
Contents 2-1

CHAPTER 2

Contents

Event Manager

Introduction to Events 2-4
Low-Level Events 2-8
Operating-System Events 2-10
High-Level Events 2-13
Priority of Events 2-15
Switching Contexts 2-15

About the Event Manager 2-16
Using the Event Manager 2-17

Obtaining Information About Events 2-18
Processing Events 2-21

Using the WaitNextEvent Function 2-22
Writing an Event Loop 2-24
Setting the Event Mask 2-26
Handling Events in a Dialog Box 2-29

Creating a Size Resource 2-30
Handling Low-Level Events 2-32

Responding to Mouse Events 2-33
Responding to Keyboard Events 2-38
Scanning for a Cancel Event 2-46
Responding to Update Events 2-47
Responding to Activate Events 2-50
Responding to Disk-Inserted Events 2-55
Responding to Null Events 2-57

Handling Operating-System Events 2-58
Responding to Suspend and Resume Events 2-60
Responding to Mouse-Moved Events 2-62

Handling High-Level Events 2-67
Responding to Events From Other Applications 2-69
Searching for a Specific High-Level Event 2-71
Determining the Sender of a High-Level Event 2-72

CHAPTER 2

2-2 Contents

Sending High-Level Events 2-73
Requesting Return Receipts 2-77
Handling Apple Events 2-78

Event Manager Reference 2-78
Data Structures 2-79

The Event Record 2-79
The Target ID Record 2-81
The High-Level Event Message Record 2-82
The Event Queue 2-83

Event Manager Routines 2-84
Receiving Events 2-84
Sending Events 2-100
Converting Process Serial Numbers and Port Names 2-105
Reading the Mouse 2-108
Reading the Keyboard 2-110
Getting Timing Information 2-112

Application-Defined Routine 2-114
Filter Function for Searching the High-Level Event Queue 2-114

Resource 2-115
The Size Resource 2-115

Summary of the Event Manager 2-120
Pascal Summary 2-120

Constants 2-120
Data Types 2-122
Event Manager Routines 2-123
Application-Defined Routine 2-124

C Summary 2-125
Constants 2-125
Data Types 2-127
Event Manager Routines 2-128
Application-Defined Routine 2-129

Assembly-Language Summary 2-130
Data Structures 2-130
Trap Macros 2-130
Global Variables 2-131

Result Codes 2-132

CHAPTER 2

2-3

Event Manager

This chapter describes how your application can use the Toolbox Event Manager to
receive information about actions performed by the user, to receive notice of changes in
the processing status of your application, and to communicate with other applications.

For example, you can retrieve information from the Toolbox Event Manager that gives
your application details about whether the user has pressed a key or the mouse button,
whether one of your application’s windows needs updating, or whether some other
hardware-related or software-related action requires a response from your application.

Your application also uses the Event Manager to support the cooperative, multitasking
environment available on Macintosh computers. This environment allows users to
switch between many open applications and allows other applications to receive
background processing time. By using Event Manager routines, you allow the system
software to coordinate the scheduling of processing time between your application and
other applications.

The Event Manager and Process Manager maintain the cooperative, multitasking
environment. The Process Manager coordinates the scheduling of applications, and the
Event Manager communicates information about changes in your application’s
processing status to your application.

See the chapter “Process Manager” in Inside Macintosh: Processes for complete
information on how the Process Manager schedules applications for execution.

You can use the Event Manager to communicate with other applications. Your
application can also communicate with other applications using the services of the Apple
Event Manager.

The Event Manager and Apple Event Manager routines that let your application
communicate with other applications depend on the services of the Program-to-Program
Communications (PPC) Toolbox. The services performed by the Event Manager and
Apple Event Manager meet the needs of most applications for interapplication
communication. However, to get additional control or capabilities not provided by the
Event Manager or Apple Event Manager, you can choose to access the PPC Toolbox
directly. The chapter “Program-to-Program Communications Toolbox” in Inside
Macintosh: Interapplication Communication describes the PPC Toolbox routines that are
available to your application.

For a comparison of the services provided by the Event Manager, Apple Event Manager,
and PPC Toolbox, see Inside Macintosh: Interapplication Communication. For additional
information about Apple events, including descriptions of how to process the required
Apple events, see Inside Macintosh: Interapplication Communication.

This chapter describes both the Toolbox Event Manager and the Operating System Event
Manager. The Operating System Event Manager maintains a queue in which it stores
hardware-related occurrences that you may want your application to respond to. The
Toolbox Event Manager communicates the information maintained by the Operating
System Event Manager to your application. In most cases, your application needs to
interact only with the Toolbox Event Manager. In this chapter, the name Event Manager
refers to the Toolbox Event Manager.

CHAPTER 2

Event Manager

2-4 Introduction to Events

This chapter provides a general introduction to events and then explains how you can
use the Event Manager to

■ receive keypresses and mouse clicks as input for your application

■ receive indication that your application’s windows need to be activated or updated

■ allow other applications to use the available system resources when your application
isn’t using them

■ communicate with other applications

Introduction to Events

Most Macintosh applications receive information about hardware and software
occurrences that require a response from the application, through events. An event is the
means by which the Event Manager communicates information about user actions,
changes in the processing status of the application, and other occurrences that require a
response from the application.

The Event Manager communicates information about events that occur through the
event record. The EventRecord data type defines the event record. The event record
contains information about what type of event occurred (a mouse click or keypress, for
example) and contains additional information associated with the event (for example, for
a keypress the Event Manager also reports which key was pressed).

Most Macintosh applications are event-driven—that is, they respond to various changes
or occurrences and take action based on the nature of the event. Typically, a Macintosh
application repeatedly checks to see if an event has occurred and, if so, responds to the
event. If no events are pending, the application can choose to relinquish the processor for
a specified amount of time or can perform other tasks before checking again to see
whether an event has occurred.

Your application typically retrieves events from the Event Manager and also relinquishes
processor time by using the WaitNextEvent function. If any events are pending for
your application, the WaitNextEvent function returns the event to your application. If
no events are pending for your application, the WaitNextEvent function may allocate
processing time to other applications.

When multiple applications are open, the user chooses one to interact with at any given
time. The active application (or foreground process) is the one currently interacting with
the user. The foreground process displays its menu bar, and its windows are in front of
the windows of all other applications. (The term process refers to an open application or,
in some cases, an open desk accessory.)

There can be only one foreground process at any one time; however, multiple processes
can exist in the background. A background process is a process that is not currently
interacting with the user. The foreground process has first priority for accessing the
CPU. Other processes can access the CPU only when the foreground process yields time
to them.

CHAPTER 2

Event Manager

Introduction to Events 2-5

By using WaitNextEvent to retrieve events, you allow other applications to make use
of processing time that your application would otherwise not use. When your
application is in the background, it in turn can receive processing time when other
applications relinquish the CPU. Using WaitNextEvent also allows users to switch
between multiple open applications.

An application that is in the background can get CPU time but can’t interact with the
user while it is in the background. (However, the user can choose to bring the
application to the foreground—for example, by clicking in one of the application’s
windows.) An application can also post a notification request using the Notification
Manager if the application is in the background and requires the user’s attention. Any
application that has the canBackground flag set in its size ('SIZE') resource is eligible
to obtain access to the CPU when it is in the background.

At any given time a process is either in the foreground or the background; a process can
switch between the two states at well-defined times.

The Event Manager ensures that switching between applications occurs in a smooth
fashion—by sending your application an event when it is about to be suspended and
sending it an event when it has processing time again and can resume executing. The
Event Manager and Process Manager coordinate this switching and scheduling of
processor time among many applications.

Your application can receive various types of events: low-level events, operating-system
events, and high-level events.

The Event Manager returns low-level events to your application for occurrences such as
the user pressing the mouse button, releasing the mouse button, pressing a key on the
keyboard, or inserting a disk. The Event Manager also returns low-level events to your
application if your application needs to activate (make changes to a window based on
whether it is in front or not) or update (redraw the contents of) one of its windows.
When your application requests an event and there are no other events to report, the
Event Manager returns a null event.

The Event Manager returns operating-system events to your application when the
processing status of your application is about to change or has changed. For example, if
a user brings your application to the foreground, the Process Manager sends an event
through the Event Manager to your application. Some of the work of reactivating your
application is done automatically, both by the Process Manager and by the Window
Manager; your application must take care of any further processing needed as a result of
your application being reactivated.

The Event Manager returns high-level events to your application as a result of
communication directed to your application from another application or process.

Low-level events, except for update events and null events, are always directed to the
foreground process. Operating-system events are also always directed to the foreground
process. High-level events, update events, and null events can be directed to the
foreground process or background processes.

CHAPTER 2

Event Manager

2-6 Introduction to Events

You can specify which types of events you want your application to receive. You do this
by specifying an event mask as a parameter to various Event Manager routines. An
event mask allows you to mask out the events you are not interested in receiving. For
example, you can accept all events except high-level events.

Events can originate from a number of different sources: the Operating System Event
Manager, Window Manager, Process Manager, and PPC Toolbox. Figure 2-1 shows the
relationships between the Toolbox Event Manager, other parts of the system software,
and your application.

Figure 2-1 Sources of events sent to your application

The Operating System Event Manager creates and maintains a queue referred to as the
Operating System event queue. The Operating System Event Manager detects and
reports low-level hardware-related events such as mouse clicks, keypresses, and disk
insertions. The Operating System Event Manager places these events in the Operating
System event queue. The Toolbox Event Manager retrieves events from this event queue
and returns events, one at a time at your application’s request, to your application.

CHAPTER 2

Event Manager

Introduction to Events 2-7

A maximum of 20 events can be pending in the Operating System event queue. If the
Operating System event queue becomes full, the Operating System Event Manager
begins to discard old events to make room for new ones as events are posted. The
Operating System Event Manager always discards the oldest event in the queue when
it must discard an event. However, this is not a common occurrence; your application
typically processes events much faster than the user can generate them. The actual
capacity of the event queue is determined by system startup information stored on
the startup volume; see the chapter “File Manager” in Inside Macintosh: Files for system
startup information.

The Event Manager can also report events from the Window Manager and Process
Manager. If a window needs to be updated, activated, or deactivated, the
Window Manager directs an event to the Toolbox Event Manager. Similarly, the
Process Manager directs an event to the Toolbox Event Manager if the processing
status of your application changes. The Toolbox Event Manager reports these events
to your application.

Note

On computers running System 6, MultiFinder provides some of
the capabilities supplied by the Process Manager in System 7. On
computers running System 6 without MultiFinder, only a single-
application environment is supported. ◆

Your application can use the Event Manager to send and receive high-level events. To
transmit high-level events between applications, the Event Manager uses the PPC
Toolbox on behalf of your application. For each open application capable of receiving
high-level events, the Event Manager maintains a separate queue, referred to as the
application’s high-level event queue, to store high-level events. The size of an
application’s high-level event queue is limited only by the amount of available memory.

Your application’s event stream consists of those events that are available to your
application for retrieval when it makes a request for an event. For example, when your
application is in the background, its event stream can contain only update events, null
events, and high-level events.

When your application asks the Event Manager for the next event, the Event Manager
returns the next available event according to its priority. In general, the Event Manager
returns events in this order of priority:

1. low-level events

2. operating-system events

3. high-level events

The next sections describe low-level events, operating-system events, and high-level
events in greater detail.

CHAPTER 2

Event Manager

2-8 Introduction to Events

Low-Level Events
The Event Manager uses low-level events to report very low-level hardware and
software occurrences. Low-level events report

■ actions by the user (such as pressing the mouse button, typing on the keyboard, or
inserting a disk)

■ changes in windows on the screen

■ that the Event Manager has no other events to report

Low-level events that report actions by the user include mouse-down, mouse-up,
key-down, key-up, auto-key, and disk-inserted events. The Event Manager reports any
of these events when the user performs the action associated with each event.

Mouse-down and mouse-up events report that the user pressed or released the mouse
button. For these events the Event Manager returns the location of the cursor at the time
the mouse button was pressed or released. Key-down and key-up events report that the
user pressed or released a key. Auto-key events report that the user has held a key down
for a certain amount of time. For keyboard-related events, the Event Manager reports
which key was pressed. For mouse-related and keyboard-related events, the Event
Manager also reports the state of the modifier keys (the Option, Command, Caps Lock,
Control, and Shift keys) at the time of the event.

When the user inserts a disk, the Operating System attempts to mount the volume on the
disk by calling the File Manager function PBMountVol . The Operating System Event
Manager then generates a disk-inserted event. If the user is interacting with a standard
file dialog box, the Standard File Package intercepts the disk-inserted event and handles
it. Otherwise, the event is left in the event queue for your application to retrieve. In most
cases your application can handle unexpected disk-inserted events by simply checking
to see if the volume was successfully mounted.

Update events and activate events are two types of low-level events that the Event
Manager can report as a result of changes in the appearance of windows on the screen.
For example, if a user is working with several open documents belonging to your
application, you can allow the user to switch from one document to another when the
user clicks in the appropriate window. You can determine whether the user clicked in
another window by using the Window Manager function FindWindow ; if the user
clicked in another window, you can then use the Window Manager procedure
SelectWindow to generate the necessary activate events. Before the Event Manager
sends your application any activate events relating to this occurrence, the Window
Manager does some work for you, such as unhighlighting the deactivated window and
highlighting the newly activated window. At your application’s next request for an
event, the Event Manager returns an activate event.

An activate event indicates the window involved and whether the window is becoming
activated or deactivated. Your application should perform any other necessary actions to
complete the transformation of the window from active to inactive or vice versa. For
example, when a window becomes active, your application should show any scroll bars
and restore any selections.

CHAPTER 2

Event Manager

Introduction to Events 2-9

Your application typically receives an activate event for the window being deactivated,
followed by an activate event for the window becoming active at your application’s next
request for an event.

Note

If the user switches between your application and another application
(by clicking in the window of another application, for example), your
application is responsible for activating or deactivating any windows
as appropriate. Your application is notified of this occurrence
through operating-system events. If your application has the
acceptSuspendResumeEvents and doesActivateOnFGSwitch
flags set in its 'SIZE' resource, your application is notified of the
switch through an operating-system event and does not receive a
separate activate event when the user switches between applications. ◆

The Window Manager generates update events to control the appearance of windows on
the screen. The Window Manager keeps track of the front-to-back ordering of windows
and allows windows to overlap other windows. The Window Manager coordinates the
display of windows. When one window covers another window and then the user
moves the first window, the Window Manager generates an update event so that the
contents of the newly exposed area can be updated. The Event Manager reports update
events as needed to the applications whose windows need updating. Unlike other
low-level events, update events can be directed to the foreground process or background
processes.

Activate and update events generated by the Window Manager are not placed into the
Operating System event queue but are sent directly to the Event Manager.

The Event Manager reports a null event when your application requests an event and
your application’s event stream does not contain any of the requested event types. By
using the WaitNextEvent function, you can yield time to other processes when null
events are the only pending events for your application.

When your application receives a null event, your application can do idle processing
(such as blinking the caret) if it is in the foreground or do other tasks if it is in the
background. If you want your application to receive null events when it is in the
background, you must set the canBackground flag in your application’s 'SIZE'
resource. If your application does not perform any processing in response to null events
when it is in the background, then set the cannotBackground flag. If you set the
cannotBackground flag, the Event Manager does not report null events to your
application when it is in the background. However, the Event Manager still reports
update events (and high-level events if the isHighLevelEventAware flag is set in the
'SIZE' resource) to your application when it is in the background regardless of how the
background flag is set.

Figure 2-2 shows the various kinds of low-level events your application can receive. See
“Handling Low-Level Events” beginning on page 2-32 for complete details of how your
application should respond to low-level events.

CHAPTER 2

Event Manager

2-10 Introduction to Events

Figure 2-2 Low-level events

Operating-System Events
The cooperative, multitasking environment allows the user to interact with your
application and with other applications. The Process Manager coordinates the
scheduling of applications, and the Event Manager communicates information about
changes in the operating status of applications to the applications involved.

For example, when your application is about to be switched into the background, the
Event Manager sends it a suspend event. Then, when your application is switched back
into the foreground, it receives a resume event. These types of events, as well as a special
type of mouse event, the mouse-moved event, are known as operating-system events.

Figure 2-3 illustrates how the Event Manager helps provide this cooperative,
multitasking environment. The Process Manager generates suspend, resume, and
mouse-moved events, and the Event Manager reports these events to applications.

CHAPTER 2

Event Manager

Introduction to Events 2-11

Figure 2-3 Operating-system events

Note
If your application sets the acceptSuspendResumeEvents and
doesActivateOnFGSwitch flags in its 'SIZE' resource, your
application is also responsible for activating or deactivating any
windows as appropriate in response to operating-system events. For
maximum compatibility, your application should set these flags and
handle suspend and resume events. See “The Size Resource” beginning
on page 2-115 for more information on these and other flags in the
'SIZE' resource. ◆

When your application receives a suspend event, it does not actually switch to the
background until it makes its next request to receive events from the Event Manager. At
the time that it receives the suspend event, your application should convert any private
scrap into the global scrap if necessary. Your application should hide scroll bars, remove
the highlighting from any selections, and hide any floating windows. If your application

CHAPTER 2

Event Manager

2-12 Introduction to Events

shows a window that displays the Clipboard contents, you should hide this window
also. Then you should call WaitNextEvent to relinquish the CPU and allow the
Operating System to schedule other processes for execution. It is important to minimize
the processing you do in response to a suspend event so that the computer appears
responsive to the user.

When control returns to your application, the first event it receives is a resume event.
Your application should convert the global scrap back to its private scrap, if necessary.
Your application should also restore any windows to the state the user left them in at the
time of the previous suspend event. For example, your application should show any
scroll bars, highlight any selections, and show any floating windows. See “Responding
to Suspend and Resume Events” beginning on page 2-60 for complete details of how
your application should respond to these events.

The events that your application can receive in the background are update, null, and
high-level events. When your application is in the background, it should not perform
any processing that would make the foreground process appear unresponsive to the
user. When receiving events in the background, your application should perform any
needed action in response to an event and then quickly return.

Your application should never interact with the user when it is in the background. If you
need to notify the user of some special occurrence while your application is executing
in the background, you should use the Notification Manager to queue a notification
request. You should not attempt to display an alert box while your application is in the
background. Instead, your application can specify that the Notification Manager play
a sound, display an alert box, cause a small icon representing your application to
blink in alternation with the Application menu icon, display a diamond next to your
application’s name in the Application menu, or put a combination of these actions
into effect.

These actions are designed to alert the user that another application needs the user’s
attention. By using the Notification Manager you help maintain the user interface
principle of giving the user control, as the user can choose to bring the application
requesting attention to the foreground at the user’s convenience. See the chapter
“Notification Manager” in Inside Macintosh: Processes for examples of how to post
notification requests.

Another kind of operating-system event is the mouse-moved event. You can request that
the Event Manager send your application a mouse-moved event whenever the cursor
is outside of a region that you specify to the WaitNextEvent function. For example,
you can use mouse-moved events as a convenient way for your application to change
the appearance of the cursor as the user moves the cursor from the text area of a
document to the scroll bar. See “Responding to Mouse-Moved Events” beginning on
page 2-62 for detailed examples.

CHAPTER 2

Event Manager

Introduction to Events 2-13

High-Level Events
The Event Manager provides routines that let applications communicate with each other
by exchanging high-level events. A high-level event is an event that your application
can send to another application to give it some information, to receive some information
from it, or to have it perform some action.

For example, your application can send a high-level event to another application
instructing that application to perform a specific action, such as adding a row to a
spreadsheet or changing the font size of a paragraph. Your application can also send a
high-level event to another application requesting information from that application—
for example, requesting a dictionary application to return the definition of a particular
word. When you send a high-level event to another application, you can also include
additional information or commands in an optional data buffer. For example, your
application can use a high-level event to send a list of new words and definitions to a
dictionary application.

Note

High-level events are available only in system software
version 7.0 or later. ◆

Figure 2-4 on the next page shows three different applications communicating with each
other by sending and receiving high-level events. The Event Manager uses the PPC
Toolbox to transmit high-level events. The Event Manager maintains a high-level event
queue for each application that has identified itself as capable of receiving high-level
events. The high-level event queues are limited in size only by available memory.

For effective communication between applications, your application must define the set
of high-level events it responds to and let other applications know the events it accepts.
By implementing the capabilities to send events to and receive events from other
applications, you allow other applications to interact with your application and provide
enhanced capabilities to your users.

Generally, there is no restriction on the type of processing that one application can
request from another by sending it a high-level event. For a high-level event sent by one
application to be understood by another application, however, the sender and receiver
must agree on a protocol, that is, on the way the event is to be interpreted. Apple events
are high-level events whose structure and interpretation are determined by the Apple
Event Interprocess Messaging Protocol (AEIMP).

Your application should support the required Apple events, as described in Inside
Macintosh: Interapplication Communication. The Finder uses the required Apple events to
provide your application with information when it is opened and to give it the names of
documents to open or print when the user opens or prints documents from the Finder.

CHAPTER 2

Event Manager

2-14 Introduction to Events

Figure 2-4 High-level events

In addition, you may want your application to support other common Apple events.
For example, the Edition Manager uses Apple events to communicate information
about document sections among the various applications that may publish sections
or subscribe to them. The Edition Manager sends the appropriate Apple events
to applications that want to maintain up-to-date subscriber sections within their
documents. If a user alters a section of a document that has previously been published
and updates the edition, the Edition Manager might post an Apple event to the
application indicating that a new edition is available. The application receiving the
Apple event can then update the subscriber or ignore the information, as the user
dictates. For complete information on responding to Apple events sent by the Edition
Manager, see the chapter “Edition Manager” in Inside Macintosh: Interapplication
Communication.

CHAPTER 2

Event Manager

Introduction to Events 2-15

To ensure compatibility and smooth interaction with other Macintosh applications,
you should use the Apple event protocol for high-level events whenever possible.
You should define new protocols only if your application must communicate with
applications on other computers that use different protocols or if your application
has other special needs. For complete information about Apple events and about
implementing the required set of Apple events, see Inside Macintosh: Interapplication
Communication.

Note

All Macintosh system software that sends or receives high-level events
uses the Apple events protocol. ◆

Priority of Events
Each type of event has a certain priority. The Event Manager returns events in this order
of priority:

1. activate events

2. mouse-down, mouse-up, key-down, key-up, and disk-inserted events in FIFO
(first-in, first-out) order

3. auto-key events

4. update events (in front-to-back order of windows)

5. operating-system events (suspend, resume, mouse-moved)

6. high-level events

7. null events

Several of the Event Manager routines can be restricted to operate on one or more
specific types of events. You do this by disabling (or “masking out”) the events you are
not interested in receiving. See “Setting the Event Mask” beginning on page 2-26 for
details about specifying the types of events you wish to receive.

Switching Contexts
Processes running in the background receive processing time when the foreground
process makes an event call (that is, calls WaitNextEvent or EventAvail) and there
are no events pending for that foreground process. A process running in the background
should relinquish the CPU regularly to ensure a timely return to the foreground process
when necessary.

In System 7 (or with MultiFinder in earlier versions), the available processing time is
distributed among multiple processes through a procedure known as context switching
(or just switching). All switching occurs at a well-defined time, namely, when an
application calls WaitNextEvent . When a context switch occurs, the Process Manager
allocates processing time to a process other than the one that had been receiving
processing time. Two types of context switching may occur: major and minor.

CHAPTER 2

Event Manager

2-16 About the Event Manager

A major switch is a complete context switch: an application’s windows are moved from
the back to the front, or vice versa. In a major switch, two applications are involved, the
one being switched to the foreground and the one being switched to the background.
The Process Manager switches the A5 worlds of both applications, as well as the relevant
low-memory environments. If those applications receive suspend and resume events,
they are so notified at the time that a major switch occurs.

A minor switch occurs when the Process Manager gives time to a background process
without bringing the background process to the front. The two processes involved in a
minor switch can be two background processes or a foreground process and a
background process. As in a major switch, the Process Manager switches the A5 worlds
and the low-memory environments of the two processes. However, the order of
windows is not switched, and neither process receives either suspend or resume events.

When the frontmost window is an alert box or a modal dialog box, major switching does
not occur, although minor switching can. To determine whether major switching can
occur, the Operating System checks (among other things) to see if the window definition
procedure of the frontmost window is dBoxProc , because the type dBoxProc is
specifically reserved for alert boxes and modal dialog boxes. (If the frontmost window is
a movable modal dialog box, major switching can still occur.)

Note

Your application can also get switched out if it calls a system software
routine that makes an event call. For example, when your application
calls ModalDialog , a minor switch can occur. ◆

Your application can receive processing time and perform tasks in the background,
but your application should not interact with the user or perform tasks that would slow
down the responsiveness of the foreground process.

Your application indicates scheduling options to the Operating System, such as whether
the application can use null-event processing time when in the background, whether it
can accept suspend and resume events, and so forth, by setting flags in its size ('SIZE')
resource. Every application executing in System 7, as well as every application executing
in System 6 with MultiFinder, should contain a 'SIZE' resource. See “Creating a Size
Resource” beginning on page 2-30 for details on how to specify this information.

About the Event Manager

The Toolbox Event Manager provides routines that communicate information about
actions performed by the user and give notice of changes in the processing status of your
application. The Event Manager also provides routines that your application can use to
communicate with other applications. You can control the scheduling of your application
for execution by using the Event Manager.

CHAPTER 2

Event Manager

Using the Event Manager 2-17

The rest of this chapter explains

■ how to structure your main event loop to receive and process events

■ how to create a 'SIZE' resource to specify your application’s memory requirements
and scheduling options

■ how to respond to most types of events

■ how to receive and process high-level events

■ how to send high-level events to other applications

Using the Event Manager

You can use the Event Manager to receive information about hardware-related events,
about changes in the appearance of your application’s windows, or about changes in
the operating status of your application. You can also use the Event Manager to
communicate directly with other applications. This communication can include sending
events to other applications, receiving events from other applications, and searching for
specific events from other applications.

Your application can both send and receive high-level events, but it generally only
receives low-level events and should not send them. Your application receives low-level
events, operating-system events, and high-level events in the same way, which is by
asking the Event Manager for the next available event. If the event your application
receives is a high-level event, your application might need to use another Event Manager
or Apple Event Manager routine to retrieve an optional data buffer and additional
information accompanying that event.

Before using the Event Manager, you can use the Gestalt function to determine if
certain features of the Event Manager are available. See the chapter “Gestalt Manager” in
Inside Macintosh: Operating System Utilities for information on the Gestalt function.

If your application sends or receives high-level events, you should use the Gestalt
function with the gestaltPPCToolboxAttr selector to determine whether the PPC
Toolbox is present. Use the Gestalt function with the gestaltOSAttr selector to see
if the Process Manager is available. If the PPC Toolbox and the Process Manager are
present, then the system software provides support for high-level events.

If your application sends or receives Apple events, use the Gestalt function with the
gestaltAppleEventsAttr selector to determine whether the Apple Event Manager
is available.

Your application needs to initialize QuickDraw, the Font Manager, and the Window
Manager before using the Event Manager. Your application can accomplish this
initialization by using the InitGraf , InitFonts , and InitWindows procedures.

CHAPTER 2

Event Manager

2-18 Using the Event Manager

When your application starts, you can call the FlushEvents procedure to empty
the Operating System event queue of any low-level events left unprocessed by
another application. For example, you might want to remove any mouse-down
events or keyboard events that the user might have entered while the Finder launched
your application.

This section shows how to retrieve events from the Event Manager, how to mask out
unwanted events, how to specify memory and scheduling options for your application,
and how to handle each type of event received from the Event Manager.

Obtaining Information About Events
You get information about events through the event record. The EventRecord data
type defines the event record and has this structure:

TYPE EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

Field descriptions

what The what field indicates the type of event received. The type of
event can be identified by these constants:

CONST

nullEvent = 0; {no other pending events}

mouseDown = 1; {mouse button pressed}

mouseUp = 2; {mouse button released}

keyDown = 3; {key pressed}

keyUp = 4; {key released}

autoKey = 5; {key repeatedly held down}

updateEvt = 6; {window needs updating}

diskEvt = 7; {disk inserted}

activateEvt = 8; {activate/deactivate window}

osEvt = 15;{operating-system event-- }

 { resume, suspend, or }

 { mouse-moved}

kHighLevelEvent = 23;{high-level event}

CHAPTER 2

Event Manager

Using the Event Manager 2-19

message The message field contains additional information associated with
the event. The interpretation of this information depends on the
event type. The contents of the message field for each event type
are summarized here:

when The when field indicates the time when the event was posted (in
ticks since system startup). When needed, you can use the when
field to compare how much time has elapsed between successive
mouse events.

where For low-level events and operating-system events, the where field
contains the location of the cursor at the time the event was posted
(in global coordinates).
For high-level events, the where field contains a second event
specifier, the event ID. The event ID defines the particular type of
event within the class of events defined by the message field of the
high-level event. For high-level events, you should interpret the
where field as having the data type OSType, not Point .

