the mouse. When the user releases the mouse
button, DragWindow calls the MoveWindow function, which redraws the window in
its new location.

For an example of moving a window, see the inDrag case in Listing 4-9 on page 4-44.

Zooming a Window
The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state.

The user state is the window size and location established by the user. If your
application does not supply an initial user state, the user state is simply the size and
location of the window when it was created, until the user resizes it.

The standard state is the window size and location that your application considers most
convenient, considering the function of the document and the screen space available. In
a word-processing application, for example, a standard-state window might show a
full page, if possible, or a page of full width and as much length as fits on the screen.
If the user changes the page size through Page Setup, the application might adjust the
standard state to reflect the new page size. If your application does not define a standard
state, the Window Manager automatically sets the standard state to the entire gray
region on the main screen, minus a three-pixel border on all sides. (See Macintosh Human
Interface Guidelines for a detailed description of how your application determines where
to open and zoom windows.) The user cannot change a window’s standard state.

CHAPTER 4

Window Manager

4-54 Using the Window Manager

The user and standard states are stored in a record whose handle appears in the
dataHandle field of the window record.

TYPE WStateData =

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by }

{ application}

END;

The Window Manager sets the initial values of the userState and stdState fields
when it fills in the window record, and it updates the userState field whenever the
user resizes the window. You typically compute the standard state every time the user
zooms to the standard state, to ensure that you’re zooming to an appropriate location.

When the user presses the mouse button with the cursor in the zoom box, the
FindWindow function specifies whether the window is in the user state or the standard
state: when the window is in the standard state, FindWindow returns inZoomIn
(meaning that the window is to be zoomed “in” to the user state); when the window is in
the user state, FindWindow returns inZoomOut (meaning that the window is to be
zoomed “out” to the standard state).

When FindWindow returns either inZoomIn or inZoomOut , your application can call
the TrackBox function to handle the highlighting of the zoom box and to determine
whether the cursor is inside or outside the box when the button is released. If TrackBox
returns TRUE, your application can call the ZoomWindow procedure to resize the
window (after computing a new standard state). If TrackBox returns FALSE, your
application doesn’t need to do anything. Listing 4-9 on page 4-44 illustrates the use of
TrackBox in an event-handling routine.

Listing 4-12 illustrates an application-defined procedure, DoZoomWindow, which an
application might call when TrackBox returns TRUE after FindWindow returns either
inZoomIn or inZoomOut . Because the user might have moved the window to a
different screen since it was last zoomed, the procedure first determines which screen
contains the largest area of the window and then calculates the ideal window size for
that screen before zooming the window.

The screen calculations in the DoZoomWindow procedure depend on the routines for
handling graphics devices that were introduced at the same time as Color QuickDraw.
Therefore, DoZoomWindow checks for the presence of Color QuickDraw before
comparing the window to be zoomed with the graphics devices in the device list. If
Color QuickDraw is not available, DoZoomWindow assumes that it’s running on a
computer with a single screen.

CHAPTER 4

Window Manager

Using the Window Manager 4-55

Listing 4-12 Zooming a window

PROCEDURE DoZoomWindow (thisWindow: windowPtr; zoomInOrOut: Integer);

VAR

gdNthDevice, gdZoomOnThisDevice : GDHandle;

savePort : GrafPtr;

windRect, zoomRect, theSect : Rect;

sectArea, greatestArea : LongInt;

wTitleHeight : I nteger;

sectFlag : Boolean;

BEGIN

GetPort(savePort);

SetPort(thisWindow);

EraseRect(thisWindow^.portRect); {erase to avoid flicker}

IF zoomInOrOut = inZoomOut THEN {zooming to standard state}

BEGIN

IF NOT gColorQDAvailable THEN {assume a single screen and }

BEGIN { set standard state to full screen }

zoomRect := screenBits.bounds ;

I nsetRect(zoomRect, 4, 4) ;

WStateDataHandle(WindowPee k(thisWindow)^.dataHandle)^^.stdStat e

: = zoomRec t;

END

ELSE {locate window on available graphics devices}

BEGIN

windRect := thisWindow^.portRect ;

LocalToGlobal(windRect.topLeft); {convert to global coordinates}

LocalToGlobal(windRect.botRight) ;

{ca lculate height of window's title ba r}

wTitleHeight := windRect.top - 1 -

 WindowPeek(thisWindow)^.strucRgn^^.rgnBBox.top;

windRect.top := windRect.top - wTitleHeight;

gdNthDevice := GetDeviceList;

greatestArea := 0; {initialize to 0 }

{c hec k w indow against al l g dRects i n gDevice list and remember }

{ w hich gdRect contain s largest area of w indo w}

WHILE gdNthDevice <> NIL DO

IF TestDeviceAttribute(gdNthDevice, screenDevice) THEN

IF TestDeviceAttribute(gdNthDevice, screenActive) THEN

BEGIN

{The SectRect routine calculates the intersection }

{ of the window rectangle and this gDevice }

{ rectangle and returns TRUE if the rectangle s intersect, }

{ FALSE if they don't.}

CHAPTER 4

Window Manager

4-56 Using the Window Manager

sectFlag := SectRect(windRect , g dNthDevice^^.gdRect ,

 theSect) ;

{determine which screen holds greatest window area}

{first, ca lculate area of rectangl e on current device}

WITH theSect DO

sectArea := LongInt(right - left) * (bottom - top);

I F sectArea > greatestArea THE N

BEGIN

greatestArea := sectArea ; {set greatest area so far}

gdZoomOnThisDevice := gdNthDevice; {set zoom device}

END;

gdNthDevice := GetNextDevice(gdNthDevice) ;

END; {of WHILE}

{if gdZoomOnThisDevice is o n main device , allow f or m enu bar height}

I F gdZoomOnThisDevice = GetMainDevice THEN

wTitleHeight := wTitleHeight + GetMBarHeight;

WITH gdZoomOnThisDevice^^.gdRect DO {cr eate the zoom rectangle }

BEGIN

{set the zoom rectangle to the full screen, minus window title }

{ height (and menu bar height if necessary), inset by 3 pixels}

SetRect(zoomRect, left + 3, top + wTitleHeight + 3,

 right - 3, bottom - 3) ;

{If your application has a different "most useful" standard }

{ state, then size the zoom window accordingly.}

{se t up the WStateData record for this windo w}

WStateDataHandle(WindowPee k(thisWindow)^.dataHandle)^^.stdStat e

 := zoomRect;

END;

END;

END; {of inZoomOut}

{if zoomInOrOut = inZoomIn, just let ZoomWindow zoom to user state}

{zo om the window frame}

ZoomWindow(thisWindow, zoomInOrOut, (thisWindow = FrontWindow));

MyResizeWindow(thisWindow) ; {application-defined w indow-sizing routine}

SetPort(savePort);

END; (of DoZoomWindow)

If the user is zooming the window to the standard state, DoZoomWindow calculates a
new standard size and location based on the application’s own considerations, the
current location of the window, and the available screens. The DoZoomWindow
procedure always places the standard state on the screen where the window is currently
displayed or, if the window spans screens, on the screen containing the largest area
of the window.

CHAPTER 4

Window Manager

Using the Window Manager 4-57

The bulk of the code in Listing 4-12 is devoted to determining which screen should
display the window in the standard state. The sample code shown here establishes
a standard state that simply occupies the gray area on the chosen screen, minus
three pixels on all sides. Your application should establish a standard state appropriate
to its own documents. When calculating the standard state, move the window as little
as possible from the user state. If possible, anchor one corner of the standard state
rectangle to one corner of the user state rectangle.

If the user is zooming the window to the user state, DoZoomWindow doesn’t have to
perform any calculations, because the user state rectangle stored in the state data record
should represent a valid screen location.

After calculating the standard state, if necessary, DoZoomWindow calls the ZoomWindow
procedure to redraw the window frame in the new size and location and then calls the
application-defined procedure MyResizeWindow to redraw the window’s content
region. Listing 4-14 on page 4-59 shows the MyResizeWindow procedure.

Resizing a Window
The size box, in the lower-right corner of a window’s content region, allows the user to
change a window’s size.

When the user positions the cursor in the size box and presses the mouse button, your
application can call the Window Manager’s GrowWindow function. This function
displays a grow image—a gray outline of the window’s frame and scroll bar areas,
which expands or contracts as the user drags the size box. The grow image indicates
where the window edges would be if the user released the mouse button at any
given moment.

To avoid unmanageably large or small windows, you supply lower and upper size limits
when you call GrowWindow. The sizeRect parameter to GrowWindow specifies both
the lower and upper size limits in a single structure of type Rect . The values in the
sizeRect structure represent window dimensions, not screen coordinates:

■ You supply the minimum vertical measurement in sizeRect.top .

■ You supply the minimum horizontal measurement in sizeRect.left .

■ You supply the maximum vertical measurement in sizeRect.bottom .

■ You supply the maximum horizontal measurement in sizeRect.right .

Most applications specify a minimum size big enough to include all parts of the structure
area and the scroll bars. Because the user cannot move the cursor beyond the edges of
the screen, you can safely set the maximum size to the largest possible rectangle.

When the user releases the mouse button, GrowWindow returns a long integer that
describes the window’s new height (in the high-order word) and width (in the low-order
word). A value of 0 means that the window’s size did not change. When GrowWindow
returns any value other than 0, you call SizeWindow to resize the window.

CHAPTER 4

Window Manager

4-58 Using the Window Manager

Note
Use the utility functions HiWord and LoWord to retrieve the high-order
and low-order words, respectively. ◆

When you change a window’s size, you must erase and redraw the window’s scroll bars.

Listing 4-13 illustrates the application-defined procedure DoGrowWindow for tracking
mouse activity in the size box and resizing the window.

Listing 4-13 Resizing a window

PROCEDURE DoGrowWindow (thisWindow: windowPtr;

 event: EventRecord);

VAR

growSize: LongInt;

limitRect: Rect;

oldViewRect: Rect;

locUpdateRgn: RgnHandle;

theResult: Boolean;

myData: MyDocRecHnd;

BEGIN

{set up the limiting rectangle: kMinDocSize = 64 }

{ kMaxDocSize = 65535}

SetRect(limitRect, kMinDocSize, kMinDocSize, kMaxDocSize,

kMaxDocSize);

{call Window Manager to let user drag size box}

growSize := GrowWindow(thisWindow, event.where, limitRect);

IF growSize <> 0 THEN {if user changed size, }

BEGIN { then resize window}

myData := MyDocRecHnd(GetWRefCon(thisWindow));

oldViewRect := myData^^.editRec^^.viewRect;

locUpdateRgn := NewRgn;

{save update region in local coordinates}

MyGetLocalUpdateRgn(thisWindow, locUpdateRgn);

{resize the window}

SizeWindow(thisWindow, LoWord(growSize), HiWord(growSize),

TRUE);

MyResizeWindow(thisWindow);

{find intersection of old viewRect and new viewRect}

theResult := SectRect(oldViewRect,

myData^^.editRec^^.viewRect,

oldViewRect);

{validate the intersection (don't update)}

ValidRect(oldViewRect);

CHAPTER 4

Window Manager

Using the Window Manager 4-59

{invalidate any prior update region}
InvalRgn(locUpdateRgn);

DisposeRgn(locUpdateRgn);
 END;

END;

When the user presses the mouse button while the cursor is in the size box, the
procedure that handles mouse-down events (DoMouseDown, shown on page 4-44) calls
the application-defined DoGrowWindow procedure. The DoGrowWindow procedure
calls the Window Manager function GrowWindow, which tracks mouse movement as
long as the button is held down. If the user drags the size box before releasing the mouse
button, GrowWindow returns a nonzero value, and DoGrowWindow prepares to resize
the window. First DoGrowWindow saves the current view rectangle in the variable
oldViewRect . It will use this information later, when redrawing the content region of
the window in its new size. The GrowWindow procedure also saves the current update
region, in local coordinates, in the region LocUpdateRgn , so that it can restore the
update region after doing its own update-region maintenance. (This step is necessary
only if an application allows user input to accumulate into the update region, drawing in
response to update events instead of drawing into the window immediately.)

After saving the current view rectangle and the current update region, DoGrowWindow
calls the Window Manager procedure SizeWindow to draw the window in its new
size. The DoGrowWindow procedure then calls the application-defined procedure
MyResizeWindow , which adjusts the window scroll bars and window contents to the
new size. Listing 4-14 illustrates the application-defined MyResizeWindow procedure.

After calling SizeWindow , DoGrowWindow calculates the intersection of the old view
rectangle and the new view rectangle. It uses this area to revalidate unchanged portions
of the window (that is, to remove them from the update region), because the
MyResizeWindow procedure invalidates the entire window (that is, places the entire
window in the update region). This way, only the changed parts of the content area are
redrawn when the application receives its next update event.

Listing 4-14 Adjusting scroll bars and content region when resizing a window

PROCEDURE MyResizeWindow (window: WindowPtr);

BEGIN
WITH window^ DO

 BEGIN
{adjust scroll bars and contents-- }

{ see the chapter “Control Manager” for implementation}
MyAdjustScrollbars(window, TRUE);

MyAdjustTE(window);
{invalidate content region, forcing an update}

InvalRect(portRect);
END;

END; {MyResizeWindow}

CHAPTER 4

Window Manager

4-60 Using the Window Manager

Listing 4-15 illustrates the application-defined procedure MyGetLocalUpdateRgn ,
which supplies a window’s update region in local coordinates. The
MyGetLocalUpdateRgn procedure uses the QuickDraw routines CopyRgn and
OffsetRgn , documented in Inside Macintosh: Imaging.

Listing 4-15 Converting a window region to local coordinates

PROCEDURE MyGetLocalUpdateRgn (window: WindowPtr;

localRgn: RgnHandle);

BEGIN

{save old update region}

CopyRgn(WindowPeek(window)^.updateRgn, localRgn);

WITH window^.portBits.bounds DO

OffsetRgn(localRgn, left, top); {convert to local coords}

END; {MyGetLocalUpdateRgn}

Closing a Window
The user closes a window either by clicking the close box, in the upper-left corner of the
window, or by choosing Close from the File menu.

When the user presses the mouse button while the cursor is in the close box, your
application calls the TrackGoAway function to track the mouse until the user releases
the button, as illustrated in Listing 4-9 on page 4-44. If the user releases the button while
the cursor is outside the close box, TrackGoAway returns FALSE, and your application
does nothing. If TrackGoAway returns TRUE, your application invokes its own
procedure for closing a window.

The specific steps you take when closing a window depend on what kind of information
the window contains and whether the contents need to be saved. The sample code in this
chapter recognizes four kinds of windows: the modeless dialog box containing the Find
dialog, the modeless dialog box containing the Spell Check dialog, a standard document
window, and a window associated with a desk accessory that was launched in the
application’s partition.

Listing 4-16 illustrates an application-defined procedure, DoCloseCmd, that determines
what kind of window is being closed and follows the appropriate strategy. The
application calls DoCloseCmd when the user clicks a window’s close box or chooses
Close from the File menu.

Listing 4-16 Handling a close command

PROCEDURE DoCloseCmd;

VAR

myWindow: WindowPtr; {pointer to window's record}

myData: MyDocRecHnd; {handle to a document record}

windowType: Integer; {application-defined window type}

CHAPTER 4

Window Manager

Using the Window Manager 4-61

BEGIN

myWindow := FrontWindow;

windowType := MyGetWindowType(myWindow);

CASE windowType OF

kMyFindModelessDialog: {for modeless dialog boxes, }

HideWindow(myWindow); { hide window}

kMySpellModelessDialog: {for modeless dialog boxes, }

HideWindow(myWindow); { hide window}

kDAWindow: {for desk accessories, close the DA}

CloseDeskAcc(WindowPeek(myWindow)^.windowKind);

kMyDocWindow: {for documents, handle file first}

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow));

MyCloseDocument(myData);

END;

END; {of CASE}

END;

The DoCloseCmd procedure first determines which window is the active window
and then calls the application-defined function MyGetWindowType to identify the
window’s type, as defined by the application. If the window is a modeless dialog box,
MyCloseCmd merely hides the window, leaving the data structures in memory. For
a sample routine that displays a hidden window, see Listing 4-18 on page 4-64.

If the window is associated with a desk accessory, the DoCloseCmd procedure calls
the CloseDeskAcc procedure to close the desk accessory. This case is included
only for compatibility; in System 7 desk accessories are seldom launched in an
application’s partition.

If the window is associated with a document, DoCloseCmd reads the document
record and then calls the application-defined procedure MyCloseDocument to handle
the closing of a document window. Listing 4-17 illustrates the MyCloseDocument
procedure.

Listing 4-17 Closing a document

PROCEDURE MyCloseDocument (myData: MyDocRecHnd);

VAR

title: Str255; {window/document title}

item: Integer; {item in Save Alert dialog box}

docWindow: WindowPtr; {pointer to window record}

event: EventRecord; {dummy record for DoActivate}

myErr: OSErr; {variable for error-checking}

BEGIN

docWindow := FrontWindow;

IF (myData^^.windowDirty) THEN {changed since last save}

CHAPTER 4

Window Manager

4-62 Using the Window Manager

BEGIN
GetWTitle(docWindow, title); {get window title}

ParamText(title, '', '', ''); {set up dialog text}
{deactivate window before displaying Save dialog}

DoActivate(docWindow, FALSE, event);
{put up Save dialog and retrieve user response}

item := CautionAlert(kSaveAlertID, @MyEventFilter);
IF item = kCancel THEN {user clicked Cancel}

Exit(MyCloseDocument); {exit without closing}
IF item = kSave THEN {user clicked Save}

DoSaveCmd; {save the document}
{otherwise user clicked Don't Save-- }

{ close document in either case}
myErr := DoCloseFile(myData); {close document}

{Add your own error handling.}
END;

{close window whether or not user saved}
CloseWindow(docWindow); {close window}

DisposePtr(Ptr(docWindow)); {dispose of window record}
END;

The MyCloseDocument procedure checks the windowDirty field in the document
record (described in “Managing Multiple Windows” beginning on page 4-23). If the
value of windowDirty is TRUE, MyCloseDocument displays a dialog box giving the
user a chance to save the document before closing the window. The dialog box gives
the user the choices of canceling the close, saving the document before closing
the window, or closing the window without saving the document. If the user
cancels, MyCloseDocument merely exits. If the user opts to save the document,
MyCloseDocument calls the application-defined routine DoSaveCmd, which is
not shown here. (For a description of how to save and close a file, see the chapter
“Introduction to File Management” in Inside Macintosh: Files.) Whether or not the
user saves the document before closing the window, MyCloseDocument closes the
document and finally removes the window from the screen and diposes of the memory
allocated to the window record.

