
Contents 6-1

CHAPTER 6

Contents

Offscreen Graphics Worlds

About Offscreen Graphics Worlds 6-3
Using Offscreen Graphics Worlds 6-4

Creating an Offscreen Graphics World 6-5
Setting the Graphics Port for an Offscreen Graphics World 6-8
Drawing Into an Offscreen Graphics World 6-8
Copying an Offscreen Image Into a Window 6-9
Updating an Offscreen Graphics World 6-9
Creating a Mask and a Source Image in Offscreen Graphics Worlds 6-10

Offscreen Graphics Worlds Reference 6-12
Data Structures 6-12
Routines 6-16

Creating, Altering, and Disposing of Offscreen Graphics Worlds 6-16
Saving and Restoring Graphics Ports and Offscreen Graphics
Worlds 6-27
Managing an Offscreen Graphics World’s Pixel Image 6-30

Summary of Offscreen Graphics Worlds 6-40
Pascal Summary 6-40

Constants 6-40
Data Types 6-41
Routines 6-42

C Summary 6-43
Constants 6-43
Data Types 6-44
Functions 6-45

Assembly-Language Summary 6-46
Result Codes 6-46

CHAPTER 6

About Offscreen Graphics Worlds 6-3

Offscreen Graphics Worlds

This chapter describes QuickDraw routines and data structures that your application
can use to create offscreen graphics worlds. Whether your application uses Color
QuickDraw or basic QuickDraw, you should read this chapter to improve your
application’s appearance and performance when it draws onscreen images.

Read this chapter to learn how to set up and use an offscreen graphics world—a
sophisticated environment for preparing complex color or black-and-white images
before displaying them on the screen. Offscreen graphics worlds are available on all
Macintosh computers that support System 7.

You can use all of the drawing operations described in the chapters “QuickDraw
Drawing” and “Color QuickDraw” in this book to create images in an offscreen graphics
world. After preparing an image in an offscreen graphics world, you can use the
CopyBits , CopyMask , or CopyDeepMask procedure to move the image to an onscreen
color graphics port or basic graphics port. Color graphics ports are described in the
chapter “Color QuickDraw,” and basic graphics ports are described in the chapter “Basic
QuickDraw” in this book.

To support your application in preparing an offscreen image for display on a screen,
Color QuickDraw by default uses the screen’s GDevice record to define the pixel depth
and color table for the offscreen graphics world. The GDevice record is described in the
chapter “Graphics Devices” in this book.

Your application can treat an offscreen graphics world as a virtual screen where your
application has complete control over its drawing environment, and on which
your application can draw a complex image where the user can’t see the various
steps your application must take before completing it. For example, your application can
use QuickDraw drawing routines to build a complex color image in an offscreen
graphics world; then, after building the image, your application can use CopyBits to
copy it quickly to the screen. This prevents the choppiness that could occur if your
application were to construct the image directly in a color graphics port on the screen.

About Offscreen Graphics Worlds

An offscreen graphics world is defined by a private data structure that, in Color
QuickDraw, contains a CGrafPort record and its handles to associated PixMap and
ColorTable records. The offscreen graphics world also contains a reference to a
GDevice record and other state information. On computers lacking Color QuickDraw,
GWorldPtr points to an extension of the GrafPort record. An offscreen graphics world
for a basic QuickDraw system does not contain a reference to a GDevice record, but it
does support a special type of 1-bit pixel map. When your application uses the
NewGWorld function to create an offscreen world, NewGWorld returns a pointer of type
GWorldPtr , which your application uses to refer to the offscreen graphics world. This
pointer is defined as follows:

TYPE GWorldPtr = CGrafPtr;

CHAPTER 6

Offscreen Graphics Worlds

6-4 Using Offscreen Graphics Worlds

Offscreen graphics worlds have two primary purposes.

■ They prevent any other application or desk accessory from changing your drawing
environment while your application is creating an image. An offscreen graphics world
that you create cannot be modified by any other application.

■ They increase onscreen drawing speed and visual smoothness. For example, suppose
your application draws multiple graphics objects in a window, and then needs to
update part of that window. If your image is very complex, your application can copy
it from an offscreen graphics world onto the screen faster than it can repeat all of the
steps necessary to redraw the image onscreen. At the same time, your application
avoids the choppy visual effect that arises from drawing a large number of separate
objects.

The term offscreen graphics world implies that you prepare an image on the global
coordinate plane somewhere outside the boundary rectangles for the user ’s screens.
While this is possible, you more typically use the coordinates of the port rectangle for an
onscreen window when preparing your “offscreen” image; until you copy the image to
the onscreen window, the image in the offscreen graphics world is drawn into a part of
memory not used by the video device and therefore remains hidden from the user.

Using Offscreen Graphics Worlds

To use an offscreen graphics world, you generally

■ use the NewGWorld function to create an offscreen graphics world

■ use the GetGWorld procedure to save the onscreen graphics port for the active
window

■ use the SetGWorld procedure to make the offscreen graphics world the current
graphics port

■ use the LockPixels function to prevent the base address for the offscreen pixel
image from moving while you draw into it or copy from it

■ use the EraseRect procedure to initialize the offscreen pixel image

■ use the basic QuickDraw and Color QuickDraw routines described elsewhere in this
book to draw into the offscreen graphics world

■ use the SetGWorld procedure to restore the active window as the current graphics
port

■ use the CopyBits procedure to copy the image from the offscreen graphics world
into the active window

■ use the UnlockPixels procedure to allow the Memory Manager to move the base
address for the offscreen pixel image

■ use the DisposeGWorld procedure to dispose of all the memory allocated for an
offscreen graphics world when you no longer need its offscreen pixel image

CHAPTER 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-5

If you want to use the CopyMask or CopyDeepMask procedure, you can create another
offscreen graphics world and draw your mask into that offscreen world.

These tasks are explained in greater detail in the rest of this chapter.

Before using the routines described in this chapter, you must use the InitGraf
procedure, described in the chapter “Basic QuickDraw,” to initialize QuickDraw. You
should also ensure the availability of these routines by checking for the existence of
System 7 or Color QuickDraw.

You can make sure that offscreen graphics world routines are available on any
computer—including one supporting only basic QuickDraw—by using the Gestalt
function with the gestaltSystemVersion selector. Test the low-order word in the
response parameter; if the value is $0700 or greater, then offscreen graphics worlds are
supported.

You can also test for offscreen graphics world support by using the Gestalt function
with the gestaltQuickDrawVersion selector. If the value returned in the response
parameter is equal to or greater than the value of the constant gestalt32BitQD , then
the system supports both Color QuickDraw and offscreen graphics worlds.

You can use the Gestalt function with the gestaltQuickDrawVersion selector to
determine whether the user’s system supports offscreen color pixel maps. If the bit
indicated by the gestaltHasDeepGWorlds constant is set in the response parameter,
then offscreen color pixel maps are available.

For more information about the Gestalt function, see the chapter “Gestalt Manager” in
Inside Macintosh: Operating System Utilities.

Creating an Offscreen Graphics World
You create an offscreen graphics world with the NewGWorld function. It creates a new
offscreen graphics port, a new offscreen pixel map, and (on computers that support
Color QuickDraw) either a new offscreen GDevice record or a link to an existing one. It
returns a data structure of type GWorldPtr by which your application refers to your
new offscreen graphics world. Listing 6-1 illustrates how to create an offscreen graphics
world.

Listing 6-1 Using a single offscreen graphics world and the CopyBits procedure

PROCEDURE MyPaintRectsThruGWorld (wp: WindowPtr) ;

VAR

origPort: GrafPtr;

origDev: GDHandle;

myErr: QDErr;

myOffGWorld: GWorldPtr;

offPixMapHandle: PixMapHandle;

good: Boolean;

sourceRect, destRect: Rect;

CHAPTER 6

Offscreen Graphics Worlds

6-6 Using Offscreen Graphics Worlds

BEGIN

GetGWorld(origPort, origDev); {save window's graphics port}

myErr := NewGWorld(myOffGWorld, 0, {create offscreen graphics world, }

wp^.portRect, { using window's port rectangle}

NIL, NIL, []);

IF (myOffGWorld = NIL) OR (myErr <> noErr) THEN

; {handle error here}

SetGWorld(myOffGWorld, NIL); {make offscreen world the current port}

offPixMapHandle := GetGWorldPixMap(myOffGWorld); {get handle to }

good := LockPixels(offPixMapHandle); { offscreen pixel image and lock it}

IF NOT good T HEN

; {handle error here}

EraseRect(myOffGWorld^.portRect); {initialize its pixel image}

MyPaintAndFillColorRects; {paint a blue rectangle, fill a green rectangle}

SetGWorld(origPort, origDev); {make window the current port}

{next, for CopyBits, create source and destination rectangles that }

{ exclude scroll bar areas}

sourceRect := myOffGWorld^.portRect; {use offscreen portRect for source}

sourceRect.bottom := myOffGWorld^.portRect.bottom - 15;

sourceRect.right := myOffGWorld^.portRect.right - 15;

destRect := wp^.portRect; {use window portRect for destination}

destRect.bottom := wp^.portRect.bottom - 15;

destRect.right := wp^.portRect.right - 15;

{next, use CopyBits to transfer the offscreen image to the window}

CopyBits(GrafPtr(myOffGWorld)^.portBits, {coerce graphics world's }

{ PixMap to a BitMap}

GrafPtr(wp)^.portBits, {coerce window's PixMap to a BitMap}

sourceRect, destRect, srcCopy, NIL);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

UnlockPixels(offPixMapHandle); {unlock the pixel image}

DisposeGWorld(myOffGWorld); {dispose of offscreen world}

END;

CHAPTER 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-7

When you use NewGWorld, you can specify a pixel depth, a boundary rectangle (which
also becomes the port rectangle), a color table, a GDevice record, and option flags for
memory allocation for the offscreen graphics world. Typically, however, you pass 0 as
the pixel depth, a window’s port rectangle as the offscreen world’s boundary rectangle,
NIL for both the color table and GDevice record, and an empty set ([]) in your Pascal
code or 0 in your C code for the option flags. This provides your application with the
default behavior of NewGWorld, and it supports computers running only basic
QuickDraw. This also allows QuickDraw to optimize the CopyBits , CopyMask , and
CopyDeepMask procedures when your application copies the image you create in an
offscreen graphics world into the window’s port rectangle.