Event type Event message

null, mouse-up,
mouse-down

Undefined.

key-up,
key-down,
auto-key

Character code and virtual key code in
low-order word. For Apple Desktop Bus
(ADB) keyboards, the low byte of the
high-order word contains the ADB address
of the keyboard where the keyboard event
occurred. The high byte of the high-order
word is reserved.

update, activate Pointer to the window to update, activate, or
deactivate.

disk-inserted Drive number in low-order word, File
Manager result code in high-order word.

resume The suspendResumeMessage constant in
bits 24–31 and a 1 in bit 0 to indicate the
event is a resume event. Bit 1 contains either
a 1 or a 0 to indicate if Clipboard conversion
is required, and bits 2–23 are reserved.

suspend The suspendResumeMessage constant in
bits 24–31 and a 0 in bit 0 to indicate the
event is a suspend event. Bit 1 is undefined,
and bits 2–23 are reserved.

mouse-moved The mouseMovedMessage constant in bits
24–31. Bits 2–23 are reserved, and bit 0 and
bit 1 are undefined.

high-level Class of events to which the high-level event
belongs. The message and where fields of
a high-level event define the specific type of
high-level event received.

CHAPTER 2

Event Manager

2-20 Using the Event Manager

modifiers The modifiers field contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. For activate events, this field also indicates whether the
window should be activated or deactivated. In System 7 it also
indicates whether a mouse-down event caused your application to
switch to the foreground.

Each of the modifier keys is represented by a specific bit in the modifiers field of the
event record. Figure 2-5 shows how to interpret the modifiers field. You can examine
the modifiers field of the event record to determine which, if any, of the modifier keys
were pressed at the time of the event. The modifier keys include the Option, Command,
Caps Lock, Control, and Shift keys. If your application attaches special meaning to any
of these keys in combination with other keys or when the mouse button is down, you
can test the state of the modifiers field to determine the action your application should
take. For example, you can use this information to determine whether the user pressed
the Command key and another key at the same time to make a menu selection.

Figure 2-5 The modifiers field of the event record

Bit 0 in the modifiers field gives additional information that is valid only if the event is
an activate event or a mouse-down event.

For activate events, the value of bit 0 is 1 if the window pointed to by the event message
should be activated, and the value is 0 if the window should be deactivated.

For mouse-down events in System 7, bit 0 indicates whether a mouse-down event
caused your application to switch to the foreground. If so, bit 0 contains 1; otherwise,
it contains 0.

CHAPTER 2

Event Manager

Using the Event Manager 2-21

You can also use these constants as masks to test the setting of various bits in the
modifiers field:

CONSTactiveFlag = 1; {set if window being activated or if }

{ mouse-down event caused fgnd switch}

btnState = 128; {set if mouse button up}

cmdKey = 256; {set if Command key down}

shiftKey = 512; {set if Shift key down}

alphaLock = 1024; {set if Caps Lock key down}

optionKey = 2048; {set if Option key down}

controlKey = 4096; {set if Control key down}

Note that the bit giving information about the mouse button is set if the mouse button is
up. The bits for the modifier keys are set if the corresponding key is down.

Some keyboards do not distinguish between the right or left Control, Shift, and Option
keys; for example, the virtual key code for the right Shift key and left Shift key might be
the same. For these keyboards, if the user presses the Control, Shift, or Option key, the
Event Manager sets only the bits corresponding to the shiftKey , optionKey , and
controlKey constants. For keyboards that do distinguish between these keys, the
Event Manager sets the bits in the modifiers field to indicate whether the right or left
Control, Shift, or Option keys were pressed. For example, the Event Manager sets bit 13
in the modifiers field if the user presses the right Shift key and sets bit 9 if the user
presses the left Shift key. In most cases your application should not need to distinguish
between the left and right Control, Shift, and Option keys.

Processing Events
Applications receive events one at a time by asking the Event Manager for the next
available event. You use Event Manager routines to receive (or in the case of
EventAvail , simply to look at) the next available event that is pending for your
application. You supply an event record as a parameter to the Event Manager routines
that retrieve events. The Event Manager fills out the event record with the relevant
information about that event and returns it to your application.

Your application can use the WaitNextEvent function to retrieve events from the Event
Manager. If no events are pending for your application, the WaitNextEvent function
may allocate processing time to other applications. If an event is pending for your
application, the WaitNextEvent function returns the next available event of a specified
type and removes the returned event from your application’s event stream.

The EventAvail function gets the next available event of a specified type and returns it
to your application, but does not remove the event from your application’s event stream.
EventAvail thus allows your application to look at an event in the event stream
without actually processing the event.

CHAPTER 2

Event Manager

2-22 Using the Event Manager

Note
You can also use the GetNextEvent function to retrieve and remove an
event; however, you should use WaitNextEvent to provide greater
support for multitasking. ◆

Using the WaitNextEvent Function

Your application typically calls WaitNextEvent repeatedly. The next section, “Writing
an Event Loop,” shows how to use WaitNextEvent with other routines to process
events. This discussion focuses on the WaitNextEvent function itself.

The WaitNextEvent function requires four parameters:

■ an event mask (eventMask)

■ an event record (theEvent)

■ a sleep value (sleep)

■ a mouse region (mouseRgn)

When WaitNextEvent returns, the event record contains information about the
retrieved event, if any.

The eventMask parameter specifies the events you are interested in receiving.
WaitNextEvent returns events one at a time, in order of priority and at your
application’s request, according to the value you specify in the eventMask parameter. If
your application specifies that it doesn’t want to receive particular types of events, those
events are not returned to your application when it makes a request for an event.
However, those events are not removed from the event stream. (To remove events from
the Operating System event queue, you can use the FlushEvents procedure with a
mask specifying only those events you wish to remove from the queue.) See “Setting the
Event Mask” beginning on page 2-26 for examples of how to use constants to set the
value of the eventMask parameter.

The sleep parameter specifies the amount of time (in ticks) for which your application
agrees to relinquish the processor if no events are pending for it. When that time expires
or when an event becomes available for your application, the Process Manager schedules
your application for execution. In general, you should specify a value greater than 0 in
the sleep parameter so that other applications can receive processing time if they need
it. If the user is editing text and your application needs to blink the caret at periodic
intervals or uses TextEdit to blink the caret, your application should not specify a value
greater than the value returned by the GetCaretTime function.

In the mouseRgn parameter you specify a screen region inside of which the Event
Manager does not generate mouse-moved events. You should specify the region in
global coordinates. If the user moves the cursor outside of this region and your
application is the foreground process, the Event Manager reports mouse-moved events.
Your application should recalculate the mouseRgn parameter when it receives a
mouse-moved event; otherwise it will continue to receive mouse-moved events as long
as the cursor is outside of the original region. If you pass an empty region or a NIL
region handle, the Event Manager does not return mouse-moved events. You can use the

CHAPTER 2

Event Manager

Using the Event Manager 2-23

mouseRgn parameter as a convenient way to change the shape of the cursor—for
example, when the user moves the cursor from the content area of a window to the scroll
bar. See “Responding to Mouse-Moved Events” beginning on page 2-62 for information
on how to set and change the mouseRgn parameter.

Listing 2-1 shows an example of using the WaitNextEvent function.

Listing 2-1 Using the WaitNextEvent function

VAR

eventMask: Integer;

event: EventRecord;

cursorRgn: RgnHandle;

mySleep: LongInt;

gotEvent: Boolean;

eventMask := everyEvent; {accept all events}

mySleep := M yGetSleep; {set an appropriate sleep value}

cursorRgn := M yGetRgn; {set the region as appropriate }

gotEvent := WaitNextEvent(eventMas k,e vent ,mySleep ,c ursorRgn);

The code in Listing 2-1 specifies that WaitNextEvent should return the next pending
event of any kind, give up the processor if no events are pending, and return a
mouse-moved event if the user moves the cursor out of the specified region.

The WaitNextEvent function returns after retrieving an event or after the time
specified in the sleep parameter has expired. If there are no events of the types
specified by the eventMask parameter (other than null events) pending for your
application, and the time specified in the sleep parameter has not expired,
WaitNextEvent may allocate processing time to background processes. Once an
event for your application occurs or the time specified in the sleep parameter
expires, your application receives processing time again.

WaitNextEvent returns a function result of TRUE if it has retrieved any event other
than a null event. If there are no events of the types specified by the eventMask
parameter (other than null events) pending for the application, WaitNextEvent
returns FALSE.

Before returning an event to your application, WaitNextEvent performs other
processing and may intercept the event. The WaitNextEvent function:

■ Calls the Operating System Event Manager function SystemEvent to determine
whether the event should be handled by your application or the Operating System.
For example, if the event is a Command–Shift–number key sequence, the Event
Manager intercepts the event and calls the corresponding 'FKEY' resource to perform
the associated action.

■ Makes the alarm go off if the alarm is set and the current time is the alarm time. The
user sets the alarm using the Alarm Clock desk accessory.

CHAPTER 2

Event Manager

2-24 Using the Event Manager

■ Calls the SystemTask procedure, which gives time to each open desk accessory or
device driver to perform any periodic action defined for it. A desk accessory or device
driver specifies how often the periodic action should occur, and SystemTask gives
time to the desk accessory or device driver at the appropriate interval.

In System 7, the WaitNextEvent function reports a suspend event to your
application when

■ your application is in the foreground and the user opens a desk accessory or other
item from the Apple menu,

■ the user clicks in the window belonging to a desk accessory or another application, or

■ the user chooses another process from the Application menu.

After your application is switched out, the Event Manager directs events (other than
events your application can receive in the background) to the newly activated process
until the user switches back to your application or another application.

Writing an Event Loop

In applications that are event-driven (that is, applications that decide what to do at any
time by receiving and responding to events), you can obtain information about pending
events by calling Event Manager routines. Since you call these routines repeatedly, the
section of code in which you request events from the Event Manager usually takes the
form of a loop; this section of code is called the event loop.

Listing 2-2 shows a simple event loop (an application-defined procedure called
MyEventLoop) for an application running in System 7.

Listing 2-2 An event loop

PROCEDURE MyEventLoop;
VAR

cursorRgn: RgnHandle;
gotEvent: Boolean;

event: EventRecord;
BEGIN

cursorRgn := NewRgn; {pass an empty region the first time thru}
REPEAT

gotEvent := WaitNextEvent(everyEvent, event, MyGetSleep,
cursorRgn);

IF (event.what <> kHighLevelEvent) AND (NOT gInBackground)
THEN MyAdjustCursor(event.where, cursorRgn);

IF gotEvent THEN {the event isn’t a null event, }
DoEvent(event) { so handle it}

ELSE {no event (other than null) to handle }
DoIdle(event); { right now, so do idle processing}

UNTIL gDone; {loop until user quits}
END;

CHAPTER 2

Event Manager

Using the Event Manager 2-25

The MyEventLoop procedure repeatedly uses WaitNextEvent to retrieve events. The
WaitNextEvent function returns a Boolean value of FALSE if there are no events of the
specified types other than null events pending for the application. WaitNextEvent
returns TRUE if it has retrieved any event other than a null event.

After WaitNextEvent returns, the MyEventLoop procedure first calls an application-
defined routine, MyAdjustCursor , to adjust the cursor as necessary. You usually adjust
the cursor in response to mouse-moved events, and often in response to other events as
well. This code adjusts the cursor once every time through the event loop, when the
application receives any event other than a high-level event. The code does not adjust
the cursor if the event is a high-level event, because the where field of a high-level event
contains the event ID, not the location of the cursor. The code also does not adjust the
cursor if this application is in the background, as the foreground process is responsible
for setting the appearance of the cursor.

If WaitNextEvent retrieved any event other than a null event, the event loop calls
DoEvent , an application-defined procedure, to process the event. Otherwise, the
procedure calls an application-defined idling procedure, DoIdle .

Note

If your application uses modeless dialog boxes, you need to
appropriately handle events in them. You can choose to handle events
for modeless dialog boxes using the same routines that you use to
handle events in other windows; this is the approach used throughout
this chapter. Alternatively, you can choose to call the IsDialogEvent
function in your event loop. See “Handling Events in a Dialog Box” on
page 2-29 for information on handling events in alert boxes, modal
dialog boxes, movable modal dialog boxes, and modeless dialog boxes.
For additional information on dialog boxes, see the chapter “Dialog
Manager” in this book. ◆

If you intend to design your application to run in either a single-application environ-
ment (such as System 6 without MultiFinder) or a multiple-application environment,
the very beginning of your event loop should test to make sure the WaitNextEvent
function is available. If WaitNextEvent is not available, your code should use
GetNextEvent to retrieve events. If your code uses GetNextEvent , it should also
call SystemTask to allow desk accessories to perform periodic actions. However,
your code should always use WaitNextEvent if it is available, rather than
GetNextEvent . If your application calls WaitNextEvent , it should not call the
SystemTask procedure.

The event loop shown in Listing 2-2 calls an application-defined procedure, DoEvent , to
determine what kind of event the call to WaitNextEvent retrieved. Listing 2-3 defines a
simple DoEvent procedure. The DoEvent procedure examines the value of the what
field of the event record to determine the type of event received and then calls an
appropriate application-defined routine to further process the event.

CHAPTER 2

Event Manager

2-26 Using the Event Manager

Listing 2-3 Processing events

PROCEDURE DoEvent (event: EventRecord);

VAR

window : WindowPtr;

activate: Boolean;

BEGIN

CASE event.what OF

mouseDown:

DoMouseDown(event);

mouseUp:

DoMouseUp(event);

keyDown, autoKey:

DoKeyDown(event);

activateEvt:

BEGIN

window : = Wi ndowPt r(e vent.message) ;

activate := B And(event.modifiers, activeFlag) <> 0;

DoActivate(window, activate , event);

END;

updateEvt:

DoUpdate (Wi ndowPt r(e vent.message)) ;

diskEvt:

DoDiskEvent(event);

osEvt:

DoOSEvent(event);

kHighLevelEvent:

DoHighLevelEvent(event);

END; {of case}

END;

The next sections describe how to set the event mask, handle events in dialog boxes,
and create your application’s 'SIZE' resource. Following sections show code that can
handle each kind of event.

Setting the Event Mask

Several of the Event Manager routines can be restricted to operate on a specific event
type or group of types. You do this by specifying the event types you want your
application to receive, thereby disabling (or “masking out”) the events you are not
interested in receiving. To specify which event types an Event Manager routine governs,
you supply a parameter known as an event mask.

The event mask is an integer with one bit position for each event type. If the bit
representing a particular event type is set, then the Event Manager returns events of

CHAPTER 2

Event Manager

Using the Event Manager 2-27

that type. If the bit is set to 0, the Event Manager does not return events of that type. To
accept all types of events, set every bit of the event mask to 1. You can do this using the
constant everyEvent .

CONSTeveryEven t = -1 ; { every event}

Figure 2-6 shows the bits corresponding to each event type in the event mask.

Figure 2-6 The event mask

You can use these constants when referring to the bits in the event mask that correspond
to each individual event type:

CONSTmDownMask = 2; {mouse-down event (bit 1) }

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down even t (bit 3)}

keyUpMask = 16; {key-up even t (bit 4)}

autoKeyMask = 32; {auto-key even t (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted even t (bit 7)}

activMask = 256; {activate event (bit 8) }

highLevelEventMask = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system event (bit 15)}

CHAPTER 2

Event Manager

2-28 Using the Event Manager

You can select any subset of events by adding or subtracting these constants. For
example, you can use this code to accept only high-level events and mouse-down events
and mask out all other events:

myErr := WaitNextEvent(highLevelEventMask + mDownMask, myEvent,

 mySleep, myMRgnHnd);

The everyEvent constant indicates that you wish to receive every type of event. To
accept all events except mouse-up events, you can use the code:

myErr := WaitNextEvent(everyEvent - mUpMask, myEvent, mySleep,

 myMRgnHnd);

Masking out specific types of events does not remove those events from the event
stream. If a type of event is masked out, the Event Manager simply ignores it when
reporting events from the event stream. Note that you cannot mask out null events by
setting the event mask. The Event Manager always returns a null event if no other events
are pending. However, if you do not want the Event Manager to report null events to
your application when it is in the background, you can set the cannotBackground flag
in your application’s 'SIZE' resource.

In most cases you should always use everyEvent as your event mask. The user expects
most applications to respond to keyboard, mouse, update, and other events.

The types of events returned to your application are also affected by the system event
mask. The Event Manager maintains a system event mask for each application. The
system event mask controls which low-level event types get posted in the Operating
System event queue. The Event Manager uses the system event mask of the current
process (the process that is currently executing and the process associated with the
CurrentA5 global variable) when determining which low-level events to post in the
Operating System event queue. The system event mask is an integer with 1 bit for
each corresponding low-level event type. These constants refer to the bits that represent
the corresponding low-level event types in the system event mask:

CONSTmDownMask = 2; {mouse-down (bit 1)}
mUpMask = 4; {mouse-up (bit 2)}
keyDownMask = 8; {key-down (bit 3)}
keyUpMask = 16; {key-up (bit 4)}
autoKeyMask = 32; {auto-key (bit 5)}
diskMask = 128; {disk-inserted (bit 7)}

When a low-level event (other than an update or activate event) occurs, the Operating
System Event Manager posts the low-level event in the Operating System event queue
only if the bit corresponding to the low-level event type is set in the system event mask
of the current process. When your application starts, the Operating System initializes the
system event mask of your application to post mouse-up, mouse-down, key-down,
auto-key, and disk-inserted events in the Operating System event queue. Thus, the
system event mask has this initial setting:

systemEventMask := everyEvent - keyUpMask;

CHAPTER 2

Event Manager

Using the Event Manager 2-29

Your application should not change the system event mask except to enable key-up
events if your application needs to respond to key-up events. (Most applications ignore
key-up events.) If your application needs to receive key-up events, you can change the
system event mask using the Operating System Event Manager procedure
SetEventMask . Note that your application cannot rely on receiving key-up events
when it is not the current process. For example, if your application is the foreground
(and current) process and a minor switch occurs, the Event Manager uses the system
event mask of the background process (now the current process) when posting low-level
event types. When your application becomes the current process again, the Event
Manager uses the system event mask of your application when posting low-level events.

Handling Events in a Dialog Box

If your application uses alert boxes, modal dialog boxes, movable modal dialog boxes,
or modeless dialog boxes, you need to make sure your application handles events for
them appropriately.

To display and handle events in alert boxes, you use the Dialog Manager functions
Alert , NoteAlert , CautionAlert , and StopAlert . The Dialog Manager handles all
of the events generated by the user until the user clicks a button (typically the OK or
Cancel button). When the user clicks the OK or Cancel button, the alert box functions
highlight the button that was clicked, close the alert box, and report the user’s selection
to your application. Your application is responsible for performing the appropriate
action associated with that button.

For modal dialog boxes, you can use the Dialog Manager procedure ModalDialog . The
Dialog Manager handles most of the user interaction until the user selects an item. The
ModalDialog procedure then reports that the user selected an enabled item, and your
application is responsible for performing the action associated with that item. Your
application typically calls ModalDialog repeatedly, responding to clicks on enabled
items as reported by ModalDialog , until the user selects OK or Cancel.

For alert boxes and modal dialog boxes, you should also supply an event filter function
as one of the parameters to the alert box functions or ModalDialog procedure. As the
user interacts with the alert or modal dialog box, these functions pass events to your
event filter function before handling each event. Your event filter function can handle
any events not handled by the Dialog Manager or, if necessary, can choose to handle
events normally handled by the Dialog Manager. For more information on filter
functions for alert and dialog boxes, see the chapter “Dialog Manager” in this book.

To handle events in movable modal dialog boxes, you can use the Dialog Manager
functions IsDialogEvent and DialogSelect or you can use other Toolbox routines
to handle events without using the Dialog Manager.

For modeless dialog boxes, you can choose to handle events in them using an approach
similar to the one you use to handle events in other windows; that is, when you receive
an event, you first determine the type of event that occurred and then take the
appropriate action based on the type of window that is in front. If a modeless dialog box
is in front, you can provide code that takes any actions specific to that modeless dialog
box and call the DialogSelect function to handle any events that your code doesn’t

CHAPTER 2

Event Manager

2-30 Using the Event Manager

handle. This is the approach used throughout this chapter. Alternatively, you can choose
to call the IsDialogEvent function in your event loop. If you do this, you can use the
IsDialogEvent function to determine whether the event involves a modeless dialog
box that belongs to your application. If the event involves a modeless dialog box
(including null events) and a modeless dialog box is active, IsDialogEvent returns
TRUE. Otherwise, IsDialogEvent returns FALSE.

If IsDialogEvent returns TRUE, your application can check to see what type of event
occurred and, depending on the type of event, it can choose to handle the event itself.

Regardless of the approach you use, if your application chooses not to handle the event,
it should call DialogSelect . The DialogSelect function handles events for
modeless dialog boxes (including null events). It also blinks the caret in editable text
items when necessary.

For more information on the DialogSelect function and events in dialog boxes, see
the chapter “Dialog Manager” in this book.

Creating a Size Resource
Your application should include a size ('SIZE') resource. You use a 'SIZE' resource to
inform the Operating System about the memory size requirements for your application
so that the Operating System can set up a partition of the appropriate size for your
application. You also use the ' SIZE' resource to indicate certain scheduling options to
the Operating System, such as whether your application can accept suspend and
resume events.

You can also specify additional information in the ' SIZE' resource in System 7,
indicating whether your application is 32-bit clean, whether your application supports
stationery documents, whether your application uses TextEdit’s inline input services,
whether your application wishes to receive notification of the termination of any applica-
tions it has launched, and whether your application wishes to receive high-level events.

A ' SIZE' resource consists of a 16-bit flags field, followed by two 32-bit size fields. The
flags field specifies operating characteristics of your application, and the size fields
indicate the minimum and preferred partition sizes for your application. The minimum
partition size is the actual limit below which your application will not run. The
preferred partition size is the memory size at which your application can run most
effectively and that the Operating System attempts to secure upon launch of your
application. If that amount of memory is unavailable, your application is placed into
the largest contiguous block available, provided that it is larger than the specified
minimum size.

Note

If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a ' SIZE' resource, it is assigned a default
partition size of 512 KB and the Process Manager uses a default value
of FALSE for all specifications normally defined by constants in the
flags field. ◆

CHAPTER 2

Event Manager

Using the Event Manager 2-31

When you define a ' SIZE' resource, you should give it a resource ID of –1. A user can
modify the preferred size in the Finder ’s information window for your application. If the
user does alter the partition size, the Operating System creates a new ' SIZE' resource
having a resource ID of 0. At application launch time, the Process Manager looks for a
' SIZE' resource with ID 0; if this resource is not found, it uses your original ' SIZE'
resource with ID –1. This new ' SIZE' resource is also created when the user modifies
any of the other settings in the resource.

When creating a ' SIZE' resource, you first need to determine the various operating
characteristics of your application. For example, if your application has nothing useful to
do when it is in the background, then you should not set the canBackground flag.
Similarly, if you have not tested your application in an environment that uses all 32 bits
of a handle or pointer for memory addresses, then you should not set the
is32BitCompatible flag.

Listing 2-4 shows the Rez input for a sample ' SIZE' resource. (Rez is a resource
compiler available with the MPW environment.)

Listing 2-4 The Rez input for a sample 'SIZE' resource

resource 'SIZE' (-1) {

reserved, /*reserved*/

acceptSuspendResumeEvents, /*accepts suspen d&r esume events*/

reserved, /*reserved*/

canBackground, /*can use background null */

/* events*/

doesActivateOnFGSwitch, /*activates own windows in */

/* response t o OS e vents*/

backgroundAndForeground, /*app lication has a user */

/* i nterface*/

dontGetFrontClicks, /*don't return mouse events */

/* in front window on resume*/

ignoreAppDiedEvents, /*doesn't want app-died events*/

is32BitCompatible, /*works with 24- or 32-bit addr*/

isHighLevelEventAware, /*supports high-level events*/

localAndRemoteHLEvents, /*also remote high-level events*/

isStationeryAware, /*can use stationery documents*/

dontUseTextEditServices, /*can't use inline input */

/* services*/

reserved, /*reserved*/

reserved, /*reserved*/

reserved, /*reserved*/

kPrefSize * 1024, /*preferred memory size*/

kMinSize * 1024 /*minimum memory size*/

};

CHAPTER 2

Event Manager

2-32 Using the Event Manager

The ' SIZE' resource specification in Listing 2-4 indicates, among other things, that the
application accepts suspend and resume events, does processing in the background
using null events, activates or deactivates any windows as necessary in response to
operating-system events, can execute in both the foreground and background, and
doesn’t want to receive any mouse event associated with a resume event that was caused
by the user clicking in the application’s front window. It also indicates that the
application doesn’t want to receive Application Died events, can work in 24-bit or 32-bit
addressing mode, does accept high-level events, including both local and network
high-level events, does handle stationery documents, and doesn’t use TextEdit’s inline
input services. In this example, the Rez-input file must define values for the constants
kPrefSize and kMinSize ; for example, if kPrefSize is set to 50, the preferred
partition size is 50 KB.

The numbers you specify as your application’s preferred and minimum memory sizes
depend on the particular memory requirements of your application. Your application’s
memory requirements depend on the size of your application’s static heap, dynamic
heap, A5 world, and stack. (See “Introduction to Memory Management” in Inside
Macintosh: Memory for complete details about these areas of your application’s partition.)

The static heap size includes objects that are always present during the execution of your
application—for example, code segments, Toolbox data structures for window records,
and so on.

Dynamic heap requirements come from various objects created on a per-document basis
(which may vary in size proportionally with the document itself) and objects that are
required for specific commands or functions.

The size of the A5 world depends on the amount of global data and the number of
intersegment jumps your application contains.

The stack contains variables, return addresses, and temporary information. The size of
the application stack varies among computers, so you should base your values for the
stack size according to the stack size required on a Macintosh Plus computer (8 KB).
The Process Manager automatically adjusts your requested amount of memory to
compensate for the different stack sizes on different machines. For example, if you
request 512 KB, more stack space (approximately 16 KB) will be allocated on machines
with larger default stack sizes.

Unfortunately, it is difficult to forecast all of these conditions with any great degree of
reliability. You should be able to determine reasonably accurate estimates for the stack
size, static heap size, A5 world, and jump table. In addition, you can use tools such as
MacsBug’s heap-exploring commands to help you empirically determine your
application’s dynamic memory requirements.

See “The Size Resource” beginning on page 2-115 for additional information on the
meaning of each of the fields and flags of a ' SIZE' resource.

Handling Low-Level Events
Low-level events include hardware-related occurrences stored in the Operating System
event queue and activate and update events generated by the Window Manager. When
your application receives a low-level event, your application needs to determine the type

CHAPTER 2

Event Manager

Using the Event Manager 2-33

of event and respond appropriately. The following sections discuss how to respond to
mouse events, keyboard events (including certain specific keyboard events, such as
when the user presses the Command key and period key at the same time), update
events, activate events, disk-inserted events, and null events.

Responding to Mouse Events

Whenever the user presses or releases the mouse button, the Operating System Event
Manager records the action in the Operating System event queue. These actions are
stored in the event queue as mouse-down and mouse-up events. Your application can
retrieve these events using the WaitNextEvent function.

Events related to movements of the mouse are not stored in the event queue. The mouse
driver automatically tracks the mouse and displays the cursor as the user moves the
mouse. Therefore, the Operating System Event Manager does not report an event if the
user simply moves the mouse.

However, you can request that the Event Manager report mouse-moved events if the
user moves the cursor out of a region that you specify to the WaitNextEvent function.
For example, your application can use mouse-moved events in this way to change the
shape of the cursor from an I-beam to an arrow when the user moves the cursor from a
text area to the scroll bar of a window.

The rest of this section describes how your application responds to mouse-down or
mouse-up events. See “Responding to Mouse-Moved Events” beginning on page 2-62
for specific details on mouse-moved events.

The user expects that pressing the mouse button correlates to particular actions in an
application. Your application is responsible for providing feedback or performing any
actions in response to the user. For example, if the user presses the mouse button while
the cursor is in the menu bar, your application should use the Menu Manager function
MenuSelect to allow the user to choose a menu command.