Hiding and Showing a Window
Whenever the user clicks a window’s close box, you remove the window from the
screen. Sometimes, however, you might find it’s more efficient to merely hide the
window, instead of removing its data structures.

If your application includes a Find modeless dialog box that searches for a string, for
example, you might want to keep the structures in memory as long as the user is
working. When the user closes the dialog box by clicking the close box, you simply hide
the window by calling the HideWindow procedure. The next time the user chooses the
Find command, your dialog box window is already available, in the same location and
with the same text selected as when it was last used.

CHAPTER 4

Window Manager

Using the Window Manager 4-63

To reverse the HideWindow procedure, you must call both ShowWindow, which makes
the window visible, and SelectWindow , which makes it the active window. Figure 4-22
illustrates how the three procedures affect the window’s status on the screen.

Figure 4-22 The cumulative effects of HideWindow , ShowWindow, and SelectWindow

CHAPTER 4

Window Manager

4-64 Window Manager Reference

The application-defined procedure for closing a window—DoCloseCmd, described
on page 4-60—hides the Find and Spell Check dialog box windows when the
user closes them. Listing 4-18 illustrates a sample application-defined procedure,
DoShowModelessFindDialogBox , for redisplaying the Find dialog box when the
user next chooses the Find command.

Listing 4-18 Showing a hidden dialog box

PROCEDURE DoShowModelessFindDialogBox;

BEGIN

IF gFindDialog = NIL THE N {no Find dialog box exists yet}

BEGIN

{create Find dialog box}

gFindDialog := GetNewDialog(rFindModelessDialog, NIL ,

 Pointer(-1)) ;

I F gFindDialog = NIL THE N {creation failed}

Exit(DoShowModelessFindDialogBox); {exit}

{store value that identifie s d box i n w indow refCon field }

SetWRefCon(gFindDialog, LongInt(kMyFindModelessDialog))

ShowWindow(gFindDialog) ; {make dialog box visible}

END

ELSE {dialog box already exists}

BEGIN

ShowWindow(gFindDialog) ; {make it visible}

SelectWindow(gFindDialog) ; {select it}

END;

END;

The DoShowModelessFindDialogBox procedure first checks whether the Find
dialog box already exists. If it doesn’t, then DoShowModelessFindDialogBox creates
a new dialog box through the Dialog Manager. It stores the constant that represents
the Find dialog box in the refCon field of the new window record, makes the window
visible, and draws the dialog box contents. If the Find dialog box already exists,
DoShowModelessFindDialogBox makes the dialog box window visible and selects it.
When the Window Manager then generates an activate event, the application calls its
own procedure to draw the contents.

Window Manager Reference

This section describes the Window Manager ’s data structures and routines. It also lists
the resources used by the Window Manager and describes the window ('WIND') and
window color table ('wctb') resources.

CHAPTER 4

Window Manager Reference 4-65

Window Manager

Data Structures
This section describes the Window Manager data structures: the window record, the
color window record, the state data record, the window color table record, the auxiliary
window record, and the window list.

A window record or color window record describes an individual window. It includes
the record for the graphics port in which the window is displayed.

The state data record stores two rectangles, known as the user state and the standard
state, which define the size and location of the window as specified by the user and by
your application. Your application switches between the two states when the user clicks
the zoom box.

A window color table defines the colors to be used for drawing the window’s frame and
highlighting selected text. Ordinarily, you use the default window color table, which
produces windows in the colors selected by the user through the Color control panel. If
your application has some unusual need to control the frame colors, you can set up your
own window color tables.

The Window Manager uses auxiliary window records to associate a window with its
window color table.

The Window Manager uses the window list to track all of the windows on the desktop.

The Color Window Record

The Window Manager maintains a window record or color window record for each
window on the desktop.

The Window Manager supplies routines that let you access the window record as
necessary. Your application seldom changes fields in the window record directly.

The CWindowRecord data type defines the window record for a color window. The
CWindowPeek data type is a pointer to a color window record. The first field in
the window record is in fact the record that describes the window’s graphics port. The
CWindowPtr data type is defined as a pointer to the window’s graphics port.

When Color QuickDraw is not available, you can create monochrome windows using
the parallel data types WindowRecord , WindowPeek , and WindowPtr , described in the
next section, “The Window Record.”

For compatibility, the WindowPtr and WindowPeek data types can point to either a
color window record or a monochrome window record. You use the WindowPtr data
type to specify a window in most Window Manager routines, and you can use it to
specify a graphics port in QuickDraw routines that take the GrafPtr data type. Note
that you can access only the fields of the window’s graphics port, not the rest of the
window record, through the WindowPtr and CWindowPtr data types. You use the
WindowPeek and CWindowPeek data types in low-level Window Manager routines
and in your own routines that access window record fields beyond the graphics port.

Windo

CHAPTER 4

Window Manager

4-66 Window Manager Reference

The routines that manipulate color windows get color information from the window
color tables and the auxiliary window record described in the sections “The Window
Color Table Record” on page 4-71 and “The Auxiliary Window Record” on page 4-73.

TYPE CWindowPtr = ^CGrafPtr;

CWindowPeek = ^CWindowRecord;

TYPE CWindowRecord =

RECORD

port: CGraf Port; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box }

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle t o window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle t o c ontrol list}

nextWindow: CWindowPeek; { pointer to next windo w }

{ record in w indow list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

Field descriptions

port The graphics port record that describes the graphics port in which
the window is drawn.
The graphics port record, which is documented in Inside Macintosh:
Imaging, defines the rectangle in which drawing can occur, the
window’s visible region, the window’s clipping region, and a
collection of current drawing characteristics such as fill pattern, pen
location, and pen size.

windowKind The class of window—that is, how the window was created.
The Window Manager fills in this field when it creates the window
record. It places a negative value in windowKind when the window

CHAPTER 4

Window Manager

Window Manager Reference 4-67

was created by a desk accessory. (The value is the reference ID of
the desk accessory.) This field can also contain one of two constants:

CONST
dialogKind = 2; {dialog or alert window}

userKind = 8; {window created by an }
{ application}

The value dialogKind identifies all dialog or alert box windows,
whether created by the system software or, indirectly through the
Dialog Manager, by your application. The Dialog Manager uses this
field to help it track dialog and alert box windows.
The value userKind represents a window created directly by your
application.

visible A Boolean value indicating whether or not the window is visible. If
the window is visible, the Window Manager sets this field to TRUE;
if not, FALSE. Visibility means only whether or not the window is to
be displayed, not necessarily whether you can see it on the screen.
(For example, a window that is completely covered by other
windows can still be visible, even if the user cannot see it on the
screen.)

hilited A Boolean value indicating whether the window is highlighted—
that is, drawn with stripes in the title bar. Only the active window is
ordinarily highlighted. When the window is highlighted, the
hilited field contains TRUE; when not, FALSE.

goAwayFlag A Boolean value indicating whether the window has a close box.
The Window Manager fills in this field when it creates the window
according to the information in the 'WIND' resource or the
parameters passed to the function that creates the window.
If the value of goAwayFlag is TRUE, and if the window type
supports a close box, the Window Manager draws a close box when
the window is highlighted.

spareFlag A Boolean value indicating whether the window type supports
zooming. The Window Manager sets this field to TRUE if the
window’s type is one that includes a zoom box (zoomDocProc ,
zoomNoGrow, or even modalDBoxProc + zoomDocProc).

strucRgn A handle to the structure region, which is defined in global
coordinates. The structure region is the entire screen area covered
by the window—that is, both the window contents and the window
frame.

contRgn A handle to the content region, which is defined in global
coordinates. The content region is the part of the window that
contains the document, dialog, or other data; the window controls;
and the size box.

updateRgn A handle to the update region, which is defined in global
coordinates. The update region is the portion of the window that
must be redrawn. It is maintained jointly by the Window Manager
and your application. The update region excludes parts of the
window that are covered by other windows.

CHAPTER 4

Window Manager

4-68 Window Manager Reference

windowDefProc A handle to the definition function that controls the window.
There’s no need for your application to access this field directly.
In Macintosh models that use only 24-bit addressing, this field
contains both a handle to the window’s definition function and the
window’s variation code. If you need to know the variation code,
regardless of the addressing mode, call the GetWVariant function.

dataHandle Usually a handle to a data area used by the window definition
function.
For zoomable windows, dataHandle contains a handle to the
WStateData record, which contains the user state and standard
state rectangles. The WStateData record is described in “The
Window State Data Record” beginning on page 4-70.
A window definition function that needs only 4 bytes of data can
use the dataHandle field directly, instead of storing a handle to
the data. The window definition function that handles
rounded-corner windows, for example, stores the diameters of
curvature in the dataHandle field.

titleHandle A handle to the string that defines the title of the window.
titleWidth The width, in pixels, of the window’s title.
controlList A handle to the window’s control list, which is used by the Control

Manager. (See the chapter “Control Manager” in this book for a
description of control lists.)

nextWindow A pointer to the next window in the window list, that is, the
window behind this window on the desktop. In the window record
for the last window on the desktop, the nextWindow field is set
to NIL .

windowPic A handle to a QuickDraw picture of the window’s contents. The
Window Manager initially sets the windowPic field to NIL . If
you’re using the window to display a stable image, you can use the
SetWindowPic procedure to place a handle to the picture in this
field. When the window’s contents need updating, the Window
Manager then redraws the contents itself instead of generating an
update event.

refCon The window’s reference value field, which is simply storage
space available to your application for any purpose. The sample
code in this chapter uses the refCon field to associate a window
with the data it displays by storing a window type constant in
the refCon field of alert and dialog window records and a handle
to a document record in the refCon field of a document
window record.

Note

The close box, drag region, zoom box, and size box are not included in
the window record because they don’t necessarily have the formal data
structure for regions as defined in QuickDraw. The window definition
function determines where these regions are. ◆

CHAPTER 4

Window Manager

Window Manager Reference 4-69

The Window Record

If Color QuickDraw is not available, you create windows with a parallel data structure,
the window record. The only difference between a color window record and a window
record is that a color window record points to a color graphics port, which allows full
use of Macintosh computers with color capability, and a window record points to a
monochrome graphics port

The data types that describe window records, WindowRecord , WindowPtr , and
WindowPeek , are parallel to the data types that describe color window records, and the
fields in the monochrome window record are identical to the fields in the color window
record. For a complete description, see “The Color Window Record” beginning on
page 4-65.

TYPE WindowPtr = ^GrafPtr;

WindowPeek = ^WindowRecord;

TYPE WindowRecord = {all fields have same use }

RECORD { as in color window record}

port: GrafPort; {window's graphics port}

windowKind: Integer; {class of the window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition }

{ function}

dataHandle: Handle; {handle to window state }

{ data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: WindowPeek; {pointer to next window }

{ record in window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your }

{ application}

END;

CHAPTER 4

Window Manager

4-70 Window Manager Reference

The Window State Data Record

The zoom box allows the user to alternate quickly between two window positions and
sizes: the user state and the standard state. The Window Manager stores the user state
and your application stores the standard state in the window state data record, whose
handle appears in the dataHandle field of the window record.

The WStateData record data type defines the window state data record.

TYPE WStateDataPtr = ^WStateData;

WStateDataHandle = ^WStateDataPtr;

WStateData =

RECORD

userState: Rect ; { size and location establishe d by user}

stdState: Rect ; { size and location established by app}

END;

Field descriptions

userState A rectangle that describes the window size and location established
by the user.
The Window Manager initializes the user state to the size and
location of the window when it is first displayed, and then updates
the userState field whenever the user resizes a window.
Although the user state specifies both the size and location of the
window, the Window Manager updates the state data record only
when the user resizes a window—not when the user merely moves
a window.

stdState The rectangle describing the window size and location that your
application considers the most convenient, considering the function
of the document, the screen space available, and the position of the
window in its user state. If your application does not define a
standard state, the Window Manager automatically sets the
standard state to the entire gray region on the main screen, minus a
three-pixel border on all sides. The user cannot change a window’s
standard state.
Your application typically calculates and sets the standard state
each time the user zooms to the standard state. In a word-
processing application, for example, a standard state window might
show a full page, if possible, or a page of full width and as much
length as fits on the screen. If the user changes the page size
through Page Setup, the application might adjust the standard state
to reflect the new page size. (See Macintosh Human Interface
Guidelines for a detailed description of how your application
determines where to open and zoom windows.)

The ZoomWindow procedure changes the size of a window according to the values in the
window state data record. The procedure changes the window to the user state when the
user zooms “in” and to the standard state when the user zooms “out.” For a detailed

CHAPTER 4

Window Manager

Window Manager Reference 4-71

description of zooming windows, see “Zooming a Window” beginning on page 4-53. For
descriptions of the routines you call when zooming windows, see “Zooming Windows”
beginning on page 4-101.

The Window Color Table Record

The user controls the colors used for the window frame and text highlighting through
the Color control panel. Ordinarily, your application doesn’t override the user’s color
choices, which are stored in a default window color table. If you have some extraordi-
nary need to control window colors, you can do so by defining window color tables for
your application’s windows.

The Window Manager maintains window color information tables in a data structure of
type WinCTab.

You can define your own window color table and apply it to an existing window
through the SetWinColor procedure.

To establish the window color table for a window when you create it, you provide
a window color table ('wctb') resource with the same resource ID as the 'WIND'
resource that defines the window.

The WCTabPtr data type is a pointer to a window color table record, and the
WTabHandle is a handle to a window color table record.

TYPE WCTabPtr = ^WinCTab;

WCTabHandle = ^ WCTabPtr ;

The WinCTab data type defines a window color table record.

TYPE WinCTab =

RECORD

wCSeed: LongInt; {reserved }

wCReserved: Integer; {reserved }

ctSize: Integer; {number of entries in table -1 }

ctTable : ARRAY[0..4] OF ColorSpec;

{array of color specification }

{ records }

END;

Field descriptions

wCSeed Reserved.
wCReserved Reserved.
ctSize The number of entries in the table, minus 1. If you’re building a

color table for use with the standard window definition function,
the maximum value of this field is 12. Custom window definition
functions can use color tables of any size.

CHAPTER 4

Window Manager

4-72 Window Manager Reference

ctTable An array of colorSpec records.
In a window color table, each colorSpec record specifies a
window part in the first word and an RGB value in the other
three words:

TYPE ColorSpec =
RECORD

value: Integer; {part identifier}
rgb: RGBColor; {RGB value}

END;

The value field of a colorSpec record specifies a constant that
defines which part of the window the color controls. For the
window color table used by the standard window definition
function, you can specify these values with these meanings:

CONST

wContentColor = 0; {content region background}
wFrameColor = 1; {window outline}

wTextColor = 2; {window title and button }
{ text}

wHiliteColor = 3; {reserved}
wTitleBarColo r = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in }
{ title bar and lightest }

{ dimmed text}
wHiliteColorDark = 6; {darkest stripes in }

{ title bar and }
{ darkest dimmed }

{ text}
wTitleBarLight = 7; {lightest parts of }

{ title bar background}
wTitleBarDark = 8; {darkest parts of }

{ title bar background}
wDialogLight = 9; {lightest element }

{ of dialog box frame}
wDialogDark = 10; {darkest element of }

{ dialog box frame}
wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

Note

The part codes in System 5 and System 6 are significantly different
from the part codes described here, which apply only to System 7. ◆

The window parts can appear in any order in the table.
The rgb field of a ColorSpec record contains three words of data
that specify the red, green, and blue values of the color to be used.
The RGBColor data type is defined in Inside Macintosh: Imaging.

CHAPTER 4

Window Manager

Window Manager Reference 4-73

When your application creates a window, the Window Manager first looks for a resource
of type 'wctb' with the same resource ID as the 'WIND' resource used for the window.
If it finds one, it creates a window color table for the window from the information in
that resource, and then displays the window in those colors. If it doesn’t find a window
color table resource with the same resource ID as your window resource, the Window
Manager uses the default system window color table, read into the heap during
application startup.

After creating a window, you can change the entries in a window’s window color table
with the SetWinColor procedure, described on page 4-114.

See “The Window Color Table Resource” on page 4-127 for a description of the window
color table resource.

The Auxiliary Window Record

The auxiliary window record specifies the color table used by a window and contains
reference information used by the Dialog Manager and the Window Manager.

The Window Manager creates and maintains the information in an auxiliary window
record; your application seldom, if ever, needs to access an auxiliary window record.

TYPE AuxWinPtr = ^AuxWinRec;

AuxWinHandle = ^AuxWinPtr;

AuxWinRe c =

RECORD

awNext: AuxWinHandle; {handle to next record }

awOwner: WindowPtr; {pointer to windo w }

{ associated with this }

{ record }

awCTable: CTabHandle; {handle to color table }

dialogCItem : Handle; {storage used b y }

{ Dialog Manager }

awFlags: LongInt; {reserved }

awReserved: CTabHandle; {reserved }

awRefCon: LongInt; {reference constant, }

{ f or application's use}

END;

Field descriptions

awNext A handle to the next record in the auxiliary window list, used by
the Window Manager to maintain the auxiliary window list as a
linked list. If a window is using the default auxiliary window
record, this value is NIL .

awOwner A pointer to the window that uses this record. The awOwner field of
the default auxiliary window record is set to NIL .

CHAPTER 4

Window Manager

4-74 Window Manager Reference

awCTable A handle to the window’s color table. Unless you specify otherwise,
this is a handle to the system window color table.

dialogCItem Private storage for use by the Dialog Manager.
awFlags Reserved.
awReserved Reserved.
awRefCon The reference constant, typically used by an application to associate

the auxiliary window record with a document record.

Except in unusual circumstances, your application doesn’t need to manipulate window
color tables or the auxiliary window record.

For compatibility with other applications in the shared environment, your application
should not manipulate system color tables directly but should go through the Palette
Manager, documented in Inside Macintosh: Imaging. If your application provides its own
window and control definition functions, these functions should apply the user ’s
desktop color choices the same way the standard window and control definition
functions do.