When creating an offscreen graphics world, if you specify 0 as the pixel depth, the port
rectangle for a window as the boundary rectangle, and no option flags, the NewGWorld
function

■ uses the pixel depth of the screen with the greatest pixel depth from among all screens
intersected by the window

■ aligns the pixel image to the screen for optimum performance for the CopyBits
procedure

■ uses the color table and GDevice record for the screen with the greatest pixel depth
from among all screens intersected by the window

■ allocates an unpurgeable base address for the offscreen pixel image in your
application heap

■ allows graphics accelerators to cache the offscreen pixel image

The application-defined routine MyPaintRectsThruGWorld in Listing 6-1, for
example, specifies the default behavior for NewGWorld. The
MyPaintRectsThruGWorld routine dereferences the window pointer passed in the wp
parameter to obtain a window’s port rectangle, which MyPaintRectsThruGWorld
passes to NewGWorld as the boundary and port rectangle for the offscreen graphics
world.

CHAPTER 6

Offscreen Graphics Worlds

6-8 Using Offscreen Graphics Worlds

Setting the Graphics Port for an Offscreen Graphics World
Before drawing into the offscreen graphics port created in Listing 6-1 on page 6-5,
MyPaintRectsThruGWorld saves the graphics port for the front window by calling
the GetGWorld procedure, which saves the current graphics port and its GDevice
record. Then MyPaintRectsThruGWorld makes the offscreen graphics world the
current port by calling the SetGWorld procedure. After drawing into the offscreen
graphics world, MyPaintRectsThruGWorld also uses SetGWorld to restore the active
window as the current graphics port.

Instead of using the GetPort and SetPort procedures for saving and restoring
offscreen graphics worlds, you must use GetGWorld and SetGWorld ; you can also use
GetGWorld and SetGWorld for saving and restoring color and basic graphics ports.

Drawing Into an Offscreen Graphics World
You must call the LockPixels function before drawing to or copying from an offscreen
graphics world. The LockPixels function prevents the base address for an offscreen
pixel image from being moved while you draw into it or copy from it.

If the base address for an offscreen pixel image hasn’t been purged by the Memory
Manager or if its base address is not purgeable, LockPixels returns TRUE as its
function result, and your application can draw into or copy from the offscreen pixel
image. However, if the base address for an offscreen pixel image has been purged,
LockPixels returns FALSE to indicate that you cannot draw into it or copy from it. (At
that point, your application should either call the UpdateGWorld function to reallocate
the offscreen pixel image and then reconstruct it, or draw directly into an onscreen
graphics port.)

After setting the offscreen graphics world to the current graphics port,
MyPaintRectsThruGWorld in Listing 6-1 on page 6-5 uses the GetGWorldPixMap
function to get a handle to an offscreen pixel map. Passing this handle to the
LockPixels function, MyPaintRectsThruGWorld locks the memory for the
offscreen pixel image in preparation for drawing into its pixel map.

IMPORTANT

On a system running only basic QuickDraw, the GetGWorldPixMap
function returns the handle to a 1-bit pixel map that your application
can supply as a parameter to LockPixels and the other routines
related to offscreen graphics worlds that are described in this chapter.
On a basic QuickDraw system, however, your application should not
supply this handle to Color QuickDraw routines. ▲

The MyPaintRectsThruGWorld routine initializes the offscreen pixel image to
all white by calling the EraseRect procedure, which is described in the chapter
“Basic QuickDraw.” The MyPaintRectsThruGWorld routine then calls another
application-defined routine, MyPaintAndFillColorRects , to draw color rectangles
into the pixel map for the offscreen graphics world.

CHAPTER 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-9

IMPORTANT

You cannot dereference the GWorldPtr data structure to get to the pixel
map. The baseAddr field of the PixMap record for an offscreen
graphics world contains a handle instead of a pointer, which is what the
baseAddr field for an onscreen pixel map contains. You must use the
GetPixBaseAddr function (described on page 6-38) to obtain a pointer
to the PixMap record for an offscreen graphics world. ▲

Copying an Offscreen Image Into a Window
After preparing an image in the offscreen graphics world, your application must use
SetGWorld to restore the active window as the current graphics port, as illustrated in
Listing 6-1 on page 6-5.

To copy the image from an offscreen graphics world into a window, use the CopyBits
procedure. Specify the offscreen graphics world as the source image for CopyBits , and
specify the window as its destination. When using CopyBits , you must coerce the
offscreen graphics world’s GWorldPtr data type to a data structure of type GrafPtr .
Similarly, whenever a color graphics port is your destination, you must coerce the
window’s CGrafPtr data type to a data structure of type GrafPtr . (The CopyBits
procedure is described in the chapter “QuickDraw Drawing.”)

As long as you’re drawing into an offscreen graphics world or copying the image out of
it, you must leave its pixel image locked. When you are finished drawing into and
copying from an offscreen graphics world, use the UnlockPixels procedure. To help
prevent heap fragmentation, the UnlockPixels procedure allows the Memory
Manager to move the base address for the offscreen pixel image. (For more information
about Macintosh memory management, see Inside Macintosh: Memory.)

Finally, call the DisposeGWorld procedure when your application no longer needs the
pixel image associated with this offscreen graphics world, as illustrated in Listing 6-1.

Updating an Offscreen Graphics World
When the user resizes or moves a window, changes the pixel depth of a screen that a
window intersects, or modifies a color table, you can use the UpdateGWorld function to
reflect the user ’s choices in the offscreen graphics world. The UpdateGWorld function,
described on page 6-23, allows you to change the pixel depth, boundary rectangle, or
color table for an existing offscreen graphics world without recreating it and redrawing
its contents. You should also call UpdateGWorld after every update event.

Calling UpdateGWorld and then CopyBits when the user makes these changes helps
your application get the maximum refresh speed when updating the window. See the
chapters “Event Manager” and “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information about handling update events in windows and
about resizing windows.

CHAPTER 6

Offscreen Graphics Worlds

6-10 Using Offscreen Graphics Worlds

Creating a Mask and a Source Image in Offscreen
Graphics Worlds
When you use the CopyMask or CopyDeepMask procedure (described in the chapter
“QuickDraw Drawing”), you can create the source image and its mask in separate
offscreen graphics worlds. Plates 3 and 4 at the front of this book illustrate how to use
CopyMask in this way. The source image in Plate 3 consists of graduated gray stripes;
this image is created in an offscreen graphics world. The mask in Plate 3 consists of a
black rectangle alongside a red rectangle; this mask is created in a separate graphics
world that shares the same coordinates as the source image.

When the CopyMask procedure copies the grayscale image through this mask, the result
is the untitled window illustrated in the bottom half of Plate 3. The black pixels in the
mask cause CopyMask to copy directly into the window those pixels from the source
image that are masked by the black rectangle. The red pixels in the mask cause
CopyMask to alter most of the source pixels masked by the red rectangle when copying
them. That is, the source pixels that are completely black are changed to the mask’s red
when copied into the window. The source pixels that are completely white are left
unaltered when copied into the window. The source pixels that are between black and
white are given a graduated amount of the mask’s red.

Listing 6-2 shows the code that produces the window shown in Plate 3.

Listing 6-2 Using two offscreen graphics worlds and the CopyMask procedure

PROCEDURE MyCopyBlackAndRedMasks (wp: WindowPtr) ;

VAR

origPort: GrafPtr;

origDevice: GDHandle;

myErr: QDErr;

myOffScreen1, myOffScreen2: GWorldPtr;

theColor: RGBColor;

i: Integer;

offPixMapHandle1, offPixMapHandle2: PixMapHandle;

good: Boolean;

myRect: Rect;

BEGIN

GetGWorld(origPort, origDevice); {save window's graphics port}

{create an offscreen world for building an image}

myErr := NewGWorld(myOffScreen1, 0, wp^.portRect, NIL, NIL, []);

IF (myOffScreen1 = NIL) OR (myErr <> noErr) THEN

; {handle error here}

{create another offscreen world for building a mask}

myErr := NewGWorld(myOffScreen2, 0, wp^.portRect, NIL, NIL, []);

IF (myOffScreen2 = NIL) OR (myErr <> noErr) THEN

; {handle error here}

CHAPTER 6

Offscreen Graphics Worlds

Using Offscreen Graphics Worlds 6-11

SetGWorld(myOffScreen1, NIL); {make first offscreen world the }

{ current port}

offPixMapHandle1 := GetGWorldPixMap(myOffScreen1);

good := LockPixels(offPixMapHandle1); {lock its pixel image}

IF NOT good T HEN

; {handle error here}

EraseRect(myOffScreen1^.portRect); {initialize its pixel image}

FOR i := 0 TO 9 DO {draw graduated grayscale stripes for the image}

BEGIN

theColor.red := i * 7168;

theColor.green := i * 7168;

theColor.blue := i * 7168;

RGBForeColor(theColor);

SetRect(myRect, myOffScreen1^.portRect.left, i * 10,

 myOffScreen1^.portRect.right, i * 10 + 10);

PaintRect(myRect);

END;

SetGWorld(myOffScreen2, NIL); {make second offscreen world the }

{ current port}

offPixMapHandle2 := GetGWorldPixMap(myOffScreen2);

good := LockPixels(offPixMapHandle2); {lock its pixel image}

IF NOT good T HEN

; {handle error here}

EraseRect(myOffScreen2^.portRect); {initialize its pixel image}

SetRect(myRect, 20, 20, 80, 80);

PaintRect(myRect); {paint a black rectangle in the mask}

SetRect(myRect, 100, 20, 160, 80);

theColor.red := $FFFF; theColor.green := $0000; theColor.blue := $0000;

RGBForeColor(theColor);

PaintRect(myRect); {paint a red rectangle in the mask }

SetGWorld(wp, GetMainDevice); {make window the current port}

EraseRect(wp^.portRect); {erase the window before using CopyMask}

CopyMask(GrafPtr(myOffScreen1)^.portBits, {use gray image as source}

GrafPtr(myOffScreen2)^.portBits, {use 2-rectangle image as mask}

GrafPtr(wp)^.portBits, {use window as destination}

myOffScreen1^.portRect,

myOffScreen2^.portRect,

wp^.portRect);

UnlockPixels(offPixMapHandle1); UnlockPixels(offPixMapHandle2);

DisposeGWorld(myOffScreen1); DisposeGWorld(myOffScreen2);

SetGWorld(origPort, origDevice); {restore original graphics port}

END;

CHAPTER 6

Offscreen Graphics Worlds

6-12 Offscreen Graphics Worlds Reference

Offscreen Graphics Worlds Reference

This section describes the data structures and routines that your application can use to
create and manage offscreen graphics worlds. “Data Structures” shows the Pascal data
structures for the GWorldPtr and GWorldFlags data types. “Routines” describes
routines for creating, altering, and disposing of offscreen graphics worlds; for saving and
restoring offscreen graphics worlds; and for managing an offscreen graphics world’s
pixel map.

