
Contents 5-1

CHAPTER 5

Contents

Graphics Devices

About Graphics Devices 5-3
Using Graphics Devices 5-6

Optimizing Your Images for Different Graphics Devices 5-8
Zooming Windows on Multiscreen Systems 5-9
Setting a Device’s Pixel Depth 5-13
Exceptional Cases When Working With Color Devices 5-13

Graphics Devices Reference 5-14
Data Structures 5-15
Routines for Graphics Devices 5-19

Creating, Setting, and Disposing of GDevice Records 5-19
Getting the Available Graphics Devices 5-25
Determining the Characteristics of a Video Device 5-29
Changing the Pixel Depth for a Video Device 5-33

Application-Defined Routine 5-35
Resource 5-37

The Screen Resource 5-37
Summary of Graphics Devices 5-38

Pascal Summary 5-38
Constants 5-38
Data Types 5-39
Routines for Graphics Devices 5-40
Application-Defined Routine 5-40

C Summary 5-41
Constants 5-41
Data Types 5-41
Functions for Graphics Devices 5-43
Application-Defined Function 5-44

Assembly-Language Summary 5-44
Data Structure 5-44
Global Variables 5-44

CHAPTER 5

About Graphics Devices 5-3

Graphics Devices

This chapter describes how Color QuickDraw manages video devices so that your
application can draw to a window’s graphics port without regard to the capabilities of
the screen—even if the window spans more than one screen.

Read this chapter to learn how Color QuickDraw communicates with a video
device—such as a plug-in video card or a built-in video interface—by automatically
creating and managing a record of data type GDevice . Your application generally never
needs to create GDevice records. However, your application may find it useful to
examine GDevice records to determine the capabilities of the user’s screens. When
zooming a window, for example, your application can use GDevice records to
determine which screen contains the largest area of a window, and then determine the
ideal window size for that screen. You may also wish to use the DeviceLoop procedure,
described in this chapter, if you want to optimize your application’s drawing for screens
with different capabilities.

This chapter describes the GDevice record and the routines that Color QuickDraw
uses to create and manage such records. This chapter also describes routines that
your application might find helpful for determining screen characteristics. For many
applications, QuickDraw provides a device-independent interface; as described in other
chapters of this book, your application can draw images in a graphics port for a window,
and Color QuickDraw automatically manages the path to the screen—even if the user
has multiple screens. However, if your application needs more control over how it draws
images on screens of various sizes and with different capabilities, your application can
use the routines described in this chapter.

About Graphics Devices

A graphics device is anything into which QuickDraw can draw. There are three types of
graphics devices: video devices (such as plug-in video cards and built-in video
interfaces) that control screens, offscreen graphics worlds (which allow your application
to build complex images off the screen before displaying them), and printing graphics
ports for printers. The chapter “Offscreen Graphics Worlds” in this book describes how
to use QuickDraw to draw into an offscreen graphics world; the chapter “Printing
Manager” in this book describes how to use QuickDraw to draw into a printing
graphics port.

For a video device or an offscreen graphics world, Color QuickDraw stores state
information in a GDevice record. Note that printers do not have GDevice records.
Color QuickDraw automatically creates GDevice records. (Basic QuickDraw does not
create GDevice records, nor does basic QuickDraw support multiple screens.)

When the system starts up, it allocates and initializes a handle to a GDevice record for
each video device it finds. When you use the NewGWorld function (described in the
chapter “Offscreen Graphics Worlds” in this book), Color QuickDraw automatically
creates a GDevice record for the new offscreen graphics world.

CHAPTER 5

Graphics Devices

5-4 About Graphics Devices

All existing GDevice records are linked together in a list, called the device list; the
global variable DeviceList holds a handle to the first record in the list. At any given
time, exactly one graphics device is the current device (also called the active device)—the
one on which drawing is actually taking place. A handle to its GDevice record is stored
in the global variable TheGDevice . By default, the GDevice record corresponding to
the first video device found is marked as the current device; all other graphics devices
in the list are initially marked as inactive.

When the user moves a window or creates a window on another screen, and your
application draws into that window, QuickDraw automatically makes the video device
for that screen the current device. Color QuickDraw stores that information in the global
variable TheGDevice . As Color QuickDraw draws across a user’s video devices, it
keeps switching to the GDevice record for the video device on which Color QuickDraw
is actively drawing.

The user can use the Monitors control panel to set the desired pixel depth of each video
device; to set the display to color, grayscale, or black and white; and to set the position of
each screen relative to the main screen (that is, the one that contains the menu bar). The
Monitors control panel stores all configuration information for a multiscreen system in
the System file in a resource of type 'scrn' that has a resource ID of 0. Your application
should never create this resource, and should never alter or examine it. The 'scrn'
resource consists of an array of data structures that are analogous to GDevice records.
Each element of this array contains information about a different video device.

When the InitGraf procedure (described in the chapter “Basic QuickDraw” in this
book) initializes QuickDraw, it checks the System file for the 'scrn' resource. If the
'scrn' resource is found and it matches the hardware, InitGraf organizes the video
devices according to the contents of this resource; if not, then QuickDraw uses only the
video device for the startup screen.

CHAPTER 5

Graphics Devices

About Graphics Devices 5-5

The GDevice record is diagrammed in Figure 5-1. Some aspects of its contents are
discussed after the figure; see page 5-15 for a complete description of the fields. Your
application can use the routines described in this chapter to manipulate values for the
fields in this record.

Figure 5-1 The GDevice record

The gdITable field points to an inverse table, which the Color Manager creates and
maintains. An inverse table is a special Color Manager data structure arranged in such a
manner that, given an arbitrary RGB color, its pixel value (that is, its index number in the
CLUT) can be found quickly. The process is very fast once the table is built, but, if a color
is changed in the video device’s CLUT, the Color Manager must rebuild the inverse table
the next time it has to find a color. The Color Manager is described in the chapter “Color
Manager” in Inside Macintosh: Advanced Color Imaging.

CHAPTER 5

Graphics Devices

5-6 Using Graphics Devices

The gdPMap field contains a handle to the pixel map that reflects the imaging capabilities
of the graphics device. The pixel map’s PixelType and PixelSize fields indicate
whether the graphics device is direct or indexed and what pixel depth it displays. Color
QuickDraw automatically synchronizes this pixel map’s color table with the CLUT on
the video device.

The gdRect field describes the graphics device’s boundary rectangle in global
coordinates. Color QuickDraw maps the (0,0) origin point of the global coordinate plane
to the main screen’s upper-left corner, and other screens are positioned adjacent to the
main screen according to the settings made by the user with the Monitors control panel.

Using Graphics Devices

To use graphics devices, your application generally uses the QuickDraw routines
described elsewhere in this book to draw images into a window; Color QuickDraw
automatically displays your images in a manner appropriate for each graphics device
that contains a portion of that window.

Note

The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even
if the window is created on or moved to an entirely different screen. ◆

Instead of drawing directly into an onscreen graphics port, your application can use an
offscreen graphics world (described in the chapter “Offscreen Graphics Worlds”) to
create images with the ideal pixel depth and color table required by your application.
Then your application can use the CopyBits procedure to copy the images to the
screen. Color QuickDraw converts the colors of the images for appropriate display on
grayscale graphics devices and on direct and indirect color graphics devices. The manner
in which Color QuickDraw translates the colors specified by your application to different
graphics devices is described in the chapter “Color QuickDraw.” However, if Color
QuickDraw were to translate the colors of a color wheel (such as that used by the Color
Picker, described in Inside Macintosh: Advanced Color Imaging), the image would appear as
solid black on a black-and-white screen.

CHAPTER 5

Graphics Devices

Using Graphics Devices 5-7

Many applications can let Color QuickDraw manage multiple video devices of differing
dimensions and pixel depths. If your application needs more control over video device
management—if it needs certain pixel depths or sets of colors to function effectively, for
example—you can take several steps.

■ If you need to know about the characteristics of available video devices, your
application can use the GetDeviceList function to obtain a handle to the first
GDevice record in the device list, the GetGDevice function to obtain a handle to
the GDevice record for the current device, the GetMainDevice function to obtain a
handle to the GDevice record for the main screen, or the GetMaxDevice function to
obtain a handle to the GDevice record for the graphics device with the greatest pixel
depth. Your application can then pass this handle to a routine like the
TestDeviceAttribute function or the HasDepth function to determine various
characteristics of a video device, or your application can examine the gdRect field of
the GDevice record to determine the dimensions of the screen it represents.

■ If you want to optimize your application’s drawing for the best possible display on
whatever type of screen is the current device, your application can use the
DeviceLoop procedure, described on page 5-29, to determine the capabilities of the
current device before drawing into a window on that device.

■ If the current device is not suitable for the proper display of an image—for example, if
the user has moved the window for your multicolored display of national flags to a
black-and-white screen—your application can display the best image possible and
display a message explaining that a more capable screen is required for better
presentation of the image. Your application can use the DeviceLoop procedure to
determine the capabilities of the current device.