The Window List

The Window Manager maintains information about the windows on the desktop in a
private structure called the window list. The window list contains pointers to all windows
on the desktop, both visible and invisible, and contains other information that the
Window Manager uses to maintain the desktop.

Your application should not directly access the information in a window list. The
structure of the window list is private to the Window Manager.

The global variable WindowList contains a pointer to the first window in the
window list.

Window Manager Routines
This section describes the complete set of routines for creating, displaying, and
managing windows.

Initializing the Window Manager

Before using any other other Window Manager routines, you must initialize the Window
Manager by calling the InitWindows procedure.

As part of initialization, InitWindows creates the Window Manager port, a graphics
port that occupies all of the main screen. The Window Manager port is named
WMgrCPort on Macintosh computers equipped with Color QuickDraw and WMgrPort
on computers with only QuickDraw.

CHAPTER 4

Window Manager

Window Manager Reference 4-75

Ordinarily, your application does not need to know about the Window Manager port.
If necessary, however, you can retrieve a pointer to it by calling the procedure
GetWMgrPort or GetCWMgrPort . Your application should not draw directly into
the Window Manager port, except through custom window definition functions.

The Window Manager draws your application’s windows into the Window Manager
port. The port rectangle of the Window Manager port is the bounding rectangle of the
main screen (screenBits.bounds). To accommodate systems with multiple monitors,
QuickDraw recognizes a port rectangle of screenBits.bounds as a special case and
allows drawing on all parts of the desktop.

InitWindows

The procedure InitWindows initializes the Window Manager for your application.
Before calling InitWindows , you must initialize QuickDraw and the Font Manager by
calling the InitGraf and InitFonts procedures, documented in Inside Macintosh:
Imaging and Inside Macintosh: Text.

PROCEDURE InitWindows;

DESCRIPTION

The InitWindows procedure initializes the Window Manager.

ASSEMBLY-LANGUAGE INFORMATION

When the desktop needs to be redrawn any time after initialization, the Window
Manager checks the global variable DeskHook , which can be used as a pointer to an
application-defined routine for drawing the desktop. This variable is ordinarily set to 0,
but not until after system startup. If you’re displaying windows in code that is to be
executed during startup, set DeskHook to 0. Note that the use of the Window Manager’s
global variables is not guaranteed to be compatible in system software versions later
than System 6.

Creating Windows

You can create windows in two ways:

■ from a window resource (a resource of type 'WIND'), with the GetNewCWindow and
GetNewWindow functions

■ from a collection of window characteristics passed as parameters to the NewCWindow
and NewWindow functions

Creating windows from resources allows you to localize your application for different
languages and to change the characteristics of your windows during application
development by changing only the window resources.

CHAPTER 4

Window Manager

4-76 Window Manager Reference

All four functions, GetNewCWindow, GetNewWindow, NewCWindow, and NewWindow,
can allocate space in your application’s heap for the new window’s window record. For
more control over memory use, you can allocate the space yourself and pass a pointer
when creating a window. In either case, the Window Manager fills in the data structure
and returns a pointer to it.

GetNewCWindow

Use the GetNewCWindow function to create a color window with the properties defined
in the 'WIND' resource with a specified resource ID.

FUNCTION GetNewCWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of
the window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage , the GetNewCWindow
function allocates the window record as a nonrelocatable object in the
heap. You can reduce the chances of heap fragmentation by allocating the
memory your application needs for window records early in your
initialization code. Whenever you need to create a window, you can
allocate memory from your own block and pass a pointer to it in the
wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1) . When you place a window in front of
all others, GetNewCWindow removes the highlighting from the
previously active window, highlights the newly created window, and
generates the appropriate activate events. Note that if you create an
invisible window in front of all others on the desktop, the user sees no
active window until you make the new window visible (or make another
window active).

To place a new window behind all other windows, specify a value of NIL .

DESCRIPTION

The GetNewCWindow function creates a new color window from the specified window
resource and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
GetNewCWindow is unable to read the window or window definition function from the
resource file, it returns NIL .

CHAPTER 4

Window Manager

Window Manager Reference 4-77

The GetNewCWindow function looks for a 'wctb' resource with the same resource ID
as that of the 'WIND' resource. If it finds one, it uses the window color information in
the 'wctb' resource for coloring the window frame and highlighting selected text.

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewCWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

To create the window, GetNewCWindow retrieves the window characteristics from the
window resource and then calls the NewCWindow function, passing the characteristics
as parameters.

The GetNewCWindow function creates a window in a color graphics port. Before calling
GetNewCWindow, verify that Color QuickDraw is available. Your application typically
sets up its own global variables reflecting the system setup during initialization by
calling the Gestalt function. See Inside Macintosh: Overview for more information about
establishing the local configuration.

SPECIAL CONSIDERATIONS

Note that the GetNewCWindow function returns a value of type WindowPtr , not
CWindowPtr .

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to the storage to
GetNewCWindow, use the procedure CloseWindow to close the window and the
procedure DisposePtr , documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that calls GetNewCWindow to create a new
window from a window resource.

For more information about window characteristics and the window resource, see the
description of NewCWindow beginning on page 4-79 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.
See Listing 4-17 on page 4-61 for an example of closing a document window.

CHAPTER 4

Window Manager

4-78 Window Manager Reference

GetNewWindow

Use the GetNewWindow function to create a new window from a window resource
when Color QuickDraw is not available. The GetNewWindow function takes the same
parameters as GetNewCWindow and returns a value of type WindowPtr . The only
difference is that it creates a monochrome graphics port, not a color graphics port.
The window record and graphics port record that describe monochrome and color
graphics ports are the same size and can be used interchangeably in most Window
Manager routines.

FUNCTION GetNewWindow (windowID: Integer; wStorage: Ptr;

behind: WindowPtr): WindowPtr;

windowID The resource ID of the 'WIND' resource that defines the properties of the
window.

wStorage A pointer to memory space for the window record.

If you specify a value of NIL for wStorage , the GetNewWindow function
allocates the window record as a nonrelocatable object in the heap. You
can reduce the chances of heap fragmentation by allocating the memory
your application needs for window records early in your initialization
code. Whenever you need to create a window, you can allocate memory
from your own block and pass a pointer to it in the wStorage parameter.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1) . When you place a window in front of
all others, GetNewWindow removes the highlighting from the previously
active window, highlights the newly created window, and generates the
appropriate activate events. Note that if you create an invisible window
in front of all others on the desktop, the user sees no active window until
you make the new window visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL .

DESCRIPTION

Like GetNewCWindow, GetNewWindow creates a new window from a window resource,
but it creates a monochrome window. The GetNewWindow function creates a new
window from the specified window resource and returns a pointer to the newly created
window record. You can use the returned window pointer to refer to this window in
most Window Manager routines. If GetNewWindow is unable to read the window or
window definition function from the resource file, it returns NIL .

If the window’s definition function (specified in the window resource) is not already in
memory, GetNewWindow reads it into memory and stores a handle to it in the window
record. It allocates space in the application heap for the structure and content regions of
the window and asks the window definition function to calculate those regions.

CHAPTER 4

Window Manager

Window Manager Reference 4-79

To create the window, GetNewWindow retrieves the window characteristics from the
window resource and then calls the function NewWindow, passing the characteristics
as parameters.

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
DisposeWindow to dispose of the window’s window record. If you allocated the
memory for the window record yourself and passed a pointer to GetNewWindow, use
the procedure CloseWindow to close the window and the procedure DisposePtr ,
documented in Inside Macintosh: Memory, to dispose of the window record.

SEE ALSO

For more information about window characteristics and the window resource, see the
description of NewWindow beginning on page 4-82 and the description of the 'WIND'
resource in the section “The Window Resource” beginning on page 4-124.

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewCWindow

You can use the NewCWindow function to create a window with a specified list of
characteristics.

FUNCTION NewCWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean;

procID: Integer; behind: WindowPtr;

goAwayFlag: Boolean ;

r efCon: LongInt): WindowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage , NewCWindow allocates the window record as a nonrelocatable
object in the application heap. You can reduce the chances of heap
fragmentation by allocating memory from a block of memory reserved for
this purpose by your application and passing a pointer to it in the
wStorage parameter.

boundsRect A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, the boundsRect field
defines the content region of the window. The NewCWindow function
places the origin of the local coordinate system at the upper-left corner of
the port rectangle.

CHAPTER 4

Window Manager

4-80 Window Manager Reference

Note

The NewCWindow function actually calls the QuickDraw procedure
OpenCPort to create the graphics port. The bitmap, pen pattern,
and other characteristics of the window’s graphics port are the same
as the default values set by OpenCPort , except for the character font,
which is set to the application font instead of the system font. ◆

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters are truncated at the end of the title; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NIL , in the title parameter.

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter is also TRUE and the
window is frontmost (that is, if the value of the behind parameter is
Pointer(–1)), the Window Manager instructs the window definition
function to draw a close box in the window frame. After drawing the
frame, the Window Manager generates an update event to trigger your
application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

procID The window’s definition ID, which specifies both the window definition
function and the variation code within that definition function.

The Window Manager supports nine standard window types, which
are handled by two window definition functions. You can create windows
of the standard types by specifying one of the window definition ID
constants:

CONST
documentProc = 0; {standard document }

{ window, no zoom box}
dBoxProc = 1; {alert box or modal }

{ dialog box}
plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}
noGrowDocProc = 4; {movable window, }

{ no size box or zoom box}
movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}
zoomNoGrow = 12; {zoomable, nonresizable }

{ window}
rDocProc = 16; {rounded-corner window }

CHAPTER 4

Window Manager

Window Manager Reference 4-81

For a description of the nine standard window types, see “Types of
Windows” beginning on page 4-8.

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1) . When you place a new window in front
of all others, NewCWindow removes highlighting from the previously
active window, highlights the newly created window, and generates
activate events that trigger your application’s updating of both windows.
Note that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL .

goAwayFlag A Boolean value that determines whether the window has a close box. If
the value of goAwayFlag is TRUE and the window type supports a close
box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewCWindow function creates a window as specified by its parameters, adds it to
the window list, and returns a pointer to the newly created window record. You can use
the returned window pointer to refer to this window in most Window Manager routines.
If NewCWindow is unable to read the window definition function from the resource file, it
returns NIL .

The NewCWindow function looks for a 'wctb' resource with the same resource ID as the
'WIND' resource. If it finds one, it uses the window color information in the 'wctb'
resource for coloring the window frame and highlighting.

If the window’s definition function is not already in memory, NewCWindow reads it
into memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function
to calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

The NewCWindow function creates a window in a color graphics port. Creating color
windows whenever possible ensures that your windows appear on color monitors with
whatever color options the user has selected. Before calling GetNewCWindow, verify that
Color QuickDraw is available. Your application typically sets up its own set of global

CHAPTER 4

Window Manager

4-82 Window Manager Reference

variables reflecting the system setup during initialization by calling the Gestalt
function. See the chapter Inside Macintosh: Overview for more information about
establishing the local configuration.

Note that the function NewCWindow returns a value of type WindowPtr , not
CWindowPtr .

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap,
call the DisposeWindow procedure to close the window and dispose of its window
record. If you allocated the memory for the window record yourself and passed a
pointer to NewCWindow, use the CloseWindow procedure to close the window and
the DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

NewWindow

Use the NewWindow function to create a new window with the characteristics specified
by a list of parameters when Color QuickDraw is not available. The NewWindow
function takes the same parameters as NewCWindow and, like NewCWindow, returns a
WindowPtr as its function result. The only difference is that NewWindow creates a
window in a monochrome graphics port, not a color graphics port. The window record
and graphics port record that describe monochrome and color graphics ports are the
same size and can be used interchangeably in most Window Manager routines.

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect;

title: Str255; visible: Boolean ;

theProc: Integer; behind: WindowPtr;

goAwayFlag: Boolean ;

r efCon: LongInt) : W indowPtr;

wStorage A pointer to the window record. If you specify NIL as the value of
wStorage , NewWindow allocates the window record as a nonrelocatable
object in the heap. You can reduce the chances of heap fragmentation by
allocating the storage from a block of memory reserved for this purpose
by your application and passing a pointer to it in the wStorage
parameter.

CHAPTER 4

Window Manager

Window Manager Reference 4-83

boundsRect A rectangle, in global coordinates, specifying the window’s initial size
and location. This parameter becomes the port rectangle of the window’s
graphics port. For the standard window types, boundsRect defines
the content region of the window. The NewWindow function places
the origin of the local coordinate system at the upper-left corner of the
port rectangle.

Note

The NewWindow function actually calls the QuickDraw procedure
OpenPort to create the graphics port. The bitmap, pen pattern, and
other characteristics of the window’s graphics port are the same as
the default values set by OpenPort , except for the character font,
which is set to the application font instead of the system font. The
coordinates of the graphics port’s port boundaries and visible region
are changed along with its port rectangle. ◆

title A string that specifies the window’s title.

If the title is too long to fit in the title bar, the title is truncated. If the
window has a close box, characters at the end of the title are truncated; if
there’s no close box, the title is centered and truncated at both ends.

To suppress the title in a window with a title bar, pass an empty string,
not NIL .

visible A Boolean value indicating visibility status: TRUE means that the Window
Manager displays the window; FALSE means it does not.

If the value of the visible parameter is TRUE, the Window Manager
draws a new window as soon as the window exists. The Window
Manager first calls the window definition function to draw the window
frame. If the value of the goAwayFlag parameter (described below) is
also TRUE and the window is frontmost (that is, if the value of the
behind parameter is Pointer(–1)), the Window Manager instructs the
window definition function to draw a close box in the window frame.
After drawing the frame, the Window Manager generates an update
event to trigger your application’s drawing of the content region.

When you create a window, you typically specify FALSE as the value of
the visible parameter. When you’re ready to display the window, you
call the ShowWindow procedure, described on page 4-88.

theProc The window’s definition ID, which specifies both the window definition
function and the variation code for that definition function.

The Window Manager supports nine standard window types, which are
handled by two window definition functions. You can create windows of
the standard types by specifying one of the type constants:

CONST

documentProc = 0; {standard documen t }

{ window, no zoom box}

dBoxProc = 1; {alert box or moda l }

{ dialog box}

plainDBox = 2; {plain box}

CHAPTER 4

Window Manager

4-84 Window Manager Reference

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, }

{ no size box or zoom b ox}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard d ocument window}

zoomNoGrow = 12; {zoomable, nonresizable }

{ window}

rDocProc = 16; {rounded-corner window}

You can control the diameter of curvature of rounded-corner windows by
adding an integer to the rDocProc constant, as described in “The
Window Resource” beginning on page 4-124.

behind A pointer to the window that appears immediately in front of the new
window on the desktop.

To place a new window in front of all other windows on the desktop,
specify a value of Pointer(–1) . When you place a new window in front
of all others, NewWindow removes highlighting from the previously active
window, highlights the newly created window, and generates activate
events that trigger your application’s updating of both windows. Note
that if you create an invisible window in front of all others on the
desktop, the user sees no active window until you make the new window
visible (or make another window active).

To place a new window behind all other windows, specify a value of NIL .

goAwayFlag A Boolean value that determines whether or not the window has a close
box. If the value of goAwayFlag is TRUE and the window type supports
a close box, the Window Manager draws a close box in the title bar and
recognizes mouse clicks in the close region; if the value of goAwayFlag is
FALSE or the window type does not support a close box, it does not.

refCon The window’s reference constant, set and used only by your application.
(See “Managing Multiple Windows” beginning on page 4-23 for some
suggested ways to use the refCon parameter.)

DESCRIPTION

The NewWindow function creates a window as specified by its parameters, adds it to the
window list, and returns a pointer to the newly created window record. You can use the
returned window pointer to refer to this window in most Window Manager routines. If
NewWindow is unable to read the window definition function from the resource file, it
returns NIL .

If the window’s definition function is not already in memory, NewWindow reads it into
memory and stores a handle to it in the window record. It allocates space for the
structure and content regions of the window and asks the window definition function to
calculate those regions.

Storing the characteristics of your windows as resources, especially window titles and
window items, makes your application easier to localize.

CHAPTER 4

Window Manager

Window Manager Reference 4-85

SPECIAL CONSIDERATIONS

If you let the Window Manager create the window record in your application’s heap, call
the DisposeWindow procedure to close the window and dispose of its window record.
If you allocated the memory for the window record yourself and passed a pointer to
NewCWindow, use the CloseWindow procedure to close the window and the
DisposePtr procedure, documented in Inside Macintosh: Memory, to dispose of the
window record.

SEE ALSO

For the procedures for closing a window and removing the structures from memory, see
the descriptions of the DisposeWindow procedure on page 4-105, the CloseWindow
procedure on page 4-104, and the DisposePtr procedure in Inside Macintosh: Memory.

Naming Windows

This section describes the procedures that set and retrieve a window’s title.

SetWTitle

Use the SetWTitle procedure to change a window’s title.

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

theWindow A pointer to the window’s window record.

title The new window title.

DESCRIPTION

The SetWTitle procedure changes a window’s title to the specified string, both in the
window record and on the screen, and redraws the window’s frame as necessary.

When the user opens a previously saved document, you typically create a new (invisible)
window with the title “untitled” and then call SetWTitle to give the window the
document’s name before displaying it. You also call SetWTitle when the user saves a
document under a new name.

To suppress the title in a window with a title bar, pass an empty string, not NIL .

Always use SetWTitle instead of directly changing the title in a window’s
window record.

CHAPTER 4

Window Manager

4-86 Window Manager Reference

GetWTitle

Use the GetWTitle procedure to retrieve a window’s title.

PROCEDURE GetWTitl e (theWindow: WindowPtr; VAR title: Str255);

theWindow A pointer to the window record.

title The window title.

DESCRIPTION

The GetWTitle procedure returns the title of the window in the title parameter.

Your application seldom needs to determine a window’s title. It might need to do so,
however, when presenting user dialog boxes during operations that can affect multiple
files. A spell-checking command, for example, might display a dialog box that lets the
user select from all currently open documents.

When you need to retrieve a window’s title, you should always use GetWTitle instead
of reading the title from a window’s window record.

Displaying Windows

This section describes the Window Manager routines that change a window’s display
and position in the window list but not its size or location on the desktop. Note that the
Window Manager automatically draws all visible windows on the screen.

Your application typically uses only a few of the routines described in this section:
DrawGrowIcon , SelectWindow , ShowWindow, and, occasionally, HideWindow .