Your application can receive and respond to mouse-down and mouse-up events. Most
applications respond to mouse-down events and use the routines of various managers
(such as MenuSelect , DragWindow , TEClick , TrackBox , TrackGoAway , and
TrackControl) to handle the corresponding mouse-up events. You can also provide
code to respond to mouse-up events if it’s appropriate for your application. For example,
if your application implements its own text-editing capabilities, you might let the user
select lines of text by dragging the mouse and use mouse-up events to signal the end of
the selection.

In System 7, your application receives mouse-down events only when it is the
foreground process and the user clicks in the menu bar, in a window belonging to your
application, or in a window belonging to a desk accessory that was launched in your
application’s partition. If the user clicks in a window belonging to another application,
the Event Manager sends your application a suspend event and performs a major switch
to the other application.

When your application receives a mouse-down event, you need to first determine the
location of the cursor at the time the mouse button was pressed (the mouse location)
and respond appropriately. You can use the Window Manager function FindWindow to

CHAPTER 2

Event Manager

2-34 Using the Event Manager

find which of your application’s windows, if any, the mouse button was pressed in and,
if applicable, to find which part of the window it was pressed in. The FindWindow
function also reports whether the given mouse location is in the menu bar or, in some
cases, in a window belonging to a desk accessory (if the desk accessory was launched in
your application’s partition).

The what field of the event record for a mouse event contains the mouseDown or
mouseUp constant to report that the mouse button was pressed or released. The
message field is undefined. The when field contains the number of ticks since the
system last started up. You can use the when field to compare how much time has
elapsed between successive mouse events; for example, you might use this information
to help detect mouse double clicks.

The where field of the event record contains the location of the cursor at the time the
mouse button was pressed or released. You can pass this location to the FindWindow
function; the FindWindow function maps the given mouse location to particular areas
of the screen.

The modifiers field contains information about the state of the modifier keys at the
time the mouse button was pressed or released. Your application can perform different
actions based on the state of the modifier keys. For example, your application might let
the user extend a selection or select multiple objects at a time if the Shift key was down
at the time of the mouse-down event.

Listing 2-5 shows code that handles mouse-down events. The DoMouseDown procedure
is an application-defined procedure that is called from the DoEvent procedure.
(Listing 2-3 on page 2-26 shows the DoEvent procedure.)

Listing 2-5 Handling mouse-down events

PROCEDURE DoMouseDown (event: EventRecord);
VAR

part: Integer;
thisWindow: WindowPtr;

BEGIN
{map location of the cursor (at the time of mouse-down event) }
{ to general areas of the screen}
part := FindWindow(event.where, thisWindow);

CASE part OF {take action based on the mouse location}

inMenuBar: {mouse down in menu bar, respond appropriately}
BEGIN

{first adjust marks and enabled state of menu items}
MyAdjustMenus;

{let user choose a menu command}
DoMenuCommand(MenuSelect(event.where));

END;

 inSysWindow: {cursor in a window belonging to a desk accessory}
SystemClick(event, thisWindow);

CHAPTER 2

Event Manager

Using the Event Manager 2-35

 inContent: {mouse down occurred in the content area of }
 { one of your application's windows}

IF thisWindow <> FrontWindow THEN
BEGIN {mouse down occurred in a window other than the front }

{ window—-make the window clicked in the front window, }
{ unless the front window is movable modal}

IF MyIsMovableModal(FrontWindow) THEN
SysBeep(30)

ELSE
SelectWindow(thisWindow);

END
ELSE {mouse down was in the content area of front window}

DoContentClick(thisWindow, event);

 inDrag: {handle mouse down in drag area}

IF (thisWindow <> FrontWindow) AND
(MyIsMovableModal(FrontWindow))

THEN
SysBeep(30)

ELSE
 DragWindow(thisWindow, event.where, GetGrayRgn^^.rgnBBox);

 inGrow: {handle mouse down in grow region}
DoGrowWindow(thisWindow, event);

inGoAway: {handle mouse down in go-away region}
 IF TrackGoAway(thisWindow, event.where) THEN

DoCloseCmd;
 inZoomIn, inZoomOut: {handle mouse down in zoom box region}

IF TrackBox(thisWindow, event.where, part) THEN
DoZoomWindow(thisWindow, part);

END; {end of CASE}
END;{of DoMouseDown}

When your application retrieves a mouse-down event, call the Window Manager
function FindWindow to map the location of the cursor to particular areas of the screen.
Given a mouse location, the FindWindow function returns as its function result a value
that indicates whether the mouse location is in the menu bar, in one of your application’s
windows, or, in some cases, in a desk accessory window. If the mouse location is in an
application window, the function result indicates which part of the window the mouse
location is in. You can test the function result of FindWindow against these constants to
determine the mouse location at the time of the mouse-down event:

CONSTinDesk = 0; {none of the following}

inMenuBar = 1; {in the menu bar}

inSysWindow = 2; {in a desk accessory window}

CHAPTER 2

Event Manager

2-36 Using the Event Manager

inContent = 3; {anywhere in content region except the }
 { grow region if the window is active, }

 { anywhere in content region including the }
 { grow region if the window is inactive}

inDrag = 4; {in drag (title bar) region}
inGrow = 5; {in grow region (active window only)}

inGoAway = 6; {in go-away region (active window only)}
inZoomIn = 7; {in zoom-in region (active window only)}

inZoomOut = 8; {in zoom-out region (active window only)}

The FindWindow function reports the inDesk constant if the mouse location is not in
the menu bar, desk accessory window, or any window of your application. For example,
the FindWindow function may report this constant if the location of the cursor is inside
a window frame but not in the drag region or go-away region of the window; your
application seldom receives the inDesk constant.

If FindWindow returns the inMenuBar constant, the mouse location is in the menu bar.
In this case your application should first adjust its menus. The application-defined
MyAdjustMenus procedure adjusts its menus—enabling and disabling items and
setting marks—based on the context of the active window. For example, if the active
window is a document window that contains a selection, your application should enable
the Cut and Copy commands in the Edit menu, add marks to the appropriate items in
the Font, Size, and Style menus, and adjust any other menu items accordingly. After
adjusting your application’s menus, call the Menu Manager function MenuSelect ,
passing it the location of the mouse, to allow the user to choose a menu command. The
MenuSelect function handles all user interaction until the user releases the mouse
button. The MenuSelect function returns as its function result a long integer indicating
the menu selection made by the user. As shown in Listing 2-5 on page 2-34, the
DoMouseDown routine calls an application-defined routine, DoMenuCommand, to
perform the menu command selected by the user. See the chapter “Menu Manager” in
this book for a listing that gives the code for the MyAdjustMenus and DoMenuCommand
routines and for more information about responding to specific menu commands.

In System 7, the FindWindow function seldom returns the inSysWindow constant. The
FindWindow function returns this constant only when a mouse-down event occurred
in a desk accessory that was launched in the application’s partition. Normally, if the
user clicks in a desk accessory’s window, the Event Manager sends your application a
suspend event and brings the desk accessory to the foreground. From that point on,
mouse-down events and other events are handled by the desk accessory until the user
again clicks in one of your application’s windows.

If FindWindow does return the inSysWindow constant, the mouse location is in a
window belonging to a desk accessory that was launched in your application’s
partition. In this case, your application should call the SystemClick procedure. The
SystemClick procedure routes the event to the desk accessory as appropriate. If the
mouse button was pressed while the cursor was in the content region of the desk
accessory’s window and the window is inactive, SystemClick makes it the active
window. It does this by sending your application an activate event to deactivate its front
window and directing an event to the desk accessory to activate its window.

CHAPTER 2

Event Manager

Using the Event Manager 2-37

FindWindow can return any of the constants inContent , inDrag , inGrow , inGoAway ,
inZoomIn , or inZoomOut if the given mouse location is in your application’s active
window. If the cursor is in the content area, your application should perform any actions
appropriate to your application. Note that scroll bars are part of the content region. In
most cases, if the cursor is in the content area, your application first needs to determine
whether the mouse location is in the scroll bar or any other controls and then respond
appropriately. The DoMouseDown procedure calls the application-defined procedure
DoContentClick to handle mouse-down events in the content area of the active
window. If your application needs to determine whether the mouse-down event caused
a foreground switch (and you set the getFrontClicks flag in your application’s
'SIZE' resource), your DoContentClick procedure can test bit 0 in the modifiers
field of the event record (normally your application does not test for this condition).
See the chapter “Control Manager” in this book for an example DoContentClick
procedure and for detailed information on implementing controls in your
application’s windows.

If the mouse location is in any of the other specified regions of an active application
window, your application should perform the action corresponding to that region.
For example, if the cursor is in the drag region, your application should call the
Window Manager procedure DragWindow to allow the user to drag the window to
a new location.

If the mouse location is in an inactive application window, FindWindow can return the
inContent or inDrag constant, but does not distinguish between any other areas of
the window. In this case, if FindWindow reports the inContent constant, your
application should bring the inactive window to the front using the SelectWindow
procedure (unless the active window is a movable modal dialog box). If the active
window is a movable modal dialog box, then your application should use the SysBeep
procedure to play the system alert sound rather than activating the selected window.
Also, if your application interprets the first mouse click in an inactive window as a
request to activate the window and perform an action, you can process the event again.
However, note that most users expect the first click in an inactive window to activate
the window without performing any additional action. If FindWindow reports inDrag
for an inactive application window, your application should call the DragWindow
procedure to allow the user to drag the window to a new location (unless the active
window is a movable modal dialog box, in which case your application should simply
play the system alert sound).

If you’re using TextEdit to handle text editing and call TEClick , TEClick automatically
interprets mouse double clicks appropriately, including allowing the user to select a
word by double-clicking it. Your application must provide the means to allow double-
clicking in this manner in all other contexts.

You can detect mouse double clicks by comparing the time and location of a mouse-up
event with that of the immediately following mouse-down event. The GetDblTime
function returns the recommended difference in ticks that should exist between the
occurrence of a mouse-up and mouse-down event for those two mouse events to be
considered a double click.

CHAPTER 2

Event Manager

2-38 Using the Event Manager

You should interpret mouse events as a double click if both of these conditions are true:

■ The times of the mouse-up event and mouse-down event differ by a number of ticks
less than or equal to the value returned by the GetDblTime function.

■ The locations of the two mouse-down events separated by the mouse-up event are
sufficiently close to each other. How you determine this value depends on your
application and the context in which the mouse-down events occurred. For example,
in a word-processing application, you might consider two mouse-down events a
double click if the mouse locations both mapped to the same character, whereas in a
graphics application you might consider it a double click if the sum of the horizontal
and vertical difference between the two mouse locations is no more than five pixels.

The Event Manager also provides other routines that give information about the mouse.
You can find the current mouse location using the GetMouse procedure. You can
determine the current state of the mouse button using the Button , StillDown , and
WaitMouseUp functions. See “Reading the Mouse” beginning on page 2-108 for detailed
information on these routines.

Responding to Keyboard Events

Your application can receive keyboard events to notify you when the user has pressed
or released a key or continued to hold down a key. When the user presses a key, the
Operating System Event Manager stores a key-down event in the Operating System
event queue. Your application can retrieve the event from the queue; determine which
key was pressed; determine which modifier keys, if any, were pressed at the time of the
event; and respond appropriately. Typically, your application provides feedback by
echoing (displaying) the glyph representing the character generated by the pressed key
on the screen.

When the user holds down a key for a certain amount of time, the Event Manager
generates auto-key events. The Event Manager generates an auto-key event after a
certain initial delay (the auto-key threshold) has elapsed since the original key-down
event. The Event Manager generates subsequent auto-key events whenever a certain
repeat interval (the auto-key rate) has elapsed since the last auto-key event and while
the original key is still held down. The user can set the initial delay and rate of repetition
using the Keyboard control panel. The default value for the auto-key threshold is
16 ticks, and the default value for the auto-key rate is 4 ticks. Current values of the auto-
key threshold and auto-key rate are stored in the system global variables KeyThresh
and KeyRepThresh .

In addition to getting keyboard events when the user presses or releases a key, you can
directly read the keyboard (and keypad) using the GetKeys procedure.

When the user presses a key or a combination of keys, your application should respond
appropriately. Your application should follow the guidelines in Macintosh Human
Interface Guidelines for consistent use of and response to keyboard events. For example,
your application should allow the user to choose a frequently used menu command by
using a keyboard equivalent for that menu command—usually a combination of the
Command key and another key. Your application should also respond to the user
pressing the arrow keys, Shift key, or other keys according to the guidelines provided
in Macintosh Human Interface Guidelines.

CHAPTER 2

Event Manager

Using the Event Manager 2-39

Also note that certain keyboards have different physical layouts or contain additional
keys, such as function keys. If your application supports function keys or other special
keys, you should follow the guidelines in Macintosh Human Interface Guidelines when
determining what action to take when the user presses one of these keys.

Certain keystroke combinations are handled by the Event Manager and not returned to
your application. If the user holds down the Command and Shift keys while pressing a
numeric key to produce a special effect, that special effect occurs. Apple provides three
standard Command–Shift–number key sequences. The standard Command–Shift–
number key sequences are 1 for ejecting the disk in the internal drive, 2 for ejecting the
disk in a second internal drive or for ejecting the disk in an external drive if the
computer has only one internal drive, and 3 for taking a snapshot of the screen and
storing it as a TeachText document on the startup volume.

The action corresponding to a Command–Shift–number key sequence is implemented
as a routine that takes no parameters and is stored in an 'FKEY' resource with a resource
ID that corresponds to the number that activates it. Apple reserves 'FKEY' resources
with resource IDs 1 through 4 for its own use; if you provide an 'FKEY' resource, use a
resource ID between 5 and 9.

You can disable the Event Manager’s processing of Command–Shift–number key
sequences for numbers 3 through 9 by setting the system global variable ScrDmpEnb
(a byte) to 0. However, in most cases you should not disable the Event Manager ’s
processing of these events.

The what field of the event record for a keyboard-related event contains either the
keyDown or keyUp constant to indicate that the key was pressed or released, or the
autokey constant to indicate that the key is being held down.

The Event Manager sets the system event mask of your application to accept all events
except key-up events. Most applications ignore key-up events. If your application needs
to receive key-up events, you can change the system event mask of your application
using the Operating System Event Manager procedure SetEventMask .

In the low-order word the message field contains the character code and virtual key
code that corresponds to the key pressed by the user.

The virtual key code represents the key pressed or released by the user; this value is
always the same for a specific physical key on a particular keyboard. For example, on
the Apple Keyboard II, ISO layout, the virtual key code for the fifth key to the right
of the Tab key (the key labeled “T”) is always $11, regardless of which modifier keys
are also pressed.

To determine the virtual key code that corresponds to a specific physical key, system
software uses a hardware-specific key-map ('KMAP') resource that specifies the virtual
key codes for a particular keyboard. After determining the virtual key code of the key
pressed by the user, system software uses a script-specific keyboard-layout ('KCHR')
resource to map a virtual key code to a specific character code. Any given script system
has one or more 'KCHR' resources. For example, a particular computer might contain
the French 'KCHR' resource in addition to the standard U.S. 'KCHR' resource. In this
situation, the current 'KCHR' resource determines whether virtual key codes are
mapped to the French or U.S. character set.

CHAPTER 2

Event Manager

2-40 Using the Event Manager

The character code represents a particular character. The character code that is generated
depends on the virtual key code, the state of the modifier keys, and the current 'KCHR'
resource. For example, the U.S. 'KCHR' resource specifies that for the virtual key code
$2D (the fifth key to the left of the Shift key and labeled “N” on an Apple Keyboard II,
Domestic layout), the character code is $6E when no modifier keys are pressed; the
character code is $4E when this key is pressed in combination with the Shift key.
Character codes for the Roman script system are specified in the extended version of
ASCII (the American Standard Code for Information Interchange).

The message field contains additional information for ADB keyboards. The low-order
byte of the high-order word contains the ADB address of the keyboard where the
keyboard event occurred. Figure 2-7 shows the structure of the message field of the
event record for keyboard events.

Figure 2-7 The message field of the event record for keyboard events

Usually your application uses the character code, rather than the virtual key code, when
responding to keyboard events. You can use these two constants to access the virtual key
code and character code in the message field:

CONSTcharCodeMask = $000000FF; {mask for character code}

keyCodeMask = $0000FF00; {mask for virtual key code}

The when field contains the number of ticks since the system last started up. You can
use the when field to compare how much time has expired between successive
keyboard events.

The where field of the event record contains the location of the cursor at the time the key
was pressed or released. You typically disregard the mouse location when processing
keyboard events.

The modifiers field contains information about the state of the modifier keys at the
time the key was pressed or released. Your application can perform different actions
based on the state of the modifier keys. For example, your application might perform an
action associated with a corresponding menu command if the Command key was down
at the time of the key-down event.

System software can support a number of different types of keyboards, for example, the
Apple Keyboard II, the Apple Extended keyboards, or other keyboards. The system
software uses various keyboard resources and international resources to manage
different types of keyboards. Figure 2-8 illustrates how system software maps keys to
character codes.

CHAPTER 2

Event Manager

Using the Event Manager 2-41

Figure 2-8 Keyboard translation

When a user presses or releases a key on the keyboard, the keyboard generates a raw
key code. The system software uses a 'KMAP' resource to map the raw key code to a
hardware-independent virtual key code and to set bits indicating the state of the
modifier keys. A 'KMAP' resource specifies the physical arrangement of a particular
keyboard and indicates the virtual key codes that correspond to each physical key.

If the optional key-remap (' itlk ') resource is present, the system software remaps the
virtual key codes and modifier state for some key combinations on certain keyboards
before using the 'KCHR' resource. The 'itlk ' resource can reintroduce hardware
dependence because certain scripts, languages, and regions need subtle differences in
layout for specific keyboards. If present, the 'itlk ' resource affects only a few keys.

After mapping the virtual key code and the state of the modifier keys through an
optional 'itlk ' resource, the system software uses a 'KCHR' resource to produce the
character code representing the key that was pressed or released. The 'KCHR' resource
specifies how to map the setting of the modifier keys and a virtual key code to a
character code.

CHAPTER 2

Event Manager

2-42 Using the Event Manager

After mapping the key, the Event Manager returns the virtual key code and the character
code in the message field of the event record.

 Figure 2-9 shows the virtual key codes as specified by the 'KMAP' resource for the
Apple Keyboard II, ISO layout. The labels for the keys on the keyboard are shown using
the U.S. keyboard layout. The virtual key codes are shown in hexadecimal.

Figure 2-9 Virtual key codes for the Apple Keyboard II, ISO layout

Figure 2-10 shows the virtual key codes as specified by the 'KMAP' resource for the
Apple Extended Keyboard II, one that uses the Domestic (ANSI) layout, and one that
uses the ISO layout. The labels for the keys on the ISO keyboard are shown using the
French keyboard layout. The virtual key codes are shown in hexadecimal.

If a user of an Apple Extended Keyboard II (using the U.S. 'KCHR' resource) presses the
key labeled “C” and no modifier keys, the system software maps this through the 'KMAP'
and 'KCHR' resources to produce a virtual key code of $08 and the character code $63 (the
character “c”) in the message field of the event record. If the user presses the key
labeled “C” and the Option key, then the system software maps this to virtual key code
$08 and the character code $8D (the character “ç”) in the message field.

As another example, if a user of an Apple Extended Keyboard II, Domestic layout, is
using the U.S. 'KCHR' resource and presses the key labeled “M” the system software
maps this through the 'KMAP' and 'KCHR' resources to produce a virtual key code of $2E
and the character code $6D (the character “m”) in the message field of the event record.

If a user of an Apple Extended Keyboard II, ISO layout, is using the French 'KCHR'
resource and presses the key labeled “M” the system software maps this through the
'KMAP' and 'KCHR' resources to produce a virtual key code of $29 and the character
code $6D (the character “m”) in the message field of the event record.

See Inside Macintosh: Text for additional information about the keyboard resources and
how the Script Manager manages various scripts.

CHAPTER 2

Event Manager

Using the Event Manager 2-43

Figure 2-10 Virtual key codes for the Apple Extended Keyboard II

CHAPTER 2

Event Manager

2-44 Using the Event Manager

Listing 2-6 shows code that handles key-down and auto-key events. The DoKeyDown
procedure is an application-defined procedure that is called from the DoEvent
procedure. (Listing 2-3 on page 2-26 shows the DoEvent procedure.)

Listing 2-6 Handling key-down and auto-key events

PROCEDURE DoKeyDown (event: EventRecord);
VAR

key: Char;
BEGIN

key := CHR(BAnd(event.message, charCodeMask));
IF BAnd(event.modifiers, cmdKey) <> 0 THEN

BEGIN {Command key down}
IF event.what = keyDown THEN

BEGIN {first enable/disable/check menu items as needed-- }
{ the MyAdjustMenus procedure adjusts the menus }

{ as appropriate for the current window}
MyAdjustMenus;

DoMenuCommand(MenuKey(key)); {handle the menu command}
END;

END
ELSE

MyHandleKeyDown(event);
END;

The DoKeyDown procedure in Listing 2-6 first extracts the character code of the key
pressed from the message field of the event record. It then checks the modifiers field
of the event record to determine if the Command key was pressed at the time of the
event. If so, and if the event is a key-down event, the code calls the application-defined
procedure MyAdjustMenus , and then calls another application-defined routine,
DoMenuCommand, to perform the menu command associated with that key. (The
MyAdjustMenus procedure adjusts the menus appropriately, and according to whether
the current window is a document window or modeless dialog box. See the chapter
“Menu Manager” in this book for code that defines the MyAdjustMenus procedure.)
Otherwise, the code calls the application-defined procedure MyHandleKeyDown to
handle the event.

Listing 2-7 shows the application-defined routine MyHandleKeyDown .

Listing 2-7 Handling key-down events

PROCEDURE MyHandleKeyDown (event: EventRecord);
VAR

key: Char;
window: WindowPtr;

CHAPTER 2

Event Manager

Using the Event Manager 2-45

myData: MyDocRecHnd;
te: TEHandle;

windowType: Integer;
BEGIN

window := FrontWindow;
{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);
IF windowType = kMyDocWindow THEN

BEGIN
key := CHR(BAnd(event.message, charCodeMask));

IF window <> NIL THEN
BEGIN

IF key = char(kTab) THEN {handle special characters}
MyDoTab(event)

ELSE
BEGIN

myData := MyDocRecHnd(GetWRefCon(window));
te := myData^^.editRec;

IF
(te^^.teLength - (te^^.selEnd - te^^.selStart) + 1

< kMaxTELength) THEN
BEGIN

TEKey(key, te); {insert character in document}
MyAdjustScrollBars(window, FALSE);

MyAdjustTE(window);
myData^^.windowDirty := TRUE;

END;
END;

END;
END

ELSE
MyHandleKeyDownInModeless(event, windowType);

END;

The MyHandleKeyDown procedure in Listing 2-7 handles key-down events in any
window of the application. For document windows, the code inserts the character
represented by the key pressed by the user into the active document. It first finds the
active document using the FrontWindow function, then handles the event as
appropriate for the document window. For example, it treats the Tab key as a special
character and calls an application-defined routine, MyDoTab, to handle this character
appropriately for the document. For all other keys directed to the document window, the
code gets the edit record associated with the document, and then it simply inserts the
character into the document, using the TextEdit TEKey procedure. It also calls two other
application-defined routines, MyAdjustScrollBars and MyAdjustTE , to update the
document and edit record.

CHAPTER 2

Event Manager

2-46 Using the Event Manager

The MyHandleKeyDown procedure calls an application-defined routine,
MyHandleKeyDownInModeless , to handle key-down events in modeless dialog boxes.
See the chapter “Dialog Manager” in this book for more information on handling events
in dialog boxes.

Scanning for a Cancel Event

Your application should allow the user to cancel a lengthy operation by using the
Command-period combination. Your application can implement this cancel operation by
periodically examining the state of the keyboard using the GetKeys procedure, or your
application can scan the event queue for a keyboard event.

Listing 2-8 shows an application-defined function that scans the event queue for any
occurrence of a Command-period event.

The UserDidCancel function in Listing 2-8 first checks to see if the user changed the
script. The application maintains a global variable, gCurrentKeyScript , that keeps
track of this information. The application also uses a global variable, gPeriodKeyCode ,
to hold the key code that maps to the period key according to the current script. If the
current script has changed, the UserDidCancel function calls an application-defined
routine, MySetPeriodKeyCode , to change the value of the gPeriodKeyCode global
variable as necessary.

The UserDidCancel function then determines whether A/UX is running. You must
use a different method to scan the event queue if A/UX is running. This code uses
an application-defined function called MyCheckAUXEventQueue to search for a
Command-period event if A/UX is running. Otherwise, the code checks the what field
for a key-down event. If it finds a key-down event, it then checks the message field
to determine whether the user pressed the period key and checks the modifiers
field to determine whether the user also pressed the Command key. If it finds the
Command-period combination, it sets the foundEvent variable to TRUE and returns
this value. Otherwise, it looks at the next entry in the queue and continues to search the
queue until it either finds a Command-period event or reaches the end of the queue.

Listing 2-8 Scanning for a Command-period event

FUNCTION UserDidCancel: Boolean;

VAR

foundEvent: Boolean;

eventQPtr: EvQElPtr;

eventQHdr: QHdrPtr;

keyCode: LongInt;

isCmdKey: LongInt;

BEGIN

foundEvent := FALSE; {assume the event is not there}

{Check to see if the script has changed}

IF (gCurrentKeyScript <> GetEnvirons(smKeyScript)) THEN

MySetPeriodKeyCode; {set gPeriodKeyCode to match new script}

CHAPTER 2

Event Manager

Using the Event Manager 2-47

IF (GetAUXVersion > 0) THEN {if A/UX is running use this method}

foundEvent := MyCheckAUXEventQueue(gPeriodKeyCode, cmdKey)

ELSE

BEGIN {scan event queue}

eventQHdr := GetEvQHdr; {get the event queue header}

eventQPtr := EvQElPtr(eventQHdr^.qHead); {get first entry}

WHILE (eventQPtr <> NIL) AND (NOT(foundEvent)) DO

BEGIN {look for key-down event}

IF (eventQPtr^.evtQWhat = keyDown) THEN {found key-down event, }

BEGIN { look for Command-period}

keyCode := BAND(eventQPtr^.evtQMessage, keyCodeMask);

keyCode := BSR(keyCode, 8);

isCmdKey := BAND(eventQPtr^.evtQModifiers, cmdKey);

IF isCmdKey <> 0 THEN {Command key was pressed}

IF keyCode = gPeriodKeyCode THEN

foundEvent := TRUE; {key pressed was '.'}

END; {of found key-down}

IF (NOT foundEvent) THEN {go to next entry}

eventQPtr := EvQElPtr(eventQPtr^.qLink);

END; {of while}

END; {of scan event queue}

UserDidCancel := foundEvent; {return result of search}

END;

Responding to Update Events

The Event Manager reports update events to your application whenever one of your
application’s windows needs updating. Upon receiving an update event, your applica-
tion should update the contents of the specified window. Your application can call the
Window Manager procedure BeginUpdate , draw the window’s contents, and then call
EndUpdate when your application has finished updating the window’s contents.

Your application can also let the Window Manager automatically update the contents of
a window by supplying in the window record a handle to a picture that contains the
contents of the window. This technique is generally useful only for windows that contain
static information that doesn’t change or can’t be edited. For example, if your application
provides a window that always displays a picture of the earth, you can supply the
handle to the picture, and the Window Manager automatically updates the window as
needed, without sending your application an update event. In most cases, your
application needs to perform the update itself.

The Window Manager maintains an update region for each window. The Window
Manager keeps track of all areas in a window’s content region that need to be redrawn
and accumulates them in the window’s update region. When an application calls
WaitNextEvent or EventAvail (or GetNextEvent), the Event Manager checks to
see if any windows have an update region that is not empty. If so, the Event Manager

CHAPTER 2

Event Manager

2-48 Using the Event Manager

reports update events to the appropriate applications; any applications with windows
that require updating receive the necessary update events according to the normal
processing of events.

If more than one window needs updating, the Event Manager issues update events for
the frontmost window first. This means that updating of windows occurs in
front-to-back order, which is what the user expects.

When one of your application’s windows needs to be updated, the Window Manager
calls the window definition function of that window, requesting that it draw the window
frame. The Window Manager then generates an update event for that window. The
Event Manager reports any update events for your application’s windows to your
application, and your application should update the window contents as necessary.

