
Contents 4-1

CHAPTER 4

Contents

Color QuickDraw

About Color QuickDraw 4-4
RGB Colors 4-4
The Color Drawing Environment: Color Graphics Ports 4-5

Pixel Maps 4-9
Pixel Patterns 4-12
Color QuickDraw’s Translation of RGB Colors to Pixel Values 4-13
Colors on Grayscale Screens 4-17

Using Color QuickDraw 4-18
Initializing Color QuickDraw 4-19
Creating Color Graphics Ports 4-20
Drawing With Different Foreground Colors 4-21
Drawing With Pixel Patterns 4-23
Copying Pixels Between Color Graphics Ports 4-26

Boolean Transfer Modes With Color Pixels 4-32
Dithering 4-37
Arithmetic Transfer Modes 4-38

Highlighting 4-41
Color QuickDraw Reference 4-44

Data Structures 4-45
Color QuickDraw Routines 4-63

Opening and Closing Color Graphics Ports 4-63
Managing a Color Graphics Pen 4-67
Changing the Background Pixel Pattern 4-68
Drawing With Color QuickDraw Colors 4-70
Determining Current Colors and Best Intermediate Colors 4-79
Calculating Color Fills 4-82
Creating, Setting, and Disposing of Pixel Maps 4-85
Creating and Disposing of Pixel Patterns 4-87
Creating and Disposing of Color Tables 4-91
Retrieving Color QuickDraw Result Codes 4-94

CHAPTER 4

4-2 Contents

Customizing Color QuickDraw Operations 4-96
Reporting Data Structure Changes to QuickDraw 4-97

Application-Defined Routine 4-101
Resources 4-102

The Pixel Pattern Resource 4-103
The Color Table Resource 4-104
The Color Icon Resource 4-105

Summary of Color QuickDraw 4-107
Pascal Summary 4-107

Constants 4-107
Data Types 4-109
Color QuickDraw Routines 4-113
Application-Defined Routine 4-115

C Summary 4-115
Constants 4-115
Data Types 4-118
Color QuickDraw Functions 4-122
Application-Defined Function 4-124

Assembly-Language Summary 4-124
Data Structures 4-124

Result Codes 4-128

CHAPTER 4

4-3

Color QuickDraw

This chapter describes Color QuickDraw, the version of QuickDraw that provides a
range of color and grayscale capabilities to your application. You should read this
chapter if your application needs to use shades of gray or more colors than the eight
predefined colors provided by basic QuickDraw.

Read this chapter to learn how to set up and manage a color graphics port—the
sophisticated drawing environment available on Macintosh computers that support
Color QuickDraw. You should also read this chapter to learn how to draw using many
more colors than are available with basic QuickDraw’s eight-color system.

Color QuickDraw supports all of the routines described in the previous chapters of this
book. For a color graphics port, for example, you can use the ScrollRect and
SetOrigin procedures, which are described in the chapter “Basic QuickDraw.”
Furthermore, you can use the drawing routines described in the chapter “QuickDraw
Drawing” to draw with the sophisticated color and grayscale capabilities available to
color graphics ports. For example, after creating an RGBColor record that describes a
medium shade of green, you can use the Color QuickDraw procedure RGBForeColor to
make that color the foreground color. Then, when you use the FrameRect procedure,
Color QuickDraw draws the outline for your rectangle with your specified shade of
green.

To prevent the choppiness that can occur when you build a complex color image
onscreen, your application typically should prepare the image in an offscreen graphics
world and then copy it to an onscreen color graphics port as described in the chapter
“Offscreen Graphics Worlds.” If you want to optimize your application’s drawing for
screens with different color capabilities, see the chapter “Graphics Devices.”

This chapter describes color graphics ports and Color QuickDraw’s routines for drawing
in color. For many applications, Color QuickDraw provides a device-independent
interface: draw colors in the color graphics port for a window, and Color QuickDraw
automatically manages the path to the screen. If your application needs more control
over its color environment, Macintosh system software provides additional graphics
managers to enhance your application’s color-handling abilities. These managers are
described in Inside Macintosh: Advanced Color Imaging, which shows you how to

■ manage color selection across a variety of indexed devices by using the
Palette Manager

■ solicit color choices from users by using the Color Picker

■ match colors between the screen and other devices—such as scanners and printers—
by using the ColorSync Utilities

■ directly manipulate the fields of the CLUT on an indexed device—although most
applications should never need to do so—by using the Color Manager

CHAPTER 4

Color QuickDraw

4-4 About Color QuickDraw

About Color QuickDraw

Color QuickDraw is a collection of system software routines that your application can
use to display hundreds, thousands, even millions of colors on capable screens. Color
QuickDraw is available on all newer models of Macintosh computers; only those older
computers based on the Motorola 68000 processor provide no support for Color
QuickDraw.

Color QuickDraw performs its operations in a graphics port called a color graphics port,
which is based on a data structure of type CGrafPort . As with basic graphics ports
(which are based on a data structure of type GrafPort), each color graphics port has its
own local coordinate system. All fields in a CGrafPort record are expressed in these
coordinates, and all calculations and actions that Color QuickDraw performs use its
local coordinate system.

As described in the chapter “QuickDraw Drawing,” you can draw into a basic graphics
port using eight predefined colors. With a color graphics port, however, you can define
your own colors with which to draw. With Color QuickDraw, your application works in
an abstract color space defined by three axes of red, green, and blue (RGB). Although the
range of colors actually available to your application depends on the user’s computer
system, Color QuickDraw provides a consistent way for your application to deal with
color, regardless of the characteristics of your user’s screen and software configuration.

RGB Colors
When using Color QuickDraw, you specify colors as RGB colors. An RGB color is
defined by its red, green, and blue components. For example, when each of the red,
green, and blue components of a color is at maximum intensity ($FFFF), the result is the
color white. When each of the components has zero intensity ($0000), the result is the
color black.

You specify a color to Color QuickDraw by creating an RGBColor record in which you
use three 16-bit unsigned integers to assign intensity values for the three additive
primary colors. The RGBColor data type is defined as follows.

TYPE RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-5

When you specify an RGB color in an RGBColor record and then draw with that color,
Color QuickDraw translates that color to the various indexed or direct devices that your
user may be using.

For example, your application can use Color QuickDraw to display images containing
up to 256 different colors on indexed devices. An indexed device is a graphics device—
that is, a plug-in video card, a video interface built into a Macintosh computer, or an
offscreen graphics world—that supports up to 256 colors in a color lookup table. Indexed
devices support pixels of 1-bit, 2-bit, 4-bit, or 8-bit depths. On indexed devices, each
pixel is represented in memory by an index to the graphics device’s color lookup table
(also known as the CLUT), where the currently available colors are stored. Such images,
although limited in hue, take up relatively small amounts of memory. Color QuickDraw,
working with the Color Manager, automatically matches the color your application
specifies to the closest available color in the CLUT.

Your application can use the Palette Manager, described in the chapter “Palette
Manager” in Inside Macintosh: Advanced Color Imaging, to exercise greater control of the
colors in the CLUT. Note, however, that some Macintosh computers—such as
black-and-white and grayscale PowerBook computers—have a fixed CLUT, which your
application cannot change.

On direct devices, your application can use Color QuickDraw to display images
containing thousands or millions of different colors. A direct device is a graphics device
that supports up to 16 million colors having a direct correlation between a value placed
in the graphics device and the color displayed onscreen. On attached direct devices, each
pixel is represented in memory by the most significant bits of the actual red, green, and
blue component values specified in an RGBColor record by your application.

Other output devices may render colors that differ from RGB colors; for example, many
color printers work with CMYK (cyan, magenta, yellow, and black) colors. See Inside
Macintosh: Advanced Color Imaging for information about color matching between screens,
which use RGB colors, and devices—like printers—that use CMYK or other colors.

The Color Drawing Environment: Color Graphics Ports
A color graphics port defines a complete drawing environment that determines where
and how color graphics operations take place. As with basic graphics ports, you can
open many color graphics ports at once. Each color graphics port has its own local
coordinate system, drawing pattern, background pattern, pen size and location,
foreground color, background color, and pixel map. Using the SetPort procedure
(described in the chapter “Basic QuickDraw”), or the SetGWorld procedure (described
in the chapter “Offscreen Graphics Worlds”), you can instantly switch from one color or
basic graphics port to another.

CHAPTER 4

Color QuickDraw

4-6 About Color QuickDraw

When you use Window Manager and Dialog Manager routines and resources to create
color windows, dialog boxes, and alert boxes, these managers automatically create color
graphics ports for you. As described in Inside Macintosh: Macintosh Toolbox Essentials, for
example, a color graphics port is automatically created when you use the Window
Manager function GetNewCWindow or NewCWindow. Color graphics ports are
automatically created when your application provides the color-aware resources 'dctb'
and 'actb' and then uses the Dialog Manager routines GetNewDialog and Alert .

A color graphics port is defined by a CGrafPort record, which is diagrammed in
Figure 4-1. Some aspects of its contents are discussed after the figure; see page 4-48 for a
complete description of the fields. Your application generally should not directly set any
fields of a CGrafPort record; instead you should use the QuickDraw routines described
in this book to manipulate them.

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-7

Figure 4-1 The color graphics port

CHAPTER 4

Color QuickDraw

4-8 About Color QuickDraw

Table 4-3 on page 4-64 shows initial values for a CGrafPort record. A CGrafPort
record is the same size as a GrafPort record (described in the chapter “Basic
QuickDraw”), and most of the fields are identical for these two records. The important
differences between these two data types are listed here:

■ In a GrafPort record, the portBits field contains a complete 14-byte
BitMap record. In a CGrafPort record, this field is partly replaced by the
4-byte portPixMap field; this field contains a handle to a PixMap record.