Data Structures
This section shows the Pascal data structures for the GWorldPtr and GWorldFlags
data types. Your application uses pointers of type GWorldPtr to refer to the offscreen
graphics worlds it creates. Several routines in this chapter expect or return values
defined by the GWorldFlags data type.

GWorldPtr

An offscreen graphics world in Color QuickDraw contains a CGrafPort record—and its
handles to associated PixMap and ColorTable records—that describes an offscreen
graphics port and contains references to a GDevice record and other state information.
The actual data structure for an offscreen graphics world is kept private to allow for
future extensions. However, when your application uses the NewGWorld function to
create an offscreen world, NewGWorld returns a pointer of type GWorldPtr by which
your application refers to the offscreen graphics world. This pointer is defined as follows:

TYPE GWorldPtr = CGrafPtr;

On computers lacking Color QuickDraw, GWorldPtr points to an extension of the
GrafPort record.

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-13

GWorldFlags

Several routines in this chapter expect or return values defined by the GWorldFlags
data type, which is defined as follows:

TYPE GWorldFlags =

SET OF (

pixPurge, {specify to NewGWorld to make base address }

{ for offscreen pixel image purgeable}

noNewDevice, {specify to NewGWorld to not create a new }

{ GDevice record for offscreen world}

useTempMem, {specify to NewGWorld to create base }

{ address for offscreen pixel image in }

{ temporary memory}

keepLocal, {specify to NewGWorld to keep offscreen }

{ pixel image in main memory}

gWorldFlag4, {reserved}

gWorldFlag5, {reserved}

pixelsPurgeable, {returned by GetPixelsState to indicate }

{ that base address for offscreen pixel }

{ image is purgeable; specify to }

{ SetPixelsState to make base address for }

{ pixel image purgeable}

pixelsLocked, {returned by GetPixelsState to indicate }

{ that base address for offscreen pixel }

{ image is locked; specify to }

{ SetPixelsState to lock base address for }

{ offscreen pixel image}

gWorldFlag8, {reserved}

gWorldFlag9, {reserved}

gWorldFlag10, {reserved}

gWorldFlag11, {reserved}

gWorldFlag12, {reserved}

gWorldFlag13, {reserved}

gWorldFlag14, {reserved}

gWorldFlag15, {reserved}

mapPix, {returned by UpdateGWorld if it remapped }

{ colors to a new color table}

newDepth, {returned by UpdateGWorld if it translated }

{ pixel map to a different pixel depth}

alignPix, {returned by UpdateGWorld if it realigned }

{ pixel image to onscreen window}

newRowBytes, {returned by UpdateGWorld if it changed }

{ rowBytes field of PixMap record}

CHAPTER 6

Offscreen Graphics Worlds

6-14 Offscreen Graphics Worlds Reference

reallocPix, {returned by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

gWorldFlag21, {reserved}

gWorldFlag22, {reserved}

gWorldFlag23, {reserved}

gWorldFlag24, {reserved}

gWorldFlag25, {reserved}

gWorldFlag26, {reserved}

gWorldFlag27, {reserved}

clipPix, {specify to UpdateGWorld to update and clip }

{ pixel image}

stretchPix, {specify to UpdateGWorld to update and }

{ stretch or shrink pixel image}

ditherPix, {specify to UpdateGWorld to dither pixel }

{ image}

gwFlagErr, {returned by UpdateGWorld if it failed}

);

Field descriptions

pixPurge If you specify this flag for the flags parameter of the NewGWorld
function, NewGWorld (described on page 6-16) makes the base
address for the offscreen pixel image purgeable.

noNewDevice If you specify this flag for the flags parameter of the NewGWorld
function, NewGWorld does not create a new offscreen GDevice
record; instead, NewGWorld uses either the GDevice record you
specify or the GDevice record for a video card on the user’s system.

useTempMem If you specify this in the flags parameter of the NewGWorld
function, NewGWorld creates the base address for an offscreen pixel
image in temporary memory. You generally should not use this flag.
You should use temporary memory only for fleeting purposes and
only with the AllowPurgePixels procedure (described on
page 6-34) so that other applications can launch.

keepLocal If you specify this in the flags parameter of the NewGWorld
function, NewGWorld creates a pixel image in Macintosh main
memory where it cannot be cached to a graphics accelerator card.

gWorldFlag4 Reserved.
gWorldFlag5 Reserved.
pixelsPurgeable

If you specify this in the state parameter of the SetPixelsState
procedure (described on page 6-37), SetPixelsState makes the
base address for an offscreen pixel map purgeable. If you use
the SetPixelsState procedure without passing it this flag, then
SetPixelsState makes the base address for an offscreen pixel
map unpurgeable. If the GetPixelsState function (described on
page 6-36) returns this flag, then the base address for an offscreen
pixel is purgeable.

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-15

pixelsLocked If you specify this flag for the state parameter of the
SetPixelsState procedure, SetPixelsState locks the
base address for an offscreen pixel image. If you use the
SetPixelsState procedure without passing it this flag,
then SetPixelsState unlocks the offscreen pixel image. If the
GetPixelsState function returns this flag, then the base address
for an offscreen pixel is locked.

gWorldFlag8 Reserved.
gWorldFlag9 Reserved.
gWorldFlag10 Reserved.
gWorldFlag11 Reserved.
gWorldFlag12 Reserved.
gWorldFlag13 Reserved.
gWorldFlag14 Reserved.
gWorldFlag15 Reserved.
mapPix If the UpdateGWorld function (described on page 6-23) returns this

flag, then it remapped the colors in the offscreen pixel map to a new
color table.

newDepth If the UpdateGWorld function returns this flag, then it translated
the offscreen pixel map to a different pixel depth.

alignPix If the UpdateGWorld function returns this flag, then it realigned
the offscreen pixel image to an onscreen window.

newRowBytes If the UpdateGWorld function returns this flag, then it changed the
rowBytes field of the PixMap record for the offscreen graphics
world.

reallocPix If the UpdateGWorld function returns this flag, then it reallocated
the base address for the offscreen pixel image. Your application
should then reconstruct the pixel image or draw directly in a
window instead of preparing the image in an offscreen graphics
world.

gWorldFlag21 Reserved.
gWorldFlag22 Reserved.
gWorldFlag23 Reserved.
gWorldFlag24 Reserved.
gWorldFlag25 Reserved.
gWorldFlag26 Reserved.
gWorldFlag27 Reserved.
clipPix If the UpdateGWorld function returns this flag, then it clipped the

pixel image.
stretchPix If the UpdateGWorld function returns this flag, then it stretched or

shrank the offscreen image.
ditherPix If the UpdateGWorld function returns this flag, then it dithered the

offscreen image.
gwFlagErr If the UpdateGWorld function returns this flag, then it was

unsuccessful and the offscreen graphics world was left unchanged.

CHAPTER 6

Offscreen Graphics Worlds

6-16 Offscreen Graphics Worlds Reference

Routines
This section describes routines for creating, altering, and disposing of offscreen graphics
worlds; for saving and restoring offscreen graphics worlds; and for managing an
offscreen graphics world’s pixel map.

Creating, Altering, and Disposing of Offscreen Graphics Worlds

To create an offscreen graphics world, use the NewGWorld function. The NewGWorld
function uses the NewScreenBuffer function to create and allocate memory for an
offscreen pixel image; your application generally won’t need to use NewScreenBuffer ,
but it is described here for completeness. The NewGWorld function similarly uses the
NewTempScreenBuffer function to create and allocate temporary memory for an
offscreen pixel image.

To change the pixel depth, boundary rectangle, or color table for an existing offscreen
graphics world, use the UpdateGWorld function.

When you no longer need the pixel image associated with this offscreen graphics world,
use the DisposeGWorld procedure to dispose of all the memory allocated for the
offscreen graphics world. The DisposeGWorld procedure uses the
DisposeScreenBuffer procedure when disposing of an offscreen graphics world;
generally, your application won’t need to use DisposeScreenBuffer .

Note

Before drawing into an offscreen graphics world, be sure to use the
SetGWorld procedure (described on page 6-29) to make that offscreen
world the current graphics port. In addition, before drawing into—or
copying from—an offscreen pixel map, be sure to use the LockPixels
function, which is described on page 6-32. ◆

NewGWorld

Use the NewGWorld function to create an offscreen graphics world.