■ If your application uses the HasDepth function to determine that the current device
can support the pixel depth required for the proper display of your image, but the
DeviceLoop procedure indicates that the user has changed the screen’s display, your
application can use the SetDepth function to change the pixel depth of the screen.
Note that the SetDepth function is provided for applications that are able to run
only on graphics devices of a particular depth. Your application should use it only
after soliciting the user’s permission with a dialog box.

■ If your application needs more control over colors on different indexed devices, your
application can use the Palette Manager to arrange different sets of colors for
particular images. Because the CLUT is variable on most video devices, your
application can display up to 16 million colors, although on an 8-bit indexed device,
for example, only 256 different colors can appear at once. See the chapter “Palette
Manager” in Inside Macintosh: Advanced Color Imaging for more information.

■ If your application needs to work with offscreen images that have characteristics
different from those on the available graphics devices, your application can create
offscreen graphics worlds, which contain their own GDevice records. See the chapter
“Offscreen Graphics Worlds” in this book for more information.

CHAPTER 5

Graphics Devices

5-8 Using Graphics Devices

To use the routines described in this chapter, your application must check for the
existence of Color QuickDraw by using the Gestalt function with the
gestaltQuickDrawVersion selector. The Gestalt function returns a 4-byte value in
its response parameter; the low-order word contains QuickDraw version data. In that
low-order word, the high-order byte gives the major revision number and the low-order
byte gives the minor revision number. If the value returned in the response parameter
is greater than or equal to the value of the constant gestalt32BitQD , then the system
supports Color QuickDraw and all of the routines described in this chapter.

Optimizing Your Images for Different Graphics Devices
The DeviceLoop procedure searches for graphics devices that intersect your window’s
drawing region, and it informs your application of each different graphics device it
finds. The DeviceLoop procedure provides your application with information about the
current device’s pixel depth and other attributes. Your application can then choose what
drawing technique to use for the current device. For example, your application might
use inversion to achieve a highlighting effect on a 1-bit graphics device, and, by using
the HiliteColor procedure described in the chapter “Color QuickDraw,” it might
specify a color like magenta as the highlight color on a color graphics device.

For example, you can call DeviceLoop after calling the Event Manager procedure
BeginUpdate whenever your application needs to draw into a window, as shown in
Listing 5-1.

Listing 5-1 Using the DeviceLoop procedure

PROCEDURE DoUpdate (window: WindowPtr);

VAR

windowType := Intege r ;

myWindow: LongInt ;

BEGIN

windowType := MyGetWindowType(window);

CASE windowType OF

kSimpleRectanglesWindow: {simple case: window with 2 color rectangles}

BEGIN

BeginUpdate(window);

myWindow := LongInt(window); {coerce window ptr for MyDrawingProc }

DeviceLoop(window^.visRgn, @MyTrivialDrawingProc,

 myWindow, []);

EndUpdate;

END;

{handle other window types--documents, dialog boxes, etc.--here}

END;

CHAPTER 5

Graphics Devices

Using Graphics Devices 5-9

When you use the DeviceLoop procedure, you must supply a handle to a drawing
region and a pointer to your own application-defined drawing procedure. In Listing 5-1,
a handle to the window’s visible region and a pointer to an application-defined drawing
procedure called MyTrivialDrawingProc are passed to DeviceLoop . For each
graphics device it finds as the application updates its window, DeviceLoop calls
MyTrivialDrawingProc .

Because DeviceLoop provides your drawing procedure with the pixel depth of the
current device (along with other attributes passed to your drawing procedure in the
deviceFlags parameter), your drawing procedure can optimize its drawing for
whatever type of video device is the current device, as illustrated in Listing 5-2.

Listing 5-2 Drawing into different screens

PROCEDURE MyTrivialDrawingProc (depth: Integer;

 deviceFlags: Integer;

 targetDevice: GDHandle;

 u serData: LongInt);

VAR

window: WindowPtr;

BEGIN

window:= WindowPtr(userData);

EraseRect(window^.portRect);

CASE depth OF

1: {black-and-whit e screen}

MyDraw1BitRects(window); {draw with ltGray, dkGray pats}

2:

MyDraw2BitRects(window); {draw with 2 of 4 available colors}

{handle other screen depths here}

END;

Zooming Windows on Multiscreen Systems
The zoom box in the upper-right corner of the standard document window allows the
user to alternate quickly between two window positions and sizes: the user state and the
standard state.

The user state is the window size and location established by the user. If your
application does not supply an initial user state, the user state is simply the size and
location of the window when it was created, until the user resizes it.

The standard state is the window size and location that your application considers most
convenient, considering the function of the document and the screen space available. In
a word-processing application, for example, a standard-state window might show a
full page, if possible, or a page of full width and as much length as fits on the screen.
If the user changes the page size with the Page Setup command, the application might

CHAPTER 5

Graphics Devices

5-10 Using Graphics Devices

adjust the standard state to reflect the new page size. If your application does not define
a standard state, the Window Manager automatically sets the standard state to the entire
gray region on the main screen, minus a three-pixel border on all sides. (See Macintosh
Human Interface Guidelines for a detailed description of how your application determines
where to open and zoom windows.) The user cannot change a window’s standard state.
(The user and standard states are stored in a data structure of type WStateData whose
handle appears in the dataHandle field of the window record.)

Listing 5-3 illustrates an application-defined procedure, DoZoomWindow, which an
application might call when the user clicks the zoom box. Because the user might have
moved the window to a different screen since it was last zoomed, the procedure first
determines which screen contains the largest area of the window and then calculates the
ideal window size for that screen before zooming the window.

The screen calculations in the DoZoomWindow procedure compare GDevice records
stored in the device list. (If Color QuickDraw is not available, DoZoomWindow assumes
that it’s running on a computer with a single screen.)

Listing 5-3 Zooming a window

PROCEDURE DoZoomWindow (thisWindow: windowPtr; zoomInOrOut: Integer);

VAR

gdNthDevice, gdZoomOnThisDevice: GDHandle;

savePort: GrafPtr;

windRect, zoomRect, theSect: Rect;

sectArea, greatestArea: LongInt;

wTitleHeight: Integer;

sectFlag: Boolean;

BEGIN

GetPort(savePort);

SetPort(thisWindow);

EraseRect(thisWindow^.portRect) ; {erase to avoid flicker}

IF zoomInOrOut = inZoomOut THEN {zooming to standard state}

BEGIN

IF NOT gColorQDAvailable THEN {assume a single screen and }

BEGIN { set standard state to full screen}

zoomRect := screenBits.bounds;

InsetRect(zoomRect, 4, 4);

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

:= zoomRect;

END

ELSE {locate window on available screens}

BEGIN

windRect := thisWindow^.portRect;

LocalToGlobal(windRect.topLeft); {convert to global coordinates}

CHAPTER 5

Graphics Devices

Using Graphics Devices 5-11

LocalToGlobal(windRect.botRight);

{calculate height of window's title bar}

wTitleHeight := windRect.top - 1 -

 WindowPeek(thisWindow)^.strucRgn^^.rgnBBox.top;

windRect.top := windRect.top - wTitleHeight;

gdNthDevice := GetDeviceList; {get the first screen}

greatestArea := 0; {initialize area to 0}

{check window against all gdRects in gDevice list and remember }

{ which gdRect contains largest area of window}

WHILE gdNthDevice <> NIL DO

IF TestDeviceAttribute(gdNthDevice, screenDevice) THEN

IF TestDeviceAttribute(gdNthDevice, screenActive) THEN

BEGIN

{The SectRect function calculates the intersection }

{ of the window rectangle and this GDevice's boundary }

{ rectangle and returns TRUE if the rectangles intersect, }

{ FALSE if they don't.}

sectFlag := SectRect(windRect, gdNthDevice^^.gdRect,

 theSect);

{determine which screen holds greatest window area}

{first, calculate area of rectangle on current screen}

WITH theSect DO

sectArea := LongInt(right - left) * (bottom - top);

IF sectArea > greatestArea THEN

BEGIN

greatestArea := sectArea; {set greatest area so far}

gdZoomOnThisDevice := gdNthDevice; {set zoom device}

END;

gdNthDevice := GetNextDevice(gdNthDevice); {get next }

END; {of WHILE} { GDevice record}

{if gdZoomOnThisDevice is on main device, allow for menu bar height}

IF gdZoomOnThisDevice = GetMainDevice THEN

wTitleHeight := wTitleHeight + GetMBarHeight;

WITH gdZoomOnThisDevice^^.gdRect DO {create the zoom rectangle}

BEGIN

{set the zoom rectangle to the full screen, minus window title }

{ height (and menu bar height if necessary), inset by 3 pixels}

SetRect(zoomRect, left + 3, top + wTitleHeight + 3,

 right - 3, bottom - 3);

{If your application has a different "most useful" standard }

{ state, then size the zoom window accordingly.}

CHAPTER 5

Graphics Devices

5-12 Using Graphics Devices

{set up the WStateData record for this window}

WStateDataHandle(WindowPeek(thisWindow)^.dataHandle)^^.stdState

 := zoomRect;

END;

END;

END; {of inZoomOut}

{if zoomInOrOut = inZoomIn, just let ZoomWindow zoom to user state}

{zoom the window frame}

ZoomWindow(thisWindow, zoomInOrOut, (thisWindow = FrontWindow));

MyResizeWindow(thisWindow); {application-defined window-sizing routine}

SetPort(savePort);

END; (of DoZoomWindow)

If the user is zooming the window to the standard state, DoZoomWindow calculates a
new standard size and location based on the application’s own considerations, the
current location of the window, and the available screens. The DoZoomWindow
procedure always places the standard state on the screen where the window is currently
displayed or, if the window spans screens, on the screen containing the largest area
of the window.