■ In what would be the rowBytes field of the BitMap record stored in the portBits
field of a GrafPort record, a CGrafPort record has a 2-byte portVersion field in
which the 2 high bits are always set. QuickDraw uses these bits to distinguish
CGrafPort records from GrafPort records, in which the 2 high bits of the
rowBytes field are always clear.

■ Following the portVersion field in the CGrafPort record is the grafVars field,
which contains a handle to a GrafVars record; this handle is not included in a
GrafPort record. The GrafVars record contains color information used by Color
QuickDraw and the Palette Manager.

■ In a GrafPort record, the bkPat , pnPat , and fillPat fields hold 8-byte bit
patterns. In a CGrafPort record, these fields are partly replaced by three 4-byte
handles to pixel patterns. The resulting 12 bytes of additional space are taken up by
the rgbFgColor and rgbBkColor fields, which contain 6-byte RGBColor records
specifying the optimal foreground and background colors for the color graphics port.
Note that the closest matching available colors, which Color QuickDraw actually uses
for the foreground and background, are stored in the fgColor and bkColor fields of
the CGrafPort record.

■ In a GrafPort record, you can supply the grafProcs field with a pointer to a
QDProcs record that your application can store into if you want to customize
QuickDraw drawing routines or use QuickDraw in other advanced, highly
specialized ways. If you supply custom QuickDraw drawing routines in a
CGrafPort record, you must provide this field with a pointer to a data structure of
type CQDProcs.

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-9

Working with a CGrafPort record is much like using a GrafPort record. The routines
SetPort , GetPort , PortSize , SetOrigin , SetPortBits , and MovePortTo operate
on either port type, and the global variable ThePort points to the current graphics port
no matter which type it is. (Remember that drawing always takes place in the current
graphics port.) These routines are described in the chapter “Basic QuickDraw.”

If you find it necessary, you can use type coercion to convert between GrafPtr and
CGrafPtr records. For example:

VAR myPort: CGrafPtr;

SetPort (GrafPtr(myPort));

Note

You can use all QuickDraw drawing commands when drawing into a
graphics port created with a CGrafPort record, and you can use all
Color QuickDraw drawing commands (such as FillCRect) when
drawing into a graphics port created with a GrafPort record. However,
Color QuickDraw drawing commands used with a GrafPort record
don’t take advantage of Color QuickDraw’s color features. ◆

While the CGrafPort record contains information for a color window, there can be
many windows on a screen, and even more than one screen. The GDevice record,
described in the chapter “Graphics Devices,” is the data structure that holds state
information about a graphics device—such as the size of its boundary rectangle and
whether the device is indexed or direct. Like the graphics port, the GDevice record is
created automatically for you: QuickDraw uses information supplied by the Slot
Manager to create a GDevice record for each graphics device found during startup.
Many applications can let Color QuickDraw manage multiple screens of differing pixel
depths. If your application needs more control over graphics device management—if
your application needs certain screen depths to function effectively, for example—you
can use the routines described in the chapter “Graphics Devices.”

Pixel Maps

The portPixMap field of a CGrafPort record contains a handle to a pixel map, a data
structure of type PixMap . Just as basic QuickDraw does all of its drawing in a bitmap,
Color QuickDraw draws in a pixel map.

CHAPTER 4

Color QuickDraw

4-10 About Color QuickDraw

The representation of a color image in memory is a pixel image, analogous to the bit
image used by basic QuickDraw. A PixMap record includes a pointer to a pixel image,
its dimensions, storage format, depth, resolution, and color usage. The pixel map is
diagrammed in Figure 4-2. Some aspects of its contents are discussed after the figure; see
page 4-46 for a complete description of its fields.

Figure 4-2 The pixel map

The baseAddr field of a PixMap record contains a pointer to the beginning of the
onscreen pixel image for a pixel map. The pixel image that appears on a screen is
normally stored on a graphics card rather than in main memory. (There can be several
pixel maps pointing to the same pixel image, each imposing its own coordinate system
on it.)

As with a bitmap, the pixel map’s boundary rectangle is initially set to the size of the
main screen. However, you should never use a pixel map’s boundary rectangle to
determine the size of the screen; instead use the value of the gdRect field of the
GDevice record for the screen, as described in the chapter “Graphics Devices” in
this book.

The number of bits per pixel in the pixel image is called the pixel depth. Pixels on
indexed devices can be 1, 2, 4, or 8 bits deep. (A pixel image that is 1 bit deep is
equivalent to a bit image.) Pixels on direct devices can be 16 or 32 bits deep. (Even if
your application creates a basic graphics port on a direct device, pixels are never less

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-11

than one of these two depths.) When a user uses the Monitors control panel to set a
16-bit or 32-bit direct device to use 2, 4, 16, or 256 colors as a grayscale or color device,
the direct device creates a CLUT and operates like an indexed device.

When your application specifies an RGB color for some pixel in a pixel image, Color
QuickDraw translates that color into a value appropriate for display on the user’s screen;
Color QuickDraw stores this value in the pixel. The pixel value is a number used by
system software and a graphics device to represent a color. The translation from the color
you specify in an RGBColor record to a pixel value is performed at the time you draw
the color. The process differs for indexed and direct devices, as described here.

■ When drawing on indexed devices, Color QuickDraw calls the Color Manager to
supply the index to the color that most closely matches the requested color in the
current device’s CLUT. This index becomes the pixel value for that color.

■ When drawing on direct devices, Color QuickDraw truncates the least significant bits
from the red , green , and blue fields of the RGBColor record. This becomes the
pixel value that Color QuickDraw sends to the graphics device.

This process is described in greater detail in “Color QuickDraw’s Translation of RGB
Colors to Pixel Values” beginning on page 4-13.

The hRes and vRes fields of the PixMap record describe the horizontal and vertical
resolution of the image in pixels per inch, abbreviated as dpi (dots per inch). The values
for these fields are of type Fixed ; by default, the value for each is $00480000 (for 72 dpi),
but Color QuickDraw supports PixMap records of other resolutions. For example,
PixMap records for scanners and frame grabbers can have dpi resolutions of 150, 200,
300, or greater.

The pixelType field of the PixMap record specifies the format—indexed or direct—
used to hold the pixels in the image. For indexed devices the value is 0; for direct devices
it is 16 (which can be represented by the constant RGBDirect).

The pixelSize field specifies the pixel depth. Indexed devices can be 1, 2, 4, or 8 bits
deep; direct devices can be 16 or 32 bits deep.

The cmpCount and cmpSize fields describe how the pixel values are organized. For
pixels on indexed devices, the color component count (stored in the cmpCount field)
is 1—for the index into the graphics device’s CLUT, where the colors are stored. For
pixels on direct devices, the color component count is 3—for the red, green, and blue
components of each pixel.

The cmpSize field specifies how large each color component is. For indexed devices it
is the same value as that in the pixelSize field: 1, 2, 4, or 8 bits. For direct pixels, each
of the three color components can be either 5 bits for a 16-bit pixel (1 of these 16 bits is
unused), or 8 bits for a 32-bit pixel (8 of these 32 bits are unused).

The planeBytes field specifies an offset in bytes from one plane to another. Since Color
QuickDraw doesn’t support multiple-plane images, the value of this field is always 0.

Finally, the pmTable field contains a handle to the ColorTable record. Color tables
define the colors available for pixel images on indexed devices. (The Color Manager
stores a color table for the currently available colors in the graphics device’s CLUT; you
can use the Palette Manager to assign different color tables to your different windows.)

CHAPTER 4

Color QuickDraw

4-12 About Color QuickDraw

You can create color tables using either ColorTable records (described on page 4-56) or
color table ('clut') resources (described on page 4-104). Pixel images on direct devices
don’t need a color table because the colors are stored right in the pixel values; in such
cases the pmTable field points to a dummy color table.

Note

The pixel map for a window’s color graphics port always consists of the
pixel depth, color table, and boundary rectangle of the main screen, even
if the window is created on or moved to an entirely different screen. ◆

Pixel Patterns

Color QuickDraw supplements the black-and-white patterns of basic QuickDraw with
pixel patterns, which can use colors at any pixel depth and can be of any width and
height that’s a power of 2. A pixel pattern defines a repeating design (such as stripes of
different colors) or a color otherwise unavailable on indexed devices. For example, if
your application draws to an indexed device that supports 4 bits per pixel, your
application has 16 colors available if it simply sets the foreground color and draws.
However, if your application uses the MakeRGBPat procedure to create patterns that use
these 16 colors in various combinations, and then draws using that pattern, your
application can effectively have as many as 125 approximated colors at its disposal. For
example, you can specify a purple color to MakeRGBPat, which creates a pattern that
mixes blue and red pixels.

As with bit patterns (described in the chapter “QuickDraw Drawing”), your application
can use pixel patterns to draw lines and shapes on the screen. In a color graphics port,
the graphics pen has a pixel pattern specified in the pnPixPat field of the CGrafPort
record. This pixel pattern acts like the ink in the pen; the pixels in the pattern interact
with the pixels in the pixel map according to the pattern mode of the graphics pen.
When you use the FrameRect , FrameRoundRect , FrameArc , FramePoly , FrameRgn ,
PaintRect , PaintRoundRect , PaintArc , PaintPoly , and PaintRgn procedures
(described in the chapter “QuickDraw Drawing”) to draw shapes, these procedures
draw the shape with the pattern specified in the pnPixPat field. Initially, every
graphics pen is assigned an all-black pattern, but you can use the PenPixPat
procedure to assign a different pixel pattern to the graphics pen.

You can use the FillCRect , FillCRoundRect , FillCArc , FillCPoly , and
FillCRgn procedures (described later in this chapter) to draw shapes with a pixel
pattern other than the one specified in the pnPixPat field. When your application uses
one of these procedures, the procedure stores the pattern your application specifies in
the fillPixPat field of the CGrafPort record and then calls a low-level drawing
routine that gets the pattern from that field.