FUNCTION NewGWorld (VAR offscreenGWorld: GWorldPtr;

 pixelDepth: Integer; boundsRect: Rect;

 cTable: CTabHandle; aGDevice: GDHandle;

 flags: GWorldFlags): QDErr;

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-17

offscreenGWorld
A pointer to the offscreen graphics world created by this routine.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16,
and 32 bits per pixel. If you specify 0 in this parameter, you get the
default behavior for the NewGWorld function—that is, it uses the pixel
depth of the screen with the greatest pixel depth from among all screens
whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter. If you specify 0 in this parameter, NewGWorld
also uses the GDevice record from this device instead of creating a new
GDevice record for the offscreen world. If you use NewGWorld on a
computer that supports only basic QuickDraw, you may specify only 0 or
1 in this parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel
map. This becomes the boundary rectangle for the GDevice record,
if NewGWorld creates one. If you specify 0 in the pixelDepth parameter,
NewGWorld interprets the boundaries in global coordinates that it uses to
determine which screens intersect the rectangle. (NewGWorld then uses
the pixel depth, color table, and GDevice record from the screen with the
greatest pixel depth from among all screens whose boundary rectangles
intersect this rectangle.) Typically, your application supplies this
parameter with the port rectangle for the onscreen window into which
your application will copy the pixel image from this offscreen world.

cTable A handle to a ColorTable record. If you pass NIL in this parameter,
NewGWorld uses the default color table for the pixel depth that you
specify in the pixelDepth parameter. If you set the pixelDepth
parameter to 0, NewGWorld ignores the cTable parameter and instead
copies and uses the color table of the graphics device with the greatest
pixel depth among all graphics devices whose boundary rectangles
intersect the rectangle that you specify in the boundsRect parameter.
If you use NewGWorld on a computer that supports only basic
QuickDraw, you may specify only NIL in this parameter.

aGDevice A handle to a GDevice record that is used only when you specify the
noNewDevice flag in the flags parameter, in which case NewGWorld
attaches this GDevice record to the new offscreen graphics world. If you
set the pixelDepth parameter to 0, or if you do not set the
noNewDevice flag, NewGWorld ignores the aGDevice parameter, so
you should set it to NIL . If you set the pixelDepth parameter to 0,
NewGWorld uses the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle that you specify in the boundsRect
parameter. You should pass NIL in this parameter if the computer
supports only basic QuickDraw. Generally, your application should never
create GDevice records for offscreen graphics worlds.

CHAPTER 6

Offscreen Graphics Worlds

6-18 Offscreen Graphics Worlds Reference

flags Options available to your application. You can set a combination of the
flags pixPurge , noNewDevice , useTempMem, and keepLocal . If you
don’t wish to use any of these flags, pass the empty set ([]) in your Pascal
code or 0 in your C code in this parameter, in which case you get the
default behavior for NewGWorld—that is, it creates an offscreen graphics
world where the base address for the offscreen pixel image is
unpurgeable, it uses an existing GDevice record (if you pass 0 in the
depth parameter) or creates a new GDevice record, it uses memory in
your application heap, and it allows graphics accelerators to cache the
offscreen pixel image. The available flags are described here:

TYPE GWorldFlags =

SET OF ({flags for only NewGWorld are listed here}

 pixPurge, {make base address for offscreen pixel }

{ image purgeable}

 noNewDevice, {do not create an offscreen GDevice }

{ record}

 useTempMem, {create base address for offscreen pixel }

{ image in temporary memory}

 keepLocal, {keep offscreen pixel image in main }

{ memory where it cannot be cached to }

{ a graphics accelerator card}

);

DESCRIPTION

The NewGWorld function creates an offscreen graphics world with the pixel depth you
specify in the pixelDepth parameter, the boundary rectangle you specify in the
boundsRect parameter, the color table you specify in the cTable parameter, and the
options you specify in the flags parameter. The NewGWorld function returns a pointer
to the new offscreen graphics world in the offscreenGWorld parameter. You use this
pointer when referring to this new offscreen world in other routines described in this
chapter.

Typically, you pass 0 in the pixelDepth parameter, a window’s port rectangle in the
boundsRect parameter, NIL in the cTable and aGDevice parameters, and—in the
flags parameter—an empty set ([]) for Pascal code or 0 for C code. This provides your
application with the default behavior of NewGWorld, and it supports computers running
basic QuickDraw. This also allows QuickDraw to optimize the CopyBits , CopyMask ,
and CopyDeepMask procedures when your application copies the image in an offscreen
graphics world into an onscreen graphics port.

The NewGWorld function allocates memory for an offscreen graphics port and its pixel
map. On computers that support only basic QuickDraw, NewGWorld creates a 1-bit
pixel map that your application can manipulate using other relevant routines described
in this chapter. Your application can copy this 1-bit pixel map into basic graphics ports.

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-19

Unless you specify 0 in the pixelDepth parameter—or pass the noNewDevice flag in
the flags parameter and supply a GDevice record in the aGDevice parameter—
NewGWorld also allocates a new offscreen GDevice record.

When creating an image, your application can use the NewGWorld function to create an
offscreen graphics world that is optimized for an image’s characteristics—for example,
its best pixel depth. After creating the image, your application can then use the
CopyBits , CopyMask , or CopyDeepMask procedure to copy that image to an onscreen
graphics port. Color QuickDraw automatically renders the image at the best available
pixel depth for the screen. Creating an image in an offscreen graphics port and then
copying it to the screen in this way prevents the visual choppiness that would otherwise
occur if your application were to build a complex image directly onscreen.

The NewGWorld function initializes the offscreen graphics port by calling the
OpenCPort function. The NewGWorld function sets the offscreen graphics port’s visible
region to a rectangular region coincident with its boundary rectangle. The NewGWorld
function generates an inverse table with the Color Manager procedure MakeITable ,
unless one of the GDevice records for the screens has the same color table as the
GDevice record for the offscreen world, in which case NewGWorld uses the inverse
table from that GDevice record.

The address of the offscreen pixel image is not directly accessible from the PixMap
record for the offscreen graphics world. However, you can use the GetPixBaseAddr
function (described on page 6-38) to get a pointer to the beginning of the offscreen pixel
image.

For purposes of estimating memory use, you can compute the size of the offscreen pixel
image by using this formula:

rowBytes * (boundsRect.bottom – boundsRect.top)

In the flags parameter, you can specify several options that are defined by the
GWorldFlags data type. If you don’t wish to use any of these options, pass an empty
set ([]) in the flags parameter for Pascal code or pass 0 here for C code.

■ If you specify the pixPurge flag, NewGWorld stores the offscreen pixel image in a
purgeable block of memory. In this case, before drawing to or from the offscreen pixel
image, your application should call the LockPixels function (described on
page 6-32) and ensure that it returns TRUE. If LockPixels returns FALSE, the
memory for the pixel image has been purged, and your application should either call
UpdateGWorld to reallocate it and then reconstruct the pixel image, or draw directly
in a window instead of preparing the image in an offscreen graphics world. Never
draw to or copy from an offscreen pixel image that has been purged without
reallocating its memory and then reconstructing it.

■ If you specify the noNewDevice flag, NewGWorld does not create a new offscreen
GDevice record. Instead, it uses the GDevice record that you specify in the
aGDevice parameter—and its associated pixel depth and color table—to create the
offscreen graphics world. (If you set the pixelDepth parameter to 0, NewGWorld
uses the GDevice record for the screen with the greatest pixel depth among all
screens whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter—even if you specify the noNewDevice flag.) The

CHAPTER 6

Offscreen Graphics Worlds

6-20 Offscreen Graphics Worlds Reference

NewGWorld function keeps a reference to the GDevice record for the offscreen
graphics world, and the SetGWorld procedure (described on page 6-29) uses that
record to set the current graphics device.

■ If you set the useTempMem flag, NewGWorld creates the base address for an offscreen
pixel image in temporary memory. You generally would not use this flag, because you
should use temporary memory only for fleeting purposes and only with the
AllowPurgePixels procedure (described on page 6-34).

■ If you specify the keepLocal flag, your offscreen pixel image is kept in Macintosh
main memory and is not cached to a graphics accelerator card. Use this flag carefully,
as it negates the advantages provided by any graphics acceleration card that might be
present.

As its function result, NewGWorld returns one of three result codes.

SPECIAL CONSIDERATIONS

If you supply a handle to a ColorTable record in the cTable parameter, NewGWorld
makes a copy of the record and stores its handle in the offscreen PixMap record. It is
your application’s responsibility to make sure that the ColorTable record you specify
in the cTable parameter is valid for the offscreen graphics port’s pixel depth.

If when using NewGWorld you specify a pixel depth, color table, or GDevice record that
differs from those used by the window into which you copy your offscreen image, the
CopyBits , CopyMask , and CopyDeepMask procedures require extra time to complete.

To use a custom color table in an offscreen graphics world, you need to create the
associated offscreen GDevice record, because Color QuickDraw needs its inverse table.

The NewGWorld function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewGWorld function are

RESULT CODES

Trap macro Selector

_QDExtensions $00160000

noErr 0 No error
paramErr –50 Illegal parameter
cDepthErr –157 Invalid pixel depth

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-21

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use NewGWorld to
create offscreen graphics worlds.

If your application needs to change the pixel depth, boundary rectangle, or color table
for an offscreen graphics world, use the UpdateGWorld function, described on
page 6-23.

NewScreenBuffer

The NewGWorld function uses the NewScreenBuffer function to create an offscreen
PixMap record and allocate memory for the base address of its pixel image; applications
generally don’t need to use NewScreenBuffer .

FUNCTION NewScreenBuffer (globalRect: Rect;

 purgeable: Boolean; VAR gdh: GDHandle;

 VAR offscreenPixMap: PixMapHandle):

 QDErr;

globalRect
The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable A value of TRUE to make the memory block for the offscreen pixel map
purgeable, or a value of FALSE to make it unpurgeable.

gdh The handle to the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle specified in the globalRect parameter.

offscreenPixMap
A handle to the new offscreen PixMap record.

DESCRIPTION

The NewScreenBuffer function creates a new offscreen PixMap record, using the pixel
depth and color table of the device whose GDevice record is returned in the gdh
parameter. The NewScreenBuffer function returns a handle to the new offscreen pixel
map in the offscreenPixMap parameter.

As its function result, NewScreenBuffer returns one of three result codes.