In response to an update event, your application should first call the BeginUpdate
procedure. The BeginUpdate procedure temporarily replaces the visible region of the
window’s graphics port (that part of the window that is visible on the screen) with the
intersection of the visible region and update region of the window. The BeginUpdate
procedure then clears the update region of the window—preventing the update event
for this occurrence from being reported again.

After calling BeginUpdate , your application should draw the window’s contents,
either entirely or in part. You can draw either the entire content region or only the area in
the visible region. In either case, the Window Manager allows only what falls within the
visible region to be drawn on the screen. (Because the BeginUpdate procedure
intersects the visible region with the update region, the visible region at this point
corresponds to any visible parts of the old update region.)

The EndUpdate procedure restores the normal visible region of the window’s
graphics port.

Figure 2-11 shows how an application updates its windows. In this example, Window 1
partially covers Window 2. When the user moves Window 1 so that more of Window 2 is
exposed, the Window Manager requests the window definition function of the window
to update the window frame, and accumulates the area requiring updating in the update
region of the window.

When the application receives an update event for this window, the message field of the
event record contains a pointer to the window that needs updating. Your application can
call BeginUpdate , draw the window’s contents, and then call EndUpdate . This
completes the handling of the update event.

Your application can receive update events when it is in the foreground or in the
background. In the example shown in Figure 2-11, Window 1 and Window 2 could
belong to the same application or different applications. In either case, the Event
Manager reports an update event to the application whose window contents
need updating.

CHAPTER 2

Event Manager

Using the Event Manager 2-49

Figure 2-11 Responding to an update event for a window

Your application should respond to update events or at least call the BeginUpdate
procedure in response to an update event. If you do not call the BeginUpdate
procedure, your application continues to receive update events for the window (until
the update region is empty). You should always make sure that you match a call to
BeginUpdate with a call to EndUpdate . By calling the BeginUpdate and EndUpdate
procedures, you indicate to the Window Manager that you have updated the window
and handled the update event.

CHAPTER 2

Event Manager

2-50 Using the Event Manager

Listing 2-9 shows an example of an application-defined routine that responds to
update events.

Listing 2-9 Responding to update events

PROCEDURE DoUpdate (w indow: WindowPtr);

VAR

windowType : Integer;

BEGIN

{determine the type of window--document, modeless, etc . }

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

BeginUpdate(window) ;

MyDrawWindow(window);

EndUpdate(window);

END;

OTHERWISE

DoUpdateMyDialog(window);

END; {of CASE}

END;

The DoUpdate procedure in Listing 2-9 first determines if the window is a document
window or a modeless dialog box. The MyGetWindowType function is an
application-defined routine that returns the kMyDocWindow constant if the window is a
document window and returns other application-defined constants if the window is a
modeless dialog box.

If the window is a document window, the procedure does all its drawing of the window
within calls to the BeginUpdate and EndUpdate procedures. The application-defined
routine MyDrawWindow performs the actual updating of the document window
contents. See the chapter “Window Manager” in this book for code that shows the
MyGetWindowType and MyDrawWindow routines.

If the window is a modeless dialog box, the code calls the application-defined
DoUpdateMyDialog procedure to update the contents of the dialog box. See the chapter
“Dialog Manager” in this book for details on handling update events in dialog boxes.

Responding to Activate Events

When several windows belonging to your application are open, you should allow the
user to switch from one window to another by clicking in the appropriate window. To
implement this, whenever your application receives a mouse-down event, you should

CHAPTER 2

Event Manager

Using the Event Manager 2-51

first determine whether the user clicked in another window by using the Window
Manager function FindWindow ; if so, you can use the Window Manager procedure
SelectWindow to generate the necessary activate events.

Before returning to your application and before your application receives any events
relating to this occurrence, the SelectWindow procedure does some work for you, such
as removing the highlighting from the window to be deactivated and highlighting the
newly activated window. At your application’s next request for an event, the Event
Manager returns an activate event.

An activate event indicates the window involved and whether the window is being
activated or deactivated. Your application should perform any other actions needed to
complete the action of the window becoming active or inactive. For example, when a
window becomes active, your application should show any scroll bars and restore
selections as necessary.

Your application typically receives an activate event (with a flag that indicates the
window should be deactivated) for the window being deactivated, followed by an
activate event for the window becoming active.

Activate events are not placed into the Operating System event queue but are sent
directly to the Event Manager.

Figure 2-12 on the next page shows two documents belonging to the same application,
with Window 1 the active window. When the user clicks in Window 2, your application
receives a mouse-down event and can use the FindWindow function to determine
whether the mouse location is in an inactive window. If so, your application should call
the SelectWindow procedure. The SelectWindow procedure removes highlighting
of Window 1, highlights Window 2, and generates activate events for both of these
occurrences. The Event Manager reports the activate events one at a time to your
application; in this example, the first activate event indicates that Window 1 should be
deactivated. Your application should hide the scroll bars and remove the highlighting
from any selections as necessary.

The next activate event indicates that Window 2 should be activated. Your application
should show the scroll bars and restore any selections as necessary. If the window needs
updating as a result of being activated, the Event Manager sends your application an
update event so that your application can update the window contents.

Your application also needs to activate or deactivate windows in response to suspend
and resume events. If you set the acceptSuspendResumeEvents flag and the
doesActivateOnFGSwitch flag in your application’s ' SIZE' resource, your
application is responsible for activating or deactivating your application’s
windows in response to handling suspend and resume events. If you set the
acceptSuspendResumeEvents flag and do not set the doesActivateOnFGSwitch
flag, your application receives an activate event immediately following a suspend or
resume event. In most cases, you should set both the acceptSuspendResumeEvents
and doesActivateOnFGSwitch flags in your application’s ' SIZE' resource.

CHAPTER 2

Event Manager

2-52 Using the Event Manager

Figure 2-12 Responding to activate events for a window

CHAPTER 2

Event Manager

Using the Event Manager 2-53

The what field of an event record for an activate event contains the activateEvt
constant. The message field contains a pointer to the window being activated or
deactivated. The modifiers field contains additional information about the activate
event, along with information about the state of the modifier keys at the time the event
was posted. Your application can examine bit 0 of the modifiers field of the event
record to determine if the window should be activated or deactivated. Bit 0 of the
modifiers field is 1 if the window should be activated and 0 if the window should be
deactivated. You can use the activeFlag constant to test the state of this bit in the
modifiers field.

The when field of the event record contains the number of ticks since the system last
started up. The where field of the event record contains the location of the cursor at the
time the activate event occurred.

Upon receiving an activate event that indicates the window is being deactivated, your
application should hide any scroll bars and remove the highlighting from any selections
as necessary.

Upon receiving an activate event that indicates the window is becoming active, your
application should show any scroll bars, highlight any selections, and otherwise restore
the window to the state it was in when it was last active. For example, your application
should restore the insertion point to its previous position, and the document should be
scrolled to the position in which the user last left it. Your application should also adjust
its menus appropriately for the newly active window—adjusting the marks and enabled
state of menu items based on the state of the active window.

Listing 2-10 shows an application-defined procedure that responds to activate events.

Listing 2-10 Responding to activate events

PROCEDURE DoActivate (window: windowPtr; activate: Boolean;

 event: EventRecord);

VAR

growRect: Rect; {window's grow rectangle}

myData: MyDocRecHnd; {window's document record}

windowType: Integer;

BEGIN

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

HLock(Handle(myData));

WITH myData^^ DO

IF activate THEN {window is being activated}

CHAPTER 2

Event Manager

2-54 Using the Event Manager

BEGIN
{restore any selections or display caret}

MyRestoreSelection(window);
{adjust menus as appropriate for this document window}

MyAdjustMenus;
{activate any scroll bars}

vScrollBar^^.contrlVis := kControlVisible;
hScrollBar^^.contrlVis := kControlVisible;

{invalidate area of scroll bars to force update}
InvalRect(vScrollBar^^.contrlRect);

InvalRect(hScrollBar^^.contrlRect);
{invalidate area of size box, if any}

growRect := window^.portRect;
WITH growRect DO

BEGIN
top := bottom - kScrollbarAdjust;

left := right - kScrollbarAdjust;
END; {end of WITH growRect statement}

InvalRect(growRect);
END

ELSE {window is being deactivated}
BEGIN

{unhighlight selection (if any) or hide the caret}
MyHideSelection;

HideControl(vScrollBar); {hide any scroll bars}
HideControl(hScrollBar);

DrawGrowIcon(window); {change size box immediately}
END;

HUnLock(Handle(myData));
END; {end of kMyDocWindow}

kMyGlobalChangesID: {this window is a modeless dialog box }

{ for this app's Global Changes command}
MyDoActivateGlobalChangesDialog(window, event);

{handle other modeless dialog boxes as appropriate}
END; {of CASE}

END;

Listing 2-10 uses the application-defined function MyGetWindowType to determine
what type of window is involved with the activate event. If the window is a document
window, the DoActivate procedure uses the GetWRefCon function to get a handle
to the window’s document record. (The DoActivate procedure, and other application-
defined routines, maintain information about the document associated with a window
in a document record; the application stores a handle to the document record as the
window’s reference constant value when it creates a new window. See the chapter
“Window Manager” in this book for information on defining a document record.)

CHAPTER 2

Event Manager

Using the Event Manager 2-55

If the document window should be activated, the code calls an application-defined
routine, MyRestoreSelection . Your application should restore any selection or
display the caret as appropriate. For example, if your application uses TextEdit to
display text in the content area of windows, you can call the TextEdit procedure
TEActivate to restore any selection or display a caret at the insertion point. The
DoActivate procedure then calls another application-defined procedure,
MyAdjustMenus , to adjust the menus as appropriate for the document window. (See
the chapter “Menu Manager” for a listing of the MyAdjustMenus procedure.) After
restoring any selections and adjusting its menus, the code shows the scroll bars and size
box of the window being activated. It does this by invalidating the area of the scroll bars
and size box, accumulating these areas into the update region. This causes an update
event to be generated. The application redraws its controls as appropriate in response to
update events.

If the document window should be deactivated, the code in Listing 2-10 unhighlights
the selection and hides the caret by calling the application-defined procedure
MyHideSelection . The code then hides the scroll bars and size box of the
deactivated window.

If the window associated with the activate event is a modeless dialog box, for example, a
Global Changes modeless dialog box, the DoActivate procedure calls an
application-defined procedure to activate or deactivate the dialog box as needed. See the
“Dialog Manager” chapter in this book for information on handling activate events in
modeless dialog boxes.

Responding to Disk-Inserted Events

When your application uses the Standard File Package to allow the user to choose a file
to open or choose a location for storing a file, the Standard File Package responds to
disk-inserted events for your application while interacting with the user. In most cases, if
your application receives an unexpected disk-inserted event, it can simply check to see if
the disk was successfully mounted and use the Disk Initialization Manager function
DIBadMount to notify the user if the disk was not successfully mounted.

When the user inserts a disk, the Operating System attempts to mount the volume on the
disk by calling the File Manager function PBMountVol . If the volume is successfully
mounted, an icon representing the disk appears on the desktop. The Operating System
Event Manager then generates a disk-inserted event. If the user is interacting with a
standard file dialog box, the Standard File Package intercepts the disk-inserted event and
handles it. Otherwise, the event is left in the event queue for your application to retrieve.
The Desk Manager also intercepts and handles disk-inserted events if a desk accessory is
in front.

Usually your application should handle and not mask out disk-inserted events. The user
might insert a disk at any time and expects to be warned if the disk is uninitialized or
damaged. If your application receives a disk-inserted event and the volume was
successfully mounted, your application usually does not need to take any further action.
However, if the volume was not successfully mounted, then your application should
give the user a chance to initialize or eject the uninitialized or damaged disk.

CHAPTER 2

Event Manager

2-56 Using the Event Manager

If you do mask out disk-inserted events, the event stays in the Operating System event
queue until your application calls the Standard File Package or until an application that
does handle disk-inserted events becomes the foreground process. This situation can be
confusing to the user, so your application should handle disk-inserted events at the time
that they occur.

If the volume was successfully mounted and your application either does not use the
Standard File Package or prompts the user to insert a disk, then you can choose to
respond to disk-inserted events in whatever way is appropriate for your application.

The Dialog Manager procedure ModalDialog masks out disk-inserted events. (The
Standard File Package changes the mask in order to receive disk-inserted events.) If one
of your application’s modal dialog boxes needs to respond to disk-inserted events, then
you can change the event mask from within the event filter function that you supply as
one of the parameters to ModalDialog . Otherwise, your application can respond to the
disk-inserted event after the user dismisses the modal dialog box.

The what field of the event record contains the diskEvt constant to indicate a
disk-inserted event. The message field contains the drive number in the low-order word
and the result code from the PBMountVol function in the high-order word. Your
application can examine the high-order word to determine if the attempt to mount the
volume was successful. If the volume was not successfully mounted, your application
can notify the user using the Disk Initialization Manager function DIBadMount . If the
volume was successfully mounted, your application can use the drive number returned
in the low-order word for accessing the disk.

Listing 2-11 shows a procedure that handles disk-inserted events. If the disk was not
successfully mounted, the procedure notifies the user using the DIBadMount function.
Otherwise, it does not take any action. See the chapter “Disk Initialization Manager”
in Inside Macintosh: Files for information on the routines provided by the Disk
Initialization Manager.

Listing 2-11 Responding to disk-inserted events

PROCEDURE DoDiskEvent (event: EventRecord);

VAR

t hisPoint : Point;

myErr : OSErr;

BEGIN

IF HiWord(event.message) <> noErr THE N

BEGIN {attempt to mount was unsuccessful }

DILoad; {load Disk Initializatio n Manager}

SetPt(thisPoint, 120, 120);

{notify the user }

myErr := DIBadMount(thisPoint, event.message) ;

DIU nlo ad; {unload Disk Initializatio n Manager}

END

CHAPTER 2

Event Manager

Using the Event Manager 2-57

ELSE {attempt to mount was successfu l}

; {r ecord the drive number or do other processing}

END;

Responding to Null Events

When the Event Manager has no other events to report, it returns a null event. The
WaitNextEvent function reports a null event by returning a function result of FALSE
and setting the what field of the returned event record to nullEvt . (The EventAvail
and GetNextEvent functions also return null events in this manner.)

When your application receives a null event, it can perform idle processing. Your
application should do minimum processing in response to a null event, so that other
processes can use the CPU and so that the foreground process (or your application, if
it is in the foreground) can respond promptly to the user.

For example, if your application receives a null event and it is in the foreground, it can
make the caret blink in the active window.

If your application receives a null event in the background, it can perform tasks or do
other processing while in the background. However, your application should not
perform any tasks that would slow down the responsiveness of the foreground process.
Your application also should not interact with the user if it is in the background.

If you don’t want your application to receive null events when it is in the background,
set the cannotBackground flag in your application’s ' SIZE' resource.

Listing 2-12 shows a procedure that performs idle processing in response to a null event.
If the application is not in the background and the active window is a document
window, this code calls the TextEdit procedure TEIdle . The TEIdle procedure makes a
blinking caret appear at the insertion point in the text referred to by the edit record. (This
application uses TextEdit to display text in its document windows; if you don’t use
TextEdit for your document windows, provide your own routine to blink the caret.) If
the active window is a modeless dialog box, the DoIdle procedure calls the Dialog
Manager function DialogSelect to blink the caret in any editable text item of the
dialog box.

Listing 2-12 Handling null events

PROCEDURE DoIdle (event: EventRecord) ;

VAR

window : WindowPtr ;

myData: MyDocRecHnd;

windowType : Integer;

itemHit: Integer ;

result: Boolean;

CHAPTER 2

Event Manager

2-58 Using the Event Manager

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc . }

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

IF (NOT gInBackgroun d) THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

TEIdle (myData^^.editRec);

END;

kMyGlobalChangesID:

result := DialogSelect(event, window, itemHit);

END; {of CASE}

END;

Handling Operating-System Events
Operating-system events include suspend, resume, and mouse-moved events. Your
application receives suspend and resume events as a result of changes in its processing
status. Your application can request that the Event Manager return mouse-moved events
whenever the cursor is outside a specified region by specifying a nonempty region in
the mouseRgn parameter to WaitNextEvent . If you specify an empty region or a NIL
region handle in the mouseRgn parameter, the Event Manager does not report mouse-
moved events.

Your application examines the event record to determine which event it received and to
obtain additional information associated with the event.

The what field in the event record of an operating-system event contains the
osEvt constant.

The message field in the event record of an operating-system event contains
information indicating whether the event is a suspend, resume, or mouse-moved event.
The message field also indicates whether Clipboard conversion is required when the
application resumes execution. The bits in the message field give this information:

Bi t Contents

0 0 if a suspend event

1 if a resume event

1 0 if Clipboard conversion not required

1 if Clipboard conversion required

2–23 Reserved

24–31 suspendResumeMessage if a suspend or resume event
mouseMovedMessage if a mouse-moved event

CHAPTER 2

Event Manager

Using the Event Manager 2-59

Note that you need to examine bits 24–31 of the message field to determine what kind
of operating-system event you have received. Bits 24–31 in the message field contain
one of these two constants:

CONSTsuspendResumeMessage = $01; {suspend or resume event}

mouseMovedMessage = $FA; {mouse-moved event}

If the event is a suspend or resume event, you need to examine bit 0 to determine
whether that event is a suspend or resume event. Bits 0 and 1 are meaningful only if bits
24–31 indicate that the event is a suspend or resume event. You can use the resumeFlag
constant to determine whether the event is a suspend or resume event. If the event is a
resume event, you can use the convertClipboardFlag constant to determine whether
Clipboard conversion from the Clipboard to your application’s scrap is required:

CONSTresumeFlag = 1; {resume event}

convertClipboardFlag = 2; {Clipboard conversion required}

Whenever the user performs a copy or cut operation, your application should copy the
selected data either to its private scrap or, if your application doesn’t have a private
scrap, to the Clipboard. If your application uses a private scrap, you need to convert the
data from your private scrap to the Clipboard whenever your application receives a
suspend event. Likewise, you need to convert any data from the Clipboard (if it has
changed) when your application receives a resume event. For resume events, the value
of bit 1 of the message field is 1 if your application needs to read in the new contents of
the Clipboard.

Listing 2-13 shows a procedure that responds to operating-system events.

Listing 2-13 Responding to operating-system events

PROCEDURE DoOSEvent (event: EventRecord) ;

BEGIN

CASE BAnd(BRotL(event.message, 8), $FF) OF {get high byte}

mouseMovedMessage:

DoIdle (event) ; {mouse-moved same as idle for this app}

suspendResumeMessage:

DoSuspendResumeEvent(event);{handle supend/resume event}

END;

END;

The DoOSEvent procedure in Listing 2-13 is called from the DoEvent procedure (shown
in Listing 2-3 on page 2-26) whenever the application receives an operating-system
event. The DoOSEvent procedure examines the high byte of the message field to
determine whether the event is a mouse-moved, suspend, or resume event, and it then
calls an application-defined procedure to handle the event. Note that most applications
either adjust the cursor in response to mouse-moved events or adjust the cursor in their
event loop whenever any type of event is received. The code in this chapter uses the

CHAPTER 2

Event Manager

2-60 Using the Event Manager

latter approach, and thus the DoOSEvent procedure simply calls its DoIdle procedure
in response to mouse-moved events. The next two sections show the code that handles
suspend, resume, and mouse-moved events.

Responding to Suspend and Resume Events

The WaitNextEvent function returns a suspend event when your application is about
to be switched to the background. WaitNextEvent returns a resume event when your
application becomes the foreground process again.

Upon receiving a suspend event, your application should deactivate the front window,
remove the highlighting from any selections, and hide any floating windows. Your
application should also convert any private scrap into the global scrap, if necessary.
If your application shows a window that displays the Clipboard contents, you should
hide this window also, as the user might change the contents of the Clipboard before
returning to your application. Your application can also do anything else necessary to
get ready for a major switch. Then your application should call WaitNextEvent to
relinquish the processor and allow the Operating System to schedule other processes
for execution.

Upon receiving a resume event, your application should activate the front window and
restore any windows to the state the user left them in at the time of the previous suspend
event. For example, your application should show scroll bars, restore any selections that
were previously in effect, and show any floating windows. Your application should copy
the contents of the Clipboard and convert the data back to its private scrap, if necessary.
If your application shows a window that displays the Clipboard contents, you can
update the contents of the window after reading in the scrap. Your application can then
resume interacting with the user.

Responding to a suspend or resume event usually involves activating or deactivating
windows. If you set the acceptSuspendResumeEvents flag and the
doesActivateOnFGSwitch flag in your application’s 'SIZE' resource, your
application is responsible for activating or deactivating your application’s windows
in response to handling suspend and resume events.

Note

If you set the acceptSuspendResumeEvents flag and do not set the
doesActivateOnFGSwitch flag in your application’s 'SIZE'
resource, your application receives an activate event immediately
following a suspend or resume event. In most cases, you should set both
the acceptSuspendResumeEvents and doesActivateOnFGSwitch
flags in your application’s 'SIZE' resource. ◆

Your application can use the Scrap Manager functions InfoScrap , ZeroScrap ,
PutScrap , and GetScrap to read data from and write data to the Clipboard.
See the chapter “Scrap Manager” in Inside Macintosh: More Macintosh Toolbox for
additional details.

CHAPTER 2

Event Manager

Using the Event Manager 2-61

Note
If your application does not handle suspend and resume events (as
indicated by a flag in its ' SIZE' resource), then the Operating System
has to trick your application into performing scrap coercion to ensure
that the contents of the Clipboard can be transferred from one applica-
tion to another. This process adds to the time it takes to move the
foreground application to the background and vice versa. ◆

Listing 2-14 shows a procedure that responds to suspend and resume events. The
DoSuspendResumeEvent procedure first gets a pointer to the front window using
the Window Manager function FrontWindow . It then examines bit 0 of the message
field of the event record to determine whether the event is a suspend or resume event.
If the event is a resume event, the code examines bit 1 of the message field of the
event record to determine whether it needs to read in the contents of the scrap. If so,
the code calls an application-defined routine, MyConvertScrap , that reads in the
scrap and converts the contents to its private scrap. It then sets a private global flag,
gInBackground , to FALSE, to indicate that the application is not in the background. It
then calls another application-defined routine, DoActivate (shown in Listing 2-10), to
activate the application’s front window.

For suspend events, the DoSuspendResumeEvent procedure calls the
application-defined MyConvertScrap procedure to copy the contents of its private
scrap to the global scrap. It then sets a private global flag, gInBackground , to TRUE, to
indicate that the application is in the background. Finally, it calls another
application-defined routine to deactivate the application’s front window.

Listing 2-14 Responding to suspend and resume events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWindow: WindowPtr;

BEGIN {handle suspend/resume event}

currentFrontWindow := FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event}

IF (BAnd(event.message, convertClipboardFlag) <> 0) THEN

MyConvertScrap(kClipboardToPrivate);

gInBackground := FALSE;

{activate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

MyShowClipboardWindow; {show Clipboard window if it was }

{ showing at last suspend event}

MyShowFloatingWindows; {show any floating windows}

END

ELSE

CHAPTER 2

Event Manager

2-62 Using the Event Manager

BEGIN {it's a suspend event}

MyConvertScrap(kPrivateToClipboard);

gInBackground := TRUE;

{deactivate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

MyHideClipboardWindow; {hide Clipboard window if showing}

MyHideFloatingWindows; {hide any floating windows}

END;

END;

Your application can receive processing time while in the background and perform tasks
in the background, but your application should not interact with the user or perform
tasks that would slow down the responsiveness of the foreground process.

If you need to notify the user of some special occurrence while your application is
executing in the background, you should use the Notification Manager to queue a
notification request. See the chapter “Notification Manager” in Inside Macintosh:
Processes for examples of how to post notification requests.

Responding to Mouse-Moved Events

Whenever the user moves the mouse, the mouse driver, the Event Manager, and your
application are responsible for providing feedback to the user. The mouse driver
performs low-level functions, such as continually polling the mouse for its location and
status and maintaining the current location of the mouse in a global variable.

As the user moves the mouse, the user expects the cursor to move to a corresponding
relative location on the screen. The low-level interrupt routines of the mouse driver map
the movement of the mouse to relative locations on the screen. Whenever the user moves
the mouse, a low-level interrupt routine of the mouse driver moves the cursor displayed
on the screen and aligns the hot spot of the cursor with the new mouse location. A hot
spot is a point that the mouse driver uses to align the cursor with the mouse location.

Your application is responsible for setting the initial appearance of the cursor, for
restoring the cursor after WaitNextEvent returns, and for changing the appearance of
the cursor as appropriate for your application. For example, most applications set the
cursor to the I-beam when the cursor is inside a text-editing area of a document, and
change the cursor to an arrow when the cursor is inside the scroll bar of a document.
Your application can achieve this effect by requesting that the Event Manager report
mouse-moved events if the user moves the cursor out of a region you specify in the
mouseRgn parameter to the WaitNextEvent function.

The mouse driver and your application control the shape and appearance of the cursor.
A cursor can be any 256-bit image, defined by a 16-by-16 bit square. The mouse driver
displays the current cursor, which your application can change by using various cursor-
handling routines (for example, the SetCursor procedure).

Figure 2-13 shows the standard arrow cursor. You can initialize the cursor to the
standard arrow cursor using the InitCursor procedure. In Figure 2-13, the hot spot
for the arrow cursor is at location (1,1). See Inside Macintosh: Imaging for information on

CHAPTER 2

Event Manager

Using the Event Manager 2-63

the cursor-handling routines and for specific details of how your application can define
its own cursors.

Figure 2-13 The standard arrow cursor

Figure 2-14 shows four other common cursors that are available to your application: the
I-beam, crosshairs, plus sign, and wristwatch cursors.

Figure 2-14 The I-beam, crosshairs, plus sign, and wristwatch cursors

The I-beam, crosshairs, plus sign, and wristwatch cursors are defined as resources,
and your application can get a handle to any of these cursors by specifying their
corresponding resource IDs to the GetCursor function. These constants specify the
resource IDs for the I-beam, crosshairs, plus sign, and wristwatch cursors:

CONSTiBeamCursor = 1; {used in text editing}
crossCursor = 2; {often used for manipulating graphics}
plusCursor = 3;{often used for selecting fields in }

 { an array}
watchCursor = 4; {used to mean a lengthy operation }

 { is in progress}

CHAPTER 2

Event Manager

2-64 Using the Event Manager

You can change the appearance of the cursor using the SetCursor procedure or other
cursor-handling routines. You can also define your own cursors, store them in resources,
and use them as needed in your application.

Your application usually needs to change the shape of the cursor as the user moves the
cursor to different areas within a document. Your application can use mouse-moved
events to accomplish this. Your application also needs to adjust the cursor in response to
resume events. Most applications adjust the cursor once through the event loop in
response to almost all events.

You can request that the Event Manager report mouse-moved events whenever
the cursor is outside of a specified region that you pass as a parameter to the
WaitNextEvent function. If you specify an empty region or a NIL handle to
the WaitNextEvent function, WaitNextEvent does not report mouse-moved events.

If you specify a nonempty region in the mouseRgn parameter to the WaitNextEvent
function, WaitNextEvent returns a mouse-moved event whenever the cursor is out of
this region. For example, Figure 2-15 shows a document window. An application might
define two regions: a region that encloses the text area of a window (the I-beam region),
and a region that defines the scroll bars and all other areas outside the text area (the
arrow region). By specifying the I-beam region to WaitNextEvent , the mouse driver
continues to display the I-beam cursor until the user moves the cursor out of this region.

Figure 2-15 The arrow region and the I-beam region

When the user moves the cursor out of the I-beam region, WaitNextEvent reports a
mouse-moved event. Your application can then change the I-beam cursor to the arrow
cursor and change the mouseRgn parameter to the area defined by the scroll bars and
all other areas outside of the I-beam region. The cursor now remains an arrow until the
user moves the cursor out of this region, at which point your application receives a
mouse-moved event.

Figure 2-16 shows how an application might change the cursor from the I-beam cursor to
the arrow cursor after receiving a mouse-moved event.

CHAPTER 2

Event Manager

Using the Event Manager 2-65

Figure 2-16 Changing the cursor from the I-beam cursor to the arrow cursor

Note that your application should recalculate the mouseRgn parameter when it receives
a mouse-moved event; otherwise, it will continue to receive mouse-moved events as
long as the cursor position is outside the original region.

After receiving any event other than a high-level event, the MyEventLoop procedure
(shown in Listing 2-2 on page 2-24) calls the application-defined procedure
MyAdjustCursor to adjust the cursor. After adjusting the cursor, if the event is an
operating-system event, the DoEvent procedure calls the DoOSEvent procedure. The
DoOSEvent procedure calls the DoIdle procedure for mouse-moved events. The
DoIdle procedure simply calls TEIdle to blink the caret in the text-editing window.