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-13

Each graphics port also has a background pattern that’s used when an area is erased
(for example, by the EraseRect , EraseRoundRect , EraseArc , ErasePoly , and
EraseRgn procedures, described in the chapter “QuickDraw Drawing”) and when
pixels are scrolled out of an area by the ScrollRect procedure, described in the chapter
“Basic QuickDraw.” Every color graphics port stores a background pixel pattern in the
bkPixPat field of its CGrafPort record. Initially, every graphics port is assigned an
all-white background pattern, but you can use the BackPixPat procedure to assign a
different pixel pattern.

You can create your own pixel patterns in your program code, but it’s usually simpler
and more convenient to store them in resources of type 'ppat' .

Each pixel map has its own color table; therefore, pixel patterns can consist of any
number of colors, and they don’t usually require the graphics port’s foreground and
background colors to have particular values.

Note

Color QuickDraw also supports bit patterns. When used in a
CGrafPort record, such patterns are limited to 8-by-8 bit dimensions
and are always drawn using the values in the fgColor and bkColor
fields of the CGrafPort record. ◆

Color QuickDraw’s Translation of RGB Colors to Pixel Values

When using Color QuickDraw, your application refers to a color only through the three
16-bit fields of a 48-bit RGBColor record; you use these fields to specify the red, green,
and blue components of your desired color. When your application draws into a pixel
map, Color QuickDraw and the Color Manager translate your RGBColor records into
pixel values; these pixel values are sent to your users’ graphics devices, which display
the pixels accordingly.

Your application never needs to handle pixel values. However, to clarify the relation
between your application’s 48-bit RGBColor records and the pixels that are actually
displayed, this section presents some examples of how Color QuickDraw derives pixel
values from your RGBColor records.

Indexed devices were introduced to support—with minimal memory requirements—
the color capabilities of the Macintosh II computer. The pixel value for any color on an
indexed device is represented by a single byte. Each byte contains an index number that
specifies one of 256 colors available on the device’s CLUT. This index number is the pixel
value for the pixel. (Some indexed devices support 1-bit, 2-bit, or 4-bit pixel values,
resulting in tables containing 2, 4, or 16 colors, respectively, as shown in Plate 1 in the
front of this book.)

To obtain an 8-bit pixel value from the 48-bit RGBColor record specified by your
application, Color QuickDraw calls on the Color Manager to determine the closest RGB
color stored in the CLUT on the current device. The index number to that color is then
stored in the 8-bit pixel.

CHAPTER 4

Color QuickDraw

4-14 About Color QuickDraw

For example, the RGBColor record for a medium green pixel is represented on the
left side of Figure 4-3. An application might create such a record and pass it to the
RGBForeColor procedure, which sets the foreground color for drawing. In system
software’s standard 8-bit color lookup table (which is defined in a 'clut' resource with
the resource ID of 8), the closest color to that medium green is stored as table entry 161.
When the next pixel is drawn, this index number is stored in the pixel image as the pixel
value.

Figure 4-3 Translating a 48-bit RGBColor record to an 8-bit pixel value on an indexed device

The application might later use the GetCPixel procedure to determine the color of a
particular pixel. As shown in Figure 4-4, the Color Manager uses the index number
stored as the pixel value to find the 48-bit RGBColor record stored in the CLUT for that
pixel’s color—which, as with the medium green in this example, is not necessarily the
exact color first specified by the application. The difference, however, is imperceptible.

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-15

Figure 4-4 Translating an 8-bit pixel value on an indexed device to a 48-bit RGBColor record

Direct devices support 32-bit and 16-bit pixel values. Direct devices do not use tables
to store and look up colors, nor do their pixel values consist of index numbers. For
each pixel on a direct device, Color QuickDraw instead derives the pixel value by
concatenating the values of the red , green , and blue fields of an RGBColor record.

As shown in Figure 4-5, Color QuickDraw converts a 48-bit RGBColor record into a
32-bit pixel value by storing the most significant 8 bits of each 16-bit field of the
RGBColor record into the lower 3 bytes of the pixel value, leaving 8 unused bits in the
high byte of the pixel value.

Figure 4-5 Translating a 48-bit RGBColor record to a 32-bit pixel value on a direct device

CHAPTER 4

Color QuickDraw

4-16 About Color QuickDraw

Color QuickDraw converts a 48-bit RGBColor record into a 16-bit pixel value by storing
the most significant 5 bits of each 16-bit field of the RGBColor record into the lower 15
bits of the pixel value, leaving an unused high bit, as shown in Figure 4-6.

Figure 4-6 Translating a 48-bit RGBColor record to a 16-bit pixel value on a direct device

Figure 4-7 shows how Color QuickDraw expands a 32-bit pixel value to a 48-bit
RGBColor record by dropping the unused high byte of the pixel value and doubling
each of its 8-bit components. Note that the resulting 48-bit value differs in the least
significant 8 bits of each component from the original RGBColor record in Figure 4-5.

Figure 4-7 Translating a 32-bit pixel value to a 48-bit RGBColor record

CHAPTER 4

Color QuickDraw

About Color QuickDraw 4-17

Figure 4-8 shows how Color QuickDraw expands a 16-bit pixel value to a 48-bit
RGBColor record by dropping the unused high bit of the pixel value and inserting three
copies of each 5-bit component and a copy of the most significant bit into each 16-bit
field of the RGBColor record. Note that the result differs (in the least significant 11 bits
of each component) from the original 48-bit value in Figure 4-5. The difference, however,
is imperceptible.

Figure 4-8 Translating a 16-bit pixel value to a 48-bit RGBColor record

Colors on Grayscale Screens

When Color QuickDraw displays a color on a grayscale screen, it computes the
luminance, or intensity of light, of the desired color and uses that value to determine the
appropriate gray value to draw. A grayscale graphics device can be a color graphics
device that the user sets to grayscale by using the Monitors control panel; for such a
graphics device, Color QuickDraw places an evenly spaced set of grays, forming a linear
ramp from white to black, in the graphics device’s CLUT. (When a user uses the
Monitors control panel to set a 16-bit or 32-bit direct device to use 2, 4, 16, or 256 colors
as a grayscale or color device, the direct device creates a CLUT and operates like an
indexed device.)

By using the GetCTable function, described on page 4-92, your application can obtain
the default color tables for various graphics devices, including grayscale devices.

CHAPTER 4

Color QuickDraw

4-18 Using Color QuickDraw

Using Color QuickDraw

To use Color QuickDraw, you generally

■ initialize QuickDraw

■ create a color window into which your application can draw

■ create RGBColor records to define your own foreground and background colors

■ create pixel pattern ('ppat') resources to define your own colored patterns

■ use these colors and pixel patterns for drawing with the graphics pen, for filling as the
background pattern, and for filling into shapes

■ use the basic QuickDraw routines previously described in this book to perform all
other onscreen graphics port manipulations and calculations

This section gives an overview of routines that your application typically calls while
using Color QuickDraw. Before calling these routines, however, your application should
test for the existence of Color QuickDraw by using the Gestalt function with the
gestaltQuickDrawVersion selector. The Gestalt function returns a 4-byte value in
its response parameter; the low-order word contains QuickDraw version data. In that
low-order word, the high-order byte gives the major revision number and the low-order
byte gives the minor revision number. If the value returned in the response parameter
is equal to the value of the constant gestalt32BitQD13 , then the system supports the
System 7 version of Color QuickDraw. Listed here are the various constants, and the
values they represent, that indicate earlier versions of Color QuickDraw.

CONST

gestalt8BitQD = $100; {8-bi t Co lor QD}

gestalt32BitQD = $200; {32-bi t Co lor QD}

gestalt32BitQD11 = $210; {32-bi t Co lor QDv1.1}

gestalt32BitQD12 = $220; {32-bi t Co lor QDv1.2}

gestalt32BitQD13 = $230; {System 7: 32-bi t Co lor QDv1.3}

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-19

Your application can also use the Gestalt function with the selector
gestaltQuickDra wFeatures to determine whether the user’s system supports
various Color QuickDraw features. If the bits indicated by the following constants are set
in the response parameter, then the features are available:

CONST

gestaltHasColor = 0; {Color QuickDraw is present}

gestaltHasDeepGWorlds = 1; {GWorlds deeper than 1 bit}

gestaltHasDirectPixMaps = 2; {PixMaps can be direct--16 or }

{ 32 bit}

gestaltHasGrayishTextOr = 3; {supports text mode }

{ grayishTextOr}

When testing for the existence of Color QuickDraw, your application
should test the response to the gestaltQuickDrawVersion selector (rather
than test for the result gestaltHasColor , which is unreliable, from
the gestaltQuickDrawFeatures selector). The support for offscreen
graphics worlds indicated by the gestaltHasDeepGWorlds response to
the gestaltQuickDrawVersion selector is described in the chapter
“Offscreen Graphics Worlds.” The support for the text mode indicated by the
gestaltHasGrayishTextOr response is described in the chapter “QuickDraw
Text” in Inside Macintosh: Text. For more information about the Gestalt function,
see the chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.

Initializing Color QuickDraw
To initialize Color QuickDraw, use the InitGraf procedure, described in the chapter
“Basic QuickDraw.” Besides initializing basic QuickDraw, this procedure initializes
Color QuickDraw on computers that support it.

In addition to InitGraf , all other basic QuickDraw routines work with Color
QuickDraw. For example, you can use the GetPort procedure to save the current color
graphics port, and you can use the CopyBits procedure to copy an image between two
different color graphics ports. See the chapters “Basic QuickDraw” and “QuickDraw
Drawing” for descriptions of additional routines that you can use with Color QuickDraw.

CHAPTER 4

Color QuickDraw

4-20 Using Color QuickDraw

Creating Color Graphics Ports
All graphics operations are performed in graphics ports. Before a color graphics port can
be used, it must be allocated with the OpenCPort procedure and initialized with the
InitCPort procedure. Normally, your application does not call these procedures
directly. Instead, your application creates a color graphics port by using the
GetNewCWindow or NewCWindow function (described in the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials) or the NewGWorld function
(described in the chapter “Offscreen Graphics Worlds” in this book). These functions
automatically call OpenCPort , which in turn calls InitCPort .