SPECIAL CONSIDERATIONS

The NewScreenBuffer function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

CHAPTER 6

Offscreen Graphics Worlds

6-22 Offscreen Graphics Worlds Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewScreenBuffer function are

RESULT CODES

NewTempScreenBuffer

The NewGWorld function uses the NewTempScreenBuffer function to create an
offscreen PixMap record and allocate temporary memory for the base address of its pixel
image; applications generally don’t need to use NewTempScreenBuffer .

FUNCTION NewTempScreenBuffer (globalRect: Rect;

 purgeable: Boolean;

 VAR gdh: GDHandle;

 VAR offscreenPixMap: PixMapHandle):

 QDErr;

globalRect
The boundary rectangle, in global coordinates, for the offscreen pixel map.

purgeable A value of TRUE to make the memory block for the offscreen pixel map
purgeable, or a value of FALSE to make it unpurgeable.

gdh The handle to the GDevice record for the graphics device with the
greatest pixel depth among all graphics devices whose boundary
rectangles intersect the rectangle specified in the globalRect parameter.

offscreenPixMap
A handle to the new offscreen PixMap record.

DESCRIPTION

The NewTempScreenBuffer function performs the same functions as
NewScreenBuffer except that it creates the base address for the offscreen pixel
image in temporary memory. When an application passes it the useTempMem flag,
the NewGWorld function uses NewTempScreenBuffer instead of NewScreenBuffer .

Trap macro Selector

_QDExtensions $000E0010

noErr 0 No error
paramErr –50 Illegal parameter
cNoMemErr –152 Failed to allocate memory for structures

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-23

SPECIAL CONSIDERATIONS

The NewTempScreenBuffer function may move or purge memory blocks in the
application heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NewTempScreenBuffer function are

UpdateGWorld

To change the pixel depth, boundary rectangle, or color table for an existing offscreen
graphics world, use the UpdateGWorld function. You should call UpdateGWorld after
every update event and whenever your windows move or change size.

FUNCTION UpdateGWorld (VAR offscreenGWorld: GWorldPtr;

 pixelDepth: Integer; boundsRect: Rect;

 cTable: CTabHandle; aGDevice: GDHandle;

 flags: GWorldFlags): GWorldFlags;

offscreenGWorld
On input, a pointer to an existing offscreen graphics world; upon
completion, the pointer to the updated offscreen graphics world.

pixelDepth
The pixel depth of the offscreen world; possible depths are 1, 2, 4, 8, 16,
and 32 bits per pixel. If you specify 0 in this parameter, UpdateGWorld
rescans the device list and uses the depth of the screen with the greatest
pixel depth among all screens whose boundary rectangles intersect the
rectangle that you specify in the boundsRect parameter. If you specify 0
in this parameter, UpdateGWorld also copies the GDevice record from
this device to create an offscreen GDevice record. The UpdateGWorld
function ignores the value you supply for this parameter if you specify a
GDevice record in the aGDevice parameter.

boundsRect
The boundary rectangle and port rectangle for the offscreen pixel map.
This also becomes the boundary rectangle for the GDevice record,
if NewGWorld creates one. If you specify 0 in the pixelDepth parameter,
NewGWorld interprets the boundaries in global coordinates, with which it
determines which screens intersect the rectangle. (NewGWorld then uses
the pixel depth, color table, and GDevice record from the screen with the
greatest pixel depth from among all screens whose boundary rectangles
intersect this rectangle.) Typically, your application supplies this
parameter with the port rectangle for the onscreen window into which
your application will copy the pixel image from this offscreen world.

Trap macro Selector

_QDExtensions $000E0015

CHAPTER 6

Offscreen Graphics Worlds

6-24 Offscreen Graphics Worlds Reference

cTable A handle to a ColorTable record. If you pass NIL in this parameter,
UpdateGWorld uses the default color table for the pixel depth that you
specify in the pixelDepth parameter; if you set the pixelDepth
parameter to 0, UpdateGWorld copies and uses the color table of the
graphics device with the greatest pixel depth among all graphics devices
whose boundary rectangles intersect the rectangle that you specify in the
boundsRect parameter. The UpdateGWorld function ignores the value
you supply for this parameter if you specify a GDevice record in the
aGDevice parameter.

aGDevice As an option, a handle to a GDevice record whose pixel depth and color
table you want to use for the offscreen graphics world. To use the pixel
depth and color table that you specify in the pixelDepth and cTable
parameters, set this parameter to NIL .

flags Options available to your application. You can set a combination of the
flags keepLocal , clipPix , stretchPix , and ditherPix . If you don’t
wish to use any of these flags, pass the empty set ([]) in this parameter for
Pascal code or pass 0 here for C code. However, you should pass either
clipPix or stretchPix to ensure that the pixel map is updated to
reflect the new color table. The available flags are described here:

 TYPE GWorldFlags =

 SET OF ({flags for UpdateGWorld are listed here}

 keepLocal, {keep data structures in main memory}

 clipPix, {update and clip pixel image to new }

 { boundary rectangle}

 stretchPix, {update and stretch or shrink pixel }

 { image to the new boundary rectangle}

 ditherPix, {include with clipPix or stretchPix }

 { flag to dither the pixel image}

);

DESCRIPTION

The UpdateGWorld function changes an offscreen graphics world to the specified pixel
depth, rectangle, color table, and options that you supply in the pixelDepth ,
boundsRect , cTable , and flags parameters, respectively. In the offscreenGWorld
parameter, pass the pointer returned to your application by the NewGWorld function
when you created the offscreen graphics world.

If the LockPixels function (described on page 6-32) reports that the Memory Manager
has purged the base address for the offscreen pixel image, you can use UpdateGWorld
to reallocate its memory. Your application should then reconstruct the pixel image or
draw directly in a window instead of preparing the image in an offscreen graphics world.

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-25

In the flags parameter, you can specify the keepLocal flag, which keeps the offscreen
pixel image in Macintosh main memory or returns the image to main memory if it had
been previously cached. If you use UpdateGWorld without passing it the keepLocal
flag, you allow the offscreen pixel image to be cached on a graphics accelerator card if
one is present.

As its function result, UpdateGWorld returns the gwFlagErr flag if UpdateGWorld
was unsuccessful; in this case, the offscreen graphics world is left unchanged. You can
use the QDError function, described in the chapter “Color QuickDraw,” to help you
determine why UpdateGWorld failed.

If UpdateGWorld is successful, it returns a combination of the following flags, which
are defined by the GWorldFlags data type:

The UpdateGWorld function uses the following algorithm when updating the offscreen
pixel image:

1. If the color table that you specify in the cTable parameter is different from the
previous color table, or if the color table associated with the GDevice record that you
specify in the aGDevice parameter is different, Color QuickDraw maps the pixel
values in the offscreen pixel map to the new color table.

2. If the value you specify in the pixelDepth parameter differs from the previous pixel
depth, Color QuickDraw translates the pixel values in the offscreen pixel image to
those for the new pixel depth.

3. If the rectangle you specify in the boundsRect parameter differs from, but has the
same size as, the previous boundary rectangle, QuickDraw realigns the pixel image to
the screen for optimum performance for the CopyBits procedure.

4. If the rectangle you specify in the boundsRect parameter is smaller than the
previous boundary rectangle and you specify the clipPix flag, the pixel image is
clipped along the bottom and right edges.

Flag Meaning

mapPix Color QuickDraw remapped the colors to a new color table.

newDepth Color QuickDraw translated the pixel values in the offscreen pixel
image to those for a different pixel depth.

alignPix QuickDraw realigned the offscreen image to the window.

newRowBytes QuickDraw changed the value of the rowBytes field in the PixMap
record for the offscreen graphics world.

reallocPix QuickDraw had to reallocate memory for the offscreen pixel image;
your application should then reconstruct the pixel image, or draw
directly in a window instead of preparing the image in an offscreen
graphics world.

clipPix QuickDraw clipped the pixel image.

stretchPix QuickDraw stretched or shrank the offscreen image.

ditherPix Color QuickDraw dithered the offscreen pixel image.

CHAPTER 6

Offscreen Graphics Worlds

6-26 Offscreen Graphics Worlds Reference

5. If the rectangle you specify in the boundsRect parameter is bigger than the previous
boundary rectangle and you specify the clipPix flag, the bottom and right edges of
the pixel image are undefined.

6. If the rectangle you specify in the boundsRect parameter is smaller than the
previous boundary rectangle and you specify the stretchPix flag, the pixel image is
reduced to the new size.

7. If the rectangle you specify in the boundsRect parameter is bigger than the previous
boundary rectangle and you specify the stretchPix flag, the pixel image is
stretched to the new size.

8. If the Memory Manager purged the base address for the offscreen pixel image,
UpdateGWorld reallocates the memory, but the pixel image is lost. You must
reconstruct it.

SPECIAL CONSIDERATIONS

The UpdateGWorld function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UpdateGWorld function are

DisposeGWorld

Use the DisposeGWorld procedure to dispose of all the memory allocated for an
offscreen graphics world.

PROCEDURE DisposeGWorld (offscreenGWorld: GWorldPtr);

offscreenGWorld
A pointer to an offscreen graphics world.

DESCRIPTION

The DisposeGWorld procedure disposes of all the memory allocated for the
offscreen graphics world pointed to in the offscreenGWorld parameter, including its
pixel map, color table, pixel image, and GDevice record (if one was created). In the
offscreenGWorld parameter, pass the pointer returned to your application by the
NewGWorld function when you created the offscreen graphics world.

Trap macro Selector

_QDExtensions $00160003

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-27

Call DisposeGWorld only when your application no longer needs the pixel image
associated with this offscreen graphics world. If this offscreen graphics world was the
current device, the current device is reset to the device stored in the global variable
MainDevice .

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeGWorld procedure are

DisposeScreenBuffer

The DisposeGWorld procedure uses the DisposeScreenBuffer procedure when
disposing of an offscreen graphics world; generally, applications do not need to use
DisposeScreenBuffer .

PROCEDURE DisposeScreenBuffer (offscreenPixMap: PixMapHandle);

offscreenPixMap
A handle to an existing offscreen PixMap record.