DrawGrowIcon

Use the DrawGrowIcon procedure to draw a window’s size box.

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);

theWindow A pointer to the window record.

DESCRIPTION

The DrawGrowIcon procedure draws a window’s size box or, if the window can’t be
sized, whatever other image is appropriate. You call DrawGrowIcon when drawing the
content region of a window that contains a size box.

The exact appearance and location of the image depend on the window type and the
window’s active or inactive state. The DrawGrowIcon procedure automatically checks
the window’s type and state and draws the appropriate image.

CHAPTER 4

Window Manager

Window Manager Reference 4-87

In an active document window, DrawGrowIcon draws the grow image in the size box in
the lower-right corner of the window’s graphics port rectangle, along with the lines
delimiting the size box and scroll bar areas. To draw the size box but not the scroll bar
outline, set the clipRgn field in the window’s graphics port to be a 15-by-15 pixel
rectangle in the lower-right corner of the window.

The DrawGrowIcon procedure doesn’t erase the scroll bar areas. If you use
DrawGrowIcon to draw the size box and scroll bar outline, therefore, you should
erase those areas yourself when the window size changes, even if the window
doesn’t contain scroll bars.

In an inactive document window, DrawGrowIcon draws the lines delimiting the size
box and scroll bar areas and erases the size box.

SEE ALSO

See Listing 4-8 on page 4-39 for an example that draws a window’s content region,
including the size box. See Listing 4-11 on page 4-51 for an example that calls
DrawGrowIcon to remove the size-box icon when a window becomes inactive.

SelectWindow

Use the SelectWindow procedure to make a window active. The SelectWindow
procedure changes the active status of a window but does not affect its visibility.

PROCEDURE SelectWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The SelectWindow procedure removes highlighting from the previously active
window, brings the specified window to the front, highlights it, and generates the
activate events to deactivate the previously active window and activate the specified
window. If the specified window is already active, SelectWindow has no effect.

Even if the specified window is invisible, SelectWindow brings the window to the
front, activates the window, and deactivates the previously active window. Note that in
this case, no active window is visible on the screen. If you do select an invisible window,
be sure to call ShowWindow immediately to make the window visible (and accessible to
the user).

Call SelectWindow when the user presses the mouse button while the cursor is in the
content region of an inactive window.

CHAPTER 4

Window Manager

4-88 Window Manager Reference

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls SelectWindow to change
the active window when the user presses the mouse button while the cursor is
in an inactive window.

See Listing 4-18 on page 4-64 for an example that uses SelectWindow and
ShowWindow together to restore a window’s active, visible status after it has
been made invisible with HideWindow .

ShowWindow

Use the ShowWindow procedure to make an invisible window visible.

PROCEDURE ShowWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window.

DESCRIPTION

The ShowWindow procedure makes an invisible window visible. If the specified window
is already visible, ShowWindow has no effect. Your application typically creates a new
window in an invisible state, performs any necessary setup of the content region, and
then calls ShowWindow to make the window visible.

When you display a previously invisible window by calling ShowWindow, the Window
Manager draws the window frame and then generates an update event to trigger your
application’s drawing of the content region.

If the newly visible window is the frontmost window, ShowWindow highlights it if
it’s not already highlighted and generates an activate event to make it active. The
ShowWindow procedure does not activate a window that is not frontmost on the desktop.

Note
Because ShowWindow does not change the front-to-back ordering of
windows, it is not the inverse of HideWindow . If you make the
frontmost window invisible with HideWindow , and HideWindow has
activated another window, you must call both ShowWindow and
SelectWindow to bring the original window back to the front. ◆

SEE ALSO

See Listing 4-16 on page 4-60 for an example that temporarily hides a dialog box
window when the user closes it. See Listing 4-18 on page 4-64 for the example that
calls ShowWindow to display the window again later.

CHAPTER 4

Window Manager

Window Manager Reference 4-89

HideWindow

Use the HideWindow procedure to make a window invisible.

PROCEDURE HideWindow (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The HideWindow procedure make a visible window invisible. If you hide the frontmost
window, HideWindow removes the highlighting, brings the window behind it to
the front, highlights the new frontmost window, and generates the appropriate
activate events.

To reverse the actions of HideWindow , you must call both ShowWindow, to make the
window visible, and SelectWindow , to select it.

SEE ALSO

See Listing 4-16 on page 4-60 for an example that calls HideWindow to temporarily
hide a dialog box window when the user closes it. See Listing 4-18 on page 4-64 for the
companion example that redisplays the window later.

ShowHide

Use the ShowHide procedure to set a window’s visibility status.

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: Boolean);

theWindow A pointer to the window’s window record.

showFlag A Boolean value that determines visibility status: TRUE makes a window
visible; FALSE makes it invisible.

DESCRIPTION

The ShowHide procedure sets a window’s visibility to the status specified by the
showFlag parameter. If the value of showFlag is TRUE, ShowHide makes the window
visible if it’s not already visible and has no effect if it’s already visible. If the value of
showFlag is FALSE, ShowHide makes the window invisible if it’s not already invisible
and has no effect if it’s already invisible.

The ShowHide procedure never changes the highlighting or front-to-back ordering of
windows and generates no activate events.

CHAPTER 4

Window Manager

4-90 Window Manager Reference

▲ WARNING

Use this procedure carefully and only in special circumstances where
you need more control than that provided by HideWindow and
ShowWindow. Do not, for example, use ShowHide to hide the active
window without making another window active. ▲

HiliteWindow

Use the HiliteWindow procedure to set a window’s highlighting status.

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: Boolean);

theWindow A pointer to the window’s window record.

fHilite A Boolean value that determines the highlighting status: TRUE highlights
a window; FALSE removes highlighting.

DESCRIPTION

The HiliteWindow procedure sets a window’s highlighting status to the specified state.
If the value of the fHilite parameter is TRUE, HiliteWindow highlights the specified
window; if the specified window is already highlighted, the procedure has no effect.
If the value of fHilite is FALSE, HiliteWindow removes highlighting from the
specified window; if the window is not already highlighted, the procedure has no effect.

Your application doesn’t normally need to call HiliteWindow . To make a window
active, you can call SelectWindow , which handles highlighting for you.

BringToFront

Use the BringToFront procedure to bring a window to the front.

PROCEDURE BringToFront (theWindow: WindowPtr);

theWindow A pointer to the window’s window record.

DESCRIPTION

The BringToFront procedure puts the specified window at the beginning of the
window list and redraws the window in front of all others on the screen. It does
not change the window’s highlighting or make it active.

Your application does not ordinarily call BringToFront . The user interface guidelines
specify that the frontmost window should be the active window. To bring a window to
the front and make it active, call the SelectWindow procedure.

CHAPTER 4

Window Manager

Window Manager Reference 4-91

SendBehind

Use the SendBehind procedure to move one window behind another.

PROCEDURE SendBehind (theWindow, behindWindow: WindowPtr);

theWindow A pointer to the window to be moved.

behindWindow
A pointer to the window that is to be in front of the moved window.

DESCRIPTION

The SendBehind procedure moves the window pointed to by the parameter
theWindow behind the window pointed to by the parameter behindWindow . If the
move exposes previously obscured windows or parts of windows, SendBehind
redraws the frames as necessary and generates the appropriate update events to
have any newly exposed content areas redrawn.

If the value of behindWindow is NIL , SendBehind sends the window to be moved
behind all other windows on the desktop. If the window to be moved is the active
window, SendBehind removes its highlighting, highlights the newly exposed frontmost
window, and generates the appropriate activate events.

Note
Do not use SendBehind to deactivate a window after you’ve made a
new window active with the SelectWindow procedure. The
SelectWindow procedure automatically deactivates the previously
active window. ◆

Retrieving Window Information

This section describes

■ the FindWindow function, which maps the cursor location of a mouse-down event to
parts of the screen or regions of a window

■ the FrontWindow function, which tells your application which window is active

FindWindow

When your application receives a mouse-down event, call the FindWindow function to
map the location of the cursor to a part of the screen or a region of a window.

FUNCTION FindWindow (thePoint: Point ;

VAR theW indow: WindowPtr): Integer;

CHAPTER 4

Window Manager

4-92 Window Manager Reference

thePoint The point, in global coordinates, where the mouse-down event occurred.
Your application retrieves this information from the where field of the
event record.

theWindow A parameter in which FindWindow returns a pointer to the window in
which the mouse-down event occurred, if it occurred in a window. If it
didn’t occur in a window, FindWindow sets theWindow to NIL .

DESCRIPTION

The FindWindow function returns an integer that specifies where the cursor was when
the user pressed the mouse button. You typically call FindWindow whenever you
receive a mouse-down event. The FindWindow function helps you dispatch the event by
reporting whether the cursor was in the menu bar or in a window when the mouse
button was pressed and, if it was in a window, which window and which region of the
window. If the mouse-down event occurred in a window, FindWindow places a pointer
to the window in the parameter theWindow .

The FindWindow function returns an integer that specifies one of nine regions:

CONSTinDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

The FindWindow function returns inDesk if the cursor is not in the menu bar, a desk
accessory window, or any window that belongs to your application. The FindWindow
function might return this value if, for example, the user presses the mouse button while
the cursor is on the window frame but not in the title bar, close box, or zoom box. When
FindWindow returns inDesk , your application doesn’t need to do anything. In System
7, when the user presses the mouse button while the cursor is on the desktop or in a
window that belongs to another application, the Event Manager sends your application
a suspend event and switches to the Finder or another application.

The FindWindow function returns inMenuBar when the user presses the mouse button
with the cursor in the menu bar. Your application typically adjusts its menus and then
calls the Menu Manager’s function MenuSelect to let the user choose menu items.

The FindWindow function returns inSysWindow when the user presses the mouse
button while the cursor is in a window belonging to a desk accessory that was launched
in your application’s partition. This situation seldom arises in System 7. When the user

CHAPTER 4

Window Manager

Window Manager Reference 4-93

clicks in a window belonging to a desk accessory launched independently, the Event
Manager sends your application a suspend event and switches to the desk accessory.

If FindWindow does return inSysWindow , your application calls the SystemClick
procedure, documented in the chapter “Event Manager” in this book. The
SystemClick procedure routes the event to the desk accessory. If the user presses
the mouse button with the cursor in the content region of an inactive desk
accessory window, SystemClick makes the window active by sending your applica-
tion and the desk accessory the appropriate activate events.

The FindWindow function returns inContent when the user presses the mouse button
with the cursor in the content area (excluding the size box in an active window) of one of
your application’s windows. Your application then calls its routine for handling clicks in
the content region.

The FindWindow function returns inDrag when the user presses the mouse button
with the cursor in the drag region of a window (that is, the title bar, excluding the close
box and zoom box). Your application then calls the Window Manager’s DragWindow
procedure to let the user drag the window to a new location.

The FindWindow function returns inGrow when the user presses the mouse button
with the cursor in an active window’s size box. Your application then calls its own
routine for resizing a window.

The FindWindow function returns inGoAway when the user presses the mouse
button with the cursor in an active window’s close box. Your application calls the
TrackGoAway function to track mouse activity while the button is down and then
calls its own routine for closing a window if the user releases the button while the
cursor is in the close box.

The FindWindow function returns inZoomIn or inZoomOut when the user presses the
mouse button with the cursor in an active window’s zoom box. Your application calls the
TrackBox function to track mouse activity while the button is down and then calls its
own routine for zooming a window if the user releases the button while the cursor is in
the zoom box.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FindWindow to determine the
location of the cursor and then dispatches the mouse-down event depending on
the results.

FrontWindow

Use the FrontWindow function to find out which window is active.

FUNCTION FrontWindow : WindowPtr;

CHAPTER 4

Window Manager

4-94 Window Manager Reference

DESCRIPTION

The FrontWindow function returns a pointer to the first visible window in the
window list (that is, the active window). If there are no visible windows, FrontWindow
returns NIL .

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls FrontWindow to determine
whether an event occurred in the active window.

See Listing 4-12 on page 4-55 for an example that calls FrontWindow to determine
whether to display a window in front of other windows after changing its size.

See Listing 4-16 on page 4-60 and Listing 4-17 on page 4-61 for examples that call
FrontWindow to determine which window is affected by a user command directed
at the active window.

Moving Windows

This section describes the procedures that move windows on the desktop.

To move a window, your application ordinarily needs to call only the DragWindow
procedure, which itself calls the DragGrayRgn function, and the MoveWindow
procedure. The DragGrayRgn function drags a dotted outline of the window on the
screen, following the motion of the cursor, as long as the user holds down the mouse
button. The DragGrayRgn function itself calls the PinRect function to contain the
point where the cursor was when the mouse button was first pressed inside the
available desktop area. When the user releases the mouse button, DragWindow calls
MoveWindow, which moves the window to a new location.

DragWindow

When the user drags a window by its title bar, use the DragWindow procedure to move
the window on the screen.

PROCEDURE DragWindow (theWindow: WindowPtr;

startPt: Point; boundsRect: Rect);

theWindo w A pointer to the window record of the window to be dragged.

startP t The location, in global coordinates, of the cursor at the time the user
pressed the mouse button. Your application retrieves this point from the
where field of the event record.

CHAPTER 4

Window Manager

Window Manager Reference 4-95

boundsRect A rectangle, in global coordinates, that limits the region to which a
window can be dragged. If the mouse button is released when the
cursor is outside the limits of boundsRect , DragWindow returns
without moving the window (or, if it was inactive, without making
it the active window).

Because the user cannot ordinarily move the cursor off the desktop,
you can safely set boundsRect to the largest available rectangle (the
bounding box of the desktop region pointed to by the global variable
GrayRgn) when you’re using DragWindow to track mouse movements.
Don’t set the bounding rectangle to the size of the immediate screen
(screenBits.bounds), because the user wouldn’t be able to move
the window to a different screen on a system equipped with
multiple monitors.

DESCRIPTION

The DragWindow procedure moves a dotted outline of the specified window around the
screen, following the movement of the cursor until the user releases the mouse button.
When the button is released, DragWindow calls MoveWindow to move the window to its
new location. If the specified window isn’t the active window (and the Command key
wasn’t down when the mouse button was pressed), DragWindow makes it the active
window by setting the front parameter to TRUE when calling MoveWindow. If the
Command key was down when the mouse button was pressed, DragWindow moves the
window without making it active.

SEE ALSO

The DragWindow procedure calls both MoveWindow and DragGrayRgn , which are
described in this section.

See Listing 4-9 on page 4-44 for an example that calls DragWindow when the user
presses the mouse button while the cursor is in the drag region.

MoveWindow

Use the MoveWindow procedure to move a window on the desktop.

PROCEDURE MoveWindow (theWindow: WindowPtr;

hGlobal , v Global: Integer;

front: Boolean);

theWindow A pointer to the window record of the window being moved.

hGlobal The new location, in global coordinates, of the left edge of the window’s
port rectangle.

vGlobal The new location, in global coordinates, of the top edge of the window’s
port rectangle.

CHAPTER 4

Window Manager

4-96 Window Manager Reference

front A Boolean value specifying whether the window is to become the
frontmost, active window. If the value of the front parameter is FALSE,
MoveWindow does not change its plane or status. If the value of the front
parameter is TRUE and the window isn’t active, MoveWindow makes it
active by calling the SelectWindow procedure.

DESCRIPTION

The MoveWindow procedure moves the specified window to the location specified by the
hGlobal and vGlobal parameters, without changing the window’s size. The upper-left
corner of the window’s port rectangle is placed at the point (vGlobal ,hGlobal). The
local coordinates of the upper-left corner are unaffected.

Your application doesn’t normally call MoveWindow. When the user drags a window by
dragging its title bar, you can call DragWindow , which in turn calls MoveWindow when
the user releases the mouse button.

DragGrayRgn

The DragWindow function calls the DragGrayRgn function to move an outline of a
window around the screen as the user drags a window.

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point;

limitRect, slopRect: Rect; axis: Integer;

actionProc: ProcPtr): LongInt;

theRgn A handle to the region to be dragged.

startPt The location, in the local coordinates of the current graphics port, of the
cursor when the mouse button was pressed.

limitRect A rectangle, in the local coordinates of the current graphics port, that
limits where the region can be dragged. This parameter works in
conjunction with the slopRect parameter, as illustrated in Figure 4-23
on page 4-98.

slopRect A rectangle, in the local coordinates of the current graphics port, that
gives the user some leeway in moving the mouse without violating
the limits of the limitRect parameter, as illustrated in Figure 4-23 on
page 4-98. The slopRect rectangle should be larger than the limitRect
rectangle.

axis A constant that constrains the region’s motion. The axis parameter can
have one of these values:

CONSTnoConstraint = 0; {no constraints}

hAxisOnly = 1; {move on horizontal axis }

{ only}
vAxisOnly = 2; {move on vertical axis }

{ only}

CHAPTER 4

Window Manager

Window Manager Reference 4-97

If an axis constraint is in effect, the outline follows the cursor’s
movements along only the specified axis, ignoring motion along the other
axis. With or without an axis constraint, the outline appears only when
the mouse is inside the slopRect rectangle.

actionProc A pointer to a procedure that defines an action to be performed
repeatedly as long as the user holds down the mouse button. The
procedure can have no parameters. If the value of actionProc is NIL ,
DragGrayRgn simply retains control until the mouse button is released.

DESCRIPTION

The DragGrayRgn function moves a gray outline of a region on the screen, following
the movements of the cursor, until the mouse button is released. It returns the difference
between the point where the mouse button was pressed and the offset point—that is, the
point in the region whose horizontal and vertical offsets from the upper-left corner of the
region’s enclosing rectangle are the same as the offsets of the starting point when the
user pressed the mouse button. The DragGrayRgn function stores the vertical difference
between the starting point and the offset point in the high-order word of the return value
and the horizontal difference in the low-order word.

The DragGrayRgn function limits the movement of the region according to the
constraints set by the limitRect and slopRect parameters:

■ As long as the cursor is inside the limitRect rectangle, the region’s outline follows
it normally. If the mouse button is released while the cursor is within this rectangle,
the return value reflects the simple distance that the cursor moved in each dimension.