Listing 4-1 shows a simplified application-defined procedure called DoNew that uses the
Window Manager function GetNewCWindow to create a color graphics port.

Listing 4-1 Using the Window Manager to create a color graphics port

PROCEDURE DoNew (V AR window: WindowPtr);

VAR

windStorage: Ptr; {memory for window record}

BEGIN

window := NIL ;

{allocate memory for window record from previously allocated block}

windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}

BEGIN

I F gColorQDAvailable THE N { use Gestalt to determine color availability}

window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE {create a basic graphics port for a black-and-white screen}

window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;

I F (window < > NIL) T HEN

 SetPort(window);

END;

You can use GetNewCWindow to create color graphics ports whether or not a color
monitor is currently installed. So that most of your window-handling code can handle
color windows and black-and-white windows identically, GetNewCWindow returns a
pointer of type WindowPtr (not of type CWindowPtr).

A window pointer points to a window record (WindowRecord), which contains a
GrafPort record. If you need to check the fields of the color graphics port associated
with a window, you can coerce the pointer to the GrafPort record into a pointer to a
CGrafPort record.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-21

You can allow GetNewCWindow to allocate the memory for your window record and its
associated basic graphics port. You can maintain more control over memory use,
however, by allocating the memory yourself from a block allocated for such purposes
during your own initialization routine, and then passing the pointer to GetNewWindow,
as shown in Listing 4-1.

To dispose of a color graphics port when you are finished using a color window, you
normally use the DisposeWindow procedure (if you let the Window Manager allocate
memory for the window) or the CloseWindow procedure (if you allocated memory for
the window). If you use the CloseWindow procedure, you also dispose of the window
record containing the graphics port by calling the Memory Manager procedure
DisposePtr . You use the DisposeGWorld procedure when you are finished with a
color graphics port for an offscreen graphics world.

Drawing With Different Foreground Colors
You can set the foreground and background colors using either Color QuickDraw or
Palette Manager routines. If your application uses the Palette Manager, it should set the
foreground and background colors with the PmForeColor and PmBackColor routines,
as described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color
Imaging. Otherwise, your application can use the RGBForeColor procedure to set the
foreground color, and it can use the RGBBackColor procedure to set the background
color. Both of these Color QuickDraw procedures also operate for basic graphics ports
created in System 7. (To set the foreground and background colors for basic graphics
ports on older versions of system software, use the ForeColor and BackColor
procedures described in the chapter “QuickDraw Drawing.”)

The RGBForeColor procedure lets you set the foreground color to the best color
available on the current graphics device. This changes the color of the “ink” used for
drawing. All of the line-drawing, framing, and painting routines described in the chapter
“QuickDraw Drawing” (such as LineTo , FrameRect , and PaintPoly) draw with the
foreground color that you specify with RGBForeColor .

Note

Because a pixel pattern already contains color, Color QuickDraw ignores
the foreground and background colors when your application draws
with a pixel pattern. As described in “Drawing With Pixel Patterns”
beginning on page 4-23, you can draw with a pixel pattern by using the
PenPixPat procedure to assign a pixel pattern to the graphics pen, by
using the BackPixPat procedure to assign a pixel pattern as the
background pattern for the current color graphics port, and by using the
FillCRect , FillCOval , FillCRoundRect , FillCArc , FillCRgn ,
and FillCPoly procedures to fill shapes with a pixel pattern. ◆

CHAPTER 4

Color QuickDraw

4-22 Using Color QuickDraw

To specify a foreground color, create an RGBColor record. Listing 4-2 defines two
RGBColor records. The first is declared as myDarkBlue , and it’s defined with a
medium-intensive blue component and with zero-intensity red and green components.
The second is declared as myMediumGreen, and it’s defined with an intensive green
component, a mildly intensive red component, and a very slight blue component.

Listing 4-2 Changing the foreground color

PROCEDURE MyPaintAndFillColorRects;

VAR

f irstRect, secondRect : Rect ;

myDarkBlue: RGBColor ;

myMediumGreen: RGBColor;

BEGIN

{create dark blue color }

myDarkBlue.red := $0000 ;

myDarkBlue. green := $0000 ;

myDarkBlue. blue := $9999;

{create medium green color }

myMediumGreen. red := $3206 ;

myMediumGreen. green := $9038 ;

myMediumGreen. blue := $013D;

RGBForeColor (myDarkBlue) ; {draw with dark blue pen}

PenMode(patCopy);

SetRect(firstRect, 20, 20, 70, 70);

PaintRect(firstRect); {paint a dark blue rectangle}

RGBForeColor (myMediumGreen) ; {draw with a medium green pen}

SetRect(secondRect, 90, 20, 140, 70);

FillRect(secondRect, ltGray); {paint a medium green rectangle}

END;

In Listing 4-2, the RGBColor record myDarkBlue is supplied to the RGBForeColor
procedure. The RGBForeColor procedure supplies the rgbFgColor field of the
CGrafPort record with this RGBColor record, and it places the closest-matching
available color in the fgColor field; the color in the fgColor field is the color actually
used as the foreground color.

After using SetRect to create a rectangle, Listing 4-2 calls PaintRect to paint the
rectangle. By default, the foreground color is black; by changing the foreground color to
dark blue, every pixel that would normally be painted in black is instead painted in dark
blue.

Listing 4-2 then changes the foreground color again to the medium green specified in the
RGBColor record myMediumGreen. After creating another rectangle, this listing calls
FillRect to fill the rectangle with the bit pattern specified by the global variable
ltGray . As explained in the chapter “QuickDraw Drawing,” this bit pattern consists of

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-23

widely spaced black pixels that create the effect of gray on black-and-white screens.
However, by changing the foreground color, every pixel in the pattern that would
normally be painted black is instead drawn in medium green.

The effects of Listing 4-2 are illustrated in the grayscale screen capture shown in
Figure 4-9.

Figure 4-9 Drawing with two different foreground colors (on a grayscale screen)

If you wish to draw with a color other than the foreground color, you can use the
PenPixPat procedure to give the graphics pen a colored pixel pattern that you define,
and you can use the FillCRect , FillCRoundRect , FillCOval , FillCArc ,
FillCPoly , and FillCRgn procedures to fill shapes with colored patterns. The use of
these procedures is illustrated in the next section.

Drawing With Pixel Patterns
Using pixel pattern resources, you can create multicolored patterns for the pen pattern,
for the background pattern, and for fill patterns.

To set the pixel pattern to be used by the graphics pen in the current color graphics
port, you use the PenPixPat procedure. To assign a pixel pattern as the background
pattern, you use the BackPixPat procedure; this causes the ScrollRect procedure
and the shape-erasing procedures (for example, EraseRect) to fill the background with
your pixel pattern. To fill shapes with a pixel pattern, you use the FillCRect ,
FillCRoundRect , FillCOval , FillCArc , FillCPoly , and FillCRgn procedures.

Note

Because a pixel pattern already contains color, Color QuickDraw ignores
the foreground and background colors when your application uses these
routines to draw with a pixel pattern. Color QuickDraw also ignores the
pen mode by drawing the pixel pattern directly onto the pixel image. ◆

When you use the PenPat or BackPat procedure in a color graphics port, Color
QuickDraw constructs a pixel pattern equivalent to the bit pattern you specify to
PenPat or BackPat . The pen pattern or background pattern you thereby specify always
uses the graphics port’s current foreground and background colors. The PenPat and
BackPat procedures are described in the chapter “QuickDraw Drawing.”

CHAPTER 4

Color QuickDraw

4-24 Using Color QuickDraw

A pixel pattern resource is a resource of type 'ppat' . You typically use a high-level tool
such as the ResEdit application, available through APDA, to create 'ppat' resources.
Figure 4-10 illustrates a ResEdit window displaying an application’s 'ppat' resource
with resource ID 128.

Figure 4-10 Using ResEdit to create a pixel pattern resource

As shown in this figure, you should also define an analogous, black-and-white bit
pattern (described in the chapter “QuickDraw Drawing”) to be used when this pattern is
drawn into a basic graphics port. This bit pattern is stored within the pixel pattern
resource.

After using ResEdit to define a pixel pattern, you can then use the DeRez decompiler to
convert your 'ppat' resources into Rez input when necessary. (The DeRez resource
decompiler and the Rez resource compiler are part of Macintosh Programmer’s
Workshop [MPW], which is available through APDA.) Listing 4-3 shows the Rez input
created from the 'ppat' resource created in Figure 4-10.

Listing 4-3 Rez input for a pixel pattern resource

resource 'ppat' (128) {

$"0001 0000 001C 0000 004E 0000 0000 FFFF"

$"0000 0000 8292 1082 9210 8292 0000 0000"

$"8002 0000 0000 0008 0008 0000 0000 0000"

$"0000 0048 0000 0048 0000 0000 0002 0001"

$"0002 0000 0000 0000 005E 0000 0000 1212"

$"4848 1212 4848 1212 4848 1212 4848 0000"

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-25

$"0000 0000 0002 0000 AAAA AAAA AAAA 0001"

$"2222 2222 2222 0002 7777 7777 7777"

};

To retrieve the pixel pattern stored in a 'ppat' resource, you can use the GetPixPat
function. Listing 4-4 uses GetPixPat to retrieve the 'ppat' resource created in
Listing 4-3. To assign this pixel pattern to the graphics pen, Listing 4-4 uses the
PenPixPat procedure.