Listing 5-3 uses the QuickDraw routines GetDeviceList , TestDeviceAttribute ,
GetNextDevice , SectRect , and GetMainDevice to examine characteristics of the
available screens as stored in GDevice records. Most of the code in Listing 5-3 is
devoted to determining which screen should display the window in the standard state.

IMPORTANT

Never use the bounds field of a PixMap record to determine the size of
the screen; instead use the value of the gdRect field of the GDevice
record for the screen, as shown in Listing 5-3. ▲

After calculating the standard state, if necessary, DoZoomWindow calls the ZoomWindow
procedure to redraw the window frame in the new size and location and then calls the
application-defined procedure MyResizeWindow to redraw the window’s content
region. For more information on zooming and resizing windows, see the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

CHAPTER 5

Graphics Devices

Using Graphics Devices 5-13

Setting a Device’s Pixel Depth
The Monitors control panel is the user interface for changing the pixel depth, color
capabilities, and positions of video devices. Since the user can control the capabilities of
the video device, your application should be flexible: although it may have a preferred
pixel depth, your application should do its best to accommodate less than ideal
conditions.

Your application can use the SetDepth function to change the pixel depth of a video
device, but your application should do so only with the consent of the user. If your
application must have a specific pixel depth, it can display a dialog box that offers the
user a choice between changing to that depth or canceling display of the image. This
dialog box saves the user the trouble of going to the Monitors control panel before
returning to your application. (See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information about creating and using dialog boxes.)

Before calling SetDepth , use the HasDept h function to determine whether the
available hardware can support the pixel depth you require. The SetDepth function is
described on page 5-34, and the HasDepth function is described on page 5-33.

Exceptional Cases When Working With Color Devices
If your application always specifies colors in RGBColor records, Color QuickDraw
automatically handles the colors on both indexed and direct devices. However, if your
application does not specify colors in RGBColor records, your application may need to
create and use special-purpose CGrafPort , PixMap , and GDevice records with the
routines described in the chapter “Offscreen Graphics Worlds.”

If your application must work with CGrafPort , PixMap , and GDevice records in ways
beyond the scope of the routines described elsewhere in this book, the following
guidelines may aid you in adapting Color QuickDraw to color graphics devices.

■ Don’t draw directly to the screen. Create your own offscreen graphics world (as
described in the chapter “Offscreen Graphics Worlds”) and use the CopyBits ,
CopyMask , or CopyDeepMask routine (described in the chapter “Color QuickDraw”)
to transfer the image to the screen.

■ Don’t directly change the fgColor or bkColor fields of a GrafPort record and
expect them to be used as the pixel values. Color QuickDraw recalculates these values
for each graphics device. If you want to draw with a color with a particular index
value, use a palette with explicit colors, as described in Inside Macintosh: Advanced Color
Imaging. For device-independent colors, use the RGBForeColor and RGBBackColor
procedures, described in the chapter “Color QuickDraw” in this book.

CHAPTER 5

Graphics Devices

5-14 Graphics Devices Reference

■ Don’t copy a GDevice record’s PixMap record. Instead, use the NewPixMap function
or the CopyPixMap procedure, and fill all the fields. (These routines are described in
the chapter “Color QuickDraw.”) The NewPixMap function returns a PixMap record
that is cloned from the PixMap record pointed to by the global variable TheGDevice .
If you don’t want a copy of the main screen’s PixMap record—for example, you want
one that is a different pixel depth—then you must fill out more fields than just
pixelSize : you must fill out the pixelType , cmpCount , and cmpSize fields. Set
the pmVersion field to 0 when initializing your own PixMap record. For future
compatibility you should also set the packType , packSize , planeBytes , and
pmReserved fields to 0. Don’t assume a PixMap record has a color table—a pixel
map for a direct device doesn’t need one. For compatibility, a PixMap record for a
direct device should have a dummy handle in the pmTable field that points to a
ColorTable record with a seed value equal to cmpSize × cmpCount and a ctSize
field set to 0.

■ Fill out all the fields of a new GDevice record. When creating an offscreen GDevice
record by calling NewGDevice with the mode parameter set to –1, you must fill out
the fields of the GDevice record (for instance, the gdType field) yourself. If you want
a copy of an existing GDevice record, copy the gdType field from it. If you explicitly
want an indexed device, assign the clutType constant to the gdType field.

Graphics Devices Reference

This section describes the GDevice record, the routines that manipulate GDevice
records, and the 'scrn' resource.

“Data Structures” shows the Pascal data structure for the GDevice record, which
contains information about a video device or offscreen graphics world. “Data Structures”
also shows the data structure for the DeviceLoopFlags data type, which defines a set
of options you can specify to the DeviceLoop procedure.

“Routines for Graphics Devices” describes routines for creating, setting, and disposing of
GDevice records; getting the available graphics devices; and determining device
characteristics. Your application generally never needs to create, set, or dispose of
GDevice records. However, you may find it useful for your application to get GDevice
records to determine the capabilities of the user’s screens. When zooming a window, for
example, your application can use GDevice records to determine which screen contains
the largest area of a window, and then determine the ideal window size for that screen.
You may also wish to use the DeviceLoop procedure, described in this chapter, if you
want to optimize your application’s drawing for graphics devices with different
capabilities. “Application-Defined Routine” describes how you can define your own
drawing procedure when optimizing your application’s drawing for different graphics
devices.

“Resource” describes the screen ('scrn') resource. System software automatically
creates and uses this resource; your application never needs it. The screen resource is
documented here for your general information.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-15

Data Structures
This section shows the Pascal data structure for the GDevice record, which can contain
information about a video device or an offscreen graphics world. This section also shows
the data structure for the DeviceLoopFlags data type, which defines a set of options
you can specify to the DeviceLoop procedure.

GDevice

Color QuickDraw stores state information for video devices and offscreen graphics
worlds in GDevice records. When the system starts up, it allocates and initializes one
handle to a GDevice record for each video device it finds. When you use the
NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this
book), Color QuickDraw automatically creates a GDevice record for the new offscreen
graphics world. The system links these GDevice records in a list, called the device list.
(You can find a handle to the first element in the device list in the global variable
DeviceList .) By default, the GDevice record corresponding to the first video device
found is marked as the current device; all other graphics devices in the list are initially
marked as inactive.

Note
Printing graphics ports, described in the chapter “Printing Manager” in
this book, do not have GDevice records. ◆

When the user moves a window or creates a window on another screen, and your
application draws into that window, Color QuickDraw automatically makes the video
device for that screen the current device. Color QuickDraw stores that information in the
global variable TheGDevice .

GDevice records that correspond to video devices have drivers associated with them.
These drivers can be used to change the mode of the video device from black and white
to color and to change the pixel depth. The set of routines supported by a video driver is
defined and described in Designing Cards and Drivers for the Macintosh Family, third
edition. Application-created GDevice records usually don’t require drivers.

A GDevice record is defined as follows:

TYPE GDevice =

RECORD

gdRefNum: Integer; {reference number of screen }

{ driver}

gdID: Integer; {reserved; set to 0}

gdType : Integer; {device type--indexed or direct}

gdITable: ITabHandle; {handle to inverse table for }

{ Color Manager}

gdResPref: Integer; {preferred resolution}

CHAPTER 5

Graphics Devices

5-16 Graphics Devices Reference

gdSearchProc: SProcHndl; {handle to list of search }

{ functions}

gdCompProc: CProcHndl; {handle to list of complement }

{ functions}

gdFlags: Integer; {graphics device flags}

gdPMap: PixMapHandle; {handle to PixMap record for }

{ displayed image}

gdRefCon: LongInt; {reference value}

gdNextGD: GDHandle; {handle to next graphics device}

gdRect: Rect; {graphics device's global bounds}

gdMode: LongInt; {graphics device's current mode}

gdCCBytes: Integer; {width of expanded cursor data}

gdCCDepth: Integer; {depth of expanded cursor data}

gdCCXData: Handle; {handle to cursor's expanded }

{ data}

gdCCXMask: Handle; {handle to cursor's expanded }

{ mask}

gdReserved: LongInt; {reserved for future use--must }

{ be 0}

END;

Field descriptions

gdRefNum The reference number of the driver for the screen associated with
the video device. For most video devices, this information is set at
system startup time.

gdI D Reserved. If you create your own GDevice record, set this field to 0.
gdType The general type of graphics device. Values include

CONST

clutType = 0 ; {CLUT devic e--t hat is, one with }

{ c olors mapped with a color }

{ l ookup table }

fixedType = 1; { fixed color s--t hat is, the }

{ c olo r l ookup table ca n't }

{ b e changed }

directType = 2; {direct RGB colors}

These types are described in more detail in the chapter “Color
Manager” in Inside Macintosh: Advanced Color Imaging.

gdITable A handle to the inverse table for color mapping; the inverse table is
described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-17

gdResPref The preferred resolution for inverse tables.
gdSearchProc A handle to the list of search functions, as described in the chapter

“Color Manager” in Inside Macintosh: Advanced Color Imaging; its
value is NIL for the default function.

gdCompProc A handle to a list of complement functions, as described in the
chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging; its value is NIL for the default function.

gdFlags The GDevice record’s attributes. To set the attribute bits in the
gdFlags field, use the SetDeviceAttribute procedure
(described on page 5-22)—do not set these flags directly in the
GDevice record. The constants representing each bit are listed here.