■ When the cursor moves outside the limitRect rectangle, the offset point stops at the
edge of the limitRect rectangle. If the mouse button is released while the cursor
is outside the limitRect rectangle but inside the slopRect rectangle, the return
value reflects only the difference between the starting point and the offset point,
regardless of how far outside of the limitRect rectangle the cursor may have
moved. (Note that part of the region can fall outside the limitRect rectangle, but
not the offset point.)

■ When the cursor moves outside the slopRect rectangle, the region’s outline
disappears from the screen. The DragGrayRgn function continues to track the cursor,
however, and if the cursor moves back into the slopRect rectangle, the outline
reappears. If the mouse button is released while the cursor is outside the slopRect
rectangle, both words of the return value are set to $8000. In this case, the Window
Manager does not move the window from its original location.

Figure 4-23 on page 4-98 illustrates how the region stops moving when the offset point
reaches the edge of the limitRect rectangle. The cursor continues to move, but the
region does not.

If the mouse button is released while the cursor is anywhere inside the slopRect
rectangle, the Window Manager redraws the window in its new location, which is
calculated from the value returned by DragGrayRgn .

CHAPTER 4

Window Manager

4-98 Window Manager Reference

Figure 4-23 Limiting rectangle used by DragGrayRgn

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined
by your application, which will be called by DragGrayRgn as long as the mouse
button is held down. (If there’s an actionProc procedure, it is called first.) If you
want DragGrayRgn to draw the region’s outline in a pattern other than gray, you
can store the pattern in the global variable DragPattern and then invoke the macro
_DragTheRgn . Note that the use of the Window Manager’s global variables is not
guaranteed to be compatible with system software versions later than System 6.

CHAPTER 4

Window Manager

Window Manager Reference 4-99

PinRect

The DragGrayRgn function uses the PinRect function to contain a point within a
specified rectangle.

FUNCTION PinRect (theRect: Rect; thePt: Point): LongInt;

theRect The rectangle in which the point is to be contained.

thePt The point to be contained.

DESCRIPTION

The PinRect function returns a point within the specified rectangle that is as close as
possible to the specified point. (The high-order word of the returned long integer is the
vertical coordinate; the low-order word is the horizontal coordinate.)

If the specified point is within the rectangle, PinRect returns the point itself. If not, then

■ if the horizontal position is to the left of the rectangle, PinRect returns the left edge
as the horizontal coordinate

■ if the horizontal position is to the right of the rectangle, PinRect returns the right
edge minus 1 as the horizontal coordinate

■ if the vertical position is above the rectangle, PinRect returns the top edge as the
vertical coordinate

■ if the vertical position is below the rectangle, PinRect returns the bottom edge minus
1 as the vertical coordinate

Note
The 1 is subtracted when the point is below or to the right of the
rectangle so that a pixel drawn at that point lies within the rectangle. If
the point is exactly on the bottom or the right edge of the rectangle,
however, 1 should be subtracted but isn’t. ◆

Resizing Windows

This section describes the procedures you can use to track the cursor while the user
resizes a window and to draw the window in a new size.

GrowWindow

Use the GrowWindow function to allow the user to change the size of a window. The
GrowWindow function displays an outline (grow image) of the window as the user
moves the cursor to make the window larger or smaller; it handles all user interaction

CHAPTER 4

Window Manager

4-100 Window Manager Reference

until the user releases the mouse button. After calling GrowWindow, you call the
SizeWindow procedure to change the size of the window.

FUNCTION GrowWindow (theWindow: WindowPtr;

startPt: Point; sizeRect: Rect): LongInt;

theWindow A pointer to the window record of the window to drag.

startPt The location of the cursor at the time the mouse button was first pressed,
in global coordinates. Your application retrieves this point from the
where field of the event record.

sizeRect The limits on the vertical and horizontal measurements of the port
rectangle, in pixels.

Although the sizeRect parameter is in the form of the Rect data
type, the four numbers in the structure represent lengths, not
screen coordinates. The top , left , bottom , and right fields of the
sizeRect parameter specify the minimum vertical measurement
(top), the minimum horizontal measurement (left), the maximum
vertical measurement (bottom), and the maximum horizontal
measurement (right).

The minimum measurements must be large enough to allow a
manageable rectangle; 64 pixels on a side is typical. Because the user
cannot ordinarily move the cursor off the screen, you can safely set
the upper bounds to the largest possible length (65,535 pixels) when
you’re using GrowWindow to follow cursor movements.

DESCRIPTION

The GrowWindow function moves a dotted-line image of the window’s right and lower
edges around the screen, following the movements of the cursor until the mouse button
is released. It returns the new dimensions, in pixels, of the resulting window: the height
in the high-order word of the returned long-integer value and the width in the low-order
word. You can use the functions HiWord and LoWord to retrieve only the high-order and
low-order words, respectively.

A return value of 0 means that the new size is the same as the size of the current
port rectangle.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by GrowWindow as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to
be compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls GrowWindow when the user
presses the mouse button while the cursor is in the size box.

CHAPTER 4

Window Manager

Window Manager Reference 4-101

SizeWindow

Use the SizeWindow procedure to set the size of a window.

PROCEDURE SizeWindow (theWindow: WindowPtr; w, h: Integer;

fUpdate: Boolean);

theWindo w A pointer to the window record of the window to be sized.

w The new window width, in pixels.

h The new window height, in pixels.

fUpdate A Boolean value that specifies whether any newly created area of the
content region is to be accumulated into the update region (TRUE) or not
(FALSE). You ordinarily pass a value of TRUE to ensure that the area is
updated. If you pass FALSE, you’re responsible for maintaining the
update region yourself. For more information on adding rectangles to and
removing rectangles from the update region, see the description of
InvalRect on page 4-107 and ValidRect on page 4-108.

DESCRIPTION

The SizeWindow procedure changes the size of the window’s graphics port rectangle to
the dimensions specified by the w and h parameters, or does nothing if the values of w
and h are 0. The Window Manager redraws the window in the new size, recentering the
title and truncating it if necessary. Your application calls SizeWindow immediately after
calling GrowWindow, to adjust the window to any changes made by the user through the
size box.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that calls SizeWindow to resize a window
based on the return value of GrowWindow.

Zooming Windows

This section describes the procedures you can use to track mouse activity in the zoom
box and to zoom windows.

TrackBox

Use the TrackBox function to track the cursor when the user presses the mouse button
while the cursor is in the zoom box.

FUNCTION TrackBox (theWindow: WindowPtr; thePt: Point;

 partCode: Integer): Boolean;

CHAPTER 4

Window Manager

4-102 Window Manager Reference

theWindow A pointer to the window record of the window in which the mouse
button was pressed.

thePt The location of the cursor when the mouse button was pressed. Your
application receives this point from the where field in the event record.

partCode The part code (either inZoomIn or inZoomOut) returned by the
FindWindow function.

DESCRIPTION

The TrackBox function tracks the cursor when the user presses the mouse button while
the cursor is in the zoom box, retaining control until the mouse button is released. While
the button is down, TrackBox highlights the zoom box while the cursor is in the zoom
region, as illustrated in Figure 4-20 on page 4-47.

When the mouse button is released, TrackBox removes the highlighting from the zoom
box and returns TRUE if the cursor is within the zoom region and FALSE if it is not.

Your application calls the TrackBox function when it receives a result code of either
inZoomIn or inZoomOut from the FindWindow function. If TrackBox returns TRUE,
your application calculates the standard state, if necessary, and calls the ZoomWindow
procedure to zoom the window. If TrackBox returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackBox as long as the mouse button is held
down. (If there’s an actionProc procedure, the actionProc procedure is called first.)
Note that the use of the Window Manager ’s global variables is not guaranteed to be
compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calls TrackBox to track cursor activity
when the user presses the mouse button while the cursor is in the zoom box.

ZoomWindow

Use the ZoomWindow procedure to zoom the window when the user has pressed and
released the mouse button with the cursor in the zoom box.

PROCEDURE ZoomWindow (theWindow: WindowPtr;

partCode: Integer; front: Boolean);

theWindow A pointer to the window record of the window to be zoomed.

partCode The result (either inZoomIn or inZoomOut) returned by the
FindWindow function.

CHAPTER 4

Window Manager

Window Manager Reference 4-103

front A Boolean value that determines whether the window is to be brought to
the front. If the value of front is TRUE, the window necessarily becomes
the frontmost, active window. If the value of front is FALSE, the
window’s position in the window list does not change. Note that if a
window was active before it was zoomed, it remains active even if the
value of front is FALSE.

DESCRIPTION

The ZoomWindow procedure zooms a window in or out, depending on the value of
the partCode parameter. Your application calls ZoomWindow, passing it the part
code returned by FindWindow , when it receives a result of TRUE from TrackBox .
The ZoomWindow procedure then changes the window’s port rectangle to either
the user state (if the part code is inZoomIn) or the standard state (if the part code is
inZoomOut), as stored in the window state data record, described in the section
“Zooming a Window” beginning on page 4-53.

If the part code is inZoomOut , your application ordinarily calculates and sets the
standard state before calling ZoomWindow.

For best results, call the QuickDraw procedure EraseRect , passing the window’s
graphics port as the port rectangle, before calling ZoomWindow.

SEE ALSO

See Listing 4-12 on page 4-55 for an example that calculates and sets the standard state
and then calls ZoomWindow to zoom a window.

Closing and Deallocating Windows

This section describes the procedures that track user activity in the close box and that
close and dispose of windows.

When you no longer need a window, call the CloseWindow procedure if you
allocated the memory for the window record or the DisposeWindow procedure if
you did not.

TrackGoAway

Use the TrackGoAway function to track the cursor when the user presses the mouse
button while the cursor is in the close box.

FUNCTION TrackGoAway (theWindow: WindowPtr;

thePt: Point): Boolean;

theWindow A pointer to the window record of the window in which the mouse-down
event occurred.

thePt The location of the cursor at the time the mouse button was pressed. Your
application receives this point from the where field of the event record.

CHAPTER 4

Window Manager

4-104 Window Manager Reference

DESCRIPTION

The TrackGoAway function tracks cursor activity when the user presses the mouse
button while the cursor is in the close box, retaining control until the user releases the
mouse button. While the button is down, TrackGoAway highlights the close box as long
as the cursor is in the close region, as illustrated in Figure 4-19 on page 4-46.

When the mouse button is released, TrackGoAway removes the highlighting from the
close box and returns TRUE if the cursor is within the close region and FALSE if it is not.

Your application calls the TrackGoAway function when it receives a result code of
inGoAway from the FindWindow function. If TrackGoAway returns TRUE, your
application calls its own procedure for closing a window, which can call either the
CloseWindow procedure or the DisposeWindow procedure to remove the window
from the screen. (Before removing a document window, your application ordinarily
checks whether the document has changed since the associated file was last saved.
See the chapter “Introduction to File Management” in Inside Macintosh: Files for a
general discusion of handling files.) If TrackGoAway returns FALSE, your application
does nothing.

ASSEMBLY-LANGUAGE INFORMATION

You can set the global variable DragHook to point to an optional procedure, defined by
your application, which will be called by TrackGoAway as long as the mouse button is
held down. (If there’s an actionProc procedure, the actionProc procedure is called
first.) Note that the use of the Window Manager’s global variables is not guaranteed to
be compatible with system software versions later than System 6.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that calls TrackGoAway to track cursor
activity when the user presses the mouse button while the cursor is in the close box.

CloseWindow

Use the CloseWindow procedure to remove a window if you allocated memory yourself
for the window’s window record.

PROCEDURE CloseWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The CloseWindow procedure removes the specified window from the screen and
deletes it from the window list. It releases the memory occupied by all data structures
associated with the window except the window record itself.

CHAPTER 4

Window Manager

Window Manager Reference 4-105

If you allocated memory for the window record and passed a pointer to it as one of the
parameters to the functions that create windows, call CloseWindow when you’re done
with the window. You must then call the Memory Manager procedure DisposePtr to
release the memory occupied by the window record.

▲ WARNING

If your application allocated any other memory for use with a window,
you must release it before calling CloseWindow . The Window Manager
releases only the data structures it created.

Also, CloseWindow assumes that any picture pointed to by the window
record field windowPic is data, not a resource, and it calls the
QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. ▲

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

SEE ALSO

See Listing 4-17 on page 4-61 for an example that calls CloseWindow to remove a
window from the screen.

See Listing 4-3 on page 4-28 for an example that calls CloseWindow to clean up memory
when an attempt to create a new window fails.

DisposeWindow

Use the DisposeWindow procedure to remove a window if you let the Window
Manager allocate memory for the window record.

PROCEDURE DisposeWindow (theWindow: WindowPtr);

theWindow A pointer to the window record of the window to be closed.

DESCRIPTION

The DisposeWindow procedure removes a window from the screen, deletes it from the
window list, and releases the memory occupied by all structures associated with the
window, including the window record. (DisposeWindow calls CloseWindow and then
releases the memory occupied by the window record.)

CHAPTER 4

Window Manager

4-106 Window Manager Reference

▲ WARNING

If your application allocated any other memory for use with a window,
you must release it before calling DisposeWindow . The Window
Manager releases only the data structures it created.

The DisposeWindow procedure assumes that any picture pointed to by
the window record field windowPic is data, not a resource, and it calls
the QuickDraw procedure KillPicture to delete it. If your application
uses a picture stored as a resource, you must release the memory it
occupies with the ReleaseResource procedure and set the
windowPic field to NIL before closing the window. ▲

Any pending update events for the window are discarded. If the window being removed
is the frontmost window, the window behind it, if any, becomes the active window.

Maintaining the Update Region

This section describes the routines you use to update your windows and to maintain
window update regions.

BeginUpdate

Use the BeginUpdate procedure to start updating a window when you receive an
update event for that window.

PROCEDURE BeginUpdate (theWindow: WindowPtr);

theWindow A pointer to the window’s window record. Your application gets this
information from the message field in the update event record.

DESCRIPTION

The BeginUpdate procedure limits the visible region of the window’s graphics port to
the intersection of the visible region and the update region; it then sets the window’s
update region to an empty region. After calling BeginUpdate , your application redraws
either the entire content region or only the visible region. In either case, only the parts of
the window that require updating are actually redrawn on the screen.

Every call to BeginUpdate must be matched with a subsequent call to EndUpdate after
your application redraws the content region.

Note
In Pascal, BeginUpdate and EndUpdate can’t be nested. That is,
you must call EndUpdate before the next call to BeginUpdate .

You can nest BeginUpdate and EndUpdate calls in assembly
language if you save and restore the copy of the visRgn , a copy
of which is stored, in global coordinates, in the global variable
SaveVisRgn . ◆

CHAPTER 4

Window Manager

Window Manager Reference 4-107

SPECIAL CONSIDERATIONS

If you don’t clear the update region when you receive an update event, the Event
Manager continues to send update events until you do.

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

EndUpdate

Use the EndUpdate procedure to finish updating a window.

PROCEDURE EndUpdate (theWindow: WindowPtr);

theWindo w A pointer to the window’s window record.

DESCRIPTION

The EndUpdate procedure restores the normal visible region of a window’s graphics
port. When you receive an update event for a window, you call BeginUpdate , redraw
the update region, and then call EndUpdate . Each call to BeginUpdate must be
balanced by a subsequent call to EndUpdate .

SEE ALSO

See Figure 4-21 on page 4-49 for an illustration of how BeginUpdate and EndUpdate
affect the visible region and update region. See Listing 4-10 on page 4-50 for an example
that updates a window.

InvalRect

Use the InvalRect procedure to add a rectangle to a window’s update region.

PROCEDURE InvalRect (badRect: Rect);

badRect A rectangle, in local coordinates, that is to be added to a window’s
update region.

CHAPTER 4

Window Manager

4-108 Window Manager Reference

DESCRIPTION

The InvalRect procedure adds a specified rectangle to the update region of the
window whose graphics port is the current port. Specify the rectangle in local
coordinates. The Window Manager clips it, if necessary, to fit in the window’s
content region.

Both your application and the Window Manager use the InvalRect procedure.
When the user enlarges a window, for example, the Window Manager uses InvalRect
to add the newly created content region to the update region. Your application uses
InvalRect to add the two rectangles formerly occupied by the scroll bars in the smaller
content area.

InvalRgn

Use the InvalRgn procedure to add a region to a window’s update region.

PROCEDURE InvalRgn (badRgn: RgnHandle);

badRgn The region, in local coordinates, that is to be added to a window’s
update region.

DESCRIPTION

The InvalRgn procedure adds a specified region to the update region of the window
whose graphics port is the current port. Specify the region in local coordinates. The
Window Manager clips it, if necessary, to fit in the window’s content region.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses InvalRgn to add part of the
window’s content region to the update region.

ValidRect

Use the ValidRect procedure to remove a rectangle from a window’s update region.

PROCEDURE ValidRect (goodRect: Rect);

goodRect A rectangle, in local coordinates, to be removed from a window’s
update region.

CHAPTER 4

Window Manager

Window Manager Reference 4-109

DESCRIPTION

The ValidRect procedure removes a specified rectangle from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Your application uses ValidRect to tell the Window Manager that it has already drawn
a rectangle and to cancel any updates accumulated for that area. You can thereby
improve response time by reducing redundant redrawing.

Suppose, for example, that you’ve resized a window that contains a size box and
scroll bars. Depending on the dimensions of the newly sized window, the new size
box and scroll bar areas may or may not have been accumulated into the window’s
update region. After calling SizeWindow , you can redraw the size box or scroll bars
immediately and then call ValidRect for the areas they occupy. If they were in fact
accumulated into the update region, ValidRect removes them so that you do not have
to redraw them with the next update event.

SEE ALSO

See Listing 4-13 on page 4-58 for an example that uses ValidRect to remove part of the
window’s content region from the update region.

ValidRgn

Use the ValidRgn procedure to remove a specified region from a window’s
update region.

PROCEDURE ValidRgn (goodRgn: RgnHandle);

goodRgn A region, in local coordinates, to be removed from a window’s
update region.

DESCRIPTION

The ValidRgn procedure removes a specified region from the update region of the
window whose graphics port is the current port. Specify the region in local coordinates.
The Window Manager clips it, if necessary, to fit in the window’s content region.

Setting and Retrieving Other Window Characteristics

This section describes the routines that let you set and retrieve less commonly used fields
in the window record.

CHAPTER 4

Window Manager

4-110 Window Manager Reference

SetWindowPic

Use the SetWindowPic procedure to establish a picture that the Window Manager can
draw in a window’s content region.