Listing 4-4 Using pixel patterns to paint and fill

PROCEDURE MyPaintPixelPatternRects;

VAR

f irstRect, secondRect: Rect ;

myPenPattern, myFillPattern: PixPatHandle;

BEGIN

myPenPattern := GetPixPat(128) ; {get a pixel pattern}

PenPixPat(myPenPattern); {assign the pattern to the pen}

SetRect(firstRect, 20, 20, 70, 70);

PaintRect(firstRect); {paint with the pen's pixel pattern}

DisposePixPat(myPenPattern); {dispose of the pixel pattern}

myFillPattern := GetPixPat(129); {get another pixel pattern}

SetRect(secondRect, 90, 20, 140, 70);

FillCRect(secondRect, myFillPattern); {fill with this pattern}

DisposePixPat(myFillPattern); {dispose of the pixel pattern}

END;

Listing 4-4 uses the PaintRect procedure to draw a rectangle. The rectangle on the left
side of Figure 4-11 illustrates the effect of painting a rectangle with the previously
defined pen pattern.

Figure 4-11 Painting and filling rectangles with pixel patterns

CHAPTER 4

Color QuickDraw

4-26 Using Color QuickDraw

The rectangle on the right side of Figure 4-11 illustrates the effect of using the
FillCRect procedure to fill a rectangle with another previously defined pen pattern.
The GetPixPat function is used to retrieve the pixel pattern defined in the 'ppat'
resource with resource ID 129. This pixel pattern is then specified to the FillCRect
procedure.

Copying Pixels Between Color Graphics Ports
As explained in the chapter “QuickDraw Drawing,” QuickDraw has three primary
image-processing routines.

■ The CopyBits procedure copies a pixel map or bitmap image to another graphics
port, with facilities for resizing the image, modifying the image with transfer modes,
and clipping the image to a region.

■ The CopyMask procedure copies a pixel map or bitmap image to another graphics
port, with facilities for resizing the image and for altering the image by passing it
through a mask—which for Color QuickDraw may be another pixel map whose pixels
indicate proportionate weights of the colors for the source and destination pixels.

■ The CopyDeepMask procedure combines the effects of CopyBits and CopyMask :
you can resize an image, clip it to a region, specify a transfer mode, and use another
pixel map as a mask when transferring it to another graphics port.

In basic QuickDraw, CopyBits , CopyMask , and CopyDeepMask copy bit images
between two basic graphics ports. In Color QuickDraw, you can also use these
procedures to copy pixel images between two color graphics ports. Detailed routine
descriptions for these procedures appear in the chapter “QuickDraw Drawing.” This
section provides an overview of how to use the extra capabilities that Color QuickDraw
provides for these procedures.

When using CopyBits , CopyMask , and CopyDeepMask to copy images between color
graphics ports, you must coerce each port’s CGraf Ptr data type to a Graf Ptr data
type, dereference the portBits fields of each, and then pass these “bitmaps” in the
srcBits and dstBits parameters. If your application copies a pixel image from a color
graphics port called MyColorPort , in the srcBits parameter you could specify
GrafPtr(MyColorPort)^.portBits . In a CGrafPort record, the high 2 bits of the
portVersion field are set. This field, which shares the same position in a CGrafPort
record as the portBits.rowBytes field in a GrafPort record, indicates to these
routines that you have passed it a handle to a pixel map rather than a bitmap.

Color QuickDraw’s processing sequence of the CopyBits procedure is illustrated in
Figure 4-12. Listing 6-1 in the chapter “Offscreen Graphics Worlds” illustrates how to use
CopyBits to transfer an image prepared in an offscreen graphics world to an onscreen
color graphics port.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-27

Figure 4-12 Copying pixel images with the CopyBits procedure

CHAPTER 4

Color QuickDraw

4-28 Using Color QuickDraw

With the CopyMask procedure, you can supply a pixel map to act as a copying mask.
The values of pixels in the mask act as weights that proportionally select between source
and destination pixel values. The process is shown in Figure 4-13, and an example of the
effect can be seen in Plate 3 at the front of this book. Listing 6-2 in the chapter “Offscreen
Graphics Worlds” illustrates how to use CopyMask to mask and copy an image prepared
in an offscreen graphics world to an onscreen color graphics port.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-29

Figure 4-13 Copying pixel images with the CopyMask procedure

CHAPTER 4

Color QuickDraw

4-30 Using Color QuickDraw

The CopyDeepMask procedure combines the capabilities of the CopyBits and
CopyMask procedures. With CopyDeepMask you can specify a pixel map mask, a
transfer mode, and a mask region, as shown in Figure 4-14.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-31

Figure 4-14 Copying pixel images with the CopyDeepMask procedure

CHAPTER 4

Color QuickDraw

4-32 Using Color QuickDraw

On indexed devices, pixel images are always copied using the color table of the source
PixMap record for source color information, and using the color table of the current
GDevice record for destination color information. The color table attached to the
destination PixMap record is ignored. As explained in the chapter “Offscreen Graphics
Worlds,” if you need to copy to an offscreen PixMap record with characteristics differing
from those of the current graphics device, you should create an appropriate offscreen
GDevice record and set it as the current graphics device before the copy operation.

When the PixMap record for the mask is 1 bit deep, it has the same effect as a bitmap
mask: a black bit in the mask means that the destination pixel is to take the color of the
source pixel; a white bit in the mask means that the destination pixel is to retain its
current color. When masks have PixMap records with greater pixel depths than 1, Color
QuickDraw takes a weighted average between the colors of the source and destination
PixMap records. Within each pixel, the calculation is done in RGB color, on a color
component basis. A gray PixMap record mask, for example, works like blend mode in a
CopyBits procedure. A red mask (that is, one with high values for the red components
of all pixels) filters out red values coming from the source pixel image.

Boolean Transfer Modes With Color Pixels

As described in the chapter “QuickDraw Drawing,” QuickDraw offers two types of
Boolean transfer modes: pattern modes for drawing lines and shapes, and source modes
for copying images or drawing text. In basic graphics ports and in color graphics ports
with 1-bit pixel maps, these modes describe the interaction between the bits your
application draws and the bits that are already in the destination bitmap or 1-bit pixel
map. These interactions involve turning the bits on or off—that is, making the pixels
black or white.

The Boolean operations on bitmaps and 1-bit pixel maps are described in the chapter
“QuickDraw Drawing.” When you draw or copy images to and from bitmaps or 1-bit
pixel maps, Color QuickDraw behaves in the manner described in that chapter.

When you use pattern modes in pixel maps with depths greater than 1 bit, Color
QuickDraw uses the foreground color and background color when transferring bit
patterns; for example, the patCopy mode applies the foreground color to every
destination pixel that corresponds to a black pixel in a bit pattern, and it applies the
background color to every destination pixel that corresponds to a white pixel in a bit
pattern. See the description of the PenMode procedure in the chapter “QuickDraw
Drawing” for a list that summarizes how the foreground and background colors are
applied with pattern modes.

When you use the CopyBits , CopyMask , and CopyDeepMask procedures to transfer
images between pixel maps with depths greater than 1 bit, Color QuickDraw performs
the Boolean transfer operations in the manner summarized in Table 4-1. In general, with
pixel images you will probably want to use the srcCopy mode or one of the arithmetic
transfer modes described in “Arithmetic Transfer Modes” beginning on page 4-38.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-33

Note
When your application draws with a pixel pattern, Color QuickDraw
ignores the pattern mode and simply transfers the pattern directly to the
pixel map without regard to the foreground and background colors. ◆

When you use the srcCopy mode to transfer a pixel into a pixel map, Color QuickDraw
determines how close the color of that pixel is to black, and then assigns this relative
amount of foreground color to the destination pixel. Color QuickDraw also determines
how close the color of that pixel is to white, and assigns this relative amount of
background color to the destination pixel.

To accomplish this, Color QuickDraw first multiplies the relative intensity of each red,
green, and blue component of the source pixel by the corresponding value of the
red, green, or blue component of the foreground color. It then multiplies the relative
intensity of each red, green, and blue component of the source pixel by the
corresponding value of the red, green, or blue component of the background color. For
each component, Color QuickDraw adds the results and then assigns the new result as
the value for the destination pixel’s corresponding component.

Table 4-1 Boolean source modes with colored pixels

Source mode Action on destination pixe l

If source pixel is black If source pixel is white If source pixel is any other color

srcCopy Apply foreground
color

Apply background color Apply weighted portions of
foreground and background
colors

notSrcCopy Apply background
color

Apply foreground color Apply weighted portions of
background and foreground
colors

srcOr Apply foreground
color

Leave alone Apply weighted portions of
foreground color

notSrcOr Leave alone Apply foreground color Apply weighted portions of
foreground color

srcXor Invert (undefined for
colored destination
pixel)

Leave alone Leave alone

notSrcXor Leave alone Invert (undefined for
colored destination
pixel)

Leave alone

srcBic Apply background
color

Leave alone Apply weighted portions of
background color

notSrcBic Leave alone Apply background color Apply weighted portions of
background color

CHAPTER 4

Color QuickDraw

4-34 Using Color QuickDraw

For example, the pixel in an image might be all red: that is, its red component has a pixel
value of $FFFF, and its green and blue components each have pixel values of $0000. The
current foreground color might be black (that is, with pixel values of $0000, $0000, $0000
for its components) and its background color might be all white (that is, with pixel
values of $FFFF, $FFFF, $FFFF). When that image is copied using the CopyBits
procedure and the srcCopy source mode, CopyBits determines that the red
component of the source pixel has 100 percent intensity; multiplying this by the intensity
of the red component ($0000) of the foreground color produces a value of $0000, and
multiplying this by the intensity of the red component ($FFFF) of the background color
produces a value of $FFFF. Adding the results of these two operations produces a pixel
value of $FFFF for the red component of the destination pixel. Performing similar
operations on the green and blue components of the source pixel produces green and
blue pixel values of $0000 for the destination pixel. In this way, CopyBits renders the
source’s all-red pixel as an all-red pixel in the destination pixel map. A source pixel
with only 50 percent intensity for its red component and no intensity for its blue and
green components would similarly be drawn as a medium red pixel in the destination
pixel map.