DESCRIPTION

The DisposeScreenBuffer procedure disposes of the memory allocated for the base
address of an offscreen pixel image.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DisposeScreenBuffer procedure are

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

To save the current graphics port (basic, color, or offscreen) and the current GDevice
record, use the GetGWorld procedure. To change the current graphics port (basic, color,
or offscreen), use the SetGWorld procedure; any drawing your application performs
then occurs in this graphics port.

You can use the GetGWorldDevice function to obtain a handle to the GDevice record
associated with an offscreen graphics world.

Trap macro Selector

_QDExtensions $00040004

Trap macro Selector

_QDExtensions $00040011

CHAPTER 6

Offscreen Graphics Worlds

6-28 Offscreen Graphics Worlds Reference

GetGWorld

To save the current graphics port (basic, color, or offscreen) and the current GDevice
record, use the GetGWorld procedure.

PROCEDURE GetGWorld (VAR port: CGrafPtr; VAR gdh: GDHandle);

port A pointer to an offscreen graphics world, color graphics port, or basic
graphics port, depending on which is the current port.

gdh A handle to the GDevice record for the current device.

DESCRIPTION

The GetGWorld procedure returns a pointer to the current graphics port in the port
parameter. This parameter can return values of type GrafPtr , CGrafPtr , or
GWorldPtr , depending on whether the current graphics port is a basic graphics port,
color graphics port, or offscreen graphics world. The GetGWorld procedure returns a
handle to the GDevice record for the current device in the gdh parameter.

After using GetGWorld to save a graphics port and a GDevice record, your application
can later use the SetGWorld procedure, described next, to restore them.

SPECIAL CONSIDERATIONS

The GetGWorld procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorld procedure are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use the
GetGWorld procedure to save the current graphics port for an active window,
the SetGWorld procedure to change the current graphics port to an offscreen graphics
world, and then SetGWorld again to restore the active window as the current
graphics port.

Trap macro Selector

_QDExtensions $00080005

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-29

SetGWorld

To change the current graphics port (basic, color, or offscreen), use the SetGWorld
procedure.

PROCEDURE SetGWorld (port: CGrafPtr; gdh: GDHandle);

port A pointer to an offscreen graphics world, color graphics port, or basic
graphics port.

gdh A handle to a GDevice record. If you pass a pointer to an offscreen
graphics world in the port parameter, set this parameter to NIL , because
SetGWorld ignores this parameter and sets the current device to the
device attached to the offscreen graphics world.

DESCRIPTION

The SetGWorld procedure sets the current graphics port to the one specified by the
port parameter and—unless you set the current graphics port to be an offscreen
graphics world—sets the current device to that specified by the gdh parameter.

In the port parameter, you can specify values of type GrafPtr , CGrafPtr , or
GWorldPtr , depending on whether you want to set the current graphics port to be a
basic graphics port, color graphics port, or offscreen graphics world. Any drawing your
application performs then occurs in this graphics port.

SPECIAL CONSIDERATIONS

The SetGWorld procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetGWorld procedure are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate how to use the
GetGWorld procedure to save the current graphics port for an active window,
the SetGWorld procedure to change the current graphics port to an offscreen graphics
world, and then SetGWorld again to restore the active window as the current
graphics port.

Trap macro Selector

_QDExtensions $00080006

CHAPTER 6

Offscreen Graphics Worlds

6-30 Offscreen Graphics Worlds Reference

GetGWorldDevice

Use the GetGWorldDevice function to obtain a handle to the GDevice record
associated with an offscreen graphics world.

FUNCTION GetGWorldDevice (offscreenGWorld: GWorldPtr): GDHandle;

offscreenGWorld
A pointer to an offscreen graphics world. The pointer returned to your
application by the NewGWorld function.

DESCRIPTION

The GetGWorldDevice function returns a handle to the GDevice record associated
with the offscreen graphics world specified by the offscreenGWorld parameter. In this
parameter, supply the pointer returned to your application by the NewGWorld function
when you created the offscreen graphics world. If you created the offscreen world by
specifying the noNewDevice flag, the GDevice record is for one of the screen devices or
is the GDevice record that you specified to NewGWorld or UpdateGWorld .

If you point to a GrafPort or CGrafPort record in the offscreenGWorld parameter,
GetGWorldDevice returns the current device.

SPECIAL CONSIDERATIONS

The GetGWorldDevice function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorldDevice function are

Managing an Offscreen Graphics World’s Pixel Image

Use the GetGWorldPixMap function to obtain a handle to the PixMap record for an
offscreen graphics world. You can then pass this handle, which is of data type
PixMapHandle , in parameters to several routines that allow you to manage an offscreen
graphics world’s pixel image.

To prevent the base address for an offscreen pixel image from being moved (while you
draw into or copy from its pixel map, for example), pass its handle to the LockPixels
function. When you are finished drawing into or copying from an offscreen pixel map,
pass its handle to the UnlockPixels procedure.

Trap macro Selector

_QDExtensions $00040012

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-31

You can use the AllowPurgePixels procedure to make the base address for an
offscreen pixel image purgeable. To prevent the Memory Manager from purging the base
address for an offscreen pixel map, use the NoPurgePixels procedure.

To save the current information about the memory allocated for an offscreen pixel image,
you can use the GetPixelsState function. To restore this state, you can use the
SetPixelsState procedure.

You can use the GetPixBaseAddr function to obtain a pointer to the beginning of a
pixel image in memory. You can use the PixMap32Bit function to determine whether
a pixel map requires 32-bit addressing mode for access to its pixel image.

GetGWorldPixMap

Use the GetGWorldPixMap function to obtain the pixel map created for an offscreen
graphics world.

FUNCTION GetGWorldPixMap (offscreenGWorld: GWorldPtr):

 PixMapHandle;

offscreenGWorld
A pointer to an offscreen graphics world.

DESCRIPTION

The GetGWorldPixMap function returns a handle to the pixel map created for an
offscreen graphics world. In the offscreenGWorld parameter, pass the pointer
returned to your application by the NewGWorld function when you created the offscreen
graphics world. Your application can, in turn, pass the handle returned by
GetGWorldPixMap as a parameter to other QuickDraw routines that accept a handle to
a pixel map.

On a system running only basic QuickDraw, the GetGWorldPixMap function returns
the handle to a 1-bit pixel map that your application can supply as a parameter to the
other routines related to offscreen graphics worlds. However, your application should
not supply this handle to Color QuickDraw routines.

SPECIAL CONSIDERATIONS

To ensure compatibility on systems running basic QuickDraw instead of Color
QuickDraw, use GetGWorldPixMap whenever you need to gain access to the bitmap
created for a graphics world—that is, do not dereference the GWorldPtr record for that
graphics world.

CHAPTER 6

Offscreen Graphics Worlds

6-32 Offscreen Graphics Worlds Reference

The GetGWorldPixMap function is not available in systems preceding System 7. You
can make sure that the GetGWorldPixMap function is available by using the Gestalt
function with the gestaltSystemVersion selector. Test the low-order word in the
response parameter; if the value is $0700 or greater, then GetGWorldPixMap is
available.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetGWorldPixMap function are

SEE ALSO

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

LockPixels

To prevent the base address for an offscreen pixel image from being moved while you
draw into or copy from its pixel map, use the LockPixels function.

FUNCTION LockPixels (pm: PixMapHandle): Boolean;

pm A handle to an offscreen pixel map. To get a handle to an offscreen pixel
map, use the GetGWorldPixMap function, described on page 6-31.

DESCRIPTION

The LockPixels function prevents the base address for an offscreen pixel image from
being moved. You must call LockPixels before drawing to or copying from an
offscreen graphics world.

The baseAddr field of the PixMap record for an offscreen graphics world contains a
handle instead of a pointer (which is what the baseAddr field for an onscreen pixel map
contains). The LockPixels function dereferences the PixMap handle into a pointer.
When you use the UnlockPixels procedure, which is described next, the handle is
recovered.

If the base address for an offscreen pixel image hasn’t been purged by the Memory
Manager or is not purgeable, LockPixels returns TRUE as its function result, and your
application can draw into or copy from the offscreen pixel map. However, if the base
address for an offscreen pixel image has been purged, LockPixels returns FALSE to
indicate that you can perform no drawing to or copying from the pixel map. At that
point, your application should either call the UpdateGWorld function (described on

Trap macro Selector

_QDExtensions $00040017

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-33

page 6-23) to reallocate the offscreen pixel image and then reconstruct it, or draw directly
in a window instead of preparing the image in an offscreen graphics world.

As soon as you are finished drawing into and copying from the offscreen pixel image,
you should call the UnlockPixels procedure.

SPECIAL CONSIDERATIONS

The LockPixels function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockPixels function are

SEE ALSO

Listing 6-1 on page 6-5 and Listing 6-2 on page 6-10 illustrate the use of this function. See
Inside Macintosh: Memory for more information about memory management.

UnlockPixels

When you are finished drawing into and copying from an offscreen graphics world, use
the UnlockPixels procedure.

PROCEDURE UnlockPixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map. Pass the same handle that you passed
previously to the LockPixels function.

DESCRIPTION

The UnlockPixels procedure allows the Memory Manager to move the base address
for the offscreen pixel map that you specify in the pm parameter. To ensure the integrity
of the data in a pixel image, call LockPixels (explained in the preceding section) before
drawing into or copying from a pixel map; then, to prevent heap fragmentation, call
UnlockPixels as soon as your application finishes drawing to and copying from the
offscreen pixel map.

The baseAddr field of the PixMap record for an offscreen graphics world contains a
handle instead of a pointer (which is what the baseAddr field for an onscreen pixel map
contains). The LockPixels function dereferences the PixMap handle into a pointer.
When you use the UnlockPixels procedure, the handle is recovered.

Trap macro Selector

_QDExtensions $00040001

CHAPTER 6

Offscreen Graphics Worlds

6-34 Offscreen Graphics Worlds Reference

You don’t need to call UnlockPixels if LockPixels returns FALSE, because
LockPixels doesn’t lock the memory for a pixel image if that memory has been
purged. However, calling UnlockPixels on purged memory does no harm.