CONST {flag bits for gdFlags field of GDevice re cord }

gdDevType = 0; {if bit is set to 0 , graphics device i s }

{ black and white ; if set to 1 , }

{ graphics device s upports color}

burstDevice = 7; {if bit is set to 1 , graphics device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1 , graphics device }

{ must be used in 32-bit mode}

r amInit = 10; {if bit is set to 1 , graphics device h as }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1 , graphics device is }

{ the main screen}

allInit = 12; {if bit is set to 1, al l graphics devices }

{ w ere initialized fro m 'scrn' resource}

screenDevice = 13; {if bit is set to 1 , graphics device is }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1 , graphics device i s }

{ active}

gdPMap A handle to a PixMap record giving the dimension of the image
buffer, along with the characteristics of the graphics device
(resolution, storage format, color depth, and color table). PixMap
records are described in the chapter “Color QuickDraw” in this
book. For GDevice records, the high bit of the global variable
TheGDevice^^.gdPMap^^.pmTable^^.ctFlags
is always set.

gdRefCo n A value used by system software to pass device-related parameters.
Since a graphics device is shared, you shouldn’t store data here.

gdNextGD A handle to the next graphics device in the device list. If this is the
last graphics device in the device list, the field contains 0.

CHAPTER 5

Graphics Devices

5-18 Graphics Devices Reference

gdRect The boundary rectangle of the graphics device represented by the
GDevice record. The main screen has the upper-left corner of the
rectangle set to (0,0). All other graphics devices are relative to this
point.

gdMode The current setting for the graphics device mode. This value is
passed to the video driver to set its pixel depth and to specify color
or black and white; applications don’t need this information. See
Designing Cards and Drivers for the Macintosh Family, third edition,
for more information about the modes specified in this field.

gdCCBytes The rowBytes value of the expanded cursor. Your application
should not change this field. Cursors are described in the chapter
“Cursor Utilities.”

gdCCDepth The depth of the expanded cursor. Your application should not
change this field.

gdCCXData A handle to the cursor’s expanded data. Your application should
not change this field.

gdCCXMask A handle to the cursor’s expanded mask. Your application should
not change this field.

gdReserved Reserved for future expansion; it must be set to 0 for future
compatibility.

Your application should never need to directly change the fields of a GDevice record. If
you find it absolutely necessary for your application to so, immediately use the
GDeviceChanged procedure to notify Color QuickDraw that your application has
changed the GDevice record. The GDeviceChanged procedure is described in the
chapter “Color QuickDraw” in this book.

DeviceLoopFlags

When you use the DeviceLoop procedure (described on page 5-29), you can change its
default behavior by using the flags parameter to specify one or more members of the
set of flags defined by the DeviceLoopFlags data type. These flags are described here;
if you want to use the default behavior of DeviceLoop , pass in the flags parameter 0
in your C code or an empty set ([]) in your Pascal code.

TYPE DeviceLoopFlags =

SET OF {for flags parameter of DeviceLoop}

(singleDevices, {DeviceLoop doesn't group similar graphics }

{ devices when calling drawing procedure}

dontMatchSeeds, {DeviceLoop doesn't consider ctSeed fields }

{ of ColorTable records for graphics }

{ devices when comparing them}

allDevices); {DeviceLoop ignores value of drawingRgn }

 { parameter--instead, it calls drawing }

{ procedure for every screen}

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-19

Field descriptions

singleDevices If this flag is not set, DeviceLoop calls your drawing procedure
only once for each set of similar graphics devices, and the first one
found is passed as the target device. (It is assumed to be
representative of all the similar graphics devices.) If you set the
singleDevices flag, then DeviceLoop does not group similar
graphics devices—that is, those having identical pixel depths,
black-and-white or color settings, and matching color table
seeds—when it calls your drawing procedure.

dontMatchSeeds
If you set the dontMatchSeeds flag, then DeviceLoop doesn’t
consider color table seeds when comparing graphics devices for
similarity; DeviceLoop ignores this flag if you set the
singleDevices flag. Used primarily by the Palette Manager, the
ctSeed field of a ColorTable record is described in the chapter
“Color QuickDraw” in this book.

allDevice s If you set the allDevices flag, DeviceLoop ignores the
drawingRgn parameter and calls your drawing procedure for
every graphics device. The value of current graphics port’s visRgn
field is not affected when you set this flag.

Routines for Graphics Devices
This section describes routines for creating, setting, and disposing of GDevice records;
for getting the available video devices and offscreen graphics worlds; and for
determining the characteristics of video devices and offscreen graphics worlds.
Generally, your application won’t need to use the routines for creating, setting, and
disposing of GDevice records, because Color QuickDraw calls them automatically as
appropriate. However, you may wish to use the other routines described in this section,
particularly if you want to optimize your application’s drawing for screens with
different capabilities.

Creating, Setting, and Disposing of GDevice Records

Color QuickDraw uses GDevice records to maintain information about video devices
and offscreen graphics worlds. A GDevice record must be allocated with the
NewGDevice function and initialized with the InitGDevice procedure. Normally,
your application does not call these routines directly. When the system starts up, it
allocates and initializes one handle to a GDevice record for each video device it finds.
When you use the NewGWorld function (described in the chapter “Offscreen Graphics
Worlds” in this book), Color QuickDraw automatically creates a GDevice record for the
new offscreen graphics world.

CHAPTER 5

Graphics Devices

5-20 Graphics Devices Reference

Whenever QuickDraw routines are used to draw into a graphics port on a video device,
Color QuickDraw uses the SetGDevice procedure to make the video device for that
screen the current device. Your application won’t generally need to use this procedure,
because when your application draws into a window on one or more screens, Color
QuickDraw automatically switches GDevice records as appropriate; and when your
application needs to draw into an offscreen graphics world, it can use the SetGWorld
procedure to set the graphics port as well as the GDevice record for the offscreen
environment. However, if your application uses the SetPort procedure (described
in the chapter “Basic QuickDraw” in this book) instead of the SetGWorld procedure to
set the graphics port to or from an offscreen graphics world, then your application must
use SetGDevice in conjunction with SetPort .

You use the SetDeviceAttribute procedure to set attribute bits in a GDevice record.

When Color QuickDraw no longer needs a GDevice record, it uses the
DisposeGDevice procedure to dispose of it. As with the other routines described in
this section, your application typically does not need to use DisposeGDevice .

NewGDevice

You can use the NewGDevice function to create a new GDevice record, although you
generally don’t need to, because Color QuickDraw uses this function to create GDevice
records for your application automatically.

FUNCTION NewGDevice (refNum: Integer; mode: LongInt): GDHandle;

refNum Reference number of the graphics device for which you are creating a
GDevice record. For most video devices, this information is set at system
startup.

mode The device configuration mode. Used by the screen driver, this value sets
the pixel depth and specifies color or black and white.

DESCRIPTION

For the graphics device whose driver is specified in the refNum parameter and whose
mode is specified in the mode parameter, the NewGDevice function allocates a new
GDevice record and all of its handles, and then calls the InitGDevice procedure to
initialize the record. As its function result, NewGDevice returns a handle to the new
GDevice record. If the request is unsuccessful, NewGDevice returns NIL .

The NewGDevice function allocates the new GDevice record and all of its handles
in the system heap, and the NewGDevice function sets all attributes in the gdFlags
field of the GDevice record to FALSE. If your application creates a GDevice record, it
can use the SetDeviceAttribute procedure, described on page 5-22, to change the
flag bits in the gdFlags field of the GDevice record to TRUE. Your application should
never directly change the gdFlags field of the GDevice record; instead, your
application should use only the SetDeviceAttribute procedure.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-21

If your application creates a GDevice record without a driver, it should set the mode
parameter to –1. In this case, InitGDevice cannot initialize the GDevice record, so
your application must perform all initialization of the record. A GDevice record’s
default mode is defined as 128; this is assumed to be a black-and-white mode. If you
specify a value other than 128 in the mode parameter, the record’s gdDevType bit in the
gdFlags field of the GDevice record is set to TRUE to indicate that the graphics device
is capable of displaying color.