Listing 2-15 shows the application-defined routine MyAdjustCursor .

Listing 2-15 Changing the cursor

PROCEDURE MyAdjustCursor (mouse: Point; VAR region: RgnHandle);

VAR

window: WindowPtr;

arrowRgn: RgnHandle;

iBeamRgn: RgnHandle;

iBeamRect: Rect;

myData: MyDocRecHnd;

windowType: Integer;

BEGIN

window := FrontWindow;

{determine the type of window--document, modeless, etc.}

windowType := MyGetWindowType(window);

CASE windowType OF

kMyDocWindow:

CHAPTER 2

Event Manager

2-66 Using the Event Manager

BEGIN

{initialize regions for arrow and I-beam}

arrowRgn := NewRgn;

ibeamRgn := NewRgn;

{set arrow region to large region at first}

SetRectRgn(arrowRgn, -32768, -32768, 32766, 32766);

{calculate I-beam region}

{first get the document's TextEdit view rectangle}

myData := MyDocRecHnd(GetWRefCon(window));

iBeamRect := myData^^.editRec^^.viewRect;

SetPort(window);

WITH iBeamRect DO

BEGIN

LocalToGlobal(topLeft);

LocalToGlobal(botRight);

END;

RectRgn(iBeamRgn, iBeamRect);

WITH window^.portBits.bounds DO

SetOrigin(-left, -top);

{intersect I-beam region with window's visible region}

SectRgn(iBeamRgn, window^.visRgn, iBeamRgn);

SetOrigin(0,0);

{calculate arrow region by subtracting I-beam region}

DiffRgn(arrowRgn, iBeamRgn, arrowRgn);

{change the cursor and region parameter as necessary}

IF PtInRgn(mouse, iBeamRgn) THEN {cursor is in I-beam rgn}

BEGIN

SetCursor(GetCursor(iBeamCursor)^^); {set to I-beam}

CopyRgn(iBeamRgn, region); {update the region param}

END;

{update cursor if in arrow region}

IF PtInRgn(mouse, arrowRgn) THEN {cursor is in arrow rgn}

BEGIN

SetCursor(arrow); {set cursor to the arrow}

CopyRgn(arrowRgn, region); {update the region param}

END;

DisposeRgn(iBeamRgn);

DisposeRgn(arrowRgn);

END; {of kMyDocWindow}

CHAPTER 2

Event Manager

Using the Event Manager 2-67

kMyGlobalChangesID:

MyCalcCursorRgnForModelessDialogBox(window, region);

kNil:

BEGIN

MySetRegionNoWindows(kNil, region);

SetCursor(arrow);

END;

 END; {of CASE}

END;

The MyAdjustCursor procedure sets the cursor appropriately, according to whether a
document window or modeless dialog box is active.

For a document window, the code in Listing 2-15 defines two regions, specified by
the arrowRgn and iBeamRgn variables. If the cursor is inside the region described
by the arrowRgn variable, the code sets the cursor to the arrow cursor and returns the
region described by arrowRgn . Similarly, if the cursor is inside the region described
by the iBeamRgn variable, the code sets the cursor to the I-beam cursor and returns
the region described by iBeamRgn .

The MyAdjustCursor procedure calculates the two regions by first setting the arrow
region to the largest possible region. It then sets the I-beam region to the region
described by the document’s TextEdit view rectangle. This region typically corresponds
to the content area of the window minus the scroll bars. (If your application doesn’t
use TextEdit for its document window, then set this region as appropriate to your
application.) The code then adjusts the I-beam region so that it includes only the part of
the content area that is in the window’s visible region (for example, to take into account
any floating windows that might be over the window). The code then sets the arrow
region to include the entire screen except for the region occupied by the I-beam region.

The procedure then determines which region the cursor is in and sets the cursor and
region parameter appropriately.

For modeless dialog boxes (for example, the Global Changes modeless dialog box), the
MyAdjustCursor procedure calls an application-defined routine to appropriately
adjust the cursor for the modeless dialog box. The MyAdjustCursor procedure also
appropriately adjusts the cursor if no windows are currently open.

Handling High-Level Events
High-level events provide a means of communication between applications. Apple
events are high-level events that follow the Apple Event Interprocess Messaging Protocol
(AEIMP). In most cases, you should use Apple events rather than define your own
high-level events if you wish to communicate with other applications. If you plan to use
Apple events, see Inside Macintosh: Interapplication Communication for specific information
on Apple events, and refer to this section for specific details about how the Event
Manager reports high-level events.

CHAPTER 2

Event Manager

2-68 Using the Event Manager

To receive high-level events, you must set the appropriate flags in your application’s
' SIZE' resource. You must set the isHighLevelEventAware flag if your application
is to receive any high-level events. You must set the localAndRemoteHLEvents
flag for your application to receive high-level events sent from another computer on
the network. In addition, to receive high-level events from another computer, your
application must be shared and Program Linking must be enabled. The user shares your
application by selecting your application in the Finder and choosing Sharing from the
File menu and enables Program Linking from the Sharing Setup control panel.

If you set the isHighLevelEventAware flag in your application’s ' SIZE' resource,
your application receives the Finder information in the form of Apple events. The Finder
information is the information your application can use to determine which files to open
or print. Your application must respond to the required Apple events (Open Application,
Open Documents, Print Documents, and Quit Application) that are sent by the Finder if
your application sends or receives high-level events.

The what field in the event record of a high-level event contains the kHighLevelEvent
constant.

To determine the type of high-level event received, your application needs to examine
the message and where fields of the event record. For high-level events, these two
fields of the event record have special meanings.

The message field and the where field of the event record together define the specific
type of high-level event received. Your application should interpret these fields as
having the data type OSType, not LongInt or Point .

The message field contains the event class of the high-level event. For example, Apple
events sent by the Edition Manager have the event class 'sect '. You can define your own
group of events that are specific to your application. If you have registered your
application signature with Apple Computer, Inc., then you can use your signature to
define the class of events that belong to your application. Note, however, that Apple
reserves the use of all event classes whose names contain only lowercase letters and
nonalphabetic characters.

For high-level events, the where field in the event record contains a second message
specifier, called the event ID. The event ID defines the particular type of event (or
message) within the class of events defined by the event class. For example, the Section
Read event sent by the Edition Manager has event class 'sect ' and event ID 'read '. The
Open Documents event sent by the Finder has event class 'aevt ' and event ID 'odoc '.
You can define your own set of event IDs corresponding to your own event class. For
example, if the message field contains 'biff ' and the where field contains 'cmd1', then
the high-level event indicates the type of event defined by 'cmd1' within the class of
events defined by the application with the signature 'biff '.

Note

If your application supports Apple events, you can call the
AEProcessAppleEvent function to determine the type of Apple event
received, rather than examining the message and where fields. ◆

CHAPTER 2

Event Manager

Using the Event Manager 2-69

Note that because the where field of an event record for a high-level event is used to
select a specific kind of event (within the class determined by the message field),
high-level event records do not contain the mouse location at the time of the event. You
should not interpret the where field before interpreting the what field because different
event classes can contain overlapping sets of event IDs.

Unlike low-level events and operating-system events, high-level events may not be
completely determined by the event record returned to your application when it calls
WaitNextEvent . For example, you might still need to know which other application
sent you the high-level event or what additional data that application wants to send you.
Your application can obtain this further information about the high-level event by calling
the AcceptHighLevelEvent function. The additional information associated with a
high-level event includes

■ the identity of the sender of the event
■ a unique number that identifies the request associated with the event or associates the

particular event with a request from a previous event
■ the address and length of a data buffer that can contain optional data

To obtain this additional information, your application must call
AcceptHighLevelEvent before calling WaitNextEvent again. By convention,
calling AcceptHighLevelEvent indicates that your application intends to process
the high-level event.

To accept an Apple event, call the AEProcessAppleEvent function instead of
the AcceptHighLevelEvent function. The Apple Event Manager also extracts
any additional information associated with the Apple event at your application’s
request. This chapter discusses how to accept high-level events using the
AcceptHighLevelEvent function; for information on the AEProcessAppleEvent
function, see Inside Macintosh: Interapplication Communication .

Responding to Events From Other Applications

You can identify high-level events by the value in the what field of the event record. The
message and where fields further classify the type of high-level event. Your application
can choose to recognize as many events as are appropriate. Some high-level events may
be fully specified by their event record only, while others may include additional
information in an optional buffer. To get that additional information or to find the sender
of the event, use the AcceptHighLevelEvent function.

Note

To respond to an Apple event, use the Apple Event Manager, as
described in Inside Macintosh: Interapplication Communication. ◆

Listing 2-16 on the next page illustrates how to respond to a high-level event.

The DoHighLevelEvent procedure in Listing 2-16 first determines the type of high-
level event received by checking the message and where fields of the event record. It
then uses AcceptHighLevelEvent to get any additional data associated with the
event. This particular application recognizes only one type of high-level event. If the
event is not of this type, the code assumes that the event is an Apple event and calls
AEProcessAppleEvent to handle the event.

CHAPTER 2

Event Manager

2-70 Using the Event Manager

In general, you cannot know in advance how big the optional data buffer is, so you can
allocate a zero-length buffer and then resize it if the call to AcceptHighLevelEvent
returns the bufferIsSmall result code.

Listing 2-16 Accepting a high-level event

PROCEDURE DoHighLevelEvent (event: EventRecord);

VAR

myTarg: TargetID; {target ID record}

myRefCon: LongInt;

myBuff: Ptr;

myLen: LongInt;

myErr: OSErr ;

BEGIN

IF (event.message = LongInt(kMySpecialHLEventClass)) AND

(LongInt(e vent.where) = L ongInt(kMySpecialHLEventID)) THEN

BEGIN

{it's a high-level event that doesn't use AEIMP}

myLen := 0; {start with a 0-byte buffer}

myBuff := NIL;

myErr:=AcceptHighLevelEvent(myTarg,myRefCon, myBuff, myLen);

IF myErr = bufferIsSmall THE N

BEGIN

myBuff := NewPtr(myLen); {allocate needed storage}

myErr := AcceptHighLevelEvent(myTarg, myRefCon, myBuff,

 myLen);

IF myErr = noErr THEN

; {perform any action requested by the event }

END;

IF myErr <> noErr THEN

DoError(myErr); {perform the necessary error handling}

END

ELSE

BEGIN {otherwise, assume that the event is an Apple event}

myErr := AEProcessAppleEvent(event);

IF myErr <> noErr THEN

DoError(myErr); {perform the necessary error handling}

END;

END;

The AcceptHighLevelEvent function returns additional information and data
associated with the event. The ID of the sender of the event is returned in the first
parameter, which is a target ID record. You can inspect the fields of that record to
determine which application sent the event. The target ID record contains the session

CHAPTER 2

Event Manager

Using the Event Manager 2-71

reference number that identifies the connection with the other application as well as the
port name and location name of the sender. If the high-level event requires that you
return information, you can use the information returned in the target ID record to
send an event back to the requesting application. See “Determining the Sender of a
High-Level Event” on page 2-72 and “Sending High-Level Events” on page 2-73 for
specific information on the target ID record.

The second parameter to AcceptHighLevelEvent , the reference constant parameter, is
a unique number that identifies the request associated with the event or identifies that
the particular event is related to a request from a previous event. If you send a response
to this event, you should use the same value for the reference constant so that the sender
of the event can associate the reply with the original request.

The third parameter points to any additional data associated with the event. Any data
in this additional buffer is defined by the particular high-level event. On input, the
fourth parameter to AcceptHighLevelEvent , the length parameter, contains the
size of the buffer. If no error occurs, on output the length parameter contains the size
of the message accepted. If the AcceptHighLevelEvent function returns the result
code bufferIsSmall , the length parameter contains the size of the message yet to
be received.

Searching for a Specific High-Level Event

Sometimes you do not want to accept the next available high-level event pending for
your application. Instead, you might want to select one event from among all the
high-level events in your application’s high-level event queue. For example, you might
want to look for a return receipt for a high-level event you previously posted before
processing other high-level events.

You can select a specific high-level event by calling the GetSpecificHighLevelEvent
function. One of the parameters you pass to this function is a filter function that you
provide. Your filter function should examine an event in your application’s high-level
event queue and determine whether it is the kind of event you wish to receive. If it is,
your filter function returns TRUE. This indicates that your filter function does not want
to inspect any more events. If the filter function finds an event of the desired type, it
should call AcceptHighLevelEvent to retrieve the event. When your function returns
TRUE, the GetSpecificHighLevelEvent function itself returns TRUE.

If your filter function returns FALSE for an event in the high-level event queue, then
GetSpecificHighLevelEvent looks at the next event in the high-level event queue
and executes your filter function. If the filter function returns FALSE for all the high-
level events in the queue, then GetSpecificHighLevelEvent itself returns FALSE to
your application.

Here’s how you declare the filter function whose address you pass to the
GetSpecificHighLevelEvent function:

FUNCTION MyFilter (yourDataPtr: Ptr;

 msgBuff: HighLevelEventMsgPtr ;

 s ender: TargetID): Boolean;

CHAPTER 2

Event Manager

2-72 Using the Event Manager

When your application calls GetSpecificHighLevelEvent , you pass it a parameter
that indicates the criteria your filter function should use to search for a specific event.
The GetSpecificHighLevelEvent function passes this information to your filter
function in the yourDataPtr parameter. The GetSpecificHighLevelEvent
function also provides your filter function with information about the event record of the
high-level event in the msgBuff parameter as well as information about the sender of
the high-level event in the sender parameter.

The msgBuff parameter contains a pointer to a high-level event message record that has
this structure:

TYPE HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength: Integer;

version: Integer;

reserved1: LongInt;

theMsgEvent: EventRecord;

userRefCon: LongInt;

postingOptions: LongInt;

msgLength: LongInt ;

END;

HighLevelEventMsgPtr = ^HighLevelEventMsg;

When you call GetSpecificHighLevelEvent and it executes your filter function for
a high-level event waiting in the high-level event queue, the fields of the high-level event
message record are filled in by the Event Manager. You can then compare the fields of
this record to the information in the yourDataPtr parameter to determine whether that
event suits your needs. For example, the yourDataPtr parameter might contain the
signature of a return receipt. You can test its value against the event class of the event
record contained in the theMsgEvent field of the high-level event message record.

Determining the Sender of a High-Level Event

When you receive a high-level event, part of the information returned by
AcceptHighLevelEvent is the identity of the sender of the event. You can use that
information to respond selectively to requests made by other applications or to find
which application to send any replies to. The information about the sender is provided
in the form of a target ID record, defined as follows:

TYPE TargetID =

RECORD

sessionID: LongInt; {session reference number}

name: PPCPortRec; {sender's port name}

location: LocationNameRec; {sender' s location name}

recvrName: PPCPortRec ; {reserved}

END;

CHAPTER 2

Event Manager

Using the Event Manager 2-73

The sessionID field corresponds to the session reference number created by the PPC
Toolbox. This is a 32-bit number that uniquely identifies a PPC Toolbox session (or
connection) with another application. The name and location fields contain the
sender’s port name and location name. If the sending application is on the same
computer as the receiving application, you can determine the sending application’s
process serial number by calling the GetProcessSerialNumberFromPortName
function.

Sending High-Level Events

You use the PostHighLevelEvent function to send a high-level event to another
application. When doing so, you need to provide six pieces of information:

■ an event record with the event class and event ID assigned appropriately

■ the identity of the recipient of the event

■ a unique number that identifies the communication associated with this
particular event

■ a data buffer that can contain optional data

■ the length of the data buffer

■ options determining how the event is posted

Note

To send an Apple event, use the Apple Event Manager function
AESend. The Apple Event Manager uses the Event Manager to post
Apple events. For information on posting Apple events, see Inside
Macintosh: Interapplication Communication. ◆

When you post a high-level event to an application on the same computer, you can
specify its recipient in one of four ways:

■ by port name and location name (specified in a target ID record)

■ by a session reference number

■ by the application’s creator signature

■ by a process serial number

To specify the recipient of a high-level event sent across a network, you can use only
the receiving application’s port name and location name or its session reference number.
You can use any of the four ways when sending high-level events to applications on the
local computer.

You specify the recipient of a high-level event in the receiverID parameter when you
use the PostHighLevelEvent function. To specify a port name and location name,
provide the address of a target ID record in the receiverID parameter. To specify a
process serial number, provide its address in the receiverID parameter. To specify a
session reference number, or signature, provide the data in the receiverID parameter.

When you are replying to a high-level event, it is easy to identify the recipient because
you can use the target ID record that you receive from AcceptHighLevelEvent , the

CHAPTER 2

Event Manager

2-74 Using the Event Manager

session reference number contained in that target ID record, or the process serial number
(if the receiving process is local). Note that replying by session reference number is
always the fastest way to respond to a high-level event.

When you are not replying to a previous event, you need to determine the identity of
the target application yourself. You can use one of several methods to do this. If the
target application is on the local computer, you can search for that application’s creator
signature or its process serial number by calling the GetProcessInformation
function. See the chapter “Process Manager” in Inside Macintosh: Processes for a detailed
explanation of the GetProcessInformation function and for examples of how to use
it to generate a list of process serial numbers of all open processes on the local computer.

If the application to which you want to send a high-level event is located on a remote
computer, you need to identify it either by its session reference number or by its port
name and location name. You can call the PPCBrowser function to let the user browse
for a specific port. You can call the IPCListPorts function to obtain a list of all ports
registered with the target PPC Toolbox. See the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication for an
explanation of both of these functions.

As just described, you can identify the recipient of the high-level event in one of four
ways. Listing 2-17 illustrates how to send a high-level event to an application on the
local computer using the application’s creator signature. In this example, an application
is sending a high-level event to the application with the creator signature of 'boff' .
The specific high-level event being sent is identified by the event class 'boff' and the
event ID 'cmd1' .

Listing 2-17 Posting a high-level event by application signature

PROCEDURE MyPostTest;
VAR

myEvent: EventRecord; {an event record}
myRecvID: OSType; {receiver ID}

myOpts: LongInt; {posting options}
myErr: OSErr;

BEGIN
myEvent.what := kHighLevelEvent;

myEvent.message := LongInt('boff'); {event class}
myEvent.where := Point(LongInt('cmd1')); {event ID}

{the receiver is identified by its signature and }
{ a return receipt is requested}

myOpts := receiverIDisSignature + nReturnReceipt;
myRecvID := 'boff'; {receiver's signature}

myErr := PostHighLevelEvent(myEvent, Ptr(myRecvID), 0, NIL, 0,
myOpts);

IF myErr <> noErr THEN
DoError(myErr);

END;

CHAPTER 2

Event Manager

Using the Event Manager 2-75

In this example of using the PostHighLevelEvent function, there is no additional data
to transmit, so the sending application provides NIL as the pointer to the data buffer and
sets the buffer length to 0. The myOpts variable specifies posting options.

Posting options are of two types: delivery options and options associated with the
receiverID parameter. You can specify one or more delivery options to indicate if you
want the other application to receive the event at the next opportunity and to indicate if
you want acknowledgment that the other application received the event. You use the
options associated with the receiverID parameter to indicate how you are specifying
the recipient of the event. To set the various posting options, use these constants:

CONSTnAttnMsg = $00000001; {give this message priority}
nReturnReceipt = $00000200; {return receipt requested}

receiverIDisTargetID = $00005000; {ID is port name and location name}
receiverIDisSessionID = $00006000; {ID is PPC session ref number}

receiverIDisSignature = $00007000; {ID is creator signature}
receiverIDisPSN = $00008000; {ID is process serial number}

When you specify the receiving application in the receiverID parameter, you can use
these constants to specify the receiver of the event by port name and location name,
session reference number, process serial number, or signature. Any of these specifications
allows you to send an event to another application on the local computer. For example,
in Listing 2-17 the myOpts variable indicates that the receiver is identified by its creator
signature, and the myRecvID variable contains the receiver’s creator signature. To send
events to an application on a remote computer, you can specify the recipient only by the
session reference number or by the port name and location name.

When you specify the receiver of the event by port name and location name, use the
receiverIDisTargetID constant in the posting options parameter and specify the
address of a target ID record in the receiverID parameter.

TYPE TargetID =
RECORD

sessionID: LongInt; {unused for posting}
name: PPCPortRec; {recipient's port name}

location: LocationNameRec; {recipient's port loc}
recvrName: PPCPortRec; {unused for posting}

END;

When you pass a target ID record, you need to specify only the name and location
fields. You can use the IPCListPorts function to list all of the existing port names
along with information on whether the port will accept authenticated service on the
computer specified by the location name. For information on how to use the
IPCListPorts function, see the chapter “Program-to-Program Communications
Toolbox” in Inside Macintosh: Interapplication Communication.

You can also use the PPCBrowser function to fill in a target ID record. Listing 2-18 on
the next page illustrates how to use the PPCBrowser function to post a high-level event.
In this example, the sending application wants to locate a dictionary application and
have the dictionary return the definition of a word to it.

CHAPTER 2

Event Manager

2-76 Using the Event Manager

Listing 2-18 Using the PPCBrowser function to post a high-level event

FUNCTION MyPostWithPPCBrowser (aTextPtr: Ptr; textlength: LongIn t): OSErr;

VAR

myHLEvent: EventRecord;

myErr: OSErr;

myNumTries: Integer;

myPortInfo: PortInfoRec;

myTarget: TargetID;

BEGIN

{use PPCBrowser to get the target}

myErr := PPCBrowser('Select an Application', 'Application', FALSE,

 myTarget.location, myPortInfo, NIL, '');

IF myErr = NoErr THEN

BEGIN

{copy port name into myTarget.name}

myTarget.name := myPortInfo.name;

myHLEvent.what := kHighLevelEvent;

myHLEvent.message := LongInt('Dict');

myHLEvent.where := Point(LongInt('Defn'));

{if a connection is broken, then sessClosedErr is returned to }

{ PostHighLevelEvent; to reestablish the connection, just post }

{ the event one more time}

myNumTries := 0;

REPEAT

myErr := PostHighLevelEvent(myHLEvent, @myTarget, 0, aTextPtr,

 textlength, receiverIDisTargetID);

myNumTries := myNumTries + 1;

UNTIL (myErr <> sessClosedErr) OR (myNumTries > 1);

END;

MyPostWithPPCBrowser := myErr; {return any error}

END;

The application-defined function in Listing 2-18 uses the PPCBrowser function to
display a dialog box asking the user to select a dictionary. (For additional information
on the PPCBrowser function, see Inside Macintosh: Interapplication Communication.) If
the user selects a dictionary, this code posts a high-level event to that dictionary
application asking for the definition of the selected text. Note that the sending
application and the receiving application must both agree that definition queries are to
be of event class 'Dict ' and event ID 'Defn '. It is necessary to define a private protocol
only in cases in which no suitable Apple event exists.

CHAPTER 2

Event Manager

Using the Event Manager 2-77

Note
You should avoid passing handles to the receiving application in an
attempt to share a block of data. It is better to put the relevant data into a
buffer (as illustrated in Listing 2-18) and pass the address of the buffer. If
you absolutely must share data by passing a handle, make sure that the
block of data is located in the system heap. ◆

If a high-level event is posted successfully, PostHighLevelEvent returns the result
code noErr , which indicates only that the event was successfully passed to the PPC
Toolbox. Your application needs to call another Event Manager routine (EventAvail ,
GetNextEvent , or WaitNextEvent) to give the other application an opportunity to
receive the event.

The event you send might require the other application to return some information to
your application by sending a high-level event back to your application. You can scan for
the response by using GetSpecificHighLevelEvent . If your application must wait
for this event, you might want to display a wristwatch cursor or take other action as
appropriate to your application. You also might want to implement a timeout
mechanism in case your application never receives a response to the event.

Requesting Return Receipts

When you post a high-level event, you can request a return receipt by including the
nReturnReceipt constant as one of the posting options. This requests that the Event
Manager send your application a high-level event that tells you whether the other
application accepted your event. Note that this does not necessarily mean that the other
application performed any action you might have requested from it.

A return receipt is a high-level event having an event class and an event ID indicated by
these two constants:

CONSTHighLevelEventMsgClass = 'jaym';

rtrnReceiptMsgID = 'rtrn';

Return receipts are posted by the Event Manager on the computer of the receiving
application (and not by the receiving application itself). No data buffer is associated with
a return receipt. However, the posting Event Manager sets the modifiers field of the
high-level event record to one of the following values:

CONSTmsgWasNotAccepted = 0;

msgWasFullyAccepted = 1;

msgWasPartiallyAccepted = 2;

The msgWasNotAccepted constant indicates that your event was not accepted by
the receiving application. This means that the receiving application was notified
of the arrival of your event (through WaitNextEvent) but did not call
AcceptHighLevelEvent to accept the event. The msgWasFullyAccepted constant
indicates that the receiving application did call AcceptHighLevelEvent and retrieved
all the data in the optional data buffer. The msgWasPartiallyAccepted constant

CHAPTER 2

Event Manager

2-78 Event Manager Reference

indicates that the receiving application called AcceptHighLevelEvent , but the
application’s data buffer was too small to hold the data sent with your application, and
the receiving application called WaitNextEvent before retrieving the rest of the buffer.

Note that a return receipt does not indicate the identity of the receiving application. To
determine on whose behalf the Event Manager has sent you a particular return receipt,
you need to call AcceptHighLevelEvent . When AcceptHighLevelEvent returns
successfully, the sender parameter contains a target ID record with the fields filled in
for the receiving application. With return receipts, the msgLen parameter is 0, the
msgBuff parameter is NIL , and the msgRefCon parameter contains the unique number
of the refCon parameter of the original high-level event sender (that is, your
application).

Handling Apple Events

If your application uses high-level events, your application must respond to the
required Apple events sent by the Finder. The four required Apple events are Open
Application, Open Documents, Print Documents, and Quit Application. See Inside
Macintosh: Interapplication Communication for information on how to handle the required
Apple events.

When your application receives a high-level event (as indicated by the
kHighLevelEvent constant in the what field of the event record), and if your
application supports Apple events, call the AEProcessAppleEvent function. The
AEProcessAppleEvent function provides an easy way for your application to identify
the event class and event ID of the Apple event and to direct the Apple Event Manager
to call the code in your program that handles the Apple event.

To send Apple events to other applications, use the AESend function.

To ensure compatibility and smooth interaction with other Macintosh applications, you
should use the Apple event protocol for high-level events whenever possible. By
implementing the capabilities to send Apple events to and receive Apple events from
other applications, you allow other applications to interact with your application and
provide enhanced capabilities to your users.

See Inside Macintosh: Interapplication Communication for complete information on how to
send and receive Apple events.

Event Manager Reference

This section describes the data structures and routines for the Event Manager and
Operating System Event Manager. It also describes the ' SIZE' resource.

CHAPTER 2

Event Manager

Event Manager Reference 2-79

Data Structures

This section describes the event record, target ID record, high-level event message
record, and structure of the Operating System event queue. The Event Manager
uses event records to return information about events. You can use a target ID record
to specify or identify the address of another application or process with which your
application is communicating. If your application supplies a filter function as a
parameter to the GetSpecificHighLevelEvent function, your filter function
receives information about high-level events in a high-level event message record.

The Event Record

When your application uses an Event Manager routine to retrieve an event, the Event
Manager returns information about the retrieved event in an event record. The
EventRecord data type defines the event record.

TYPE EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

Field descriptions

what The what field indicates the type of event received. The type of
event can be identified by these constants:

CONST
nullEvent = 0; {no other pending events}
mouseDown = 1; {mouse button pressed}
mouseUp = 2; {mouse button released}
keyDown = 3; {key pressed}
keyUp = 4; {key released}
autoKey = 5; {key repeatedly held down}
updateEvt = 6; {window needs updating}
diskEvt = 7; {disk inserted}
activateEvt = 8; {activate/deactivate window}
osEvt = 15;{operating-system event-- }

 { resume, suspend, or }
 { mouse-moved}

kHighLevelEvent = 23;{high-level event}

Note that in System 7, event types with the values 9 through 14 are
undefined and reserved for future use by Apple. All other values
for the what field are also reserved for use by Apple.