PROCEDURE SetWindowPic (theWindow: WindowPtr;

Pic: PicHandle);

theWindo w A pointer to a window’s window record.

Pi c A handle to the picture to be drawn in the window.

DESCRIPTION

The SetWindowPic procedure stores in a window’s window record a handle to a
picture to be drawn in the window. When the window’s content region must be updated,
the Window Manager then draws the picture or part of the picture, as necessary, instead
of generating an update event.

Note
The CloseWindow and DisposeWindow procedures assume that any
picture pointed to by the window record field windowPic is stored as
data, not as a resource. If your application uses a picture stored as a
resource, you must release the memory it occupies by calling the
Resource Manager’s ReleaseResource procedure and set the
WindowPic field to NIL before you close the window. ◆

GetWindowPic

Use the GetWindowPic function to retrieve a handle to a window’s picture.

FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWindowPic function returns a handle to the picture to be drawn in a specified
window’s content region. The handle must have been stored previously with the
SetWindowPic procedure.

CHAPTER 4

Window Manager

Window Manager Reference 4-111

SetWRefCon

Use the SetWRefCon procedure to set the refCon field of a window record.

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt);

theWindow A pointer to the window’s window record.

data The data to be placed in the refCon field.

DESCRIPTION

The SetWRefCon procedure places the specified data in the refCon field of the
specified window record. The refCon field is available to your application for any
window-related data it needs to store.

SEE ALSO

See Listing 4-3 on page 4-28 for an example that sets the refCon field. See Listing 4-16
on page 4-60 for an example that uses the contents of the refCon field.

GetWRefCon

Use the GetWRefCon function to retrieve the reference constant from a window’s
window record.

FUNCTION GetWRefCon (theWindow: WindowPtr): LongInt;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWRefCon function returns the long integer data stored in the refCon field of the
specified window record.

SEE ALSO

See the section “Managing Multiple Windows” beginning on page 4-23 for suggested
ways to use the refCon field. See Listing 4-1 on page 4-25 for an example of an
application-defined routine that gets the refCon field.

CHAPTER 4

Window Manager

4-112 Window Manager Reference

GetWVariant

Use the GetWVariant function to retrieve a window’s variation code.

FUNCTION GetWVariant (theWindow: WindowPtr): Integer;

theWindow A pointer to the window’s window record.

DESCRIPTION

The GetWVariant function returns the variation code of the specified window.
Depending on the window’s window definition function, the result of GetWVariant
can represent one of the standard window types listed in the section “Creating a
Window” beginning on page 4-25 or a variation code defined by your own window
definition function.

SEE ALSO

See “Types of Windows” beginning on page 4-8 for a definition of variation codes. See
“The Window Definition Function” beginning on page 4-120 for a detailed description of
variation codes.

Manipulating the Desktop

This section describes the routines that let your application retrieve information about
the desktop and set the desktop pattern. Ordinarily, your application doesn’t need to
manipulate any part of the desktop outside of its own windows.

SetDeskCPat

Use the SetDeskCPat procedure to set the desktop pattern on a computer that supports
Color QuickDraw.

PROCEDURE SetDeskCPat (deskPixPat: PixPatHandle);

deskPixPat A handle to a pixel pattern.

DESCRIPTION

The SetDeskCPat procedure sets the desktop pattern to a specified pixel pattern, which
can be drawn in more than two colors. After a call to SetDeskCPat , the desktop is
automatically redrawn in the new pattern. If the specified pattern is a binary pattern
(with a pattern type of 0), it is drawn is the current foreground and background colors. If
the value of the deskPixPat parameter is NIL , SetDeskCPat uses the standard binary
desk pattern (that is, the 'ppat' resource with resource ID 16).

CHAPTER 4

Window Manager

Window Manager Reference 4-113

Note
For compatibility with other Macintosh applications and the
system software, applications should ordinarily not change the
desktop pattern. ◆

The Window Manager’s desktop-painting routines can paint the desktop either in the
binary pattern stored in the global variable DeskPattern or in a new pixel pattern. The
desktop pattern used at startup is determined by the value of the parameter-RAM bit
flag called pCDeskPat . If the value of pCDeskPat is 0, the Window Manager uses the
new pixel pattern; if not, it uses the binary pattern stored in DeskPattern . The user can
change the color pattern through the General Controls panel, which changes the value
of pCDeskPat .

GetGrayRgn

Use the GetGrayRgn function to retrieve a handle to the current desktop region.

FUNCTION GetGrayRgn : Rgn Handle;

DESCRIPTION

The GetGrayRgn function returns a handle to the current desktop region from the
global variable GrayRgn .

The desktop region represents all available screen space, that is, the desktop area
displayed by all monitors attached to the computer. Ordinarily, your application
doesn’t need to access the desktop region directly.

When your application calls DragWindow to let the user drag a window, it can use
GetGrayRgn to set the limiting rectangle to the entire desktop area.

SEE ALSO

See Listing 4-9 on page 4-44 for an example that uses GetGrayRgn to specify the
limiting rectangle when calling DragWindow to let the user move a window.

GetCWMgrPort

Use the GetCWMgrPort procedure to retrieve a pointer to the Window Manager port on
a system that supports Color QuickDraw.

PROCEDURE GetCWMgrPort (VAR w MgrCPort: CGrafPtr);

wMgrCPort A parameter in which GetCWMgrPort returns a pointer to the Window
Manager port.

CHAPTER 4

Window Manager

4-114 Window Manager Reference

DESCRIPTION

The GetCWMgrPort procedure places a pointer to the color Window Manager port in
the parameter wMgrCPort . The GetCWMgrPort procedure is available only on
computers with Color QuickDraw.

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note

Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. ◆

GetWMgrPort

Use the GetWMgrPort procedure to retrieve a pointer to the Window Manager port on a
system with only the original monochrome QuickDraw.

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

wPort A parameter in which GetWMgrPort returns a pointer to the Window
Manager port.

DESCRIPTION

The GetWMgrPort procedure places a pointer to the Window Manager port in the
parameter wPort .

The Window Manager port is a graphics port that occupies all of the main screen.
Ordinarily, your application doesn’t need to access the Window Manager port.

Note
Do not change any regions of the Window Manager port. If you do, the
Window Manager might not handle overlapping windows properly. ◆

Manipulating Window Color Information

This section describes the routines you use for setting and retrieving window color
information. Your application does not normally change window color information.

SetWinColor

Use the SetWinColor procedure to set a window’s window color table.

PROCEDURE SetWinColor (theWindow: WindowPtr;

newColorTable: WCTabHandle);

CHAPTER 4

Window Manager

Window Manager Reference 4-115

theWindow A pointer to the window’s window record.

newColorTable
A handle to a window color table record, which defines the colors for the
window’s new color table.

DESCRIPTION

The SetWinColor procedure sets a window’s color table. If the window has no
auxiliary window record, it creates a new one with the specified window color table and
adds it to the auxiliary window list. If the window already has an auxiliary record, its
window color table is replaced. The Window Manager then redraws the window frame
and highlighted text in the new colors and sets the window’s background color to the
new content color.

If the new color table has the same entries as the default color table, SetWinColor
changes the auxiliary window record so that it points to the default color table.

Window color table resources (resources of type 'wctb') should not be purgeable.

If you specify a value of NIL for the parameter theWindow , SetWinColor changes the
default color table in memory. Your application shouldn’t, however, change the default
color table.

SEE ALSO

For a description of a window color table, see “The Window Color Table Record” on
page 4-71. For a description of the auxiliary window record, see “The Auxiliary Window
Record” on page 4-73. For a description of the 'wctb' resource, see “The Window Color
Table Resource” on page 4-127.

GetAuxWin

Use the GetAuxWin function to retrieve a handle to a window’s auxiliary
window record.

FUNCTION GetAuxWin (theWindow: WindowPtr;

VAR awHndl: AuxWinHandle): Boolean;

theWindow A pointer to the window’s window record.

awHndl A handle to the window’s auxiliary window record.

DESCRIPTION

The GetAuxWin function returns a Boolean value that reports whether or not the
window has an auxiliary window record, and it sets the variable parameter awHndl
to the window’s auxiliary window record.

If the window has no auxiliary window record, GetAuxWin places the default window
color table in awHndl and returns a value of FALSE.

CHAPTER 4

Window Manager

4-116 Window Manager Reference

SEE ALSO

For a description of the auxiliary window record, see “The Auxiliary Window Record”
on page 4-73.

Low-Level Routines

This section describes the low-level routines that are called by higher-level Window
Manager routines. Ordinarily, you won’t need to use these routines.

CheckUpdate

The Event Manager uses the CheckUpdate function to scan the window list for
windows that need updating.

FUNCTION CheckUpdate (VAR theEvent: EventRecord): Boolean;

theEvent An event record to be filled in if a window needs updating.

DESCRIPTION

The CheckUpdate function scans the window list from front to back, checking for a
visible window that needs updating (that is, a visible window whose update region is
not empty). If it finds one whose window record contains a picture handle, it redraws
the window itself and continues through the list. If it finds a window record whose
update region is not empty and whose window record does not contain a picture handle,
it stores an update event in the parameter theEvent and returns TRUE. If it finds no
such window, it returns FALSE.

The Event Manager is the only software that ordinarily calls CheckUpdate .

ClipAbove

The Window Manager uses the ClipAbove procedure to determine the clip region of
the Window Manager port for displaying a window.

PROCEDURE ClipAbove (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The ClipAbove procedure sets the clip region of the Window Manager port to
be the area of the desktop that intersects the current clip region, minus the
structure regions of all the windows in front of the specified window.

CHAPTER 4

Window Manager

Window Manager Reference 4-117

The ClipAbove procedure retrieves the desktop region from the global
variable GrayRgn .

SaveOld

The Window Manager uses the SaveOld procedure to save a window’s current
structure and content regions preparatory to updating the window.

PROCEDURE SaveOld (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The SaveOld procedure saves the specified window’s current structure region and
content region for the DrawNew procedure. Each call to SaveOld must be balanced
by a subsequent call to DrawNew.

DrawNew

The Window Manager uses the DrawNew procedure to erase and update changed
window regions.

PROCEDURE DrawNew (window: WindowPeek; update: Boolean);

window A pointer to the window’s complete window record.

update A Boolean value that determines whether the regions are updated.

DESCRIPTION

The DrawNew procedure erases the parts of a window’s structure and content regions
that are part of the window’s former state and part of its new state but not both. That is,

(OldStructure XOR NewStructure) UNION (OldContent XOR NewContent)

If the update parameter is set to TRUE, DrawNew also updates the erased regions.

▲ WARNING

In Pascal, SaveOld and DrawNew are not nestable. ▲

ASSEMBLY-LANGUAGE INFORMATION

In assembly language, you can nest SaveOld and DrawNew if you save and restore the
values of the global variables OldStructure and OldContent .

CHAPTER 4

Window Manager

4-118 Window Manager Reference

PaintOne

The Window Manager uses the PaintOne procedure to redraw the invalid, exposed
portions of one window on the desktop.

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle);

window A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.

DESCRIPTION

The PaintOne procedure “paints” the invalid portion of the specified window and
all windows above it. It draws as much of the window frame as is in clobberedRgn
and, if some content region is exposed, erases the exposed area (paints it with the
background pattern) and adds it to the window’s update region. If the value of the
window parameter is NIL , the window is the desktop, and PaintOne paints it with
the desktop pattern.

ASSEMBLY-LANGUAGE INFORMATION

The global variables SaveUpdate and PaintWhite are flags used by PaintOne .
Normally both flags are set. Clearing SaveUpdate prevents clobberedRgn from being
added to the window’s update region. Clearing PaintWhite prevents clobberedRgn
from being erased before being added to the update region (this is useful, for example, if
the background pattern of the window isn’t the background pattern of the desktop). The
Window Manager sets both flags periodically, so you should clear the appropriate flags
each time you need them to be clear.

PaintBehind

The Window Manager uses the PaintBehind procedure to redraw a series of windows
in the window list.

PROCEDURE PaintBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to the window’s complete window record.

clobberedRgn
A handle to the region that has become invalid.

CHAPTER 4

Window Manager

Window Manager Reference 4-119

DESCRIPTION

The PaintBehind procedure calls PaintOne for startWindow and all the windows
behind startWindow , clipped to clobberedRgn .

ASSEMBLY-LANGUAGE INFORMATION

Because PaintBehind clears the global variable PaintWhite before calling
PaintOne , clobberedRgn isn’t erased. The PaintWhite global variable is reset
after the call to PaintOne .

CalcVis

The Window Manager uses the CalcVis procedure to calculate the visible region
of a window.

PROCEDURE CalcVis (window: WindowPeek);

window A pointer to the window’s complete window record.

DESCRIPTION

The CalcVis procedure calculates the visible region of the specified window by starting
with its content region and subtracting the structure region of each window in front of it.

CalcVisBehind

The Window Manager uses the CalcVisBehind procedure to calculate the visible
regions of a series of windows.

PROCEDURE CalcVisBehind (startWindow: WindowPeek;

clobberedRgn: RgnHandle);

startWindow
A pointer to a window’s window record.

clobberedRgn
A handle to the desktop region that has become invalid.

DESCRIPTION

The CalcVisBehind procedure calculates the visible regions of the window specified
by the startWindow parameter and all windows behind startWindow that intersect
clobberedRgn . It is called after PaintBehind .

CHAPTER 4

Window Manager

4-120 Window Manager Reference

Application-Defined Routine
This section describes the window definition function. The Window Manager supplies
window definition functions that handle the standard window types described in “Types
of Windows” beginning on page 4-8.

The Window Definition Function

If your application defines its own window types, you must supply your own window
definition function to handle them. Store your definition function as a resource of type
'WDEF' with an ID from 128 through 4096. (Window definition function resource IDs 0
and 1 are the default window definition functions; resource IDs 2 through 127 are
reserved by Apple Computer, Inc.)

Your window definition function can support up to 16 variation codes, which are
identified by integers 0 through 15. To invoke your own window type, you specify the
window’s definition ID, which contains the resource ID of the window’s definition
function in the upper 12 bits and the variation code in the lower 4 bits. Thus, for a given
resource ID and variation code, the window definition ID is

(16 * resource ID) + (variation code)

When you create a window, the Window Manager calls the Resource Manager to access
the window definition function. The Resource Manager reads the window definition
function into memory and returns a handle to it. The Window Manager stores this
handle in the windowDefProc field of the window record. (If 24-bit addressing is in
effect, the Window Manager stores the variation code in the lower 4 bits of the
windowDefProc field; if 32-bit addressing is in effect, the Window Manager stores the
variation code elsewhere.) Later, when it needs to perform a type-dependent action on
the window, the Window Manager calls the window definition function and passes it the
variation code as a parameter.

MyWindow

The window definition function is responsible for drawing the window frame, reporting
the region where mouse-down events occur, calculating the window’s structure region
and content region, drawing the size box, resizing the window frame when the user
drags the size box, and performing any customized initialization or disposal tasks.

You can give your window definition function any name you wish. It takes four
parameters and returns a result code:

FUNCTION MyWindow (varCode: Integer; theWindow: WindowPtr;

message: Integer; param: LongInt): LongInt;

varCode The window’s variation code.

theWindow A pointer to the window’s window record.

CHAPTER 4

Window Manager

Window Manager Reference 4-121

message A code for the task to be performed. The message parameter has one of
these values:

CONST

wDraw = 0; {draw window frame}

wHit = 1; {report where mouse-down event }

{ occurred}

wCalcRgns = 2; {calculate strucRgn and contRgn}

wNew = 3; {perform additional }

{ initialization}

wDispose = 4; {perform additional disposal }

{ tasks}

wGrow = 5; {draw grow image during resizing}

wDrawGIcon = 6; {draw size box and scroll bar }

{ outline}

The subsections that follow explain each of these tasks in detail.

param Data associated with the task specified by the message parameter. If the
task requires no data, this parameter is ignored.

Your window definition function performs whatever task is specified by the message
parameter and returns a function result if appropriate. If the task performed requires no
result code, return 0.

The function’s entry point must be at the beginning of the function.

You can set up the various tasks as subroutines inside the window definition function,
but you’re not required to do so.

Drawing the W indow Frame

When you receive a wDraw message, draw the window frame in the current graphics
port, which is the Window Manager port.

You must make certain checks to determine exactly how to draw the frame. If the value
of the visible field in the window record is FALSE, you should do nothing; otherwise,
you should examine the param parameter and the status flags in the window record:

■ If the value of param is 0, draw the entire window frame.

■ If the value of param is 0 and the hilited field in the window record is TRUE,
highlight the frame to show that the window is active.
■ If the value of the goAwayFlag field in the window record is also TRUE, draw a

close box in the window frame.
■ If the value of the spareFlag field in the window record is also TRUE, draw a

zoom box in the window frame.

■ If the value of the param parameter is wInGoAway, add highlighting to, or remove
it from, the window’s close box. Figure 4-19 on page 4-46 illustrates the close box
with and without highlighting as drawn by the Window Manager’s window
definition function.

CHAPTER 4

Window Manager

4-122 Window Manager Reference

■ If the value of the param parameter is wInZoom , add highlighting to, or remove it
from, the window’s zoom box. Figure 4-20 on page 4-47 illustrates the zoom box
with and without highlighting as drawn by the Window Manager’s window
definition function.

Note

When the Window Manager calls a window definition function
with a message of wDraw, it stores a value of type Integer in the
param parameter without clearing the high-order word. When
processing the wDraw message, use only the low-order word of the
param parameter. ◆

The window frame typically but not necessarily includes the window’s title, which
should be displayed in the system font and system font size. The Window Manager
port is already set to use the system font and system font size.

When designing a title bar that includes the window title, allow at least 16 pixels
vertically to support localization for script systems in which the system font can be no
smaller than 12 points.

Note

Nothing drawn outside the window’s structure region is visible. ◆

Returning the Region of a Mouse-Down Event

When you receive a wHit message, you must determine where the cursor was when the
mouse button was pressed. The wHit message is accompanied by the mouse location, in
global coordinates, in the param parameter. The vertical coordinate is in the high-order
word of the parameter, and the horizontal coordinate is in the low-order word. You
return one of these constants:

CONST
wNoHit = 0; {none of the following}

wInContent = 1; {in content region (except grow, if active)}
wInDrag = 2; {in drag region}

wInGrow = 3; {in grow region (active window only)}
wInGoAway = 4; {in go-away region (active window only)}

wInZoomIn = 5; {in zoom box for zooming in (active window }
{ only)}

wInZoomOut = 6; {in zoom box for zooming out (active window }
{ only)}

The return value wNoHit might mean (but not necessarily) that the point isn’t in the
window. The standard window definition functions, for example, return wNoHit if the
point is in the window frame but not in the title bar.