The NewGDevice function doesn’t automatically insert the GDevice record into the
device list. In general, your application shouldn’t create GDevice records, and if it ever
does, it should never add them to the device list.

SPECIAL CONSIDERATIONS

If your program uses NewGDevice to create a graphics device without a driver,
InitGDevice does nothing; instead, your application must initialize all fields of the
GDevice record. After your application initializes the color table for the GDevice
record, your application should call the Color Manager procedure MakeITable to build
the inverse table for the graphics device.

The NewGDevice function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

The GDevice record is described on page 5-15. See Designing Cards and Drivers for the
Macintosh Family, third edition, for more information about the device modes that you
can specify in the mode parameter. The Color Manager is described in Inside Macintosh:
Advanced Color Imaging.

InitGDevice

The NewGDevice function uses the InitGDevice procedure to initialize a GDevice
record.

PROCEDURE InitGDevice (gdRefNum: Integer; mode: LongInt;

 gdh: GDHandle);

gdRefNum Reference number of the graphics device. System software sets this
number at system startup time for most graphics devices.

mode The device configuration mode. Used by the screen driver, this value sets
the pixel depth and specifies color or black and white.

gdh The handle, returned by the NewGDevice function, to the GDevice
record to be initialized.

CHAPTER 5

Graphics Devices

5-22 Graphics Devices Reference

DESCRIPTION

The InitGDevice procedure initializes the GDevice record specified in the gdh
parameter. The InitGDevice procedure sets the graphics device whose driver has the
reference number specified in the gdRefNum parameter to the mode specified in the
mode parameter. The InitGDevice procedure then fills out the GDevice record,
previously created with the NewGDevice function, to contain all information describing
that mode.

The mode parameter determines the configuration of the device; possible modes for a
device can be determined by interrogating the video device’s ROM through Slot
Manager routines. The information describing the device’s mode is primarily contained
in the video device’s ROM. If the video device has a fixed color table, then that table is
read directly from the ROM. If the video device has a variable color table, then
InitGDevice uses the default color table defined in a 'clut' resource, contained in
the System file, that has a resource ID equal to the video device’s pixel depth.

In general, your application should never need to call InitGDevice . All video devices
are initialized at start time, and users change modes through the Monitors control panel.

SPECIAL CONSIDERATIONS

If your program uses NewGDevice to create a graphics device without a driver,
InitGDevice does nothing; instead, your application must initialize all fields of the
GDevice record. After your application initializes the color table for the GDevice
record, your application should call the Color Manager procedure MakeITable to build
the inverse table for the graphics device.

The InitGDevice procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The GDevice record is described on page 5-15. See Designing Cards and Drivers for the
Macintosh Family, third edition, for more information about the device modes that you
can specify in the mode parameter. The MakeITable procedure is described in the
chapter “Color Manager” in Inside Macintosh: Advanced Color Imaging.

SetDeviceAttribute

To set the attribute bits of a GDevice record, use the SetDeviceAttribute procedure.

PROCEDURE SetDeviceAttribute (gdh: GDHandle; attribute: Integer;

value: Boolean);

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-23

gdh A handle to a GDevice record.

attribute One of the following constants, which represent bits in the gdFlags field
of a GDevice record:

 CONST {flag bits for gdFlags field of GDevice re cord }

gdDevType = 0; {if bit is set to 0 , graphics }

{ device is black and white ; }

{ if se t to 1, device supports }

{ color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, devic e }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device i s }

{ the main screen}

allInit = 12; {if bit is set to 1, al l }

{ devices were initialized fro m }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device i s }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

value A value of either 0 or 1 for the flag bit specified in the attribute
parameter.

DESCRIPTION

For the graphics device specified in the gdh parameter, the SetDeviceAttribute
procedure sets the flag bit specified in the attribute parameter to the value specified
in the value parameter.

SPECIAL CONSIDERATIONS

Your application should never directly change the gdFlags field of the GDevice record;
instead, your application should use only the SetDeviceAttribute procedure.

The SetDeviceAttribute procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

CHAPTER 5

Graphics Devices

5-24 Graphics Devices Reference

SetGDevice

Your application can use the SetGDevice procedure to set a GDevice record as the
current device.

PROCEDURE SetGDevice (gdh: GDHandle);

gdh A handle to a GDevice record.

DESCRIPTION

The SetGDevice procedure sets the specified GDevice record as the current device.
Your application won’t generally need to use this procedure, because when your
application draws into a window on one or more screens, Color QuickDraw
automatically switches GDevice records as appropriate; and when your application
needs to draw into an offscreen graphics world, it can use the SetGWorld procedure to
set the graphics port as well as the GDevice record for the offscreen environment.
However, if your application uses the SetPort procedure (described in the chapter
“Basic QuickDraw” in this book) instead of the SetGWorld procedure to set the
graphics port to or from an offscreen graphics world, then your application must use
SetGDevice in conjunction with SetPort .

A handle to the currently active device is kept in the global variable TheGDevice .

SPECIAL CONSIDERATIONS

The SetGDevice procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

See the chapter “Offscreen Graphics Worlds” in this book for information about the
SetGWorld procedure and about drawing into offscreen graphics worlds.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-25

DisposeGDevice

Although your application generally should never need to use this routine, the
DisposeGDevice procedure disposes of a GDevice record, releases the space allocated
for it, and disposes of all the data structures allocated for it. The DisposeGDevice
procedure is also available as the DisposGDevice procedure.

PROCEDURE DisposeGDevice (gdh: GDHandle);

gdh A handle to the GDevice record.

DESCRIPTION

The DisposeGDevice procedure disposes of a GDevice record, releases the space
allocated for it, and disposes of all the data structures allocated for it. Color QuickDraw
calls this procedure when appropriate.

SEE ALSO

When your application uses the DisposeGWorld procedure to dispose of an offscreen
graphics world, DisposeG Device disposes of its GDevice record. See the chapter
“Offscreen Graphics Worlds” in this book for a description of DisposeGWorld .

Getting the Available Graphics Devices

To gain access to the GDevice record for a video device—for example, to determine the
size and pixel depth of its attached screen—your application needs to get a handle to
that record.

Your application can use the GetDeviceList function to obtain a handle to the
first GDevice record in the device list, the GetGDevice function to obtain a handle to
the GDevice record for the current device, the GetMainDevice function to obtain a
handle to the GDevice record for the main screen, and the GetMaxDevice function to
obtain a handle to the GDevice record for the video device with the greatest pixel depth.

All existing GDevice records are linked together in the device list. After using one of
these functions to obtain a handle to one of the GDevice records in the device list, your
application can use the GetNextDevice function to obtain a handle to the next
GDevice record in the list.

CHAPTER 5

Graphics Devices

5-26 Graphics Devices Reference

Two related functions, GetGWorld and GetGWorldDevice , also allow you to obtain
handles to GDevice records. To get the GDevice record for the current device, you can
use the GetGWorld function. To get a handle to the GDevice record for a particular
offscreen graphics world, you can use the GetGWorldDevice function. These two
functions are described in the next chapter, “Offscreen Graphics Worlds.”

GetGDevice

To obtain a handle to the GDevice record for the current device, use the GetGDevice
function.

FUNCTION GetGDevice: GDHandle;

DESCRIPTION

The GetGDevice function returns a handle to the GDevice record for the current
device. (At any given time, exactly one video device is the current device—that is, the
one on which drawing is actually taking place.)

Color QuickDraw stores a handle to the current device in the global variable
TheGDevice .

SPECIAL CONSIDERATIONS

The GetGDevice function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

GetDeviceList

To obtain a handle to the first GDevice record in the device list, use the
GetDeviceList function.

FUNCTION GetDeviceList: GDHandle;

DESCRIPTION

The GetDeviceList function returns a handle to the first GDevice record in the global
variable DeviceList .

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-27

SPECIAL CONSIDERATIONS

The GetDeviceList function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

GetMainDevice

To obtain a handle to the GDevice record for the main screen, use the GetMainDevice
function.

FUNCTION GetMainDevice: GDHandle;

DESCRIPTION

The GetMainDevice function returns a handle to the GDevice record that corresponds
to the main screen—that is, the one containing the menu bar.

A handle to the main device is kept in the global variable MainDevice .

SPECIAL CONSIDERATIONS

The GetMainDevice function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

GetMaxDevice

To obtain a handle to the GDevice record for the video device with the greatest pixel
depth, use the GetMaxDevice function.

FUNCTION GetMaxDevice (globalRect: Rect): GDHandle;

globalRect
A rectangle, in global coordinates, that intersects the graphics devices that
you are searching to find the one with the greatest pixel depth.