CHAPTER 2

Event Manager

2-80 Event Manager Reference

message Additional information associated with the event. The interpreta-
tion of this information depends on the event type. The contents of
the message field for each event type are summarized here:

when The when field indicates the time when the event was posted (in
ticks since system startup).

where For low-level events and operating-system events, the where field
contains the location of the cursor at the time the event was posted
(in global coordinates).
For high-level events, the where field contains a second event
specifier, the event ID. The event ID defines the particular type of
event within the class of events defined by the message field of the
high-level event. For high-level events, you should interpret the
where field as having the data type OSType, not Point .

modifiers The modifiers field contains information about the state of the
modifier keys and the mouse button at the time the event was
posted. For activate events, this field also indicates whether the

Event type Event message

null, mouse-up,
mouse-down

Undefined.

key-up,
key-down,
auto-key

Character code and virtual key code in
low-order word. For Apple Desktop Bus
(ADB) keyboards, the low byte of the
high-order word contains the ADB address
of the keyboard where the keyboard event
occurred. The high byte of the high-order
word is reserved.

update, activate Pointer to the window to update, activate, or
deactivate.

disk-inserted Drive number in low-order word, File
Manager result code in high-order word.

resume The suspendResumeMessage constant in
bits 24–31 and a 1 in bit 0 to indicate the
event is a resume event. Bit 1 contains either
a 1 or a 0 to indicate if Clipboard conversion
is required, and bits 2–23 are reserved.

suspend The suspendResumeMessage constant in
bits 24–31 and a 0 in bit 0 to indicate the
event is a suspend event. Bit 1 is undefined,
and bits 2–23 are reserved.

mouse-moved The mouseMovedMessage constant in bits
24–31. Bits 2–23 are reserved, and bit 0 and
bit 1 are undefined.

high-level Class of events to which the high-level event
belongs. The message and where fields of
a high-level event define the specific type of
high-level event received.

CHAPTER 2

Event Manager

Event Manager Reference 2-81

window should be activated or deactivated. In System 7 it also
indicates whether the mouse-down event caused your application
to switch to the foreground.
Each of the modifier keys is represented by a specific bit in the
modifiers field of the event record. Figure 2-5, on page 2-20,
shows how to interpret the modifiers field. The modifier keys
include the Option, Command, Caps Lock, Control, and Shift keys.
If your application attaches special meaning to any of these keys in
combination with other keys or when the mouse button is down,
you can test the state of the modifiers field to determine the
action your application should take. For example, you can use this
information to determine whether the user pressed the Command
key and another key to make a menu choice.

The Target ID Record

When you send a high-level event to another application, you can use the target ID
record to specify the recipient of the event. When you receive a high-level event, the
AcceptHighLevelEvent function uses a target ID record to return information about
the sender of the event.

The TargetID data type defines the target ID record.

TYPE TargetID =

RECORD

sessionID: LongInt; {session reference number}

name: PPCPortRec; {port nam e}

location: LocationNameRec; {location name}

recvrName: PPCPortRec ; {reserved}

END;

Field descriptions

sessionID For high-level events that your application receives, this field
contains the session reference number created by the PPC Toolbox.
This is a 32-bit number that uniquely identifies a PPC Toolbox
session (or connection) with another application. This field is not
used by your application when sending a high-level event to
another process. (To send a high-level event that specifies the
recipient by session reference number, provide a pointer to a session
reference number in the receiverID parameter and use the
receiverIDisSessionID constant in the postingOptions
parameter to PostHighLevelEvent .)

name For high-level events that your application receives, this field
contains a PPC port record that specifies the port name of the
process from which the high-level event originated. When sending
a high-level event to a process on a local or remote computer, you
can specify the port name of the recipient process in a PPC port
record that you provide in this field.

CHAPTER 2

Event Manager

2-82 Event Manager Reference

If the sending application is on the same computer as the
receiving application, you can determine the sending
application’s process serial number by calling the
GetProcessSerialNumberFromPortName function.

location For high-level events that your application receives, this field
contains a location name record that identifies the location name
of the process from which the high-level event originated. When
sending a high-level event to a process on a local or remote
computer, you can specify the location name of the recipient process
in a location name record that you provide in this field.

recvrName This field is reserved.

The High-Level Event Message Record

You can search your application’s high-level event queue for a specific high-level event
by using the GetSpecificHighLevelEvent function and providing a filter function.
Your filter function receives a pointer to a high-level event message record that contains
information about a high-level event. (See “Filter Function for Searching the High-Level
Event Queue” on page 2-114 for information on how to define a filter function.)

The HighLevelEventMsg data type defines the structure of a high-level event
message record.

TYPE HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength: Integer;

version: Integer;

reserved1: LongInt;

theMsgEvent: EventRecord;

userRefCon: LongInt;

postingOptions: LongInt;

msgLength: LongInt;

END;

Field descriptions

HighLevelEventMsgHeaderLength
Reserved for use by the Event Manager.

versio n Reserved for use by the Event Manager.
reserved 1 Reserved for use by the Event Manager.
theMsgEvent The event record of a high-level event. Your filter function can

compare the fields of this event record to determine whether the
high-level event is the desired event. If your filter function finds the
desired event, it should call AcceptHighLevelEvent to accept
the event and remove the event from the high-level event queue,
and return TRUE as its function result.

CHAPTER 2

Event Manager

Event Manager Reference 2-83

userRefCon A unique number that identifies the communication associated with
this event.

postingOption s Reserved for use by the Event Manager.
msgLengt h Reserved for use by the Event Manager.

The Event Queue

The event queue is a standard Macintosh Operating System queue that the Operating
System Event Manager maintains. Only mouse-up, mouse-down, key-up, key-down,
auto-key, and disk-inserted events are stored in the Operating System event queue. In
most cases, your application should not access the event queue directly. Instead you
usually use the WaitNextEvent function, which can retrieve events from this queue as
well as from other sources.

The event queue consists of a header followed by the actual entries in the queue. The
event queue has the same header as all standard Macintosh Operating System queues.
The Qhdr data type defines the queue header.

TYPE QHdr =

RECORD

qFlags: Integer; {queue flags}

qHead: QElemPtr; {first queue entry}

qTail: QElemPtr; {last queue entry}

END;

The EvQEl data type defines an entry in the Operating System event queue.

TYPE EvQEl =

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type (ORD(evType))}

evtQWhat: Integer; {event code}

evtQMessage: LongInt; {event message}

evtQWhen: LongInt; {ticks since startup}

evtQWhere: Point; {mouse location}

evtQModifiers: Integer; {modifier flags}

END;

Each entry in the event queue begins with 4 bytes of flags followed by a pointer to the
next queue entry. The flags are maintained by and internal to the Operating System
Event Manager. The queue entries are linked by pointers, and the first field of the EvQEl
data type, which represents the structure of a queue entry, begins with a pointer to the
next queue entry. Thus you cannot directly access the flags using the EvQEl data type.

CHAPTER 2

Event Manager

2-84 Event Manager Reference

Event Manager Routines

The Event Manager includes routines for receiving events, receiving and sending
high-level events, and searching for specific high-level events. The Event Manager also
provides routines for converting between process serial numbers and port names,
getting information about the state of the mouse button, reading the keyboard, and
getting timing information.

Receiving Events

You can use the WaitNextEvent or GetNextEvent function to retrieve an event from
the Event Manager and remove the event from the event stream. To provide greater
support for multitasking, however, you should use the WaitNextEvent function
instead of GetNextEvent whenever possible. You can use the EventAvail function
to look at an event without removing it from the event stream. You can use the
AcceptHighLevelEvent function to get additional information associated with a
high-level event and GetSpecificHighLevelEvent to search for a specific high-
level event.

The FlushEvents procedure removes all low-level events from the Operating System
event queue. In general, your application should not empty the event queue.

You can use the SystemClick procedure to route events to desk accessories when
necessary. The SystemTask and SystemEvent routines are used by the Event
Manager, and your application usually does not need to call these two routines.

You usually use the functions provided by the Toolbox Event Manager to retrieve events
from the event stream. Even if you are interested only in the events stored in the
Operating System event queue, you can retrieve these events using the Toolbox Event
Manager by setting the event mask to mask out all events except keyboard, mouse, and
disk-inserted events. However, you can choose to use Operating System Event Manager
routines to perform this task.

The Operating System Event Manager provides two functions, GetOSEvent and
OSEventAvail , to retrieve events from the Operating System event queue. In most
cases, your application will not need to use these two functions.

If your application needs to receive key-up events, you can change the system event
mask of your application using the SetEventMask procedure. The GetEvQHdr
function returns a pointer to the header of the Operating System event queue.

CHAPTER 2

Event Manager

Event Manager Reference 2-85

WaitNextEvent

You can use the WaitNextEvent function to retrieve events one at a time from the
Event Manager.

FUNCTION WaitNextEvent (eventMask: Integer;

VAR theEvent: EventRecord; sleep: LongInt;

mouseRgn: RgnHandle): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. You can use
these constants to specify the event mask:

CONST

mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask

 = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system (bit 15)}

To accept all events, you can specify the everyEvent constant as the
event mask:

CONST

everyEvent = -1; {every event}

If no event of any of the designated types is available, WaitNextEvent
returns a null event. WaitNextEvent determines the next available
event to return based on the eventMask parameter and the priority of
the event.

Events not designated by the event mask remain in the event stream until
retrieved by an application. Low-level events in the Operating System
event queue are kept in the queue until they are retrieved by your
application or another application or until the queue becomes full. Once
the queue becomes full, the Operating System Event Manager begins
discarding the oldest events in the queue.

theEvent The next available event of the specified type or types. The
WaitNextEvent function removes the returned event from the event
stream and returns the information about the event in an event record.
The event record includes the type of event received and other
information. See “The Event Record,” beginning on page 2-79, for a
description of the fields in the event record.

CHAPTER 2

Event Manager

2-86 Event Manager Reference

In addition to the event record, high-level events can contain additional
data; you use the AcceptHighLevelEvent or AEProcessAppleEvent
functions to get additional data associated with these events.

sleep The number of ticks (a tick is approximately 1/60 of a second) indicating
the amount of time your application is willing to relinquish the processor
if no events (other than null events) are pending for your application. If
you specify a value greater than 0 for the sleep parameter, your
application relinquishes the processor for the specified time or until an
event occurs.
You should usually specify a value greater than 0 for the sleep
parameter to allow background processes to receive processing time. You
should not set the sleep parameter to a value greater than the number of
ticks returned by GetCaretTime if your application provides
text-editing capabilities. When the specified time expires, and if there are
no pending events for your application, WaitNextEvent returns a null
event in the parameter theEvent .

mouseRgn A handle to a region that specifies a region inside of which mouse
movement does not cause mouse-moved events. In other words, your
application receives mouse-moved events only when the cursor is outside
the specified region. You should specify the region in global coordinates.
If you pass an empty region or a NIL region handle, the Event Manager
does not report mouse-moved events to your application. Note that your
application should recalculate the mouseRgn parameter when it receives
a mouse-moved event, or it will continue to receive mouse-moved events
as long as the cursor position is outside the original mouseRgn.

DESCRIPTION

The WaitNextEvent function returns FALSE as its function result if the event being
returned is a null event or if WaitNextEvent has intercepted the event; otherwise,
WaitNextEvent returns TRUE. The WaitNextEvent function calls the Operating
System Event Manager function SystemEvent to determine whether the event should
be handled by the application or the Operating System.

If no events are pending for your application, WaitNextEvent waits for a specified
amount of time for an event. (During this time, processing time may be allocated to
background processes.) If an event occurs, it is returned as the value of the parameter
theEvent , and WaitNextEvent returns a function result of TRUE. If the specified
time expires and there are no pending events for your application, WaitNextEvent
returns a null event in theEvent and a function result of FALSE.

Before returning an event to your application, WaitNextEvent performs other
processing and may intercept the event.

The WaitNextEvent function intercepts Command–Shift–number key sequences and
calls the corresponding 'FKEY' resource to perform the associated action. The Event
Manager’s processing of Command–Shift–number key sequences with numbers 3
through 9 can be disabled by setting the ScrDmpEnable global variable (a byte) to 0.

The WaitNextEvent function also makes the alarm go off if the alarm is set and
the current time is the alarm time. The user sets the alarm using the Alarm Clock
desk accessory.

CHAPTER 2

Event Manager

Event Manager Reference 2-87

The WaitNextEvent function also calls the SystemTask procedure, which gives time
to each open desk accessory or device driver to perform any periodic action defined
for it. A desk accessory or device driver specifies how often the periodic action should
occur, and SystemTask gives time to the desk accessory or device driver at the
appropriate interval.

Some high-level events may be fully specified by their event records only, while others
may include additional information in an optional buffer. To get any additional
information and to find the sender of the event, use the AcceptHighLevelEvent
function.

If the returned event is a high-level event and your application supports Apple events,
use the Apple Event Manager function AEProcessAppleEvent to respond to the
Apple event and to get additional information associated with the Apple event.

SPECIAL CONSIDERATIONS

In System 7, if your application is in the foreground and the user opens a desk accessory
or other item from the Apple menu, clicks in the window belonging to another
application or desk accessory, or chooses another process from the Application menu, the
next event reported to your application by the WaitNextEvent function is a suspend
event. After your application is switched out, the Event Manager directs events (other
than events your application can receive in the background) to the newly activated
process until the user switches back to your application or another application.

Note

In a single-application environment in System 6, and in a multiple-
application environment in which the desk accessory is launched in
the application’s partition (for example, a desk accessory opened by the
user from the Apple menu while holding down the Option key), the
Event Manager handles events for desk accessories in a slightly
different manner.

In these environments, when mouse-up, activate, update, and keyboard
events (including keyboard equivalents of menu commands) occur, the
Event Manager checks to see whether the active window belongs to a
desk accessory and whether the desk accessory can handle the event. If
so, it sends the event to the desk accessory and WaitNextEvent returns
FALSE to your application. Also note that in these environments, the
Event Manager returns TRUE for mouse-down events, regardless of
whether the mouse-down event is for a desk accessory or not. For
mouse-down events in these situations, if the mouse button was
pressed while the cursor was in a desk accessory window (as indicated
by the inSystem constant returned by the FindWindow function),
your application should call the SystemClick procedure. The
SystemClick procedure handles mouse-down events as appropriate
for desk accessories, including sending your application an activate
event to deactivate its front window if the desk accessory window needs
to be activated. ◆

CHAPTER 2

Event Manager

2-88 Event Manager Reference

SEE ALSO

For examples that use the WaitNextEvent function, see Listing 2-1 on page 2-23 and
Listing 2-2 on page 2-24.

To get information about the sender of a high-level event and to retrieve any
additional data associated with the high-level event, see the description of the
AcceptHighLevelEvent function on page 2-90. For details on how to process
an Apple event, see the description of the AEProcessAppleEvent function in
Inside Macintosh: Interapplication Communication.

For information on how to retrieve an event without removing it from the event stream,
see the description of the EventAvail function, immediately following.

EventAvail

You can use the EventAvail function to retrieve the next available event from
the Event Manager without removing the returned event from your application’s
event stream.

FUNCTION EventAvail (eventMask: Integer;

VAR theEvent: EventRecord): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. You can use
these constants to specify the event mask:

CONST

mDownMask = 2; {mouse-down event (bit 1)}

mUpMask = 4; {mouse-up event (bit 2)}

keyDownMask = 8; {key-down event (bit 3)}

keyUpMask = 16; {key-up event (bit 4)}

autoKeyMask = 32; {auto-key event (bit 5)}

updateMask = 64; {update event (bit 6)}

diskMask = 128; {disk-inserted event (bit 7)}

activMask = 256; {activate event (bit 8)}

highLevelEventMask

 = 1024; {high-level event (bit 10)}

osMask = -32768; {operating-system (bit 15)}

To accept all events, you can specify the everyEvent constant as the
event mask:

CONST

everyEvent = -1; {every event}

If no event of any of the designated types is available, EventAvail
returns a null event.

CHAPTER 2

Event Manager

Event Manager Reference 2-89

theEvent The next available event of the specified type or types. The EventAvail
function does not remove the returned event from the event stream, but
does return the information about the event in an event record. The event
record includes the type of event received and other information.

DESCRIPTION

EventAvail returns FALSE as its function result if the event being returned is a null
event; otherwise, EventAvail returns TRUE.

Like WaitNextEvent , the EventAvail function calls the SystemTask procedure to
give time to each open desk accessory or device driver to perform any periodic action
defined for it. The EventAvail function also makes the alarm go off if the alarm is set
and the current time is the alarm time. The user sets the alarm using the Alarm Clock
desk accessory.

SPECIAL CONSIDERATIONS

If EventAvail returns a low-level event from the Operating System event queue, the
event will not be accessible later if, in the meantime, the event queue becomes full and
the event is discarded from it; however, this is not a common occurrence.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record.

GetNextEvent

Although you should normally use WaitNextEvent , you can also use the
GetNextEvent function to retrieve events one at a time from the Event Manager.

FUNCTION GetNextEvent (eventMask: Integer;

VAR theEvent: EventRecord): Boolean;

eventMask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants (listed in
“Setting the Event Mask” beginning on page 2-26). If no event of any of
the designated types is available, GetNextEvent returns a null event.

theEvent The next available event of the specified type or types. The
GetNextEvent function removes the returned event from the
event stream and returns the information about the event in an
event record. The event record includes the type of event received
and other information.

CHAPTER 2

Event Manager

2-90 Event Manager Reference

DESCRIPTION

GetNextEvent returns FALSE as its function result if the event being returned is a null
event or if GetNextEvent has intercepted the event; otherwise, GetNextEvent returns
TRUE. The GetNextEvent function calls the Operating System Manager function
SystemEvent to determine whether the event should be handled by the application or
the Operating System.

Like WaitNextEvent , the GetNextEvent function calls the SystemTask procedure to
give time to each open desk accessory or device driver to perform any periodic action
defined for it. The GetNextEvent function also makes the alarm go off if the alarm is
set and the current time is the alarm time. (The user sets the alarm using the Alarm Clock
desk accessory.)

The GetNextEvent function also intercepts Command–Shift–number key sequences
and calls the corresponding 'FKEY' resource to perform the associated action. The Event
Manager’s processing of Command–Shift–number key sequences with numbers
3 through 9 can be disabled by setting the ScrDmpEnable global variable (a byte) to 0.

SPECIAL CONSIDERATIONS

For greater support of the multitasking environment, your application should use
WaitNextEvent instead of GetNextEvent whenever possible. If your application
does call GetNextEvent , it should also call the SystemTask procedure.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. For information on the SystemTask procedure, see page 2-95.

AcceptHighLevelEvent

After receiving a high-level event (other than an Apple event), use the
AcceptHighLevelEvent function to get any additional information associated
with the event.

FUNCTION AcceptHighLevelEvent (VAR sender: TargetID;

VAR msgRefcon: LongInt;

msgBuff: Ptr;

VAR msgLen: LongInt): OSErr;

sender Identifies the sender of the event; this information is returned in a target
ID record. The sender parameter contains the session reference number
that identifies the connection with the other application and the port
name and location name of the sender.

CHAPTER 2

Event Manager

Event Manager Reference 2-91

msgRefcon Uniquely identifies the communication associated with this event. If you
send a response to this event, you should specify the same value for the
msgRefcon parameter so that the sender of the event can associate the
reply with the original request.

msgBuff Specifies where the AcceptHighLevelEvent function should return
any additional data associated with the event. Your application is
responsible for allocating the memory for the additional data pointed
to by the msgBuff parameter and for setting the msgLen parameter to
the number of bytes that you have allocated for the data.

If the msgBuff parameter points to an area in memory that is
not large enough to hold all the data associated with the event,
AcceptHighLevelEvent returns as much data as the specified
memory area can hold, returns the amount of data remaining in the
msgLen parameter, and returns the result code bufferIsSmall .

msgLen Contains the size of the data (in bytes) pointed to by the msgBuff
parameter. If AcceptHighLevelEvent returns the result code
bufferIsSmall , the msgLen parameter contains the number of bytes
remaining. You can call AcceptHighLevelEvent again to receive the
rest of the data.

DESCRIPTION

When your application receives a high-level event, you can use the
AcceptHighLevelEvent function to get additional data associated with the
event. The AcceptHighLevelEvent function returns information that identifies
the sender of the event and the unique message reference constant of the event.

Your application should allocate memory for any additional data associated with the
event, then supply a pointer to the data area and also provide the length in bytes of the
data area.

SPECIAL CONSIDERATIONS

The AcceptHighLevelEvent function may move or purge memory. You should not
call this function from within an interrupt, such as in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the AcceptHighLevelEvent function are

RESULT CODES

Trap macro Selector

_OSDispatch $0033

noErr 0 No error
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event

CHAPTER 2

Event Manager

2-92 Event Manager Reference

SEE ALSO

For details on how to process an Apple event using the AEProcessAppleEvent
function, see Inside Macintosh: Interapplication Communication .

GetSpecificHighLevelEvent

You can use the GetSpecificHighLevelEvent function to select and optionally
retrieve a specific high-level event from your application’s high-level event queue.

FUNCTION GetSpecificHighLevelEvent

(aFilter: GetSpecificFilterProcPtr;

 yourDataPtr: UNIV Ptr; VAR err: OSErr): Boolean;

aFilter Specifies the filter function that GetSpecificHighLevelEvent should
use to search for a specific event. GetSpecificHighLevelEvent calls
your filter function once for each event in your application’s high-level
event queue until your filter function returns TRUE or the end of the
queue is reached.

yourDataPtr
Specifies the criteria your filter function should use to select a specific
event. For example, in the yourDataPtr parameter you can specify a
reference constant to search for a particular event, a pointer to a target ID
record to search for a specific sender of an event, or an event class to
search for a specific class of event.

err GetSpecificHighLevelEvent returns in this parameter a value
indicating if any errors occurred. The err parameter contains the noErr
constant if no errors occurred or noOutstandingHLE if no high-level
events are pending in your application’s high-level event queue.

DESCRIPTION

You can use the GetSpecificHighLevelEvent function to search for a specific
high-level event in your application’s high-level event queue. You provide a pointer to a
filter function as one of the parameters to GetSpecificHighLevelEvent . The
GetSpecificHighLevelEvent function calls your filter function once for every event
in your application’s high-level event queue, until your filter function returns TRUE or
the end of the queue is reached.

The GetSpecificHighLevelEvent function passes the value you specify in the
yourDataPtr parameter to your filter function. Your filter function also receives as
parameters the event record associated with the high-level event and the target ID record
that identifies the sender of the event. Your filter function can compare the contents of
the yourDataPtr parameter with any of the other information it receives.

If your filter function finds a match, it can call AcceptHighLevelEvent if necessary,
and then return TRUE. If your filter function does not find a match, then it should
return FALSE.

CHAPTER 2

Event Manager

Event Manager Reference 2-93

If your filter function returns TRUE, the GetSpecificHighLevelEvent function
returns TRUE. If your filter function returns FALSE for all high-level events in your
application’s event queue, or if there are no high-level events in the queue,
GetSpecificHighLevelEvent returns FALSE.

SPECIAL CONSIDERATIONS

The GetSpecificHighLevelEvent function may move or purge memory. You
should not call this function from within an interrupt, such as in a completion routine
or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetSpecificHighLevelEvent
function are

SEE ALSO

See “Filter Function for Searching the High-Level Event Queue” on page 2-114 for more
information about how to define a filter function and the parameters that
GetSpecificHighLevelEvent passes to your filter function.

FlushEvents

The FlushEvents procedure removes low-level events from the Operating System
event queue. Note that FlushEvents does not remove any types of events not stored
in the Operating System event queue.

You can choose to use the FlushEvents procedure when your application first starts to
empty the Operating System event queue of any keystrokes or mouse events generated
by the user while the Finder loaded your application. In general, however, your
application should not empty the queue at any other time as this loses user actions and
makes your application and the computer appear unresponsive to the user.

PROCEDURE FlushEvents (whichM as k: Integer; s topMask: Integer);

whichMask A value that indicates which kinds of low-level events are to be removed
from the Operating System event queue; this parameter is interpreted
as a sum of event mask constants. The whichMask and stopMask
parameters together specify which events to remove.

Trap macro Selector

_OSDispatch $0045

CHAPTER 2

Event Manager

2-94 Event Manager Reference

stopMask A value that limits which low-level events are to be removed from the
Operating System event queue; this parameter is interpreted as a sum
of event mask constants. FlushEvents does not remove any low-
level events that are specified by the stopMask parameter. To remove
all events specified by the whichMask parameter, specify 0 as the
stopMask parameter.

DESCRIPTION

FlushEvents removes only low-level events stored in the Operating System event
queue; it does not remove activate, update, operating-system, or high-level events.

You specify which low-level events to remove using the whichMask and stopMask
parameters. FlushEvents removes the low-level events specified by the whichMask
parameter, up to but not including the first event of any type specified by the
stopMask parameter.

If the event queue doesn’t contain any of the events specified by the whichMask
parameter, FlushEvents does not remove any events from the queue.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register D0 with the event mask (whichMask) and stop mask before
calling FlushEvents . When FlushEvents returns, register D0 contains 0 if all events
were removed from the queue or, if all events were not removed from the queue, an
event code that specifies the type of event that caused the removal process to stop.

SEE ALSO

See “Setting the Event Mask” beginning on page 2-26 for information on how to specify
an event mask.

SystemClick

After receiving a mouse-down event, your application should call the Window
Manager function FindWindow to determine where the cursor was when the mouse
button was pressed. If FindWindow returns the inSysWindow constant, call the
SystemClick procedure to handle the event.

PROCEDURE SystemClick (theEvent: EventRecord;
 theWindow: WindowPtr);

Registers on entry

D0 Event mask (low-order word)

Stop mask (high-order word)

Registers on exit

D0 0 if all events were removed from the queue, or the event code
of the event that stopped the search (low-order word)

CHAPTER 2

Event Manager

Event Manager Reference 2-95

theEvent The event record for the event.

theWindow The window in which the mouse-down event occurred. Pass the window
pointer returned by FindWindow in this parameter.

DESCRIPTION

If a mouse-down event occurred in a desk accessory’s window, the SystemClick
procedure determines which part of the desk accessory’s window the cursor was in
when the mouse button was pressed and routes the event to the appropriate desk
accessory as necessary.

If the mouse button was pressed while the cursor was in the content region of the desk
accessory’s window and the window is active, SystemClick sends the mouse-down
event to the desk accessory to process. If the mouse-down event occurred in the content
region of the window and the window is inactive, SystemClick makes it the active
window. It does this by sending your application an activate event to deactivate its
front window and directing an event to the desk accessory to activate its window.

If the mouse button was pressed while the cursor was in the drag region or go-away
region, SystemClick calls the Window Manager routine DragWindow or
TrackGoAway , as appropriate. If TrackGoAway reports that the user closed the desk
accessory, SystemClick sends a close message to the desk accessory.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record.

SystemTask

In a multiple-application environment, the WaitNextEvent function is responsible for
giving time to each open desk accessory or driver to perform any periodic action. You
should not call SystemTask if your application calls WaitNextEvent .

If your application calls GetNextEvent , your application should call the SystemTask
procedure.

PROCEDURE SystemTask;

DESCRIPTION

The SystemTask procedure gives time to each open desk accessory or driver to
perform the periodic action defined for it. A desk accessory or device driver specifies
how often the periodic action should occur, and SystemTask gives time to the desk
accessory or device driver at the appropriate interval.

If your application calls GetNextEvent , your application should call SystemTask at
least every sixtieth of a second. This usually corresponds to calling SystemTask once

CHAPTER 2

Event Manager

2-96 Event Manager Reference

each time through your event loop. If your application does a large amount of
processing, you may need to call SystemTask more than once in your event loop.

SEE ALSO

For a description of the WaitNextEvent function and the GetNextEvent function, see
page 2-85 and page 2-89, respectively.

SystemEvent

The WaitNextEvent and GetNextEvent functions call the SystemEvent function. In
most cases your application should not call the SystemEvent function.

The SystemEvent function determines if a specific event should be handled by the
application or the Operating System.

FUNCTION SystemEvent (theEvent: EventRecord): Boolean;

theEvent The event record for the event.

DESCRIPTION

SystemEvent returns FALSE as its function result if the event should be handled by the
application; otherwise, SystemEvent takes any appropriate actions and returns TRUE.

For activate, update, mouse-up, and keyboard events (including keyboard equivalents of
commands), SystemEvent checks to see whether the active window belongs to a desk
accessory and whether that desk accessory can handle that type of event. If so,
SystemEvent sends the event to the desk accessory and returns TRUE. Otherwise,
SystemEvent returns FALSE.

For mouse-down events and null events, SystemEvent returns FALSE.

For disk-inserted events, SystemEvent attempts to mount the disk using the
PBMountVol function but returns FALSE so that the application can perform further
processing if necessary.