SPECIAL CONSIDERATIONS

The UnlockPixels procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnlockPixels procedure are

AllowPurgePixels

You can use the AllowPurgePixels procedure to make the base address for an
offscreen pixel image purgeable.

PROCEDURE AllowPurgePixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map.

DESCRIPTION

The AllowPurgePixels procedure marks the base address for an offscreen pixel image
as purgeable; this allows the Memory Manager to free the memory it occupies if
available memory space becomes low. By default, NewGWorld creates an unpurgeable
base address for an offscreen pixel image.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap function,
described on page 6-31. Then supply this handle for the pm parameter of
AllowPurgePixels .

Your application should call the LockPixels function (described on page 6-32) before
drawing into or copying from an offscreen pixel map. If the Memory Manager has
purged the base address for its pixel image, LockPixels returns FALSE. In that case
either your application should use the UpdateGWorld function (described on page 6-23)
to begin reconstructing the offscreen pixel image, or it should draw directly to an
onscreen graphics port.

Only unlocked memory blocks can be made purgeable. If you use LockPixels , you
must use the UnlockPixels procedure (explained in the preceding section) before
calling AllowPurgePixels .

Trap macro Selector

_QDExtensions $00040002

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-35

SPECIAL CONSIDERATIONS

The AllowPurgePixels procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the AllowPurgePixels procedure are

SEE ALSO

See Inside Macintosh: Memory for more information about memory management.

NoPurgePixels

To prevent the Memory Manager from purging the base address for an offscreen pixel
image, use the NoPurgePixels procedure.

PROCEDURE NoPurgePixels (pm: PixMapHandle);

pm A handle to an offscreen pixel map.

DESCRIPTION

The NoPurgePixels procedure marks the base address for an offscreen pixel image as
unpurgeable. To get a handle to an offscreen pixel map, use the GetGWorldPixMap
function, described on page 6-31. Then supply this handle for the pm parameter of
NoPurgePixels .

SPECIAL CONSIDERATIONS

The NoPurgePixels procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the NoPurgePixels procedure are

Trap macro Selector

_QDExtensions $0004000B

Trap macro Selector

_QDExtensions $0004000C

CHAPTER 6

Offscreen Graphics Worlds

6-36 Offscreen Graphics Worlds Reference

GetPixelsState

To save the current information about the memory allocated for an offscreen pixel image,
you can use the GetPixelsState function.

FUNCTION GetPixelsState (pm: PixMapHandle): GWorldFlags;

pm A handle to an offscreen pixel map.

DESCRIPTION

The GetPixelsState function returns information about the memory allocated for the
base address for an offscreen pixel image. This information can be either of the following
flags defined by the GWorldFlags data type:

TYPE GWorldFlags =

SET OF ({flags for GetPixelsState only are listed here}

pixelsPurgeable, {the base address for an offscreen pixel }

{ image is purgeable}

pixelsLocked, {the offscreen pixel image is locked and }

{ not purgeable}

);

If the pixelsPurgeable flag is not returned, then the base address for the offscreen
pixel image is unpurgeable. If the pixelsLocked flag is not returned, then the base
address for the offscreen pixel image is unlocked.

After using GetPixelsState to save this state information, your application can later
use the SetPixelsState procedure, described next, to restore this state to the offscreen
graphics world.

Specify a handle to a pixel map in the pm parameter. To get a handle to an offscreen pixel
map, use the GetGWorldPixMap function, described on page 6-31.

SPECIAL CONSIDERATIONS

The GetPixelsState function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPixelsState function are

Trap macro Selector

_QDExtensions $0004000D

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-37

SEE ALSO

After using GetPixelsState and before using SetPixelsState , your application
can temporarily use the AllowPurgePixels procedure (described on page 6-34) to
make the base address for an offscreen pixel image purgeable, the NoPurgePixels
procedure (described on page 6-35) to make it unpurgeable, the LockPixels function
(described on page 6-32) to prevent it from being moved, and the UnlockPixels
procedure (described on page 6-33) to allow it to be moved.

SetPixelsState

To restore an offscreen pixel image to the state that you saved with the
GetPixelsState function (explained in the preceding section), you can use
the SetPixelsState procedure.

PROCEDURE SetPixelsState (pm: PixMapHandle; state: GWorldFlags);

pm A handle to an offscreen pixel map.

state Flags, which you usually save with the GetPixelsState function,
defined by the GWorldFlags data type:

 TYPE GWorldFlags =

 SET OF ({flags for SetPixelsState are listed here}

 pixelsPurgeable, {make the base address for an }

 { offscreen pixel image purgeable}

 pixelsLocked {prevent the base address for an }

 { offscreen pixel image from }

 { being moved}

);

DESCRIPTION

The SetPixelsState procedure changes the state of the memory allocated for an
offscreen pixel image to the state indicated by the flags specified in the state parameter,
which you typically save using the GetPixelsState function.

Because only an unlocked memory block can be purged, SetPixelsState calls the
UnlockPixels and AllowPurgePixels procedures (described on page 6-33 and
page 6-34, respectively) if the state parameter specifies the pixelsPurgeable flag. If
the state parameter does not specify the pixelsPurgeable flag, SetPixelsState
makes the base address for the offscreen pixel image unpurgeable.

If the state parameter does not specify the pixelsLocked flag, SetPixelsState
allows the base address for the offscreen pixel image to be moved.

CHAPTER 6

Offscreen Graphics Worlds

6-38 Offscreen Graphics Worlds Reference

SPECIAL CONSIDERATIONS

The SetPixelsState procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the SetPixelsState procedure are

SEE ALSO

After using GetPixelsState and before using SetPixelsState , your application
can temporarily alter the offscreen graphics world by using the AllowPurgePixels
procedure (described on page 6-34) to temporarily mark the memory block for its
offscreen pixel map as purgeable, the NoPurgePixels procedure (described on
page 6-35) to make it unpurgeable, the LockPixels function (described on page 6-32) to
prevent it from being moved, and the UnlockPixels procedure (described on
page 6-33) to unlock it.

GetPixBaseAddr

You can use the GetPixBaseAddr function to obtain a pointer to an offscreen pixel map.

FUNCTION GetPixBaseAddr (pm: PixMapHandle): Ptr;

pm A handle to an offscreen pixel map. To get a handle to an offscreen pixel
map, use the GetGWorldPixMap function, described on page 6-31.

DESCRIPTION

The GetPixBaseAddr function returns a 32-bit pointer to the beginning of a pixel
image. The baseAddr field of the PixMap record for an offscreen graphics world
contains a handle instead of a pointer, which is what the baseAddr field for an onscreen
pixel map contains. You must use the GetPixBaseAddr function to obtain a pointer to
the PixMap record for an offscreen graphics world.

Your application should never directly access the baseAddr field of the PixMap record
for an offscreen graphics world; instead, your application should always use
GetPixBaseAdd r . If your application is using 24-bit mode, your application should
then use the PixMap32Bit function (described next) to determine whether a pixel map
requires 32-bit addressing mode for access to its pixel image.

If the offscreen buffer has been purged, GetPixBaseAddr returns NIL .

Trap macro Selector

_QDExtensions $0008000E

CHAPTER 6

Offscreen Graphics Worlds

Offscreen Graphics Worlds Reference 6-39

SPECIAL CONSIDERATIONS

Any QuickDraw routines that your application uses after calling GetPixBaseAddr may
change the base address for the offscreen pixel image.

The GetPixBaseAddr function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPixBaseAddr function are

SEE ALSO

See Inside Macintosh: Memory for information about determining addressing modes.

PixMap32Bit

You can use the PixMap32Bit function to determine whether a pixel map requires
32-bit addressing mode for access to its pixel image.

FUNCTION PixMap32Bit (pmHandle: PixMapHandle): Boolean;

pmHandle A handle to an offscreen pixel map.

DESCRIPTION

The PixMap32Bit function returns TRUE if a pixel map requires 32-bit addressing mode
for access to its pixel image. If your application is in 24-bit mode, you must change to
32-bit mode.

To get a handle to an offscreen pixel map, first use the GetGWorldPixMap function,
described on page 6-31. Then supply this handle for the pm parameter of PixMap32Bit .

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PixMap32Bit function are

SEE ALSO

See Inside Macintosh: Memory for information about determining and setting addressing
modes.

Trap macro Selector

_QDExtensions $0004000F

Trap macro Selector

_QDExtensions $00040016

CHAPTER 6

Offscreen Graphics Worlds

6-40 Summary of Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds

Pascal Summary

Constants

CONST

cDepthErr = -157; {invalid pixel depth}

pixPurgeBit = 0; {set to to make base address for }

{ offscreen pixel image purgeable}

noNewDeviceBit = 1; {set to not create a new GDevice }

{ record for offscreen world}

useTempMemBit = 2; {set to create base address for offscreen }

{ pixel image in temporary memory}

keepLocalBit = 3; {set to keep offscreen pixel image in }

{ main memory}

pixelsPurgeableBit = 6; {set to make base address for pixel image }

{ purgeable}

pixelsLockedBit = 7; {set to lock base address for offscreen }

{ pixel image}

mapPixBit = 16; {set by UpdateGWorld if it remapped }

{ colors to a new color table}

newDepthBit = 17; {set by UpdateGWorld if it translated }

{ pixel map to a different pixel depth}

alignPixBit = 18; {set by UpdateGWorld if it realigned }

{ pixel image to onscreen window}

newRowBytesBit = 19; {set by UpdateGWorld if it changed }

{ rowBytes field of PixMap record}

reallocPixBit = 20; {set by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

clipPixBit = 28; {set to clip pixel image}

stretchPixBit = 29; {set to stretch or shrink pixel image}

ditherPixBit = 30; {set to dither pixel image}

gwFlagErrBit = 31; {set by UpdateGWorld if it failed}

CHAPTER 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-41

Data Types

TYPE GWorldPtr = CGrafPtr;