CHAPTER 5

Graphics Devices

5-28 Graphics Devices Reference

DESCRIPTION

As its function result, GetMaxDevice returns a handle to the GDevice record for the
video device that has the greatest pixel depth among all graphics devices that intersect
the rectangle you specify in the globalRect parameter.

SPECIAL CONSIDERATIONS

The GetMaxDevice function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

GetNextDevice

After using the GetDeviceList function to obtain a handle to the first GDevice record
in the device list, GetGDevice to obtain a handle to the GDevice record for the current
device, GetMainDevice to obtain a handle to the GDevice record for the main screen,
or GetMaxDevice to obtain a handle to the GDevice record for the video device with
the greatest pixel depth, you can use the GetNextDevice function to obtain a handle
to the next GDevice record in the list.

FUNCTION GetNextDevice (curDevice: GDHandle): GDHandle;

curDevice A handle to the GDevice record at which you want the search to begin.

DESCRIPTION

The GetNextDevice function returns a handle to the next GDevice record in the
device list. If there are no more GDevice records in the list, it returns NIL .

SPECIAL CONSIDERATIONS

The GetNextDevice function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of this function.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-29

Determining the Characteristics of a Video Device

For drawing images that are optimized for every screen they cross, your application can
use the DeviceLoop procedure. The DeviceLoop procedure searches for graphics
devices that intersect your window’s drawing region, and it calls your drawing
procedure for each different video device it finds. The DeviceLoop procedure provides
your drawing procedure with information about the current device’s pixel depth and
other attributes.

To determine whether the flag bit for an attribute has been set in the gdFlags field of a
GDevice record, your application can use the TestDeviceAttribute function.

To determine whether a video device supports a specific pixel depth, your application
can also use the HasDepth function, described on page 5-33. To change the pixel depth
of a video device, your application can use the SetDepth function, described on
page 5-34.

If you need to determine the resolution of the main device, you can use the ScreenRes
procedure.

DeviceLoop

For drawing images that are optimized for every screen they cross, use the DeviceLoop
procedure.

PROCEDURE DeviceLoop (drawingRgn: RgnHandle;

drawingProc: DeviceLoopDrawingProcPtr;

userData: LongInt; flags: DeviceLoopFlags);

drawingRgn
A handle to the region in which you will draw; this drawing region uses
coordinates that are local to its graphics port.

drawingProc
A pointer to your own drawing procedure.

userData Any additional data that you wish to supply to your drawing procedure.

flag s One or more members of the set of flags defined by the
DeviceLoopFlags data type:

 TYPE

 DeviceLoopFlags = SET OF

 (singleDevices,dontMatchSeeds,allDevices) ;

These flags are described in the following text; if you want to use the
default behavior of DeviceLoop , specify an empty set ([]) in this
parameter.

CHAPTER 5

Graphics Devices

5-30 Graphics Devices Reference

DESCRIPTION

The DeviceLoop procedure searches for graphics devices that intersect your window’s
drawing region, and it calls your drawing procedure for each video device it finds. In
the drawingRgn parameter, supply a handle to the region in which you wish to draw;
in the drawingProc parameter, supply a pointer to your drawing procedure. In the
flags parameter, you can specify members of the set of these flags defined by the
DeviceLoopFlags data type:

For each dissimilar video device that intersects this region, DeviceLoop calls your
drawing procedure. For example, after a call to the Event Manager procedure
BeginUpdate , the region you specify in the drawingRgn parameter can be the same
as the visible region for the active window. Because DeviceLoop provides your
drawing procedure with the pixel depth and other attributes of each video device,
your drawing procedure can optimize its drawing for each video device—for example,
by using the HiliteColor procedure to set magenta as the highlight color on a color
video device.

SPECIAL CONSIDERATIONS

The DeviceLoop procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 5-1 on page 5-8 illustrates the use of DeviceLoop . See page 5-35 for a description
of the drawing procedure you must provide for the drawingProc parameter. Offscreen
graphics worlds are described in the next chapter. The HiliteColor procedure is
described in the chapter “Color QuickDraw” in this book.

singleDevices If this flag is not set, DeviceLoop calls your drawing procedure
only once for each set of similar graphics devices, and the first
one found is passed as the target device. (It is assumed to be
representative of all the similar graphics devices.) If you set the
singleDevices flag, then DeviceLoop does not group
similar graphics devices—that is, those having identical pixel
depths, black-and-white or color settings, and matching color
table seeds—when it calls your drawing procedure.

dontMatchSeeds If you set the dontMatchSeeds flag, then DeviceLoop doesn’t
consider the ctSeed field of ColorTable records for graphics
devices when comparing them; DeviceLoop ignores this flag if
you set the singleDevices flag.

allDevices If you set the allDevices flag, DeviceLoop ignores the
drawingRgn parameter and calls your drawing procedure for
every device. The value of current graphics port’s visRgn field
is not affected when you set this flag.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-31

TestDeviceAttribute

To determine whether the flag bit for an attribute has been set in the gdFlags field of a
GDevice record, use the TestDeviceAttribute function.

FUNCTION TestDeviceAttribute (gdh: GDHandle;

attribute: Integer): Boolean;

gdh A handle to a GDevice record.

attribute One of the following constants, which represent bits in the gdFlags field
of a GDevice record:

 CONST {flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0 , graphics }

{ device is black and white ; }

{ if se t to 1, device supports }

{ color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, devic e }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device i s }

{ the main screen}

allInit = 12; {if bit is set to 1, al l }

{ devices were initialized fro m }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device i s }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

DESCRIPTION

The TestDeviceAttribute function tests a single graphics device attribute to see if its
bit is set to 1 and, if so, returns TRUE. Otherwise, TestDeviceAttribute returns
FALSE.

CHAPTER 5

Graphics Devices

5-32 Graphics Devices Reference

SPECIAL CONSIDERATIONS

The TestDeviceAttribute function may move or purge memory blocks in the
application heap. Your application should not call this function at interrupt time.

SEE ALSO

Listing 5-3 on page 5-10 illustrates the use of TestDeviceAttribute . Your application
can use the SetDeviceAttribute procedure, described on page 5-22, to change any of
the flags tested by the TestDeviceAttribute function.

ScreenRes

If you need to determine the resolution of the main device, you can use the ScreenRes
procedure.

PROCEDURE ScreenRes (VAR scrnHRes,scrnVRes: Integer);

DESCRIPTION

In the scrnHRes parameter, the ScreenRes procedure returns the number of
horizontal pixels per inch displayed by the current device. In the scrnVRes parameter,
it returns the number of vertical pixels per inch.

To determine the resolutions of all available graphics devices, you should examine their
GDevice records (described on page 5-15). The horizontal and vertical resolutions for a
graphics device are stored in the hRes and vRes fields, respectively, of the PixMap
record for the device’s GDevice record.

SPECIAL CONSIDERATIONS

Currently, QuickDraw and the Printing Manager always assume a screen resolution of
72 dpi.

Do not use the actual screen resolution as a scaling factor when drawing into a printing
graphics port; instead, always use 72 dpi as the scaling factor. See the chapter “Printing
Manager” in this book for more information about the Printing Manager and drawing
into a printing graphics port.

ASSEMBLY-LANGUAGE INFORMATION

The horizontal resolution, in pixels per inch, is stored in the global variable ScrHRes ,
and the vertical resolution is stored in the global variable ScrVRes .

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-33

Changing the Pixel Depth for a Video Device

The Monitors control panel is the user interface for changing the pixel depth, color
capabilities, and positions of video devices. Since the user can control the capabilities of
the video device, your application should be flexible: although it may have a preferred
pixel depth, your application should do its best to accommodate less than ideal
conditions.

If it is absolutely necessary for your application to draw on a video device of a specific
pixel depth, your application can use the SetDepth function to change its pixel depth.
Before calling SetDepth , use the HasDepth function to determine whether the
available hardware can support the pixel depth you require.

HasDepth

To determine whether a video device supports a specific pixel depth, you can use the
HasDepth function.

FUNCTION HasDepth (aDevice: GDHandle; depth: Integer;

whichFlags: Integer; flags: Integer): Integer;

aDevice A handle to the GDevice record of the video device.

depth The pixel depth for which you’re testing.

whichFlag s
The gdDevType constant, which represents a bit in the gdFlags field
of the GDevice record. (If this bit is set to 0 in the GDevice record, the
video device is black and white; if the bit is set to 1, the device supports
color.)

f lag s The value 0 or 1. If you pass 0 in this parameter, the HasDepth function
tests whether the video device is black and white; if you pass 1 in this
parameter, HasDepth tests whether the video device supports color.

DESCRIPTION

The HasDepth function checks whether the video device you specify in the aDevice
parameter supports the pixel depth you specify in the depth parameter, and whether
the device is black and white or color, whichever you specify in the f lags parameter.

The HasDepth function returns 0 if the device does not support the depth you specify
in the depth parameter or the display mode you specify in the flags parameter.