ASSEMBLY-LANGUAGE INFORMATION

If the SEvtEnb global variable (a byte) contains 0, SystemEvent always returns FALSE.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. For a description of the PBMountVol function, see the chapter “File
Manager” in Inside Macintosh: Files.

CHAPTER 2

Event Manager

Event Manager Reference 2-97

GetOSEvent

The Toolbox Event Manager calls the GetOSEvent function to retrieve low-level events
stored in the Operating System event queue. In most cases your application should not
use this function.

FUNCTION GetOSEvent (mask: Integer ;

VAR theEvent: EventRecord): Boolean;

mask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants. GetOSEvent
returns only low-level events stored in the Operating System event
queue; it does not return activate, update, operating-system, or high-level
events. If no low-level event of any of the designated types is available,
GetOSEvent returns a null event.

theEvent The next available low-level event of the specified type or types in the
Operating System event queue. The GetOSEvent function removes the
returned event from the Operating System event queue and returns the
information about the event in an event record. The event record includes
the type of event received and other information.

DESCRIPTION

The GetOSEvent function retrieves and removes an event from the Operating System
event queue. GetOSEvent returns FALSE as its function result if the event being
returned is a null event; otherwise, GetOSEvent returns TRUE. GetOSEvent does not
intercept or respond to the event in any way. It also does not process Command–Shift–
number key combinations or process any alarms set by the user through the Alarm
Clock desk accessory.

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the address of an event record and register D0 with the
event mask before invoking GetOSEvent . When GetOSEvent returns, register D0
indicates whether the returned event is a null event or an event other than a null event
and the returned event is accessible through register A0.

Registers on entry

A0 Address of event record

D0 Event mask (low-order word)

Registers on exit

A0 Address of event record

D0 0 if GetOSEvent returns any event other than a null event,
or –1 if it returns a null event (low-order byte)

CHAPTER 2

Event Manager

2-98 Event Manager Reference

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. See “Setting the Event Mask,” beginning on page 2-26, for information on
how to specify an event mask.

OSEventAvail

The Toolbox Event Manager uses the OSEventAvail function to retrieve an event from
the Operating System event queue without removing it. In most cases your application
does not need to use this function.

FUNCTION OSEventAvail (ma sk: Integer ;

VAR theEvent: EventRecord): Boolean;

mask A value that indicates which kinds of events are to be returned; this
parameter is interpreted as a sum of event mask constants.
OSEventAvail returns only low-level events stored in the Operating
System event queue; it does not return activate, update, operating-system,
or high-level events. If no low-level event of any of the designated types
is available, OSEventAvail returns a null event.

theEvent The next available event of the specified type or types. The
OSEventAvail function does not remove the returned event from the
Operating System event queue but does return information about the
event in an event record. The event record includes the type of event
received and other information.

DESCRIPTION

The OSEventAvail function retrieves an event from the Operating System event queue
without removing it from the queue. The OSEventAvail function returns FALSE as its
function result if the event being returned is a null event; otherwise, OSEventAvail
returns TRUE.

OSEventAvail does not intercept or respond to the event in any way. It also does not
process Command–Shift–number key combinations or process any alarms set by the
user through the Alarm Clock desk accessory.

SPECIAL CONSIDERATIONS

If the OSEventAvail function returns a low-level event from the Operating System
event queue, the event will not be accessible later if, in the meantime, the event
queue becomes full and the event is discarded from it; however, this is not a common
occurrence.

CHAPTER 2

Event Manager

Event Manager Reference 2-99

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the address of an event record and register D0 with the
event mask before invoking OSEventAvail . When OSEventAvail returns, register D0
indicates whether the returned event is a null event or some other event, and the
returned event is accessible through register A0.

SEE ALSO

See “The Event Record,” beginning on page 2-79, for a description of the fields in the
event record. See “Setting the Event Mask,” beginning on page 2-26, for information on
how to specify an event mask

SetEventMask

The SetEventMask procedure sets the system event mask of your application to the
specified mask. Your application should not call the SetEventMask procedure to
disable any event types from being posted. Use SetEventMask only to enable key-up
events if your application needs to respond to key-up events.

PROCEDURE SetEventMask (theMask: Integer);

theMask An event mask that specifies which events should be posted in the
Operating System event queue.

DESCRIPTION

The SetEventMask procedure sets the system event mask of your application
according to the parameter theMask . The Operating System Event Manager posts only
low-level events (other than update or activate events) corresponding to bits in the
system event mask of the current process when posting events in the Operating System
event queue. The system event mask of an application is initially set to post mouse-up,
mouse-down, key-down, auto-key, and disk-inserted events into the Operating System
event queue.

Registers on entry

A0 Address of event record

D0 Event mask (low-order word)

Registers on exit

A0 Address of event record

D0 0 if OSEventAvail returns any event other than a null event,
or –1 if it returns a null event (low-order byte)

CHAPTER 2

Event Manager

2-100 Event Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The system event mask of the current application is available in the SysEvtMask system
global variable.

SEE ALSO

For additional information on event masks, see “Setting the Event Mask” beginning on
page 2-26.

GetEvQHdr

The Event Manager uses the GetEvQHdr function to get a pointer to the header of the
Operating System event queue. In most cases your application should not call the
GetEvQHdr function.

FUNCTION GetEvQHdr : QHdrPtr ;

DESCRIPTION

The GetEvQHdr function returns a pointer to the header of the Operating System
event queue.

ASSEMBLY-LANGUAGE NOTE

The EventQueue system global variable contains the header of the event queue.

SEE ALSO

See “The Event Queue” on page 2-83 for information on the structure of the Operating
System event queue.

Sending Events

You can send events to other applications or processes using the PostHighLevelEvent
function. To send Apple events to other applications, use the Apple Event Manager
function AESend. The Operating System Event Manager also provides the PPostEvent
and PostEvent functions for posting low-level events to the Operating System event
queue. The PostEvent function is used by the Toolbox Event Manager. In most cases
your application should not use the PostEvent function.

CHAPTER 2

Event Manager

Event Manager Reference 2-101

PostHighLevelEvent

You can use the PostHighLevelEvent function to send a high-level event to
another application.

FUNCTION PostHighLevelEvent (theEvent: EventRecord;

receiverID: Pt r; m sgRefcon: LongInt;

msgBuff: Ptr ; m sgLen: LongInt;

postingOptions: LongInt): OSErr;

theEvent The event to send. Your application should fill out the what , message ,
and where fields of the event record. Specify the kHighLevelEvent
constant in the what field, the event class of the high-level event in the
message field, and the event ID in the where field. You do not need to
fill out the when or modifiers fields; the Event Manager automatically
assigns the appropriate values to these fields when you send the message.

receiverID
The recipient of the high-level event. When sending an event to another
application on the local computer, you can specify the recipient of the
event by session reference number, process serial number, signature, or
port name and location name. When sending an event to an application
on a remote computer, you can specify the recipient only by the session
reference number or by the port name and location name.

To specify a port name and location name, provide the address of a target
ID record in the receiverID parameter. To specify a process serial
number, provide its address in the receiverID parameter. To specify a
session reference number, or signature, provide the data (cast to the Ptr
data type) in the receiverID parameter.

msgRefcon A unique number that identifies the communication associated with this
event. Your application can set this field to any value it chooses. If you are
replying to a high-level event, you should use the same value in the
msgRefcon parameter as specified in the high-level event that originated
the request.

msgBuff A pointer to a data buffer that contains any additional data for the event.

msgLen The size (in bytes) of the data buffer pointed to by the msgBuff
parameter.

postingOptions
Options associated with the receiverID parameter and delivery options
associated with the event. You can specify one or more delivery options to
indicate whether you want the other application to receive the event at
the next opportunity and to indicate whether you want acknowledgment
that the event was received by the other application. You use the options
associated with the receiverID parameter to indicate how you are
specifying the recipient of the event—whether by port name and location
name in a target ID record, by session reference number, by process serial
number, or by signature.

CHAPTER 2

Event Manager

2-102 Event Manager Reference

You can use a combination of these constants in the postingOptions
parameter:

CONST
nAttnMsg

= $00000001; {give this message priority}
nReturnReceipt

= $00000200; {return receipt requested}
receiverIDisTargetID

= $00005000; {ID is port name and location name}
receiverIDisSessionID

= $00006000; {ID is PPC session reference number}
receiverIDisSignature

= $00007000; {ID is creator signature}
receiverIDisPSN

= $00008000; {ID is process serial number}

DESCRIPTION

The PostHighLevelEvent function posts the high-level event to the specified process.

If the application to which you are sending a high-level event terminates, you receive
the result code sessionClosedErr the next time your application calls
PostHighLevelEvent to send another high-level event to the terminated application.
If you do not care about any state information about that session, you can just resend
your event. Otherwise, you must restart another session and resend your event.

If your application is running in the background and posts a high-level event that
requires the network authentication dialog box to be displayed, PostHighLevelEvent
returns the noUserInteractionAllowed result code, does not display the network
authentication dialog box, and does not send the event. If your application receives the
noUserInteractionAllowed result code, you can use the Notification Manager to
inform the user that your application needs attention. When the user brings your
application to the foreground, you can repost the event. If the reposting is successful,
your application can continue to post high-level events without further user interaction.
Note that PostHighLevelEvent can return noUserInteractionAllowed only on
the first posting of a high-level event to a remote target.

SPECIAL CONSIDERATIONS

The PostHighLevelEvent function may move or purge memory. You should not call
this function from within an interrupt, such as in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PostHighLevelEvent function are

Trap macro Selector

_OSDispatch $0034

CHAPTER 2

Event Manager

Event Manager Reference 2-103

SEE ALSO

For details on how to send Apple events to other applications using the AESend
function, see Inside Macintosh: Interapplication Communication .

RESULT CODES

PPostEvent

In most cases your application does not need to post events in the Operating System
event queue; however, if you must do so, you can use the PPostEvent function.

FUNCTION PPostEvent (eventCode: Integer; eventMsg: LongInt;

VAR qEl: EvQElPtr): OSErr;

eventCode A value that indicates the type of event to post into the Operating System
event queue. The types of events that can be posted in this queue are
represented by these constants: mouseDown, mouseUp, keyDown , keyUp ,
autoKey , and diskEvt . Do not attempt to post any other type of event
in the Operating System event queue.

eventMsg A long integer that contains the contents of the message field for the
event that PPostEvent should post in the queue.

qEl PPostEvent returns a pointer to the event queue entry of the posted
event in this parameter.

DESCRIPTION

In the eventCode and eventMsg parameters, you specify the value for the what and
message fields of the event’s event record. The PPostEvent function fills out the when,
where , and modifiers fields of the event record with the current time, current mouse
location, and current state of the modifier keys and mouse button.

The PPostEvent function returns a pointer to the event queue entry of the posted event
in the qEl parameter. You can change any fields of the posted event by changing the
fields of its event queue entry. For example, you can change the posted event’s modifier
keys by changing the value of the evtQModifiers field of the event queue entry.

The PPostEvent function posts only events that are enabled by the system event mask.
If the event queue is full, PPostEvent removes the oldest event in the queue and posts
the new event.

noErr 0 No error
connectionInvalid –609 Connection is invalid
noUserInteractionAllowed –610 Cannot interact directly with user
sessionClosedErr –917 Session closed

CHAPTER 2

Event Manager

2-104 Event Manager Reference

▲ WARNING

Do not post any events other than mouse-down, mouse-up, key-down,
key-up, auto-key, and disk-inserted events in the Operating System
event queue. Attempting to post other events into the Operating
System event queue interferes with the internal operation of the
Event Manager. ▲

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 and register D0 before invoking PPostEvent . The
PPostEvent function returns values in registers A0 and D0.

RESULT CODES

SEE ALSO

For a description of the entries in the event queue, see “The Event Queue” on page 2-83.

PostEvent

The Toolbox Event Manager uses the PostEvent function to post events into the
Operating System event queue. In most cases your application should not call the
PostEvent function.

FUNCTION PostEvent (even tNum: Integer; eventMsg: LongInt): OSErr;

eventNum A value that indicates the type of event to post into the Operating System
event queue. The types of events that can be posted in this queue are
represented by these constants: mouseDown, mouseUp, keyDown , keyUp ,
autoKey , and diskEvt . Do not attempt to post any other type of event
in the Operating System event queue.

eventMsg A long integer that contains the contents of the message field for the
event that PostEvent should post in the queue.

Registers on entry

A0 Event number (low-order word)

D0 Event message (long)

Registers on exit

A0 Pointer to an event queue entry (long)

D0 Result code (low-order word)

evtNotEnb 1 Event type not valid—event not posted
noErr 0 No error

CHAPTER 2

Event Manager

Event Manager Reference 2-105

DESCRIPTION

In the eventNum and eventMsg parameters, you specify the value for the what and
message fields of the event’s event record. The PostEvent function fills out the when,
where , and modifiers fields of the event record with the current time, current mouse
location, and current state of the modifier keys and mouse button.

The PostEvent function posts only events that are enabled by the system event mask. If
the event queue is full, PostEvent removes the oldest event in the queue and posts the
new event.

Note that if you use PostEvent to repost an event, the PostEvent function fills out the
when, where , and modifier fields of the event record, giving these fields of the
reposted event different values from the values contained in the original event.

▲ WARNING

Do not post any events other than mouse-down, mouse-up, key-down,
key-up, auto-key, and disk-inserted events in the Operating System
event queue. Attempting to post other events into the Operating
System event queue interferes with the internal operation of the
Event Manager. ▲

ASSEMBLY-LANGUAGE INFORMATION

You must set up register A0 with the event code and register D0 with the event
message before invoking PostEvent . When PostEvent returns, register D0
contains the result code.

RESULT CODES

Converting Process Serial Numbers and Port Names

The Event Manager provides two functions to convert between process serial
numbers and port names (GetProcessSerialNumberFromPortName and
GetPortNameFromProcessSerialNumber). Both functions are intended to map
serial numbers to port names (or vice versa) for applications open on the local computer.
They do not return useful results for applications open on remote computers.

Registers on entry

A0 Event number (low-order word)

D0 Event message (long)

Registers on exit

D0 Result code (low-order word)

evtNotEnb 1 Event type not valid—event not posted
noErr 0 No error

CHAPTER 2

Event Manager

2-106 Event Manager Reference

GetProcessSerialNumberFromPortName

Use GetProcessSerialNumberFromPortName to get the process serial number of a
process.

FUNCTION GetProcessSerialNumberFromPortName

(portName: PPCPortRec;

 VAR PSN: ProcessSerialNumber): OSErr;

portName The port name registered to a process whose serial number you want.

PSN Returns the process serial number of the process designated by the
portName parameter. You can use the returned process serial number to
send a high-level event to that process. Do not interpret the value of the
process serial number.

DESCRIPTION

The GetProcessSerialNumberFromPortName function returns the process serial
number of the process registered at a specific port.

SPECIAL CONSIDERATIONS

The GetProcessSerialNumberFromPortName function does not move or purge
memory but for other reasons should not be called from within an interrupt, such as
in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the
GetProcessSerialNumberFromPortName function are

RESULT CODES

SEE ALSO

For a description of the PPCPortRec data type, see the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication .

Trap macro Selector

_OSDispatch $0035

noErr 0 No error
noPortErr –903 Invalid port name

CHAPTER 2

Event Manager

Event Manager Reference 2-107

GetPortNameFromProcessSerialNumber

Use GetPortNameFromProcessSerialNumber to get the port name of a process.

FUNCTION GetPortNameFromProcessSerialNumber

(VAR portName: PPCPortRec;

 PSN: ProcessSerialNumber): OSErr;

portName Returns the port name of the process designated by the PSN parameter.
You can use the returned port name to send a high-level event to
that process.

PSN The process serial number of the process whose port name you want.

DESCRIPTION

The GetPortNameFromProcessSerialNumber function returns the port name
registered to a process having a specific process serial number.

SPECIAL CONSIDERATIONS

The GetPortNameFromProcessSerialNumber function does not move or purge
memory but for other reasons should not be called from within an interrupt, such as
in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the
GetPortNameFromProcessSerialNumber function are

RESULT CODES

SEE ALSO

For a description of the PPCPortRec data type, see the chapter “Program-to-Program
Communications Toolbox” in Inside Macintosh: Interapplication Communication.

Trap macro Selector

_OSDispatch $0046

noErr 0 No error
procNotFound –600 No eligible process with specified process

serial number

CHAPTER 2

Event Manager

2-108 Event Manager Reference

Reading the Mouse

The Event Manager provides routines you can use to get information about the mouse.
You can get the current mouse location using the GetMouse procedure. You can use
the Button function to determine whether the user pressed the mouse button. After
receiving a mouse-down event, you can use the StillDown function to determine
whether the mouse button is still down, and you can use WaitMouseUp to determine if
the user subsequently released the mouse.

GetMouse

You can use the GetMouse procedure to obtain the current mouse location.

PROCEDURE GetMouse (VAR mouseLoc: Point);

mouseLoc Returns the current mouse location in local coordinates of the current
graphics port (for example, the active window). Note that this value
differs from the value of the where field of the event record, which
specifies the mouse location in global coordinates.

Button

You can use the Button function to determine whether the user pressed the
mouse button.

FUNCTION Button: Boolean;

DESCRIPTION

The Button function looks in the Operating System event queue for a mouse-down
event. If it finds one, the Button function returns TRUE; otherwise, it returns FALSE. To
determine whether the mouse button is still down after a mouse-down event, use the
StillDown function.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

CHAPTER 2

Event Manager

Event Manager Reference 2-109

StillDown

After receiving a mouse-down event, you can use the StillDown function to determine
if the mouse button is still down.

FUNCTION StillDown: Boolean;

DESCRIPTION

The StillDown function looks in the Operating System event queue for a mouse
event. If it finds one, the StillDown function returns FALSE. If it does not find any
mouse events pending in the Operating System event queue, the StillDown function
returns TRUE.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

WaitMouseUp

After receiving a mouse-down event, you can use the WaitMouseUp function to
determine if the user subsequently released the mouse.

FUNCTION WaitMouseUp : Boolean;

DESCRIPTION

The WaitMouseUp function looks in the Operating System event queue for a mouse-up
event. If it finds one, the WaitMouseUp function removes the mouse-up event from the
queue and returns TRUE. If it does not find any mouse events pending in the Operating
System event queue, the WaitMouseUp function returns FALSE.

SEE ALSO

See “The Event Queue” on page 2-83 for information about the Operating System
event queue.

CHAPTER 2

Event Manager

2-110 Event Manager Reference

Reading the Keyboard

The Event Manager reports keyboard events one at a time at your application’s request
when you use the WaitNextEvent , EventAvail , or GetNextEvent function. In
addition to getting keyboard events when the user presses or releases a key, you can
directly read the keyboard (and keypad) at any time using the GetKeys procedure.

You can also use the KeyTranslate function to convert virtual key codes to character
code values using a specified 'KCHR' resource.

GetKeys

You can use the GetKeys procedure to obtain the current state of the keyboard.

PROCEDURE GetKeys (VAR theKeys: KeyMap);

theKeys Returns the current state of the keyboard, including the keypad, if any.
The GetKeys procedure returns this information using the KeyMap data
type.

TYPE KeyMap = PACKED ARRAY[0..127] OF Boolean;

Each key on the keyboard or keypad corresponds to an element in the
KeyMap array. The index for a particular key is the same as the key’s
virtual key code minus 1. For example, the key with virtual key code 38
(the “J” key on the Apple Keyboard II) can be accessed as KeyMap[37] in
the returned array. A KeyMap element is TRUE if the corresponding key is
down and FALSE if it isn’t. The maximum number of keys that can be
down simultaneously is two character keys plus any combination of the
five modifier keys.

DESCRIPTION

You can use the GetKeys procedure to determine the current state of the keyboard at
any time. For example, you can determine whether one of the modifier keys is down by
itself or in combination with another key using the GetKeys procedure.

KeyTranslate

You can use the KeyTranslate function to convert a virtual key code to a character
code based on a 'KCHR' resource. The KeyTranslate function is also available as the
KeyTrans function.

FUNCTION KeyTrans late (transData: Ptr; keycode: Integer;

VAR state: LongInt): LongInt;

CHAPTER 2

Event Manager

Event Manager Reference 2-111

transData A pointer to the 'KCHR' resource that you want the KeyTranslate
function to use when converting the key code to a character code.

keycode A 16-bit value that your application should set so that bits 0–6 contain the
virtual key code and bit 7 contains either 1 to indicate an up stroke or 0 to
indicate a down stroke of the key. Bits 8–15 have the same interpretation
as the high byte of the modifiers field of the event record and should be
set according to the needs of your application.

state A value that your application should set to 0 the first time it calls
KeyTranslate or any time your application calls KeyTranslate with
a different 'KCHR' resource. Thereafter, your application should pass the
same value for the state parameter as KeyTranslate returned in the
previous call.

DESCRIPTION

The KeyTranslate function returns a 32-bit value that gives the character code for the
virtual key code specified by the keycode parameter. Figure 2-17 shows the structure of
the 32-bit number that KeyTranslate returns.

Figure 2-17 Structure of the KeyTranslate function result

The KeyTranslate function returns the values that correspond to one or possibly two
characters that are generated by the specified virtual key code. For example, a given
virtual key code might correspond to an alphabetic character with a separate accent
character. For example, when the user presses Option-E followed by N, you can map this
through the KeyTranslate function using the U.S. 'KCHR' resource to produce ´n,
which KeyTranslate returns as two characters in the bytes labeled Character code 1
and Character code 2. If KeyTranslate returns only one character code, it is always in
the byte labeled Character code 2. However, your application should always check both
bytes labeled Character code 1 and Character code 2 in Figure 2-17 for possible values
that map to the virtual key code.

SEE ALSO

For additional information on the 'KCHR' resource and the KeyTranslate function,
see Inside Macintosh: Text.

CHAPTER 2

Event Manager

2-112 Event Manager Reference

Getting Timing Information

You can get the current number of ticks since the system last started up using the
TickCount function. You can use this function to compare the number of ticks that have
expired since a given event or other action occurred.

By using the GetDblTime function, you can get the suggested maximum difference in
ticks that should exist to consider two mouse events a double click. The user can adjust
this value using the Mouse control panel. Using the GetCaretTime function you can
get the suggested maximum difference in ticks that should exist between blinks of the
caret in editable text. The user can adjust this value using the General Controls panel.

TickCount

You can use the TickCount function to get the current number of ticks (a tick is
approximately 1/60 of a second) since the system last started up.

FUNCTION TickCount : LongInt;

DESCRIPTION

The TickCount function returns a long integer that indicates the current number of
ticks since the system last started up. You can use this value to compare the number of
ticks that have elapsed since a given event or other action occurred. For example, you
could compare the current value returned by TickCount with the value of the when
field of an event record.

The tick count is incremented during the vertical retrace interrupt, but this interrupt can
be disabled. Your application should not rely on the tick count to increment with
absolute precision. Your application also should not assume that the tick count always
increments by 1; an interrupt task might keep control for more than one tick. If your
application keeps track of the previous tick count and then compares this value with the
current tick count, your application should compare the two values by checking for a
“greater than or equal” condition rather than “equal to previous tick count plus 1.”

▲ WARNING

Don’t rely on the tick count being exact; it’s usually accurate to within
one tick, but this level of accuracy is not guaranteed. ▲

ASSEMBLY-LANGUAGE NOTE

The value returned by TickCount is also accessible in the global variable Ticks .

CHAPTER 2

Event Manager

Event Manager Reference 2-113

GetDblTime

To determine whether a sequence of mouse events constitutes a double click, your
application measures the elapsed time (in ticks) between a mouse-up event and a
mouse-down event. If the time between the two mouse events is less than the value
returned by GetDblTime , your application should interpret the two mouse events
as a double click.

FUNCTION GetDblTime : LongInt;

DESCRIPTION

The GetDblTime function returns the suggested maximum elapsed time, in ticks,
between a mouse-up event and a mouse-down event. The user can adjust this value
using the Mouse control panel.

If your application distinguishes a double click of the mouse from a single click, your
application should use the value returned by GetDblTime to make this distinction. If
your application uses TextEdit, the TextEdit procedures automatically recognize and
handle double clicks of text within a TextEdit edit record by appropriately highlighting
or unhighlighting the selection.

ASSEMBLY-LANGUAGE NOTE

The value returned by GetDblTime is also accessible in the system global variable
DoubleTime .

GetCaretTime

You can use the GetCaretTime function to get the suggested difference in ticks that
should exist between blinks of the caret (usually a vertical bar marking the insertion
point) in editable text. The user can adjust this value using the General Controls panel.

FUNCTION GetCaretTime : LongInt;

DESCRIPTION

If your application supports editable text, your application should use the value
returned by GetCaretTime to determine how often to blink the caret. If your
application uses only TextEdit, you can use TextEdit procedures to automatically blink
the caret at the time interval that the user specifies in the General Controls panel.

ASSEMBLY-LANGUAGE NOTE

The value returned by GetCaretTime is also accessible in the system global
variable CaretTime .

CHAPTER 2

Event Manager

2-114 Event Manager Reference

Application-Defined Routine
When you use GetSpecificHighLevelEvent , you supply a filter function so
that your application can search for a specific event in the high-level event queue
of your application.

Filter Function for Searching the High-Level Event Queue

This section describes the filter function that you can provide to
GetSpecificHighLevelEvent . For example, you might use a filter
function to search for a high-level event sent from a specific application.

MyFilter

When you use GetSpecificHighLevelEvent to search the high-level event queue
of your application for a specific event, you supply a pointer to a filter function.
GetSpecificHighLevelEvent calls your filter function once for each event in the
high-level event queue until your filter function returns TRUE or the end of the queue
is reached. Your filter function can examine each event and determine whether that
event is the desired event. If so, your filter function should return TRUE.

Here’s how you declare the filter function MyFilter :

FUNCTION MyFilter (yourDataPtr: Ptr;

 msgBuff: HighLevelEventMsgPtr;

 sender: TargetID): Boolean;

yourDataPtr
Specifies the criteria your filter function should use to select a specific
event. For example, you can specify the yourDataPtr parameter as a
reference constant to search for a particular event, as a pointer to a target
ID record to search for a specific sender of an event, or as an event class to
search for a specific class of event.

msgBuff Contains a pointer to a record of data type HighLevelEventMsg , which
provides: the event record for the high-level event and the reference
constant of the event. The HighLevelEventMsg data type is described
in “The High-Level Event Message Record” on page 2-82.

sender Contains the target ID record of the application that sent the event. The
TargetID data type is described in “The Target ID Record” on page 2-81.

DESCRIPTION

Your filter function can compare the contents of the yourDataPtr parameter with the
contents of the msgBuff and sender parameters. If your filter function finds a match, it
can call AcceptHighLevelEvent , if necessary, and your filter function should return
TRUE. If your filter function does not find a match, it should return FALSE.

CHAPTER 2

Event Manager

Event Manager Reference 2-115

SEE ALSO

For information about how to specify your filter function to the
GetSpecificHighLevelEvent function, see page 2-92.

Resource
This section explains the structure of a ' SIZE' resource and the meaning of each of its
fields. You are responsible for creating the information in this resource.

The Size Resource

Every application executing in System 7, as well as every application executing under
MultiFinder, should contain a size ('SIZE') resource. One of the principal functions
of the 'SIZE' resource is to inform the Operating System about the memory size
requirements for the application so that the Operating System can set up an
appropriately sized partition for the application. The 'SIZE' resource is also used to
indicate certain scheduling options to the Operating System, such as whether the
application can accept suspend and resume events. The 'SIZE' resource in System 7
contains additional information indicating whether the application is 32-bit clean,
whether it supports stationery documents, whether it uses TextEdit’s inline input
services, whether the application wishes to receive notification of the termination of
any applications it has launched, and whether the application wishes to receive high-
level events.

A 'SIZE' resource consists of a 16-bit flags field followed by two 32-bit size fields. The
flags field specifies operating characteristics of the application, and the size fields
indicate the minimum and preferred partition sizes for the application. The minimum
partition size is the actual limit below which your application will not run. The preferred
partition size is the memory size at which your application can run most effectively and
which the Operating System attempts to secure upon launching the application. If that
amount of memory is unavailable, the application is placed into the largest contiguous
block available, provided that it is larger than the specified minimum size.

Note

If the amount of available memory is between the minimum and the
preferred sizes, the Finder displays a dialog box asking if the user wants
to run the application using the amount of memory available. If your
application does not have a 'SIZE' resource, it is assigned a default
partition size of 512 KB and the Process Manager uses a default value
of FALSE for all specifications normally defined by constants in the
flags field. ◆

When you define a ' SIZE' resource, you should give it a resource ID of –1. A user can
modify the preferred size in the Finder ’s information window for your application. If the
user does alter the preferred partition size, the Operating System creates a new 'SIZE'
resource having resource ID 0. The Process Manager also creates a new ' SIZE' resource
when the user modifies any of the other settings in the resource.