TYPE GWorldFlags =

SET OF (

pixPurge, {specify to NewGWorld to make base address for }

{ offscreen pixel image purgeable}

noNewDevice, {specify to NewGWorld to not create a new GDevice }

{ record for offscreen world}

useTempMem, {specify to NewGWorld to create base address for }

{ offscreen pixel image in temporary memory}

keepLocal, {specify to NewGWorld to keep offscreen pixel image }

{ in main memory}

gWorldFlag4, {reserved}

gWorldFlag5, {reserved}

pixelsPurgeable, {returned by GetPixelsState to indicate that base }

{ address for offscreen pixel image is purgeable; }

{ specify to SetPixelsState to make base address }

{ for pixel image purgeable}

pixelsLocked, {returned by GetPixelsState to indicate that base }

{ address for offscreen pixel image is locked; }

{ specify to SetPixelsState to lock base address }

{ for offscreen pixel image}

gWorldFlag8, {reserved}

gWorldFlag9, {reserved}

gWorldFlag10, {reserved}

gWorldFlag11, {reserved}

gWorldFlag12, {reserved}

gWorldFlag13, {reserved}

gWorldFlag14, {reserved}

gWorldFlag15, {reserved}

mapPix, {returned by UpdateGWorld if it remapped colors to }

{ a new color table}

newDepth, {returned by UpdateGWorld if it translated pixel }

{ map to a different pixel depth}

alignPix, {returned by UpdateGWorld if it realigned pixel }

{ image to onscreen window}

newRowBytes, {returned by UpdateGWorld if it changed rowBytes }

{ field of PixMap record}

reallocPix, {returned by UpdateGWorld if it reallocated }

{ base address for offscreen pixel image}

gWorldFlag21, {reserved}

gWorldFlag22, {reserved}

CHAPTER 6

Offscreen Graphics Worlds

6-42 Summary of Offscreen Graphics Worlds

gWorldFlag23, {reserved}

gWorldFlag24, {reserved}

gWorldFlag25, {reserved}

gWorldFlag26, {reserved}

gWorldFlag27, {reserved}

clipPix, {specify to UpdateGWorld to update and clip pixel }

{ image}

stretchPix, {specify to UpdateGWorld to update and stretch or }

{ shrink pixel image}

ditherPix, {specify to UpdateGWorld to dither pixel image}

gwFlagErr, {returned by UpdateGWorld if it failed}

);

Routines

Creating, Altering, and Disposing of Offscreen Graphics Worlds

FUNCTION NewGWorld (VAR offscreenGWorld: GWorldPtr;
pixelDepth: Integer; boundsRect: Rect;
cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): QDErr;

FUNCTION NewScreenBuffer (globalRect: Rect;
purgeable: Boolean; VAR gdh: GDHandle;
VAR offscreenPixMap: PixMapHandle): QDErr;

FUNCTION NewTempScreenBuffer
(globalRect: Rect;

purgeable: Boolean;
VAR gdh: GDHandle;
VAR offscreenPixMap: PixMapHandle): QDErr;

FUNCTION UpdateGWorld (VAR offscreenGWorld: GWorldPtr;
pixelDepth: Integer; boundsRect: Rect;
cTable: CTabHandle; aGDevice: GDHandle;
flags: GWorldFlags): GWorldFlags;

PROCEDURE DisposeGWorld (offscreenGWorld: GWorldPtr);

PROCEDURE DisposeScreenBuffer
(offscreenPixMap: PixMapHandle);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

PROCEDURE GetGWorld (VAR port: CGrafPtr; VAR gdh: GDHandle);

PROCEDURE SetGWorld (port: CGrafPtr; gdh: GDHandle);

FUNCTION GetGWorldDevice (offscreenGWorld: GWorldPtr): GDHandle;

CHAPTER 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-43

Managing an Offscreen Graphics World’s Pixel Image

FUNCTION GetGWorldPixMap (offscreenGWorld: GWorldPtr): PixMapHandle;

FUNCTION LockPixels (pm: PixMapHandle): Boolean;

PROCEDURE UnlockPixels (pm: PixMapHandle);

PROCEDURE AllowPurgePixels (pm: PixMapHandle);

PROCEDURE NoPurgePixels (pm: PixMapHandle);

FUNCTION GetPixelsState (pm: PixMapHandle): GWorldFlags;

PROCEDURE SetPixelsState (pm: PixMapHandle; state: GWorldFlags);

FUNCTION GetPixBaseAddr (pm: PixMapHandle): Ptr;

FUNCTION PixMap32Bit (pmHandle: PixMapHandle): Boolean;

C Summary

Constants

enum { /* bit assignments for GWorldFlags data type */

pixPurgeBit = 0, /* set to to make base address for

offscreen pixel image purgeable */

noNewDeviceBit = 1, /* set to not create a new GDevice

record for offscreen world */

useTempMemBit = 2, /* set to create base address for offscreen

pixel image in temporary memory */

keepLocalBit = 3, /* set to keep offscreen pixel image in

main memory */

pixelsPurgeableBit = 6, /* set to make base address for pixel image

purgeable */

pixelsLockedBit = 7, /* set to lock base address for offscreen

pixel image */

mapPixBit = 16, /* set by UpdateGWorld if it remapped

colors to a new color table */

newDepthBit = 17, /* set by UpdateGWorld if it translated

pixel map to a different pixel depth */

alignPixBit = 18, /* set by UpdateGWorld if it realigned

pixel image to onscreen window */

newRowBytesBit = 19, /* set by UpdateGWorld if it changed

rowBytes field of PixMap record */

reallocPixBit = 20, /* set by UpdateGWorld if it reallocated

base address for offscreen pixel image */

clipPixBit = 28, /* set to update and clip pixel image */

CHAPTER 6

Offscreen Graphics Worlds

6-44 Summary of Offscreen Graphics Worlds

stretchPixBit = 29, /* set to update and stretch or shrink pixel

image */

ditherPixBit = 30, /* set to dither pixel image */

gwFlagErrBit = 31 /* set by UpdateGWorld if it failed */

};

enum { /* constants for GWorldFlags data type */

pixPurge = 1 << pixPurgeBit,

noNewDevice = 1 << noNewDeviceBit,

useTempMem = 1 << useTempMemBit,

keepLocal = 1 << keepLocalBit,

pixelsPurgeable = 1 << pixelsPurgeableBit,

pixelsLocked = 1 << pixelsLockedBit,

mapPix = 1 << mapPixBit,

newDepth = 1 << newDepthBit,

alignPix = 1 << alignPixBit,

newRowBytes = 1 << newRowBytesBit,

reallocPix = 1 << reallocPixBit,

clipPix = 1 << clipPixBit,

stretchPix = 1 << stretchPixBit,

ditherPix = 1 << ditherPixBit,

gwFlagErr = 1 << gwFlagErrBit

};

enum {

cDepthErr = -157 /* invalid pixel depth */

};

Data Types

typedef CGrafPtr GWorldPtr;

typedef unsigned long GWorldFlags;

CHAPTER 6

Offscreen Graphics Worlds

Summary of Offscreen Graphics Worlds 6-45

Functions

Creating, Altering, and Disposing of Offscreen Graphics Worlds

pascal QDErr NewGWorld (GWorldPtr *offscreenGWorld, short PixelDepth,
const Rect *boundsRect, CTabHandle cTable,
GDHandle aGDevice, GWorldFlags flags);

pascal QDErr NewScreenBuffer
(const Rect *globalRect, Boolean purgeable,

GDHandle *gdh, PixMapHandle *offscreenPixMap);

pascal QDErr NewTempScreenBuffer
(const Rect *globalRect, Boolean purgeable,

GDHandle *gdh, PixMapHandle *offscreenPixMap);

pascal GWorldFlags UpdateGWorld
(GWorldPtr *offscreenGWorld, short pixelDepth,

const Rect *boundsRect, CTabHandle cTable,
GDHandle aGDevice, GWorldFlags flags);

pascal void DisposeGWorld (GWorldPtr offscreenGWorld);

pascal void DisposeScreenBuffer
(PixMapHandle offscreenPixMap);

Saving and Restoring Graphics Ports and Offscreen Graphics Worlds

pascal void GetGWorld (CGrafPtr *port, GDHandle *gdh);

pascal void SetGWorld (CGrafPtr port, GDHandle gdh);

pascal GDHandle GetGWorldDevice
(GWorldPtr offscreenGWorld);

Managing an Offscreen Graphics World’s Pixel Image

pascal PixMapHandle GetGWorldPixMap
(GWorldPtr offscreenGWorld);

pascal Boolean LockPixels (PixMapHandle pm);

pascal void UnlockPixels (PixMapHandle pm);

pascal void AllowPurgePixels
(PixMapHandle pm);

pascal void NoPurgePixels (PixMapHandle pm);

pascal GWorldFlags GetPixelsState
(PixMapHandle pm);

pascal void SetPixelsState (PixMapHandle pm, GWorldFlags state);

pascal Ptr GetPixBaseAddr (PixMapHandle pm);

pascal Boolean PixMap32Bit (PixMapHandle pmHandle);

CHAPTER 6

Offscreen Graphics Worlds

6-46 Summary of Offscreen Graphics Worlds

Assembly-Language Summary

Trap Macros Requiring Routine Selectors

_QDExtensions

Result Codes

Selector Routine

$00160000 NewGWorld

$00040001 LockPixels

$00040002 UnlockPixels

$00160003 UpdateGWorld

$00040004 DisposeGWorld

$00080005 GetGWorld

$00080006 SetGWorld

$0004000B AllowPurgePixels

$0004000C NoPurgePixels

$0004000D GetPixelsState

$0008000E SetPixelsState

$0004000F GetPixBaseAddr

$000E0010 NewScreenBuffer

$00040011 DisposeScreenBuffer

$00040012 GetGWorldDevice

$000E0015 NewTempScreenBuffer

$00040016 PixMap32Bit

$00040017 GetGWorldPixMap

noErr 0 No error
paramErr –50 Illegal parameter
cNoMemErr –152 Failed to allocate memory for structures
cDepthErr –157 Invalid pixel depth