Any other value indicates that the device supports the specified depth and display
mode. The function result contains the mode ID that QuickDraw passes to the video
driver to set its pixel depth and to specify color or black and white. You can pass this
mode ID in the depth parameter for the SetDepth function (described next) to set the
graphics device to the pixel depth and display mode for which you tested.

CHAPTER 5

Graphics Devices

5-34 Graphics Devices Reference

SPECIAL CONSIDERATIONS

The HasDepth function may move or purge blocks of memory in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

See Designing Cards and Drivers for the Macintosh Family, third edition, for more
information about the device modes returned as a function result for HasDepth .

SetDepth

To change the pixel depth of a video device, use the SetDepth function.

FUNCTION SetDepth (aDevice: GDHandle; depth: Integer;

whichFlags: Integer; flags: Integer): OSErr;

aDevice A handle to the GDevice record of the video device whose pixel depth
you wish to change.

depth The mode ID returned by the HasDepth function (described in the
previous section) indicating that the video device supports the desired
pixel depth. Alternatively, you can pass the desired pixel depth directly in
this parameter, although you should use the HasDepth function to
ensure that the device supports this depth.

whichFlags
The gdDevType constant, which represents a bit in the gdFlags field
of the GDevice record. (If this bit is set to 0 in the GDevice record, the
video device is black and white; if the bit is set to 1, the device supports
color.)

flags The value 0 or 1. If you pass 0 in this parameter, the SetDepth function
changes the video device to black and white; if you pass 1 in this
parameter, SetDepth changes the video device to color.

DESCRIPTION

The SetDepth function sets the video device you specify in the aDevice parameter
to the pixel depth you specify in the depth parameter, and it sets the device to either
black and white or color as you specify in the flags parameter. You should use the
HasDepth function to ensure that the video device supports the values you specify to
SetDepth . The SetDepth returns zero if successful, or it returns a nonzero value if it
cannot impose the desired depth and display mode on the requested device.

The SetDepth function does not change the 'scrn' resource; when the system is
restarted, the original depth for this device is restored.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-35

SPECIAL CONSIDERATIONS

Your application should use SetDepth only if your application can run on devices of a
particular pixel depth and is unable to adapt to any other depth. Your application should
display a dialog box that offers the user a choice between changing to that depth or
canceling display of the image before your application uses SetDepth . Such a dialog
box saves the user the trouble of going to the Monitors control panel before returning to
your application.

The SetDepth function may move or purge blocks of memory in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
information about creating and using dialog boxes.

Application-Defined Routine
Your application can use the DeviceLoop procedure (described on page 5-29) before
drawing images that are optimized for every screen they cross. The DeviceLoop
procedure searches for video devices that intersect your drawing region, and it calls a
drawing procedure that you define for every different video device it finds.

For each video device that intersects a drawing region that you define (generally, the
update region of a window), DeviceLoop calls your drawing procedure. Because
DeviceLoop provides your drawing procedure with the pixel depth and other
attributes of the current device, your drawing procedure can optimize its drawing for
whatever type of graphics device is the current device. When highlighting, for example,
your application might invert black and white when drawing onto a 1-bit video device
but use magenta as the highlight color when drawing onto a color video device. In this
case, even were your window to span both a black-and-white and a color screen, the user
sees the selection inverted on the black-and-white screen, while magenta would be used
to highlight the selection on the color screen.

You must provide a pointer to your drawing procedure in the drawingProc parameter
for DeviceLoop .

CHAPTER 5

Graphics Devices

5-36 Graphics Devices Reference

MyDrawingProc

Here’s how to declare a drawing procedure to supply to the DeviceLoop procedure if
you were to name the procedure MyDrawingProc :

PROCEDURE MyDrawingProc (depth: Integer; deviceFlags: Integer;

 targetDevice: GDHandle;

 userData: LongInt);

depth The pixel depth of the graphics device.

deviceFlags
Any of the following constants, which represent bits that are set to 1 in the
gdFlags field of the GDevice record (described on page 5-15) for the
current device:

 CONST {flag bits for g dFlags field of GDevice record}

gdDevType = 0; {if bit is set to 1 , graphics }

{ device supports color}

burstDevice = 7; {if bit is set to 1, device }

{ supports block transfer}

ext32Device = 8; {if bit is set to 1, devic e }

{ must be used in 32-bit mode}

ramInit = 10; {if bit is set to 1, device has }

{ been initialized from RAM}

mainScreen = 11; {if bit is set to 1, device i s }

{ the main screen}

allInit = 12; {if bit is set to 1, al l }

{ devices were initialized fro m }

{ 'scrn' resource}

screenDevice = 13; {if bit is set to 1, device i s }

{ a screen}

noDriver = 14; {if bit is set to 1, GDevice }

{ record has no driver}

screenActive = 15; {if bit is set to 1, device is }

{ active}

targetDevice
A handle to the GDevice record (described on page 5-15) for the current
device.

CHAPTER 5

Graphics Devices

Graphics Devices Reference 5-37

userData A value that your application supplies to the DeviceLoop procedure,
which in turn passes the value to your drawing procedure for whatever
purpose you deem useful.

DESCRIPTION

Your drawing procedure should analyze the pixel depth passed in the depth parameter
and the values passed in the deviceFlags parameter, and then draw in a manner that
is optimized for the current device.

SEE ALSO

Listing 5-2 on page 5-9 illustrates a simple drawing procedure called by DeviceLoop .

Resource
The user can use the Monitors control panel to set the desired pixel depth of each screen;
whether it displays color, grayscale, or black and white; and the position of each screen
relative to the main screen. The Monitors control panel stores all configuration
information for a multiscreen system in the System file in a resource of type 'scrn' that
has a resource ID of 0. Your application should never create this resource, and should
never alter or examine it.

When the InitGraf procedure (described in the chapter “Basic QuickDraw” in this
book) initializes Color QuickDraw, it checks the System file for the 'scrn' resource. If
the 'scrn' resource is found and it matches the hardware, InitGraf organizes the
video devices according to the contents of this resource; if not, then Color QuickDraw
uses only the video device for the startup screen.

The Screen Resource

The 'scrn' resource consists of an array of data structures that are analogous to
GDevice records. Each data structure in this array contains information about a
different video device. Because your application shouldn’t create or alter the 'scrn'
resource, its structure is not described here.

CHAPTER 5

Graphics Devices

5-38 Summary of Graphics Devices

Summary of Graphics Devices

Pascal Summary

Constants

CONST

{flag bits for gdType field of GDevice record}

clutType = 0; {CLUT devic e--t hat is, one with colors mapped with a }

{ color lookup table}

fixedType = 1; {fixed color s--t hat is, the color lookup table }

{ ca n't be changed}

directType = 2; {direct RGB colors }

{ flag bits for gdFlags field of GDevice record}

gdDevType = 0; {if bit is set to 0 , graphics device i s black }

{ and white ; if bit is set to 1 , graphics device }

{ s upports color}

burstDevice = 7; {if bit is set to 1 , graphics device s upports block }

{ transfer}

ext32Device = 8; {if bit is set to 1 , graphics device m ust be use d }

{ in 32-bit mode}

ramInit = 10; {if bit is set to 1 , graphics device h as been }

{ initialized from RAM}

mainScreen = 11; {if bit is set to 1 , graphics device i s the main }

{ s creen}

allInit = 12; {if bit is set to 1, al l graphics devices were }

{ initialized from 'scrn' resource}

screenDevice = 13; {if bit is set to 1 , graphics device i s a scree n}

noDriver = 14; {if bit is set to 1, GDevice record has no driver}

screenActive = 15; {if bit is set to 1 , graphics device is c urrent }

{ d evic e}

CHAPTER 5

Graphics Devices

Summary of Graphics Devices 5-39

Data Types

TYPE

GDHandle = ^GDPtr;

GDPtr = ^GDevice;

GDevice =

RECORD

gdRefNum: Integer; {reference number of screen driver}

gdID: Integer; {reserved; set to 0}

gdType : Integer; {type of device--indexed or direct}

gdITable: ITabHandle; {handle to inverse table for Color Manager}

gdResPref: Integer; {preferred resolution}

gdSearchProc: SProcHndl; {handle to list of search functions}

gdCompProc: CProcHndl; {handle to list of complement functions}

gdFlags: Integer; {graphics device flags}

gdPMap: PixMapHandle; {handle to PixMap record for displayed }

{ image}

gdRefCon: LongInt; {reference value}

gdNextGD: GDHandle; {handle to next graphics device}

gdRect: Rect; {graphics device' s boundary in global }

{ c oordinates}

gdMode: LongInt; {graphics device' s current mode}

gdCCBytes: Integer; {width of expanded cursor data}

gdCCDepth: Integer; {depth of expanded cursor data}

gdCCXData: Handle; {handle to cursor's expanded data}

gdCCXMask: Handle; {handle to cursor's expanded mask}

gdReserved: LongInt ; {reserved for future use; must be 0}

END;