Color QuickDraw produces similarly weighted destination colors when you use the
other Boolean source modes. When you use the srcBic mode to transfer a colored
source pixel into a pixel map, for example, CopyBits determines how close the color of
that pixel is to black, and then assigns a relative amount of background color to the
destination pixel. For this mode, CopyBits does not determine how close the color of
the source pixel is to white.

Because Color QuickDraw uses the foreground and background colors instead of black
and white when performing its Boolean source operations, the following effects are
produced:

■ The notSrcCopy mode reverses the foreground and background colors.

■ Drawing into a white background with a black foreground always reproduces the
source image, regardless of the pixel depth.

■ Drawing is faster if the foreground color is black when you use the srcOr and
notSrcOr modes.

■ If the background color is white when you use the srcBic mode, the black portions
of the source are erased, resulting in white in the destination pixel map.

As you can see, applying a foreground color other than black or a background color
other than white to the pixel can produce an unexpected result. For consistent results, set
the foreground color to black and the background color to white before using
CopyBits , CopyMask , or CopyDeepMask .

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-35

However, by using the RGBForeColor and RGBBackColor procedures to set the
foreground and background colors to something other than black and white before using
CopyBits , CopyMask , or CopyDeepMask , you can achieve some interesting coloration
effects. Plate 2 at the front of this book shows how setting the foreground color to red
and the background color to blue and then using the CopyBits procedure turns a
grayscale image into shades of red and blue. Listing 4-5 shows the code that produced
these two pixel maps.

Listing 4-5 Using CopyBits to produce coloration effects

PROCEDURE MyColorRamp;

VAR

origPort : CGrafPtr ;

origDevice : GDHandle ;

myErr: QDErr ;

myOffScreenWorld: GWorldPtr ;

TheColor: RGBColor ;

i : Integer ;

offPixMapHandle: PixMapHandle ;

good: Boolean ;

myRect: Rect ;

BEGIN

GetGWorld(origPort, origDevice); {save onscreen graphics port}

{create offscreen graphics world}

myErr := NewGWorld(myOffScreenWorld ,

 0 , origPort^.portRect, NIL, NIL , []);

IF (myOffScreenWorld = NIL) OR (myErr <> noErr) THEN

; { handle errors here}

SetGWorld(myOffScreenWorld, NIL) ; {set current graphics port to offscreen}

offPixMapHandle := GetGWorldPixMap(myOffScreenWorld);

good := LockPixels(offPixMapHandle); {lock offscreen pixel map}

I F NOT good T HEN

; { handle errors here}

EraseRect(myOffScreenWorld^.portRect); {initialize offscreen pixel map}

FOR i := 0 TO 9 DO

BEGIN {create gray ramp}

t heColor.red := i * 7168;

t heColor.green := i * 7168;

t heColor.blue := i * 7168;

RGBForeColor(theColor);

SetRect(myRect, myOffScreenWorld^.portRect.left, i * 10 ,

 m yOffScreenWorld^.portRect.right, i * 10 + 10);

PaintRect(myRect); {fill offscreen pixel map with gray ramp}

CHAPTER 4

Color QuickDraw

4-36 Using Color QuickDraw

END;

SetGWorld(origPort, origDevice); {restore onscreen graphics port}

t heColor.red := $0000;

t heColor.green := $0000;

t heColor.blue := $FFFF;

RGBForeColor(theColor); {make foreground color all blue}

t heColor.red := $FFFF;

t heColor.green := $0000;

t heColor.blue := $0000;

RGBBackColor(theColor); {make background color all red}

{using blue foreground and red background colors, transfe r "g ra y" }

{ ramp to onscreen graphics port}

CopyBits(GrafPtr(myOffScreenWorld)^.portBits, {gray ramp is source}

GrafPtr(origPort)^.portBits, {window is destination}

myOffScreenWorld^.portRect, origPort^.portRect, srcCopy, NIL);

UnlockPixels(offPixMapHandle);

DisposeGWorld(myOffScreenWorld);

END;

Listing 4-5 uses the NewGWorld function, described in the chapter “Offscreen Graphics
Worlds,” to create an offscreen pixel map. The sample code draws a gray ramp into the
offscreen pixel map, which is illustrated on the left side of Plate 2 at the front of this
book. Then Listing 4-5 creates an all-blue foreground color and an all-red background
color. This sample code then uses the CopyBits procedure to transfer the pixels in the
offscreen pixel map to the onscreen window, which is shown on the right side of Plate 2.

Here are some hints for using foreground and background colors and the srcCopy
source mode to color a pixel image:

■ You can copy a particular color component of a source pixel without change by setting
the foreground color to have a value of $0000 for that component and the background
color to have a value of $FFFF for that component. For example, if you want all the
pixels in a source image to retain their red values in the destination image, set the red
component of the foreground color to $0000, and set the red component of the
background color to $FFFF.

■ You can invert a particular color component of a source pixel by setting the
foreground color to have a value of $FFFF for that component and the background
color to have a value of $0000 for that component.

■ You can remove a particular color component from all the pixels in the source image
by setting the foreground color to have a value of $0000 for that component and the
background color to have a value of $0000 for that component.

■ You can force a particular color component in all the pixels in the source to be
transferred with full intensity by setting the foreground color to have a value of $FFFF
for that component and the background color to have a value of $FFFF for that
component.

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-37

To help make color work well on different screen depths, Color QuickDraw does some
validity checking of the foreground and background colors. If your application is
drawing to a color graphics port with a pixel depth equal to 1 or 2, and if the foreground
and background colors aren’t the same but both of them map to the same pixel value,
then the foreground color is inverted. This ensures that, for instance, a red image drawn
on a green background doesn’t map to black on black.

On indexed devices, these source modes produce unexpected colors, because Color
QuickDraw performs Boolean operations on the indexes rather than on actual color
values, and the resulting index may point to an entirely unrelated color. On direct
devices these transfer modes generally do not exhibit rigorous Boolean behavior except
when white is set as the background color.

Dithering

With the CopyBits and CopyDeepMask procedures you can use dithering, a technique
used by these procedures for mixing existing colors together to create the illusion of a
third color that may be unavailable on an indexed device. For example, if you specify
dithering when copying a purple image from a 32-bit direct device to an 8-bit indexed
device that does not have purple available, these procedures mix blue and red pixels to
give the illusion of purple on the 8-bit device.

Dithering is also useful for improving images that you shrink when copying them from a
direct device to an indexed device.

On computers running System 7, you can add dithering to any source mode by adding
the following constant or the value it represents to the source mode:

CONST ditherCopy = 64; { add to source mode for ditherin g}

For example, specifying srcCopy + ditherCopy in the mode parameter to CopyBits
causes CopyBits to dither the image when it copies the image into the destination
pixel map.

Dithering has drawbacks. First, dithering slows the drawing operation. Second, a
clipped dithering operation does not provide pixel-for-pixel equivalence to the same
unclipped dithering operation. When you don’t specify a clipping region, for example,
CopyDeepMask begins copying the upper-left pixel in your source image and, if
necessary, begins calculating how to dither the upper-left pixel and its adjoining pixels
in your destination in order to approximate the color of the source pixel. As
CopyDeepMask continues copying pixels in this manner, there is a cumulative dithering
effect based on the preceding pixels in the source image. If you specify a clipping region
to CopyDeepMask , dithering begins with the upper-left pixel in the clipped region; this
ignores the cumulative dithering effect that would otherwise occur by starting at the
upper-left corner of the source image. In particular, if you clip and dither a region using
the sr cXor mode, you can’t use CopyDeepMask a second time to copy that region back
into the destination pixel map in order to erase that region.

CHAPTER 4

Color QuickDraw

4-38 Using Color QuickDraw

If you replace the Color Manager’s color search function with your own search function
(as described in the chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging), CopyBits and CopyDeepMask cannot perform dithering. Without dithering,
your application does color mapping on a pixel-by-pixel basis. If your source pixel map
is composed of indexed pixels, and if you have installed a custom color search function,
Color QuickDraw calls your function once for each color in the color table for the source
PixMap record. If your source pixel map is composed of direct pixels, Color QuickDraw
calls your custom search function for each color in the pixel image for the source PixMap
record; with an image of many colors, this can take a long time.

If you specify a destination rectangle that is smaller than the source rectangle when
using CopyBits , CopyMask , or CopyDeepMask on a direct device, Color QuickDraw
automatically uses an averaging technique to produce the destination pixels,
maintaining high-quality images when shrinking them. On indexed devices, Color
QuickDraw averages these pixels only if you specify dithering. Using dithering even
when shrinking 1-bit images can produce much better representations of the original
images. (The chapter “QuickDraw Drawing” includes a code sample called
MyShrinkImages , shown in Listing 3-11 on page 3-33, that illustrates how to use
CopyBits to scale a bit image when copying it from one window into another.)

Arithmetic Transfer Modes

In addition to the Boolean source modes described previously, Color QuickDraw offers a
set of transfer modes that perform arithmetic operations on the values of the red, green,
and blue components of the source and destination pixels. Although rarely used by
applications, these arithmetic transfer modes produce predictable results on indexed
devices because they work with RGB colors rather than with color table indexes. These
arithmetic transfer modes are represented by the following constants:

CONST

blend = 32; {replace destination pixel with a blend }

{ of the source and destination pixel }

{ colors; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ up to a maximum allowable value; if }

{ the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ but if the value of the red, green, or }

{ blue component exceeds 65,536, then }

{ subtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bit }

{ pixel map, revert to srcXor mode}

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-39

subPin = 35; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but not less than a minimum }

{ allowable value; if the destination }

{ is a bitmap or 1-bit pixel map, revert to }

{ srcOr mode}

transparent = 36; {replace the destination pixel with the }

{ source pixel if the source pixel is n't }

{ equal to the background color}

addMax = 37; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the greater }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

subOver = 38 ; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but if the value of a red, }

{ green, or blue component is }

{ less than 0, add the negative result to }

{ 65,536; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcXor mode}

adMin = 39; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the lesser }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

Note

You can use the arithmetic modes for all drawing operations; that
is, your application can pass them in parameters to the PenMode,
CopyBits , CopyDeepMask , and TextMode routines. (The TextMode
procedure is described in Inside Macintosh: Text. ◆

When you use the arithmetic transfer modes, each drawing routine converts indexed
source and destination pixels to their RGB components; performs the arithmetic
operation on each pair of red, green, and blue components to provide a new RGB color
for the destination pixel; and then assigns the destination a pixel value close to the
calculated RGB color.