Return the constants wInGrow , wInGoAway, wInZoomIn , and wInZoomOut only if the
window is active—by convention, the size box, close box, and zoom box aren’t drawn if
the window is inactive. In an inactive document window, for example, a mouse-down
event in the part of the title bar that would contain the close box if the window were
active is reported as wInDrag .

CHAPTER 4

Window Manager

Window Manager Reference 4-123

Calculating Regions

When you receive the wCalcRgns message, you calculate the window’s structure and
content regions based on the current graphics port’s port rectangle. These regions, whose
handles are in the strucRgn and contRgn fields of the window record, are in global
coordinates. The Window Manager requests this operation only if the window is visible.

▲ WARNING

When you calculate regions for your own type of window, do not alter
the clip region or the visible region of the window’s graphics port. The
Window Manager and QuickDraw take care of this for you. Altering the
clip region or visible region may damage other windows. ▲

Initializing a New W indow

When you receive the wNew message, you can perform any type-specific initialization
that may be required. If the content region has an unusual shape, for example, you might
allocate memory for the region and store the region handle in the dataHandle field of
the window record. The initialization routine for a standard document window creates
the wStateData record for storing zooming data.

Disposing of a W indow

When you receive the wDispose message, you can perform any additional tasks
necessary for disposing of a window. You might, for example, release memory that was
allocated by the initialization routine. The dispose routine for a standard document
window disposes of the wStateData record.

Resizing a W indow

When you receive the wGrow message, draw a grow image of the window. With the
wGrow message you receive a pointer to a rectangle, in global coordinates, whose
upper-left corner is aligned with the port rectangle of the window’s graphics port. Your
grow image should fit inside the rectangle. As the user drags the mouse, the Window
Manager sends repeated wGrow messages, so that you can change your grow image to
match the changing mouse location.

Draw the grow image in the current graphics port, which is the Window Manager port,
in the current pen pattern and pen mode. These are set up (as gray and notPatXor) to
conform to the Macintosh user interface guidelines.

The grow routine for a standard document window draws a dotted (gray) outline of the
window and also the lines delimiting the title bar, size box, and scroll bar areas.

Drawing the Size Box

When you receive the wDrawGIcon message, you draw the size box in the content
region if the window is active—if the window is inactive, draw whatever is appropriate
to show that the window cannot currently be sized.

CHAPTER 4

Window Manager

4-124 Window Manager Reference

Note
If the size box is located in the window frame instead of the content
region, do nothing in response to the wDrawGIcon message, instead
drawing the size box in response to the wDraw message. ◆

The routine that draws a size box for an active document window draws the size box in
the lower-right corner of the port rectangle of the window’s graphics port. It also draws
lines delimiting the size box and scroll bar areas. For an inactive document window, it
erases the size box and draws the delimiting lines.

Resources
This section describes the resources used by the Window Manager:

■ the 'WIND' resource, used for describing the characteristics of windows

■ the 'WDEF' resource, which holds a window definition function

■ the 'wctb' resource, which defines the colors to be used for a window’s frame
and highlighting

The Window Resource

You typically define a window resource for each type of window that your application
creates. Figure 4-24 illustrates a compiled 'WIND' resource.

Figure 4-24 Structure of a compiled window ('WIND') resource

CHAPTER 4

Window Manager

Window Manager Reference 4-125

A compiled version of a window resource contains the vollowing elements:

■ The upper-left and lower-right corners, in global coordinates, of a rectangle
that defines the initial size and placement of the window’s content region.
Your application can change this rectangle before displaying the window,
either programmatically or through an optional positioning code described
later in this section.

■ The window’s definition ID, which incorporates both the resource ID of the window
definition function that will handle the window and an optional variation code.
Together, the window definition function resource ID and the variation code define a
window type. Place the resource ID of the window definition function in the upper
12 bits of the definition ID. Window definition functions with IDs 0 through 127 are
reserved for use by Apple Computer, Inc. Place the optional variation code in the
lower 4 bits of the definition ID.
If you’re using one of the standard window types (described in “Types of Windows”
beginning on page 4-8), the definition ID is one of the window-type constants:

CONST
documentProc = 0; {movable, sizable window, }

{ no zoom box}
dBoxProc = 1; {alert box or modal dialog box}

plainDBox = 2; {plain box}
altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, no size box or }
{ zoom box}

movableDBoxProc = 5; {movable modal dialog box}
zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable window}
rDocProc = 16; {rounded-corner window}

You can also add a zoom box to a movable modal dialog box by specifying the sum
of two constants: movableDBoxProc + zoomDocProc , but a zoom box is not
recommended on any dialog box.
You can control the angle of curvature on a rounded-corner window (window type
rDocProc) by adding one of these integers:

■ A specification that determines whether the window is visible or invisible. This
characteristic controls only whether the Window Manager displays the window, not
necessarily whether the window can be seen on the screen. (A visible window entirely
covered by other windows, for example, is “visible” even though the user cannot see
it.) You typically create a new window in an invisible state, build the content area of
the window, and then display the completed window.

Window defi nition ID
Diameters of
curvature

rDocProc 16, 16

rDocProc + 2 4, 4

rDocProc + 4 6, 6

rDocProc + 6 10, 10

CHAPTER 4

Window Manager

4-126 Window Manager Reference

■ A specification that determines whether or not the window has a close box. The
Window Manager draws the close box when it draws the window frame. The window
type specified in the second field determines whether a window can support a close
box; this field determines whether the close box is present.

■ A reference constant, which your application can use for whatever data it needs to
store. When it builds a new window record, the Window Manager stores, in the
refCon field, whatever value you specify in the fifth element of the window resource.
You can also put a placeholder here and then set the refCon field yourself with the
SetWRefCon procedure.

■ A string that specifies the window title. The first byte of the string specifies the length
of the string (that is, the number of characters in the title plus 1 byte for the length),
in bytes.

■ An optional positioning specification that overrides the window position established
by the rectangle in the first field. The positioning value can be one of the integers
defined by the constants listed here. In these constant names, the terms have the
following meanings:

The seventh element of the resource can contain one of the values specified by
these constants:

CONSTnoAutoCenter = 0x0000; {use initial }

{ l ocation}

centerMainScreen = 0x280A; {center on main }

{ s creen}

alertPositionMainScreen = 0x300A; {place in alert }

{ position on main }

{ screen}

staggerMainScreen = 0x380A; {stagger on main }

{ s creen}

centerParentWindow = 0xA80A; {center on parent }

{ window}

center Centered both horizontally and vertically, relative either to a
screen or to another window (if a window to be centered
relative to another window is wider than the window that
preceded it, it is pinned to the left edge; a narrower window
is centered)

stagger Located 10 pixels to the right and 10 pixels below the
upper-left corner of the last window (in the case of staggering
relative to a screen, the first window is placed just below
the menu bar at the left edge of the screen, and subsequent
windows are placed on that screen relative to the
first window)

alert position Centered horizontally and placed in the “alert position”
vertically, that is, with about one-fifth of the window or
screen above the new window and the rest below

parent window The window in which the user was last working

CHAPTER 4

Window Manager

Window Manager Reference 4-127

alertPositionParentWindow = 0xB00A; {place in alert }

{ position on }

{ parent window}

staggerParentWindow = 0xB80A; {stagger relative }

{ to parent window}

centerParentWindowScreen = 0x680A; {center on parent }

{ window screen}

alertPositionParentWindowScreen

= 0x700A; {place in alert }

{ position on }

{ p arent window }

{ s creen }

staggerParentWindowScreen = 0x780A; {stagger on parent }

{ window screen}

The positioning constants are convenient when the user is creating new documents or
when you are handling your own dialog boxes and alert boxes. When you are creating
a new window to display a previously saved document, however, you should display
the new window in the same rectangle as the previous window (that is, the window
the document occupied when it was last saved). For more information, see
“Positioning a Document Window on the Desktop” beginning on page 4-30.

Use the GetNewCWindow or GetNewWindow function to read a 'WIND' resource. Both
functions create a new window record and fill it in according to the values specified in a
'WIND' resource.

The Window Definition Function Resource

Window definition functions are stored as resources of type 'WDEF' . The 'WDEF'
resource is simply the executable code for the window definition function.

The two standard window definition functions supplied by the Window Manager use
resource IDs 0 and 1.

The Window Color Table Resource

You can specify your own window color tables as resources of type 'wctb' .

Ordinarily, you should not define your own window color tables, unless you have some
extraordinary need to control the color of a window’s frame or text highlighting. To
assign a table to a window when you create the window, provide a window color table
('wctb') resource with the same resource ID as the 'WIND' resource from which you
create the window.

The window color table resource is an exact image of the window color table data
structure. Figure 4-25 illustrates the contents of a compiled 'wctb' resource.

CHAPTER 4

Window Manager

4-128 Window Manager Reference

Figure 4-25 Structure of a compiled window color table ('wctb') resource

A compiled version of a window resource contains the following elements:

■ An unused field 6 bytes long.

■ An integer that specifies the number of entries in the resource (that is, the number of
color specification records) minus 1.

■ A series of color specification records, each of which consists of a 2-byte part identifier
and three 2-byte color values. The part identifier is an integer specified by one of
these constants:

CONSTwContentColor = 0 ; {content region background}

wFrameColor = 1 ; {w indo w frame}

wTextColor = 2 ; { window title an d button text}

wHiliteColor = 3 ; { reserved}

wTitleBarColo r = 4 ; { reserved}

wHiliteColorLight = 5 ; { lightest stripes in title bar }

{ and lightest dimmed text}

wHiliteColorDark = 6 ; { darkest stripes in title bar }

{ and d arkes t dimmed t ext}

wTitleBarLight = 7 ; { lightest parts of title bar }

{ background}

CHAPTER 4

Window Manager

Window Manager Reference 4-129

wTitleBarDark = 8 ; { darkest parts of title bar }

{ background}

wDialogLight = 9 ; { lightest element of dialog box }

{ frame}

wDialogDark = 10 ; { darkest element of dialog box }

{ frame}

wTingeLight = 11 ; { lightest window tinging}

wTingeDark = 12 ; { darkest window tinging}

The color values are simply the intensity of the red, green, and blue in each window
part (see Inside Macintosh: Imaging for a description of RGB color).

4-130 Summary of the Window Manager

CHAPTER 4

Window Manager

Summary of the Window Manager

Pascal Summary

Constants

CONST

{window types}

documentProc = 0; {movable, sizable window, no zoom box}

dBoxProc = 1; {alert box or modal dialog box}

plainDBox = 2; {plain box}

altDBoxProc = 3; {plain box with shadow}

noGrowDocProc = 4; {movable window, no size box or }

{ zoom box}

movableDBoxProc = 5; {movable modal dialog box}

zoomDocProc = 8; {standard document window}

zoomNoGrow = 12; {zoomable, nonresizable window}

rDocProc = 16; {rounded-corner window}

{window kinds}
dialogKind = 2; {dialog or alert box window}

userKind = 8; {window created by the application}

{part codes returned by FindWindow}

inDesk = 0; {none of the following}

inMenuBar = 1; {in menu bar}

inSysWindow = 2; {in desk accessory window}

inContent = 3; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

inDrag = 4; {in drag (title bar) region}

inGrow = 5; {in size box (active window only)}

inGoAway = 6; {in close box}

inZoomIn = 7; {in zoom box (window in standard state)}

inZoomOut = 8; {in zoom box (window in user state)}

{axis constraints on DragGrayRgn}

noConstraint = 0; {no constraints}

hAxisOnly = 1; {move on horizontal axis only}

vAxisOnly = 2; {move on vertical axis only}

CHAPTER 4

Window Manager

Summary of the Window Manager 4-131

{window definition function task codes}

wDraw = 0; {draw window frame}

wHit = 1; {report where mouse-down occurred}

wCalcRgns = 2; {calculate strucRgn and contRgn}

wNew = 3; {perform additional initialization}

wDispose = 4; {perform additional disposal tasks}

wGrow = 5; {draw grow image during resizing}

wDrawGIcon = 6; {draw size box and scroll bar outline}

{window definition function wHit return codes}

wNoHit = 0; {none of the following}

wInContent = 1; {anywhere in content region except size }

{ box if window is active, }

{ anywhere including size box if window }

{ is inactive}

wInDrag = 2; {in drag (title bar) region}

wInGrow = 3; {in size box (active window only)}

wInGoAway = 4; {in close box}

wInZoomIn = 5; {in zoom box (window in standard state)}

wInZoomOut = 6; {in zoom box (window in user state)}

{ window color information table part codes}

wContentColor = 0; {content region background}

wFrameColor = 1; {w indow outline}

wTextColor = 2; {window title an d button text}

wHiliteColor = 3; {reserved}

wTitleBarColo r = 4; {reserved}

wHiliteColorLight = 5; {lightest stripes in title bar }

{ and lightest dimmed text}

wHiliteColorDark = 6; {darkest stripes in title bar }

{ and darkest dimmed text}

wTitleBarLight = 7; {lightest parts of title bar background}

wTitleBarDark = 8; {darkest parts of title bar background}

wDialogLight = 9; {lightest element of dialog box frame}

wDialogDark = 10; {darkest element of dialog box frame}

wTingeLight = 11; {lightest window tinging}

wTingeDark = 12; {darkest window tinging}

{resource ID of desktop pattern}

deskPatID = 16 ;

CHAPTER 4

Window Manager

4-132 Summary of the Window Manager

Data Types

TYPE CWindowPtr = CGrafPtr;

CWindowPeek = ^CWindowRecord;

CWindowRecord =

RECORD

port: CGrafPort; { window's graphics port}

windowKind: Integer; {class of window}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence of close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle; {handle to structure region}

contRgn: RgnHandle; {handle to content region}

updateRgn: RgnHandle; {handle to update region}

windowDefProc: Handle; {handle to window definition function}

dataHandle: Handle; {handle to window state data record}

titleHandle: StringHandle; {handle to window title}

titleWidth: Integer; {title width in pixels}

controlList: ControlHandle; {handle to control list}

nextWindow: CWindowPeek; {pointer to next window record in }

{ window list}

windowPic: PicHandle; {handle to optional picture}

refCon: LongInt; {storage available to your application}

END;

WindowPtr = GrafPtr;

WindowPeek = ^WindowRecord;

WindowRecord =

RECORD {all fields have same use as }

{ in color window record}

port: Graf Port; {window's graphics port}

windowKind: Integer; {class o f w indow}

visible: Boolean; {visibility}

hilited: Boolean; {highlighting}

goAwayFlag: Boolean; {presence o f close box}

spareFlag: Boolean; {presence of zoom box}

strucRgn: RgnHandle ; {handle to structure region}

contRgn: RgnHandle ; {handle to content region}

updateRgn: RgnHandle ; {handle to update region}

windowDefProc: Handle ; {handle to window definition function}

dataHandle: Handle ; {handle to window state data record}

CHAPTER 4

Window Manager

Summary of the Window Manager 4-133

titleHandle: StringHandle ; {handle to window title}

titleWidth: Integer ; {title width in pixels}

controlList: ControlHandle ; {handle to control list}

nextWindow: WindowPeek; {pointer to next window record in }

{ window list}

windowPic: PicHandle ; {handle to optional picture}

refCon: LongInt ; {storage available to your application}

END;

WStateDataPtr = ^WStateData;

WStateDataHandle = ^WStateDataPtr;

WStateData = {zoom state data record}

RECORD

userState: Rect; {size and location established by user}

stdState: Rect; {size and location established by application}

END;

WCTabPtr = ^WinCTab;

WCTabHandle = ^ WCTabPtr ;

WinCTab = {window color information table}

RECORD

wCSeed: LongInt; {reserved}

wCReserved: Integer; {reserved}

ctSize: Integer; {number of entries in table -1 }

ctTable: ARRAY [0..4] OF ColorSpec;

{array of color specification records}

END;

ColorSpec =

RECORD

value: Integer; {part identifier}

rgb: RGBColor; {RGB value}

END;

AuxWinHandle = ^AuxWinPtr;

AuxWinPtr = ^AuxWinRec;

AuxWinRec = {auxiliary window record}

RECORD

awNext: AuxWinHandle; {handle to next record}

awOwner: WindowPtr; {pointer to window}

awCTable: CTabHandle; {handle to color table}

dialogCItem: Handle; {storage used by Dialog Manager}

CHAPTER 4

Window Manager

4-134 Summary of the Window Manager

awFlags: LongInt; {reserved}

awReserved: CTabHandle; {reserved}

awRefCon: LongInt; {reference constant, for }

{ use by application}

END;

Window Manager Routines

Initializing the Window Manager

PROCEDURE InitWindows;

Creating Windows

FUNCTION GetNewCWindow (windowID: Integer; wStorage: Ptr;
behind: WindowPtr): WindowPtr;

FUNCTION GetNewWindow (windowID: Integer; wStorage: Ptr;
behind: WindowPtr): WindowPtr;

FUNCTION NewCWindow (wStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean;
procID: Integer; behind: WindowPtr;
goAwayFlag: Boolean ;
r efCon: LongInt): WindowPtr;

FUNCTION NewWindow (wStorage: Ptr; boundsRect: Rect;
title: Str255; visible: Boolean ;
theProc: Integer; behind: WindowPtr;
goAwayFlag: Boolean ;
refCon: LongInt): WindowPtr ;

Naming Windows

PROCEDURE SetWTitle (theWindow: WindowPtr; title: Str255);

PROCEDURE GetWTitle (theWindow: WindowPtr; VAR title: Str255);

Displaying Windows

PROCEDURE DrawGrowIcon (theWindow: WindowPtr);

PROCEDURE SelectWindow (theWindow: WindowPtr);

PROCEDURE ShowWindow (theWindow: WindowPtr);

PROCEDURE HideWindow (theWindow: WindowPtr);

PROCEDURE ShowHide (theWindow: WindowPtr; showFlag: Boolean);

PROCEDURE HiliteWindow (theWindow: WindowPtr; fHilite: Boolean);