QDErr = Integer;

DeviceLoopDrawingProcPtr = ProcPtr;

DeviceLoopFlags = SET OF {for flags parameter of DeviceLoop}

(singleDevices, {DeviceLoop doesn't group simila r graphics }

{ devices when calling drawing procedure}

dontMatchSeeds , {DeviceLoop doesn't consider ctSeed fields }

{ of ColorTable records for graphics devices }

{ when comparing them}

allDevices); {DeviceLoop ignores value of drawingRgn }

 { parameter--instead, it calls drawing procedure }

{ for every screen}

CHAPTER 5

Graphics Devices

5-40 Summary of Graphics Devices

Routines for Graphics Devices

Creating, Setting, and Disposing of GDevice Records

{ DisposeGDevice is also spelled as DisposGDevice }

FUNCTION NewGDevice (refNum: Integer; mode: LongInt): GDHandle;

PROCEDURE InitGDevice (gdRefNum: Integer; mode: LongInt;
gdh: GDHandle);

PROCEDURE SetDeviceAttribute
(gdh: GDHandle; attribute: Integer;

value: Boolean);

PROCEDURE SetGDevice (gdh: GDHandle);

PROCEDURE DisposeGDevice (gdh: GDHandle);

Getting the Available Graphics Devices

FUNCTION GetGDevic e : G DHandle;

FUNCTION GetDeviceLis t : GDHandle;

FUNCTION GetMainDevic e : GDHandle;

FUNCTION GetMaxDevice (globalRect: Rect): GDHandle;

FUNCTION GetNextDevice (curDevice: GDHandle): GDHandle;

Determining the Characteristics of a Video Device

PROCEDURE DeviceLoop (drawingRgn: RgnHandle;
drawingProc: DeviceLoopDrawingProcPtr;
userData: LongInt; flags: DeviceLoopFlags);

FUNCTION TestDeviceAttribute
(gdh: GDHandle;

attribute: Integer): Boolean;

PROCEDURE ScreenRes (VAR scrnHRes,scrnVRes: Integer);

Changing the Pixel Depth for a Video Device

FUNCTION HasDepth (aDevice: GDHandle; depth: Integer;
whichFlags: Integer; flags: Integer): Integer;

FUNCTION SetDepth (aDevice: GDHandle; depth: Integer;
whichFlags: Integer; flags: Integer): OSErr ;

Application-Defined Routine

PROCEDURE MyDrawingProc (depth: Integer; deviceFlags: Integer;
targetDevice: GDHandle; userData: LongInt);

CHAPTER 5

Graphics Devices

Summary of Graphics Devices 5-41

C Summary

Constants

enum {

/ * flag bits for gdType field of GDevice record */

clutType = 0; /* CLUT devic e--t hat is, one with colors mapped with

a color lookup table */

fixedType = 1; /* fixed color s--t hat is, the color lookup table

ca n't be changed */

directType = 2; /* direct RGB colors * /

/ * flag bits for gdFlags field of GDevice record */

gdDevType = 0, /* if bit is set to 0 , graphics device is black and

white ; if s et to 1, device is color */

burstDevice = 7, /* if bit is set to 1 , graphics device s upports bloc k

t ransfer */

ext32Device = 8, /* if bit is set to 1 , graphics device m ust be use d

 in 3 2-bit mode */

ramInit = 10, /* if bit is set to 1 , graphics device w as

initialized from R AM */

mainScreen = 11, /* if bit is set to 1 , graphics device i s the mai n

screen */

allInit = 12, /* if bit is set to 1, all graphics d evices wer e

initialized f rom 'scrn' resource */

screenDevice = 13, /* if bit is set to 1 , graphics device i s a screen

device */

noDriver = 14, /* if bit is set to 1, GDevice record has

no driver */

screenActive = 15, / * i f bit is set to 1 , graphics device is c urrent

devic e * /

};

Data Types

struct GDevice {

short gdRefNum; /* reference number of screen driver */

short gdID; / * reserved; set to 0 * /

short gdType ; / * type of device--indexed or direct */

ITabHandle gdITable; /* handle to inverse table for Colo r

 M anager */

short gdResPref; /* preferred resolution */

CHAPTER 5

Graphics Devices

5-42 Summary of Graphics Devices

SProcHndl gdSearchProc; /* handle to list of search functions */

CProcHndl gdCompProc; /* handle to list of complement functions */

short gdFlags; /* graphics device flags */

PixMapHandle gdPMap; /* handle to PixMap record for displaye d

 i mage */

long gdRefCon; /* reference value */

GDHandle gdNextGD; /* handle to next graphics device */

Rect gdRect; / * graphics device' s boundary in global

coordinates */

long gdMode; / * graphics device' s current mode */

short gdCCBytes; /* width of expanded cursor data */

short gdCCDepth; /* depth of expanded cursor data */

Handle gdCCXData; /* handle to cursor's expanded data */

Handle gdCCXMask; /* handle to cursor's expanded mask */

long gdReserved; /* reserved for future use; must be 0 */

};

typedef struct GDevice GDevice;

typedef GDevice *GDPtr, **GDHandle;

typedef short QDErr;

typedef pascal void (*DeviceLoopDrawingProcPtr)

(short depth, short deviceFlags,

 GDHandle targetDevice, long userData);

/* for flags parameter of DeviceLoop */

enum {singleDevicesBit = 0 ,d ontMatchSeedsBit = 1 ,a llDevicesBit = 2};

enum { singleDevices = 1 << singleDevicesBit , /* DeviceLoop doesn't group

 similar graphics devices

 when calling drawing

 procedure */

dontMatchSeeds = 1 << dontMatchSeedsBit , /* DeviceLoop doesn't

 consider ctSeed fields of

 ColorTable records for

 graphics devices when

 comparing them */

allDevices = 1 << allDevicesBit}; /* DeviceLoop ignores value

 of drawingRgn parameter--

 instead it calls drawing

 procedure for every

 screen */

typedef unsigned long DeviceLoopFlags ;

CHAPTER 5

Graphics Devices

Summary of Graphics Devices 5-43

Functions for Graphics Devices

Creating, Setting, and Disposing of GDevice Records

/* DisposeGDevice is also spelled as DisposGDevice */

pascal GDHandle NewGDevice (short refNum, long mode);

pascal void InitGDevice (shor t gd RefNum, long mode, GDHandle gdh);

pascal void SetDeviceAttribute
(GDHandle gdh, short attribute, Boolean value);

pascal void SetGDevice (GDHandle gd h);

pascal void DisposeGDevice (GDHandle gdh);

Getting the Available Graphics Devices

pascal GDHandle GetGDevice (void);

pascal GDHandle GetDeviceLis t
(void);

pascal GDHandle GetMainDevic e
(void);

pascal GDHandle GetMaxDevice
(const Rect *globalRect);

pascal GDHandle GetNextDevic e
(GDHandle curDevice);

Determining the Characteristics of a Video Device

pascal void DeviceLoop (RgnHandle drawingRgn,
DeviceLoopDrawingProcPtr drawingProc,
long userData, DeviceLoopFlags flags) ;

pascal Boolean TestDeviceAttribute
(GDHandle gdh, short attribute) ;

pascal void ScreenRes (short *scrnHRes, short *scrnVRes);

Changing the Pixel Depth for a Video Device

pascal Integer HasDepth (GDHandle aDevice, Integer depth,
Integer whichFlags, Integer flags);

pascal OSErr SetDepth (GDHandle aDevice, Integer depth,
Integer whichFlags, Integer flags) ;

CHAPTER 5

Graphics Devices

5-44 Summary of Graphics Devices

Application-Defined Function

pascal void MyDrawingProc (Integer depth, Integer deviceFlags,
GDHandl e t argetDevice, LongIn t u serData);

Assembly-Language Summary

Data Structure

GDevice Data Structure

Global Variables

0 gdRefNum word refN um of screen driver
2 gdID word reserved; set to 0
4 gdType word general type of graphics device
6 gdITable long handle to inverse table

10 gdResPref word preferred resolution for inverse tables
12 gdSearchProc long search function pointer
16 gdCompProc long complement function pointer
20 gdFlags word graphics device flags word
22 gdPMap long handle to pixel map describing graphics device
26 gdRefCon long reference value
30 gdNextGD long handle to next GDevice record
34 gdRect 8 bytes graphics device’s bounds in global coordinates
42 gdMode long device’s current mode
46 gdCCBytes word width of expanded cursor data
48 gdCCDepth word depth of expanded cursor data
50 gdCCXData long handle to cursor’s expanded data
54 gdCCXMask long handle to cursor’s expanded mask
58 gdReserved long reserved; must be 0

DeviceList Handle to the first GDevice record in the device list.
MainDevice Handle to the GDevice record for the main screen.
ScrHRes The horizontal resolution, in pixels per inch, for the current device.
ScrVRes The vertical resolution, in pixels per inch, for the current device.
TheGDevice Handle to the GDevice record for the current device.