CHAPTER 2

Event Manager

2-116 Event Manager Reference

In system software version 7.1 the user can also modify the minimum size in the Finder’s
information window for your application. In version 7.1, if the user alters either the
minimum or the preferred partition size, the Operating System creates two new 'SIZE'
resources, one with resource ID 0 and one with resource ID 1.

At application launch time, the Process Manager looks for a 'SIZE' resource with ID 0
for the preferred partition size; if this resource is not found, it uses your original 'SIZE'
resource with ID –1. In version 7.1, the Process Manager looks for a 'SIZE' resource
with ID 0 for the preferred size and looks for a ' SIZE' resource with ID 1 for the
minimum size; if these resources are not found, it uses your original 'SIZE' resource
with ID –1.

Listing 2-19 shows the structure of the ' SIZE' resource in Rez format. See Listing 2-4 in
“Creating a Size Resource,” beginning on page 2-30 for a sample 'SIZE' resource for
an application.

Listing 2-19 A Rez template for a 'SIZE' resource

type 'SIZE' {
boolean reserved; /*reserved*/

boolean ignoreSuspendResumeEvents , /*ignores suspend-resume events*/
acceptSuspendResumeEvents; /*accepts suspend-resume events*/

boolean reserved; /*reserved*/
boolean cannotBackground, /*can't use background null events*/

canBackground; /*can use background null events*/
boolean needsActivateOnFGSwitch, /*needs activate event following */

/* major switch*/
doesActivateOnFGSwitch; /*activates own windows in */

/* response to OS events*/
boolean backgroundAndForeground, /*app has a user interface*/

onlyBackground; /*app has no user interface*/
boolean dontGetFrontClicks, /*don’t return mouse events */

/* in front window on resume*/
getFrontClicks; /*do return mouse events */

/* in front window on resume*/
boolean ignoreAppDiedEvents, /*applications use this*/

acceptAppDiedEvents; /*app launchers use this*/
boolean not32BitCompatible, /*works with 24-bit addr*/

is32BitCompatible; /*works with 24- or 32-bit addr*/
boolean notHighLevelEventAware, /*can't use high-level events*/

isHighLevelEventAware; /*can use high-level events*/
boolean onlyLocalHLEvents, /*only local high-level events*/

localAndRemoteHLEvents; /*also remote high-level events*/
boolean notStationeryAware, /*can't use stationery documents*/

isStationeryAware; /*can use stationery documents*/
boolean dontUseTextEditServices, /*can't use inline services*/

useTextEditServices; /*can use inline services*/

CHAPTER 2

Event Manager

Event Manager Reference 2-117

boolean reserved; /*reserved*/
boolean reserved; /*reserved*/

boolean reserved; /*reserved*/
/*memory sizes are in bytes*/

unsigned longint; /*preferred memory size*/
unsigned longint; /*minimum memory size*/

};

The nonreserved bits in the flags field have the following meanings:

Flag descriptions

acceptSuspendResumeEvents
When set, indicates that your application can process suspend and
resume events (which the Operating System sends to your
application before sending it into the background or when bringing
it into the foreground).

Note

If you set the acceptSuspendResumeEvents flag, you should
also set the doesActivateOnFGSwitch flag. ◆

canBackground When set, indicates that your application wants to receive null
event processing time while in the background. If your application
has nothing to do in the background, you should not set this flag.

doesActivateOnFGSwitch
When set, indicates that your application takes responsibility for
activating and deactivating any windows in response to a suspend
or resume event. If the acceptSuspendResumeEvents flag is set,
if the doesActivateOnFGSwitch flag is not set, and if your
application is suspended, then your application receives an activate
event following the suspend event. However, if you set the
doesActivateOnFGSwitch flag, then your application won’t
receive activate events associated with operating-system events,
and you must take care of activation and deactivation when it
receives the corresponding suspend or resume event. This means
that if a window of your application is frontmost, you should treat
a suspend event as though a deactivate event were received as
well (assuming that both the doesActivateOnFGSwitch and
acceptSuspendResumeEvents flags are set). For example, you
should hide scroll bars, hide any caret, and unhighlight any selected
text if your application moves to the background. If you do not set
this flag, the Process Manager creates an offscreen window to force
the activate and deactivate events to occur.

onlyBackground When set, indicates that your application runs only in the back-
ground. Usually this is because it does not have a user interface
and cannot run in the foreground.

getFrontClicks When set, indicates that your application is to receive the
mouse-down and mouse-up events that are used to bring your
application into the foreground when the user clicks in your

CHAPTER 2

Event Manager

2-118 Event Manager Reference

application’s frontmost window. Typically, the user simply wants to
bring your application into the foreground, so it is usually not
desirable to receive the mouse events (which would probably move
the insertion point or start drawing immediately, depending on the
application). The Finder is one application, however, that has the
getFrontClicks flag set.
When the user clicks in the front window of your application and
causes a foreground switch, your application receives a resume
event. Your application should activate its front window in
response to the resume event. In this case if your application’s
getFrontClicks flag is not set, your application does not receive
the associated mouse event that caused the foreground switch. If
your application’s getFrontClicks flag is set, your application
does receive the associated mouse event.
Your application always receives the associated mouse event when
the user clicks in one of your application’s windows other than the
front window and causes a foreground switch.
When your application receives a mouse-down event in System 7,
your application can examine bit 0 of the modifiers field of the
event record to determine if the mouse-down event caused a
foreground switch. This information can be especially useful if your
application sets its getFrontClicks flag. For example, your
application can examine bit 0 to determine whether to process the
mouse-down event (probably depending on whether the clicked
item was visible before the foreground switch).

acceptAppDiedEvents
When set, indicates that your application is to be notified whenever
an application launched by your application terminates or crashes.
If the Process Manager is available, your application receives this
information as an Apple event, the Application Died event. See the
chapter “Process Manager” chapter in Inside Macintosh: Processes for
more information about launching applications and receiving
Application Died events.

Note

Some early versions of MultiFinder do not send application-died
events, and your application should not depend on receiving them
if it is running in System 6. These events are provided primarily for
use by debuggers. ◆

is32BitCompatible
When set, indicates that your application can be run with the 32-bit
Memory Manager. You should not set this flag unless you have
thoroughly tested your application on a 32-bit system (such as
a Macintosh IIci computer running System 7 in 32-bit mode or
under A/UX).

isHighLevelEventAware
When set, indicates that your application can send and receive
high-level events. If this flag is not set, the Event Manager does
not give your application high-level events when you call

CHAPTER 2

Event Manager

Event Manager Reference 2-119

WaitNextEvent . There is no way to mask out specific types of
high-level events; if this flag is set, your application receives all
types of high-level events sent to your application.
Your application must support the four required Apple events if
you set the isHighLevelEventAware flag. See Inside Macintosh:
Interapplication Communication for information that describes how
to respond to the four required Apple events.

localAndRemoteHLEvents
When set, indicates that your application is to be visible to
applications running on other computers on a network (in addition
to applications running on the local computer). If this flag is not
set, your application does not receive high-level events across
a network.

isStationeryAware
When set, indicates that your application can recognize stationery
documents. If this flag is not set and the user opens a stationery
document, the Finder duplicates the document and prompts the
user for a name for the duplicate document. For information about
how your application can use stationery documents, see the chapter
“Finder Interface” in this book.

 useTextEditServices
When set, indicates that your application can use the inline text
services provided by TextEdit. See Inside Macintosh: Text for
information about the inline input capabilities of TextEdit.

The numbers you specify as your application’s preferred and minimum memory sizes
depend on the particular memory requirements of your application. Your application’s
memory requirements depend on the size of your application’s static heap, dynamic
heap, A5 world, and stack. (See “Introduction to Memory Management” in Inside
Macintosh: Memory for complete details about these areas of your application’s partition.)

The static heap size includes objects that are always present during the execution of the
application—for example, code segments, Toolbox data structures for window records,
and so on.

Dynamic heap requirements depend on how many objects are created on a per-
document basis (which may vary in size proportionally with the document itself)
and the number of objects that are required for specific commands or functions.

The size of the A5 world depends on the amount of global data and the number of
intersegment jumps the application contains.

Finally, the stack contains variables, return addresses, and temporary information. The
application stack size varies among computers, so you should base your values for the
stack size according to the stack size required on a Macintosh Plus (8 KB). The Process
Manager automatically adjusts your requested amount of memory to compensate for the
different stack sizes on different machines. For example, if you request 512 KB, more
stack space (approximately 16 KB) will be allocated on machines with larger default
stack sizes.

CHAPTER 2

Event Manager

2-120 Summary of the Event Manager

Summary of the Event Manager

Pascal Summary

Constants

CONST{event codes}

nullEvent = 0; { no other pending events}

mouseDown = 1; {mouse button pressed}

mouseUp = 2; {mouse button released}

keyDown = 3; {key pressed}

keyUp = 4; {key released}

autoKey = 5; {key repeatedly held down}

updateEvt = 6; {window needs updating}

diskEvt = 7; {dis k i nserte d}

activateEvt = 8; {activate /deactivate window}

osEvt = 15; {operating-system events }

{ (suspend, resume, mouse-moved)}

kHighLevelEvent = 23; {high-level events }

{ (includes Apple events)}

{event masks}

everyEvent = -1; {every event}

mDownMask = 2; {mouse-dow n event (bit 1) }

mUpMask = 4; {mouse-u p event (bit 2) }

keyDownMask = 8; {key-dow n event (bit 3) }

keyUpMask = 16; {key-u p event (bit 4) }

autoKeyMask = 32; {auto-ke y event (bit 5) }

updateMask = 64; {updat e event (bit 6) }

diskMask = 128; {disk-inserte d event (bit 7) }

activMask = 256; {activat e event (bit 8) }

highLevelEventMask = 1024; {high-leve l event (bit 10) }

osMask = -32768; {operating-syste m event (bit 15)}

{message codes for operating-system events}

suspendResumeMessage = $01; {suspend or resume event}

mouseMovedMessage = $FA; {mouse-moved event }

osEvtMessageMask = $FF000000; {can use to extract msg code }

CHAPTER 2

Event Manager

Summary of the Event Manager 2-121

{flags for suspend and resume events}

resumeFlag = 1; {resume event}

convertClipboardFlag = 2; {Clipboard conversion }

{ required}

{event message masks for keyboard events}

charCodeMask = $000000FF; {use to get character code}

keyCodeMask = $0000FF00; {use to get key code }

adbAddrMask = $00FF0000; {ADB address for ADB keyboard}

{constants corresponding to bits in the modifiers field of event}

activeFlag = 1; {bit 0 of low byte--valid only for }

{ activate and mouse-moved events}

btnState = 128 ; {bi t 7 of low byte is mouse button state}

cmdKey = 256; {bi t 0 of high byte}

shiftKey = 512; {bi t 1 of high byte}

alphaLock = 1024; {bi t 2 of high byte}

optionKey = 2048; {bi t 3 of high byte}

controlKey = 4096; {bi t 4 of high byte}

{high-level event posting options}

nAttnMsg = $00000001; {give this message priority}

priorityMask = $000000FF ; {mask for priority options}

nReturnReceipt = $00000200; {return receipt requested}

systemOptionsMask = $00000F00 ;

receiverIDisTargetID = $00005000; {ID is port name & location}

receiverIDisSessionID = $00006000; {ID is PPC session ref number}

receiverIDisSignature = $00007000; {ID is creator signature}

receiverIDisPSN = $00008000; {ID is process serial number}

receiverIDMask = $0000F000;

{class and ID values for return receipt}

HighLevelEventMsgClass = 'jaym'; {event class of return receipt}

rtrnReceiptMsgID = 'rtrn'; {event ID of return receipt}

{modifiers values in return receipt}

msgWasNotAccepted = 0; {recipient did not accept }

{ the message}

msgWasFullyAccepted = 1; {recipient accepted the}

{ entire message}

msgWasPartiallyAccepted = 2; {recipient did not accept }

{ the entire message}

CHAPTER 2

Event Manager

2-122 Summary of the Event Manager

Data Types

TYPE

EventRecord =

RECORD

what: Integer; {event code}

message: LongInt; {event message}

when: LongInt; {ticks since startup}

where: Point; {mouse location}

modifiers: Integer; {modifier flags}

END;

KeyMap = PACKED ARRAY[0..127] OF Boolean; {records state of keyboard}

TargetID =

RECORD

sessionID: LongInt; {session reference number (not }

{ used if posting an event)}

name: PPCPortRec; {port name}

location: LocationNameRec; {location name}

recvrName: PPCPortRec ; {reserved}

END;

TargetIDPtr = ^TargetID ; {pointer to a target ID record}

TargetIDHdl = ^TargetIDPtr; {handle to a target ID record}

HighLevelEventMsg =

RECORD

HighLevelEventMsgHeaderLength : I nteger ; {reserved}

version : I nteger; {reserved}

reserved1 : LongInt; {reserved}

theMsgEvent : EventRecord ; {event record}

userRefCon : LongInt; {reference constant}

postingOptions : LongInt; {reserved}

msgLength : LongIn t ; {reserved}

END;

HighLevelEventMsgPtr = ^HighLevelEventMsg;

HighLevelEventMsgHdl = ^HighLevelEventMsgPtr;

GetSpecificFilterProcPtr = ProcPtr;

CHAPTER 2

Event Manager

Summary of the Event Manager 2-123

EvQEl = {event queue entry}

RECORD

qLink: QElemPtr; {next queue entry}

qType: Integer; {queue type (ORD(evType))}

evtQWhat: Integer; {event code}

evtQMessage: LongInt; {event message}

evtQWhen: LongInt; {ticks since startup}

evtQWhere: Point; {mouse location}

evtQModifiers: Integer; {modifier flags}

END;

EvQElPtr = ^EvQEl;

Event Manager Routines

Receiving Events

FUNCTION WaitNextEvent (eventMask: Integer; VAR theEvent: EventRecord;
sleep: LongInt; mouseRgn: RgnHandle): Boolean;

FUNCTION EventAvail (eventMask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION GetNextEvent (eventMask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION AcceptHighLevelEvent
(VAR sender: TargetID; VAR msgRefcon: LongInt;

msgBuff: Ptr; VAR msgLen: LongInt): OSErr;

FUNCTION GetSpecificHighLevelEvent
(aFilter: GetSpecificFilterProcPtr;

yourDataPtr: UNIV Ptr; VAR err: OSErr)
: Boolean;

PROCEDURE FlushEvents (whichMask: Integer; stopMask: Integer);

PROCEDURE SystemClick (theEvent: EventRecord; theWindow: WindowPtr);

PROCEDURE SystemTask;

FUNCTION SystemEvent (theEvent: EventRecord): Boolean;

FUNCTION GetOSEvent (mask: Integer; VAR theEvent: EventRecord)
: Boolean;

FUNCTION OSEventAvail (mask: Integer; VAR theEvent: EventRecord)
: Boolean ;

PROCEDURE SetEventMask (theMask: Integer);

FUNCTION GetEvQHdr : QHdrPtr;

CHAPTER 2

Event Manager

2-124 Summary of the Event Manager

Sending Events

FUNCTION PostHighLevelEvent (theEvent: EventRecord; receiverID: Pt r;
msgRefcon: LongInt; msgBuff: Ptr;
msgLen: LongInt; postingOptions: LongInt)
: O SErr;

FUNCTION PPostEvent (eventCode: Integer; eventMsg: LongInt;
VAR qEl: EvQElPtr): OSErr;

FUNCTION PostEvent (eventNum: Integer; eventMsg: LongInt): OSErr ;

Converting Process Serial Numbers and Port Names

FUNCTION GetProcessSerialNumberFromPortName
(portName: PPCPortRec;

VAR PSN: ProcessSerialNumber): OSErr;

FUNCTION GetPortNameFromProcessSerialNumber
(VAR portName: PPCPortRec;

PSN: ProcessSerialNumber): OSErr;

Reading the Mouse

PROCEDURE GetMouse (VAR mouseLoc: Point);

FUNCTION Button : Boolean;

FUNCTION StillDown : Boolean;

FUNCTION WaitMouseUp : Boolean;

Reading the Keyboard

PROCEDURE GetKeys (VAR theKeys: KeyMap) ;

{the KeyTranslate function is also available as the KeyTrans function}

FUNCTION KeyTrans late (transData: Ptr; keycode: Integer;
VAR state: LongInt): LongInt;

Getting Timing Information

FUNCTION TickCount : LongInt;

FUNCTION GetDblTime : LongInt;

FUNCTION GetCaretTime : LongInt;

Application-Defined Routine

Filter Function for Searching the High-Level Event Queue

FUNCTION MyFilter (yourDataPtr: Ptr;
msgBuff: HighLevelEventMsgPtr;
sender: TargetID): Boolean ;

CHAPTER 2

Event Manager

Summary of the Event Manager 2-125

C Summary

Constants

enum {

/*event codes*/

nullEvent = 0, / *no other pending events* /

mouseDown = 1, /*mous e button pressed* /

mouseUp = 2, / *mouse button released* /

keyDown = 3, /*ke y pressed* /

keyUp = 4, /*k ey released* /

autoKey = 5, / *key repeatedly held down* /

updateEvt = 6, / *window needs updating* /

diskEvt = 7, /*dis k i nserte d* /

activateEvt = 8, /*activate /deactivate window* /

osEvt = 15, /*operating-system events */

/* (suspend, resume, mouse-moved)* /

/*event masks* /

mDownMask = 2, /*mouse-down (bit 1) */

mUpMask = 4, /*mouse-up (bit 2) */

keyDownMask = 8, /*key-down (bit 3) */

keyUpMask = 16, /*key-up (bit 4) */

autoKeyMask = 32, /*auto-key (bit 5) */

updateMask = 64, /*update (bit 6) */

diskMask = 128, /*disk-inserted (bit 7) */

activMask = 256, /*activate (bit 8) */

highLevelEventMask = 1024, /*high-level (bit 10) */

osMask = -32768 /*operating-syste m (bit 15) */

};

enum {

everyEvent = -1, /*every event*/

/*event message masks for keyboard events*/

charCodeMask = 0x000000FF, /*use to get character code*/

keyCodeMask = 0x0000FF00, /*use to get key code*/

adbAddrMask = 0x00FF0000, /*ADB address if ADB keyboard*/

osEvtMessageMask = 0xFF000000, /*can use to extract msg code* /

CHAPTER 2

Event Manager

2-126 Summary of the Event Manager

/*message codes for operating-system events* /

mouseMovedMessage = 0xFA , / *mouse-moved event*/

suspendResumeMessage = 0x01, /*suspend or resume event*/

/*flags for suspend and resume events*/

resumeFlag = 1, /*resume event*/

convertClipboardFlag = 2, /*Clipboard conversion */

/* required*/

/*constants corresponding to bits in the modifiers field of event*/

activeFlag = 1, /*bit 0 of low byte--valid only for */

/* activate and mouse-moved events*/

btnState = 128, / *bi t 7 of low byte is mouse button state*/

cmdKey = 256, / *bit 0 of high byte*/

shiftKey = 512, / *bit 1 of high byte*/

alphaLock = 1024, / *bit 2 of high byte*/

optionKey = 2048, / *bit 3 of high byte*/

controlKey = 409 6 / *bit 4 of high byte*/

};

enum {

kHighLevelEvent = 23, /*event code for high-level events */

/* (includes Apple events)*/

/*high-level event posting options* /

receiverIDMask = 0x0000F000, /*mask for receiver ID bits*/

receiverIDisPSN = 0x00008000, /*ID is proc serial number*/

receiverIDisSignature = 0x00007000, /*ID is creator signature*/

receiverIDisSessionID = 0x00006000, /*ID is session ref number*/

receiverIDisTargetID = 0x00005000, /*ID is port name & location*/

systemOptionsMask = 0x00000F00,

nReturnReceipt = 0x00000200, /*return receipt requested* /

priorityMask = 0x000000FF, /*mask for priority options*/

nAttnMsg = 0x00000001, /*give this message priority*/

/*class and ID values for return receipt*/

#define HighLevelEventMsgClass 'jaym'

#define rtrnReceiptMsgID 'rtrn'

/*modifiers values in return receipt* /

msgWasPartiallyAccepted = 2 ,

msgWasFullyAccepted = 1,

msgWasNotAccepted = 0

} ;

CHAPTER 2

Event Manager

Summary of the Event Manager 2-127

Data Types

struct EventRecord {

short what; /*event code*/

long message; /*event message*/

long when; /*ticks since startup*/

Point where; /*mouse location*/

short modifiers; /*modifier flags*/

};

typedef struct EventRecord EventRecord;

typedef long KeyMap[4] ; / *records state of keyboard*/

struct TargetID {

long sessionID ; / *session reference number (not */

/* used if posting an event)*/

PPCPortRec name; /*port name*/

LocationNameRec location; / *location name* /

PPCPortRec recvrName; /*reserved*/

};

typedef struct TargetID TargetID;

typedef TargetID *TargetIDPtr, **TargetIDHdl;

struct HighLevelEventMsg {

unsigned short HighLevelEventMsgHeaderLength; /*reserved*/

unsigned short version; /*reserved*/

unsigned long reserved1; /*reserved*/

EventRecord theMsgEvent; /*event record*/

unsigned long userRefCon; /*ref constant*/

unsigned long postingOptions; /*reserved*/

unsigned long msgLength; /*reserved*/

};

typedef struct HighLevelEventMsg HighLevelEventMsg;

typedef HighLevelEventMsg *HighLevelEventMsgPtr, **HighLevelEventMsgHdl ;

struct EvQEl { / *event queue entry* /

QElemPtr qLin k; /*next queue entry* /

short qType; /*queue type (e vTyp e) * /

short evtQWhat; /*event code* /

long evtQMessage; / *event message* /

long evtQWhen; /*ticks since startup* /

CHAPTER 2

Event Manager

2-128 Summary of the Event Manager

Point evtQWhere; /*mouse location* /

short evtQModifiers; / *modifier flags* /

};

typedef struct EvQEl EvQEl;

typedef EvQEl *EvQElPtr;

typedef pascal Boolean (*GetSpecificFilterProcPtr)
(void *yourDataPtr,
HighLevelEventMsgPtr msgBuff,
const TargetID *sender);

Event Manager Routines

Receiving Events

pascal Boolean WaitNextEvent (short eventMask, EventRecord *theEvent,
unsigned long sleep, RgnHandle mouseRgn);

pascal Boolean EventAvail (short eventMask, EventRecord *theEvent);

pascal Boolean GetNextEvent (short eventMask, EventRecord *theEvent);

pascal OSErr AcceptHighLevelEvent
(TargetID *sender, unsigned long *msgRefcon,

Ptr msgBuff, unsigned long *msgLen);

pascal Boolean GetSpecificHighLevelEvent
(GetSpecificFilterProcPtr aFilter,

void *yourDataPtr, OSErr *err);

pascal void FlushEvents (short whichMask, short stopMask);

pascal void SystemClick (const EventRecord *theEvent,
WindowPtr theWindow);

pascal void SystemTask (void);

pascal Boolean SystemEvent (const EventRecord *theEvent);

pascal Boolean GetOSEvent (short mask, EventRecord *theEvent);

pascal Boolean OSEventAvail (short mask, EventRecord *theEvent) ;

pascal void SetEventMask (short theMask);

#define GetEvQHdr() ((QHdrPtr) 0x014A)

Sending Events

pascal OSErr PostHighLevelEven t
(const EventRecord *theEvent,

unsigned long receiverID,
unsigned long msgRefcon, Ptr msgBuff,
unsigned long msgLen,
unsigned long postingOptions);

CHAPTER 2

Event Manager

Summary of the Event Manager 2-129

pascal OSErr PPostEvent (short eventCode, long eventMsg, EvQElPtr *qEl)

pascal OSErr PostEvent (short eventNum, long eventMsg);

Converting Process Serial Numbers and Port Names

pascal OSErr GetPortNameFromProcessSerialNumbe r
(PPCPortPtr portName,

const ProcessSerialNumberPtr pPSN);

pascal OSErr GetProcessSerialNumberFromPortNam e
(const PPCPortPtr portName,

ProcessSerialNumberPtr pPSN);

Reading the Mouse

pascal void GetMouse (Point *mouseLoc);

pascal Boolean Button (void);

pascal Boolean StillDown (void);

pascal Boolean WaitMouseUp (void);

Reading the Keyboard

pascal void GetKeys (KeyMap theKeys) ;

{the KeyTranslate function is also available as the KeyTrans function}

pascal long KeyTrans late (const void *transData, short keycode,
long *state);

Getting Timing Information

pascal unsigned long TickCount
(void);

#define GetDblTime() (* (unsigned long*) 0x02F0)

#define GetCaretTime() (* (unsigned long*) 0x02F4)

Application-Defined Routine

Filter Function for Searching the High-Level Event Queue

pascal Boolea n MyFilter (void *yourDataPtr,
HighLevelEventMsgPtr msgBuff,
const TargetID *sender) ;

CHAPTER 2

Event Manager

2-130 Summary of the Event Manager

Assembly-Language Summary

Data Structures

Event Data Structure

Target ID Data Structure

High-Level Event Message Data Structure

Event Queue Header Data Structure

Trap Macros

Trap Macros Requiring Routine Selectors
_OSDispatch

0 what word event code
2 message long event message
6 when long ticks since startup

10 where long mouse location
14 modifiers word modifier flags

0 sessionID long session reference number (not used if posting event)
4 name 68 bytes port name (specified in a PPCPortRec data structure)

72 location 34 bytes location name (specified in a LocationNameRec)
106 recvrName 68 bytes reserved

0 HighLevelEventMsgHeaderLength
word reserved

2 version word reserved
4 reserved1 long reserved
8 theMsgEvent 16 bytes event record

22 userRefCon long reference constant
26 postingOptions long reserved
30 msgLength long reserved

0 qLink long next queue entry
4 qType word queue type
6 evtQWhat word event code
8 evtQMessage long event message

12 evtQWhen long ticks since startup
16 evtQWhere long mouse location
20 evtQModifiers word modifier flags

Selector Routine

$0033 AcceptHighLevelEvent

$0034 PostHighLevelEvent

CHAPTER 2

Event Manager

Summary of the Event Manager 2-131

Trap Macros Requiring Register Setup

Global Variables

$0035 GetProcessSerialNumberFromPortName

$0045 GetSpecificHighLevelEvent

$0046 GetPortNameFromProcessSerialNumber

Trap macro name Registers on entry Registers on exit

_FlushEvents D0: event mask (low-order word)
stop mask (high-order word)

D0: 0 if all events were removed from the
queue, or the event code of the event
that stopped the search (low-order
word)

_GetOSEvent A0:
D0:

address of event record
event mask (low-order word) D0: 0 if GetOSEvent returns any event

other than a null event, or –1 if it
returns a null event (low-order byte)

_OSEventAvail A0:
D0:

address of event record
event mask (low-order word) D0: 0 if OSEventAvail returns any event

other than a null event, or –1 if it
returns a null event (low-order byte)

_PostEvent A0:
D0:

event code (low-order word)
event message (long word) D0: result code (low-order word)

CaretTime The suggested difference in ticks that should exist between blinks of the
caret in editable text.

DoubleTime The suggested maximum difference in ticks that should exist between the
time of a mouse-up event and a mouse-down event for your application to
consider those two mouse events a double click.

EventQueue The header of the event queue.
KeyRepThresh The value of the auto-key rate (the amount of time, in ticks, that must elapse

before the Event Manager generates a subsequent auto-key event).
KeyThresh The value of the auto-key threshold (the amount of time, in ticks, that must

elapse before the Event Manager generates an auto-key event).
ScrDmpEnable A byte that, if set to 0, disables the Event Manager’s processing of

Command–Shift–number key combinations with numbers 3 through 9.
SEvtEnb A byte that, if set to 0, causes the SystemEvent function to always return

FALSE.
SysEvtMask The system event mask of the current application.
Ticks A long integer that indicates the current number of ticks since the system

last started up.

Selector Routine

CHAPTER 2

Event Manager

2-132 Summary of the Event Manager

Result Codes
noErr 0 No error
procNotFound –600 No eligible process with specified process serial number
bufferIsSmall –607 Buffer is too small
noOutstandingHLE –608 No outstanding high-level event
connectionInvalid –609 Connection is invalid
noUserInteractionAllowed –610 Cannot interact directly with user
noPortErr –903 Invalid port name