PROCEDURE BringToFront (theWindow: WindowPtr);

PROCEDURE SendBehind (theWindow, behindWindow: WindowPtr);

CHAPTER 4

Window Manager

Summary of the Window Manager 4-135

Retrieving Window Information

FUNCTION FindWindow (thePoint: Point ;
VAR theWindow: WindowPtr): I nteger;

FUNCTION FrontWindow : WindowPtr;

Moving Windows

PROCEDURE DragWindow (theWindow: WindowPtr ;
startPt: Point; boundsRect: Rect);

PROCEDURE MoveWindow (theWindow: WindowPtr;
hGlobal, vGlobal: Integer ; front: Boolean);

FUNCTION DragGrayRgn (theRgn: RgnHandle; startPt: Point ;
l imitRect, slopRect: Rect; axis: Integer ;
actionProc: ProcPtr): LongInt;

FUNCTION PinRect (theRect: Rect; thePt: Point): LongInt;

Resizing Windows

FUNCTION GrowWindow (theWindow: WindowPtr;
startPt: Point; sizeRect: Rect): LongInt;

PROCEDURE SizeWindow (theWindow: WindowPtr; w, h: Integer ;
f Update: Boolean);

Zooming Windows

FUNCTION TrackBox (theWindow: WindowPtr ; thePt: Point;
partCod e: In teger): Boolean;

PROCEDURE ZoomWindow (theWindow: WindowPtr;
partCode: Integer; front: Boolean);

Closing and Deallocating Windows

FUNCTION TrackGoAway (theWindow: WindowPtr ; thePt: Point): Boolean;

PROCEDURE CloseWindow (theWindow: WindowPtr);

PROCEDURE DisposeWindow (theWindow: WindowPtr);

Maintaining the Update Region

PROCEDURE BeginUpdate (theWindow: WindowPtr);

PROCEDURE EndUpdate (theWindow: WindowPtr);

PROCEDURE InvalRect (badRect: Rect);

PROCEDURE InvalRgn (badRgn: RgnHandle);

PROCEDURE ValidRect (goodRect: Rect);

PROCEDURE ValidRgn (goodRgn: RgnHandle);

CHAPTER 4

Window Manager

4-136 Summary of the Window Manager

Setting and Retrieving Other Window Characteristics

PROCEDURE SetWindowPic (theWindow: WindowPtr; Pic: PicHandle);

FUNCTION GetWindowPic (theWindow: WindowPtr) : PicHandle;

PROCEDURE SetWRefCon (theWindow: WindowPtr; data: LongInt);

FUNCTION GetWRefCon (theWindow: WindowPtr): LongInt;

FUNCTION GetWVariant (theWindow: WindowPtr): Integer;

Manipulating the Desktop

PROCEDURE SetDeskCPat (deskPixPat: PixPatHandle);

FUNCTION GetGrayRgn : RgnH andle ;

PROCEDURE GetCWMgrPort (VAR wMgrCPort: CGrafPtr);

PROCEDURE GetWMgrPort (VAR wPort: GrafPtr);

Manipulating Window Color Information

PROCEDURE SetWinColor (theWindow: WindowPtr ;
newColorTable: WCTabHandle);

FUNCTION GetAuxWin (theWindow: WindowPtr ;
VAR awHndl: AuxWinHandle) : Boolean;

Low-Level Routines

FUNCTION CheckUpdate (VAR theEvent: EventRecord): Boolean;

PROCEDURE ClipAbove (window: WindowPeek);

PROCEDURE SaveOld (window: WindowPeek);

PROCEDURE DrawNew (window: WindowPeek; update: Boolean);

PROCEDURE PaintOne (window: WindowPeek; clobberedRgn: RgnHandle);

PROCEDURE PaintBehind (startWindow: WindowPeek ;
cl obberedRgn: RgnHandle);

PROCEDURE CalcVis (window: WindowPeek);

PROCEDURE CalcVisBehind (startWindow: WindowPeek ;
clobberedRgn: RgnHandle);

Application-Defined Routine

The Window Definition Function

FUNCTION MyWindow (varCode: Integer; theWindow: WindowPtr ;
message: Integer; param: LongInt): LongInt;

CHAPTER 4

Window Manager

Summary of the Window Manager 4-137

C Summary

Constants

enum {

/*window types*/

documentProc = 0, /*movable, sizable window, no zoom box*/

dBoxProc = 1, /*alert box or modal dialog box*/

plainDBox = 2, /*plain box*/

altDBoxProc = 3, /*plain box with shadow*/

noGrowDocProc = 4, /*movable window, no size box or zoom box*/

movableDBoxProc = 5, /*movable modal dialog box*/

zoomDocProc = 8, /*standard document window*/

zoomNoGrow = 9, /*zoomable, nonresizable window*/

rDocProc = 16, /*rounded-corner window*/

/*window kinds*/

dialogKind = 2, /*dialog or alert box window*/

userKind = 8, /*window created by the application*/

/*part codes returned by FindWindow*/

inDesk = 0, /*none of the following*/

inMenuBar = 1, /*in menu bar*/

inSysWindow = 2, /*in desk accessory window*/

inContent = 3, /*anywhere in content region except size box if*/

/* window is active, anywhere including */

/* size box if window is inactive*/

inDrag = 4, /*in drag (title bar) region*/

inGrow = 5, /*in size box (active window only)*/

inGoAway = 6, /*in close box*/

inZoomIn = 7, /*in zoom box (window in standard state)*/

inZoomOut = 8 /*in zoom box (window in user state)*/

};

enum {

/*axis constraints on DragGrayRgn*/

noConstraint = 0, /*no constraints*/

hAxisOnly = 1, /*move on horizontal axis only*/

vAxisOnly = 2 /*move on vertical axis only*/

};

CHAPTER 4

Window Manager

4-138 Summary of the Window Manager

enum {

/*window definition function task codes*/

wDraw = 0, /*draw window frame*/

wHit = 1, /*report where mouse-down occurred*/

wCalcRgns = 2, /*calculate strucRgn and contRgn*/

wNew = 3, /*perform additional initialization*/

wDispose = 4, /*perform additional disposal tasks*/

wGrow = 5, /*draw grow image during resizing*/

wDrawGIcon = 6, /*draw size box and scroll bar outline*/

/*window definition function wHit return codes*/

wNoHit = 0, /*none of the following*/

wInContent = 1, /*in content region (except grow, if active)*/

wInDrag = 2, /*in drag region*/

wInGrow = 3, /*in grow region (active window only)*/

wInGoAway = 4, /*in go-away region (active window only)*/

wInZoomIn = 5, /*in zoom box for zooming in (active window */

/* only)*/

wInZoomOut = 6, /*in zoom box for zooming out (active window */

/* only)*/

deskPatID = 1 6, / *resource ID of desktop pattern*/

/ *window color information table part codes*/

wContentColor = 0, / *the background of the window's */

/* content region*/

wFrameColor = 1, / *the window outline*/

wTextColor = 2, / *window title and text in buttons * /

wHiliteColor = 3, / *reserved*/

wTitleBarColo r = 4, / *reserved*/

wHiliteColorLight = 5, / *lightest stripes in title bar */

/* and lightest dimmed text*/

wHiliteColorDark = 6, / *darkest stripes in title bar */

/* and darkest dimmed text*/

wTitleBarLight = 7, / *lightest parts of title bar background * /

wTitleBarDark = 8, / *darkest parts of title bar background*/

wDialogLight = 9, / *lightest element of dialog box frame * /

wDialogDark = 1 0, / *darkest element of dialog box frame * /

wTingeLight = 1 1, / *lightest window tinging*/

wTingeDark = 1 2 / *darkest window tinging* /

};

CHAPTER 4

Window Manager

Summary of the Window Manager 4-139

Data Types

struct CWindowRecord {

CGrafPort port; / *window's graphics port*/

short windowKind; /*class of the window*/

Boolean visible; /*visibility*/

Boolean hilited; /*highlighting*/

Boolean goAwayFlag; /*presence of close box*/

Boolean spareFlag; /*presence of zoom box*/

RgnHandle strucRgn; /*handle to structure region*/

RgnHandle contRgn; /*handle to content region*/

RgnHandle updateRgn; /*handle to update region*/

Handle windowDefProc; /*handle to window definition */

/* f unction*/

Handle dataHandle; /*handle to window state data record*/

StringHandle titleHandle; /*handle to window title*/

shor t t itleWidth; /*title width in pixels*/

ControlHandle controlList; /*handle t o c ontrol list*/

struct CWindowRecor d * nextWindow; /*next window in window list*/

PicHandle windowPic; /*handle to optional picture*/

long refCon; / *storage available to your */

/* application* /

};

typedef struct CWindowRecord CWindowRecord ;

t ypedef CWindowRecord *CWindowPeek ;

struct WindowRecord {

GrafPort port; / *window's graphics port*/

short windowKind; /*class of the window*/

Boolean visible; /*visibility*/

Boolean hilited; /*highlighting*/

Boolean goAwayFlag; /*presence of close box*/

Boolean spareFlag; /*presence of zoom box*/

RgnHandle strucRgn; /*handle to structure region*/

RgnHandle contRgn; /*handle to content region*/

RgnHandle updateRgn; /*handle to update region*/

Handle windowDefProc; /*handle to window definition */

/* f unction*/

Handle dataHandle; /*handle to window state data record*/

StringHandle titleHandle; /*handle to window title*/

short titleWidth; /*title width in pixels*/

ControlHandle controlList; /*handle to window's control list*/

struc t W indowRecor d * nextWindow; /*next window in window list*/

CHAPTER 4

Window Manager

4-140 Summary of the Window Manager

PicHandle windowPic; /*handle to optional picture*/

long refCon; /*reference constant*/

};

typedef struct WindowRecord WindowRecord ;

t ypedef WindowRecord *WindowPeek ;

struct WStateData {

Rec t userState ; / *user state* /

Rec t stdState ; / *standard state* /

};

t ypedef struct WStateData WStateData ;

t ypedef WStateData *WStateDataPtr, **WStateDataHandle ;

struct AuxWinRec {

 s truct AuxWinRe c * *awNext ; / *handle to nex t record*/

 W indowPt r awOwner; /*pointer t o window * /

 C TabHandl e awCTable ; /*handle to color table*/

 H andl e dialogCItem ; /*storage used by Dialog Manager*/

 l ong awFlags ; / *reserve d*/

 C TabHandl e awReserved ; / *reserve d*/

 l ong awRefCon; /*reference constant, for use by */

/* application*/

};

t ypedef struct AuxWinRec AuxWinRec ;

t ypedef AuxWinRec *AuxWinPtr, **AuxWinHandle ;

struct WinCTab {

l ong wCSeed; / *reserved* /

shor t wCReserved ; / *reserved* /

shor t ctSize ; /*number of entries in table —1*/

ColorSpe c ctTable[5] ; /*array of color specification records*/

};

t ypedef struct WinCTab WinCTab ;

t ypedef WinCTab *WCTabPtr, **WCTabHandle;

Window Manager Routines

Initializing the Window Manager

pascal void InitWindows(void) ;

CHAPTER 4

Window Manager

Summary of the Window Manager 4-141

Creating Windows

pascal WindowPtr GetNewCWindow
(short windowID, void *wStorage,

WindowPtr behind);

pascal WindowPtr GetNewWindow
(short windowID, void *wStorage,

WindowPtr behind);

pascal WindowPtr NewCWindow (void *wStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short procID, WindowPtr behind,
Boolean goAwayFlag, long refCon);

pascal WindowPtr NewWindow (void *wStorage, const Rect *boundsRect,
ConstStr255Param title, Boolean visible,
short theProc, WindowPtr behind,
Boolean goAwayFlag, long refCon);

Naming Windows

pascal void SetWTitle (WindowPtr theWindow, ConstStr255Param title) ;

pascal void GetWTitle (WindowPtr theWindow, Str255 title) ;

Displaying Windows

pascal void DrawGrowIcon (WindowPtr theWindow) ;

pascal void SelectWindow (WindowPtr theWindow) ;

pascal void ShowWindow (WindowPtr theWindow) ;

pascal void HideWindow (WindowPtr theWindow) ;

pascal void ShowHide (WindowPtr theWindow, Boolean showFlag) ;

pascal void HiliteWindow (WindowPtr theWindow, Boolean fHilite) ;

pascal void BringToFront (WindowPtr theWindow) ;

pascal void SendBehind (WindowPtr theWindow, WindowPtr behindWindow) ;

Retrieving Mouse Information

pascal short FindWindow (Point thePoint, WindowPtr *theWindow) ;

pascal WindowPtr FrontWindow (void) ;

Moving Windows

pascal void DragWindow (WindowPtr theWindow, Point startPt,
const Rect *boundsRect) ;

pascal void MoveWindow (WindowPtr theWindow, short hGlobal,
short vGlobal, Boolean front) ;

CHAPTER 4

Window Manager

4-142 Summary of the Window Manager

pascal long DragGrayRgn (RgnHandle theRgn, Point startPt,
const Rect *boundsRect,
const Rect *slopRect,
short axis, DragGrayRgnProcPtr actionProc) ;

pascal lon g PinRe ct (const Rect *theRect, Point *thePt);

Resizing Windows

pascal long GrowWindow (WindowPtr theWindow, Point startPt,
const Rect *bBox) ;

pascal void SizeWindow (WindowPtr theWindow, short w, short h,
Boolean fUpdate) ;

Zooming Windows

pascal Boolean TrackBox (WindowPtr theWindow, Poin t t hePt,
short partCode);

pascal void ZoomWindow (WindowPtr theWindow, short partCode,
Boolean front) ;

Closing and Deallocating Windows

pascal Boolean TrackGoAway (WindowPtr theWindow, Point thePt) ;

pascal void CloseWindow (WindowPtr theWindow) ;

pascal void DisposeWindow (WindowPtr theWindow) ;

Maintaining the Update Region

pascal void BeginUpdate (WindowPtr theWindow) ;

pascal void EndUpdate (WindowPtr theWindow) ;

pascal void InvalRect (const Rect *badRect) ;

pascal void InvalRgn (RgnHandle badRgn) ;

pascal void ValidRect (const Rect *goodRect) ;

pascal void ValidRgn (RgnHandle goodRgn) ;

Setting and Retrieving Other Window Characteristics

pascal void SetWindowPic (WindowPtr theWindow, PicHandle pic) ;

pascal PicHandle GetWindowPic
(WindowPtr theWindow);

pascal void SetWRefCon (WindowPtr theWindow, long data) ;

pascal long GetWRefCon (WindowPtr theWindow) ;

pascal short GetWVariant (WindowPtr theWindow) ;

CHAPTER 4

Window Manager

Summary of the Window Manager 4-143

Manipulating the Desktop

pascal void SetDeskCPat (PixPatHandle deskPixPat) ;

#define GetGrayRgn() (* (RgnHandle* 0X09EE))

pascal void GetCWMgrPort (CGrafPtr *wMgrCPort) ;

pascal void GetWMgrPort (GrafPtr *wPort) ;

Manipulating Window Color Information

pascal void SetWinColor (WindowPtr theWindow ,
WCTabHandle newColorTable) ;

pascal Boolean GetAuxWin (WindowPtr theWindow, AuxWinHandle *awHndl) ;

Low-Level Routines

pascal Boolean CheckUpdate (EventRecord *theEvent) ;

pascal void ClipAbove (WindowPeek window ;)

pascal void SaveOld (WindowPeek window) ;

pascal void DrawNew (WindowPeek window, Boolean update) ;

pascal void PaintOne (WindowPeek window, RgnHandle clobberedRgn) ;

pascal void PaintBehind (WindowPeek startWindow ,
RgnHandle clobberedRgn) ;

pascal void CalcVis (WindowPeek window) ;

pascal void CalcVisBehind (WindowPeek startWindow ,
RgnHandle clobberedRgn) ;

Application-Defined Routine

The Window Definition Function

pascal long MyWindow (short varCode, WindowPtr theWindow,
short message, long param) ;

CHAPTER 4

Window Manager

4-144 Summary of the Window Manager

Assembly-Language Summary

Data Types

Window Record and Color Window Record Data Structure

Window State Data Structure

Window Color Information Table Data Structure

Auxiliary Window Record Data Structure

0 windowPort 108 bytes window’s graphics port
108 windowKind word how window was created
110 wVisible byte visibility status
111 wHilited byte highlighted status
112 wGoAway byte presence of close box
113 wZoom byte presence of zoom box
114 structRgn long handle to structure region
118 contRgn long handle to content region
122 updateRgn long handle to update region
126 windowDef long handle to window definition function
130 wDataHandle long handle to window state data record
134 wTitleHandle long handle to window’s title
138 wTitleWidth word title width in pixels
140 wControlList long handle to window’s control list
144 nextWindow long pointer to next window in window list
148 windowPic long handle to picture for updates
152 wRefCon long reference constant field

0 userState 8 bytes user state rectangle
8 stdState 8 bytes standard state rectangle

0 ctSeed long ID number for table
4 ctFlags word flags word
6 ctSize word number of entries minus 1
8 ctTable variable a series of color specification records (8 bytes each)

0 awNext long handle to next window in chain
4 awOwner long pointer to associated window record
8 awCTable long handle to window color information table

12 dialogCItem long handle to dialog color structures
16 awFlags long handle for QuickDraw
20 awResrv long reserved
24 awRefCon long user constant

CHAPTER 4

Window Manager

Summary of the Window Manager 4-145

Global Variables

AuxWinHead Handle to beginning of auxiliary window list.
CurActivate Pointer to window to receive activate event.
CurDeactive Pointer to window to receive deactivate event.
DeskHook Address of procedure for painting desktop.
DeskPattern Pattern in which desktop is painted (8 bytes).
DragHook Address of optional procedure to execute during TrackGoAway , TrackBox ,

DragWindow , GrowWindow, and DragGrayRgn .
DragPattern Pattern of dragged region’s outline (8 bytes).
GrayRgn Handle to desktop region.
OldContent Handle to saved content region.
OldStructure Handle to saved structure region.
PaintWhite Flag indicating whether to paint window white before update event (2 bytes).
SaveUpdate Flag indicating whether to generate update events (2 bytes).
SaveVisRgn Handle to saved visible region.
WindowList Pointer to first window in window list.
WMgrPort Pointer to Window Manager port.