For indexed pixels, the arithmetic transfer modes obtain the full 48-bit RGB color from
the CLUT. For direct pixels, the arithmetic transfer modes use the 15 or 24 bits of the
truncated RGB color. Note, however, that because the colors for indexed pixels depend
on the set of colors currently loaded into a graphics device’s CLUT, arithmetic transfer
modes may produce effects that differ between indexed and direct devices.

CHAPTER 4

Color QuickDraw

4-40 Using Color QuickDraw

Note
The arithmetic transfer modes have no coloration effects. ◆

When you use the addPin mode in a basic graphics port, the maximum allowable value
for the destination pixel is always white. In a color graphics port, you can assign the
maximum allowable value with the OpColor procedure, described on page 4-78. Note
that the addOver mode is slightly faster than the addPin mode.

When you use the subPin mode in a basic graphics port, the minimum allowable value
for the destination pixel is always black. In a color graphics port, you can assign the
minimum allowable value with the OpColor procedure. Note that the subOver mode
is slightly faster than the subPin mode.

When you use the addMax and adMin modes, Color QuickDraw compares each RGB
component of the source and destination pixels independently, so the resulting color
isn’t necessarily either the source or the destination color.

When you use the blend mode, Color QuickDraw uses this formula to calculate the
weighted average of the source and destination pixels, which Color QuickDraw assigns
to the destination pixel:

dest = source × weight/65,535 + destination × (1 – weight/65,535)

In this formula, weight is an unsigned value between 0 and 65,535, inclusive. In a basic
graphics port, the weight is set to 50 percent gray, so that equal weights of the source and
destination RGB components are combined to produce the destination color. In a color
graphics port, the weight is an RGBColor record that individually specifies the weights
of the red, green, and blue components. You can assign the weight value with the
OpColor procedure.

The transparent mode is most useful on indexed devices, which have 8-bit and 4-bit
pixel depths, and on black-and-white devices. You can specify the transparent mode
in the mode parameter to the TextMode , PenMode, and CopyBits routines. To specify a
transparent pattern, add the transparent constant to the patCopy constant:

transparent + patCopy

The transparent mode is optimized to handle source bitmaps with large transparent
holes, as an alternative to specifying an unusual clipping region or mask to the
CopyMask procedure. Patterns aren’t optimized, and may not draw as quickly.

The arithmetic transfer modes are most useful in direct and 8-bit indexed pixels, but
work on 4-bit and 2-bit pixels as well. If the destination pixel map is 1 bit deep, the
arithmetic transfer mode reverts to a comparable Boolean transfer mode, as shown in
Table 4-2. (The hilite mode is explained in the next section.)

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-41

Because drawing with the arithmetic modes uses the closest matching colors, and not
necessarily exact matches, these modes might not produce the results you expect. For
instance, suppose your application uses the srcCopy mode to paint a green pixel on a
screen with 4-bit pixel values. Of the 16 colors available, the closest green may contain a
small amount of red, as in RGB components of 300 red, 65,535 green, and 0 blue. Then,
your application uses addOver mode to paint a red pixel on top of the green pixel,
ideally resulting in a yellow pixel. But the red pixel’s RGB components are 65,535 red, 0
green, and 0 blue. Adding the red components of the red and green pixels wraps to 300,
since the largest representable value is 65,535. In this case, addOver causes no visible
change at all. You can prevent the maximum value from wrapping around by using the
OpColor procedure to set the maximum allowable color to white, in which the
maximum red value is 65,535. Then you can use the addPin mode to produce the
desired yellow result.

Note that the arithmetic transfer modes don’t call the Color Manager when mapping a
requested RGB color to an indexed pixel value. If your application replaces the Color
Manager’s color-matching routines (which are described in the chapter “Color Manager”
in Inside Macintosh: Advanced Color Imaging), you must not use these modes, or you must
maintain the inverse table yourself.

Highlighting
When highlighting, Color QuickDraw replaces the background color with the highlight
color when your application draws or copies images between graphics ports. This has
the visual effect of using a highlighting pen to select the object. For instance, TextEdit
(described in Inside Macintosh: Text) uses highlighting to indicated selected text; if the
highlight color is yellow, TextEdit draws the selected text, then uses InvertRgn to
produce a yellow background for the text.

With basic QuickDraw, you can use InvertRect , InvertRgn , InvertArc ,
InvertRoundRect , or InvertPoly and any image-copying routine that uses the
srcXor source mode to invert objects on the screen.

In general, however, you should use highlighting with Color QuickDraw when selecting
and deselecting objects such as text or graphics. (Highlighting has no effect in basic
QuickDraw.) The line reading “hilited” in Figure 4-15 uses highlighting; the user selected
red as the highlight color, which the application uses as the background for the text.
(This figure shows the effect in grayscale.) The application simply inverts the
background for the line reading “inverted.” Inversion reverses the colors of all pixels

Table 4-2 Arithmetic modes in a 1-bit environment

Initial arithmetic mode Resulting source mode

blend srcCopy

addOver , subOver , hilite srcXor

addPin , addMax srcBic

subPin , adMin , transparent srcOr

CHAPTER 4

Color QuickDraw

4-42 Using Color QuickDraw

within the rectangle’s boundary. On a black-and-white monitor, this changes all black
pixels in the shape to white, and changes all white pixels to black. Although this
procedure operates on color pixels in color graphics ports, the results are predictable
only with direct pixels or 1-bit pixel maps.

Figure 4-15 Difference between highlighting and inverting

The global variable HiliteRGB is read from parameter RAM when the machine starts.
Basic graphics ports use the color stored in the HiliteRGB global variable as the
highlight color. Color graphics ports default to the HiliteRGB global variable, but you
can override this by using the HiliteColor procedure, described on page 4-78.

To turn highlighting on when using Color QuickDraw, you can clear the highlight bit
just before calling InvertRect , InvertRgn , InvertArc , InvertRoundRect ,
InvertPoly , or any drawing or image-copying routine that uses the patXor or
srcXor transfer mode. On a bitmap or a 1-bit pixel map, this works exactly like
inversion and is compatible with all versions of QuickDraw.

The following constant represents the highlight bit:

CONST pHiliteBit = 0; {flag bit in HiliteMode used with BitClr}

You can use the BitClr procedure as shown in Listing 4-6 to clear system software’s
highlight bit (BitClr is described in Inside Macintosh: Operating System Utilities).

Listing 4-6 Setting the highlight bit

PROCEDURE MySetHiliteMode ;

BEGIN

BitClr(Ptr(HiliteMode), pHiliteBit);

END;

CHAPTER 4

Color QuickDraw

Using Color QuickDraw 4-43

Listing 4-7 shows the code that produced the effects in Figure 4-15.

Listing 4-7 Using highlighting for text

PROCEDURE HiliteDemonstration (window: WindowPtr);

CONST

s1 = ' hilited ' ;

s2 = ' inverted ' ;

VAR

f amilyID : I nteger ;

r 1, r2 : Rect ;

i nfo : FontInfo ;

bg: RGBColor;

BEGIN

TextSize(48) ;

GetFontInfo(info) ;

SetRect(r1, 0, 0, StringWidth(s1), info.ascent + info.descent) ;

SetRect(r2, 0, 0, StringWidth(s2), info.ascent + info.descent) ;

OffsetRect(r1, 30, 20) ;

OffsetRect(r2, 30, 100) ;

{fi ll the background wit h a l ight-blue colo r}

bg.red := $A000 ;

bg.green := $FFFF ;

bg.blue := $E000 ;

RGBBackColor(bg) ;

EraseRect(window^.portRect) ;

{dr aw th e s tring to highlight}

MoveTo(r1.left + 2, r1.bottom - info.descent) ;

DrawString(s1) ;

MySetHiliteMode; {clear the highlight bit}

{I nvertRect replaces pixels in background colo r with t he }

{ u ser-specified highlight colo r}

I nvertRect(r1);

{the highlight bit is reset a utomaticall y}

{sh ow i nverte d t ext, for compariso n}

MoveTo(r2.left + 2, r2.bottom - info.descent) ;

DrawString(s2) ;

I nvertRect(r2);

END;

CHAPTER 4

Color QuickDraw

4-44 Color QuickDraw Reference

Color QuickDraw resets the highlight bit after performing each drawing operation, so
your application should always clear the highlight bit immediately before calling a
routine with which you want to use highlighting.

Another way to use highlighting is to add this constant or its value to the mode you
specify to the PenMode, CopyBits , CopyDeepMask , and TextMode routines:

CONST h ilite = 50; {add to source or pattern mode for highlighting}

Highlighting uses the pattern or source image to decide which bits to exchange; only bits
that are on in the pattern or source image can be highlighted in the destination.

A very small selection should probably not use highlighting, because it might be too
hard to see the selection in the highlight color. TextEdit, for instance, uses highlighting to
select and deselect text, but not to highlight the insertion point.

Highlighting is optimized to look for consecutive pixels in either the highlight or
background colors. For example, if the source is an all-black pattern, the highlighting is
especially fast, operating internally on one long word at a time instead of one pixel at a
time. Highlighting a large area without such consecutive pixels (a gray pattern, for
instance) can be slow.

Color QuickDraw Reference

This section describes the data structures, routines, and resources that are specific to
Color QuickDraw.

“Data Structures” shows the Pascal data structures for the PixMap , CGrafPort ,
RGBColor , ColorSpec , ColorTable , MatchRec , PixPat , CQDProcs, and GrafVars
records.

“Color QuickDraw Routines” describes routines for creating and closing color graphics
ports, managing a color graphics pen, changing the background pixel pattern, drawing
with Color QuickDraw colors, determining current colors and best intermediate colors,
calculating color fills, creating and disposing of pixel maps, creating and disposing of
pixel patterns, creating and disposing of color tables, customizing Color QuickDraw
operations, and reporting changes to QuickDraw data structures that applications
typically shouldn’t make. “Application-Defined Routine” describes how to write your
own color search function for customizing the SeedCFill and CalcCMask procedures.

“Resources” describes the pixel pattern resource, the color table resource, and the color
icon resource.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-45

Data Structures
This section shows the Pascal data structures for the PixMap , CGrafPort , RGBColor ,
ColorSpec , ColorTable , MatchRec , PixPat , CQDProcs, and GrafVars records.

Analogous to the bitmap that basic QuickDraw uses to describe a bit image, a pixel map
is used by Color QuickDraw to describe a pixel image. A pixel map, which is a data
structure of type PixMap , contains information about the dimensions and contents of a
pixel image, as well as information about the image’s storage format, depth, resolution,
and color usage.

As a basic graphics port (described in the chapter “Basic QuickDraw”) defines the
black-and-white and basic eight-color drawing environment for basic QuickDraw, a
color graphics port defines the more sophisticated color drawing environment for Color
QuickDraw. A color graphics port is defined by a data structure of type CGrafPort .

You usually specify a color to Color QuickDraw by creating an RGBColor record in
which you assign the red, green, and blue values of the color. For example, when you
want to set the foreground color for drawing, you create an RGBColor record that
defines the foreground color you desire, then you pass that record as a parameter to the
RGBForeColor procedure.

When creating a PixMap record for an indexed device, Color QuickDraw creates a
ColorTable record that defines the best colors available for the pixel image on that
graphics device. The Color Manager also stores a ColorTable record for the currently
available colors in the graphics device’s CLUT.

One of the fields in a ColorTable record requires a value of type cSpecArray , which
is defined as an array of ColorSpec records. Typically, your application needs to create
ColorTable records and ColorSpec records only if it uses the Palette Manager, as
described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging.

You can customize the SeedCFill and CalcCMask procedures by writing your own
color search functions and pointing to them in the matchProc parameters for these
procedures. When SeedCFill or CalcCMask calls your color search function, the
GDRefCon field of the current GDevice record (described in the chapter “Graphics
Devices”) contains a pointer to a MatchRec record. This record contains the RGB value
of the seed pixel or seed color for which your color search function should search.

Your application typically does not create PixPat records. Although you can create
PixPat records in your program code, it is usually easier to create pixel patterns using
the pixel pattern resource, which is described on page 4-103.

You need to use the CQDProcs record only if you customize one or more of
QuickDraw’s low-level drawing routines.

Finally, the GrafVars record contains color information that supplements the
information in the CGrafPort record, of which it is logically a part.

CHAPTER 4

Color QuickDraw

4-46 Color QuickDraw Reference

PixMap

A pixel map, which is defined by a data structure of type PixMap , contains information
about the dimensions and contents of a pixel image, as well as information on the
image’s storage format, depth, resolution, and color usage.

TYPE PixMap =

RECORD

baseAddr: Ptr; {p ixel image}

rowBytes: Integer; {flags, and row width}

bounds: Rect; {boundary rectangle}

pmVersion: Integer; { PixMap record version number}

packType: Integer; {packing format}

packSize: LongInt; {size of data in packed state}

hRes: Fixed; {horizontal resolution}

vRes: Fixed; {vertical resolution}

pixelType: Integer; {format of pixel image}

pixelSize: Integer; {physical bits per pixel}

cmpCount: Integer; {logical components per pixel}

cmpSize: Integer; {logical bits per component}

planeBytes: LongInt; {offset to next plane}

pmTable: CTabHandle; {handle to the ColorTable record }

{ for this image}

pmReserved: LongInt ; {reserved for future expansion}

END;

Field descriptions

baseAdd r For an onscreen pixel image, a pointer to the first byte of the
image. For optimal performance, this should be a multiple of 4.
The pixel image that appears on a screen is normally stored on a
graphics card rather than in main memory.

▲ WARNING

The baseAddr field of the PixMap record for an offscreen graphics
world contains a handle instead of a pointer. You must use the
GetPixBaseAddr function (described in the chapter “Offscreen
Graphics Worlds” in this book) to obtain a pointer to the PixMap
record for an offscreen graphics world. Your application should
never directly access the baseAddr field of the PixMap record for
an offscreen graphics world; instead, your application should
always use GetPixBaseAddr . ▲

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-47

r owBytes The offset in bytes from one row of the image to the next. The value
must be even, less than $4000, and for best performance it should be
a multiple of 4. The high 2 bits of rowBytes are used as flags. If bit
15 = 1, the data structure pointed to is a PixMap record; otherwise it
is a BitMap record.

bounds The boundary rectangle, which links the local coordinate system of
a graphics port to QuickDraw’s global coordinate system and
defines the area of the bit image into which QuickDraw can draw.
By default, the boundary rectangle is the entire main screen. Do
not use the value of this field to determine the size of the screen;
instead use the value of the gdRect field of the GDevice record for
the screen, as described in the chapter “Graphics Devices” in this
book.

pmVersion The version number of Color QuickDraw that created this PixMap
record. The value of pmVersion is normally 0. If pmVersion is 4,
Color QuickDraw treats the PixMap record’s baseAddr field as
32-bit clean. (All other flags are private.) Most applications never
need to set this field.

packType The packing algorithm used to compress image data. Color
QuickDraw currently supports a packType of 0, which means no
packing, and values of 1 to 4 for packing direct pixels.

packSize The size of the packed image in bytes. When the packType field
contains the value 0, this field is always set to 0.

hRes The horizontal resolution of the pixel image in pixels per inch. This
value is of type Fixed ; by default, the value here is $00480000 (for
72 pixels per inch).

vRes The vertical resolution of the pixel image in pixels per inch. This
value is of type Fixed ; by default, the value here is $00480000 (for
72 pixels per inch).

pixelType The storage format for a pixel image. Indexed pixels are indicated
by a value of 0. Direct pixels are specified by a value of RGBDirect ,
or 16. In the PixMap record of the GDevice record (described in the
chapter “Graphics Devices”) for a direct device, this field is set to
the constant RGBDirect when the screen depth is set.

pixelSize Pixel depth; that is, the number of bits used to represent a pixel.
Indexed pixels can have sizes of 1, 2, 4, and 8 bits; direct pixel sizes
are 16 and 32 bits.

cmpCount The number of components used to represent a color for a pixel.
With indexed pixels, each pixel is a single value representing
an index in a color table, and therefore this field contains the
value 1—the index is the single component. With direct pixels,
each pixel contains three components—one integer each for the
intensities of red, green, and blue—so this field contains the value 3.

CHAPTER 4

Color QuickDraw

4-48 Color QuickDraw Reference

cmpSize The size in bits of each component for a pixel. Color QuickDraw
expects that the sizes of all components are the same, and that the
value of the cmpCount field multiplied by the value of the
cmpSize field is less than or equal to the value in the pixelSize
field.
For an indexed pixel value, which has only one component, the
value of the cmpSiz e field is the same as the value of the
pixelSize field—that is, 1, 2, 4, or 8.
For direct pixels there are two additional possibilities:
A 16-bit pixel, which has three components, has a cmpSize value
of 5. This leaves an unused high-order bit, which Color QuickDraw
sets to 0.
A 32-bit pixel, which has three components (red, green, and blue),
has a cmpSize value of 8. This leaves an unused high-order byte,
which Color QuickDraw sets to 0.
If presented with a 32-bit image—for example, in the CopyBits
procedure—Color QuickDraw passes whatever bits are there, and it
does not set the high byte to 0. Generally, therefore, your
application should clear the memory for the image to 0 before
creating a 16-bit or 32-bit image. The Memory Manager functions
NewHandleClear and NewPtrClear , described in Inside
Macintosh: Memory, assist you in allocating prezeroed memory.

planeBytes The offset in bytes from one drawing plane to the next. This field is
set to 0.

pmTable A handle to a ColorTable record (described on page 4-56) for the
colors in this pixel map.

pmReserved Reserved for future expansion. This field must be set to 0 for future
compatibility.

Note that the pixel map for a window’s color graphics port always consists of the pixel
depth, color table, and boundary rectangle of the main screen, even if the window is
created on or moved to an entirely different screen.

CGrafPort

A color graphics port, which is defined by a data structure of type CGrafPort , defines a
complete drawing environment that determines where and how color graphics
operations take place.

All graphics operations are performed in graphics ports. Before a color graphics port can
be used, it must be allocated and initialized with the OpenCPort procedure, which is
described on page 4-64. Normally, you don’t call OpenCPort yourself. In most cases
your application draws into a color window you’ve created with the GetNewCWindow
or NewCWindow function or draws into an offscreen graphics world created with the
NewGWorld function. The two Window Manager functions (described in the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials) and the

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-49

NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this
book) call OpenCPort to create the window’s graphics port.

You can have many graphics ports open at once; each one has its own local coordinate
system, pen pattern, background pattern, pen size and location, font and font style, and
pixel map in which drawing takes place.

Several fields in this record define your application’s drawing area. All drawing in a
graphics port occurs in the intersection of the graphics port’s boundary rectangle and its
port rectangle. Within that intersection, all drawing is cropped to the graphics port’s
visible region and its clipping region.

The Window Manager and Dialog Manager routines GetNewWindow, GetNewDialog ,
Alert , StopAlert , NoteAlert , and CautionAlert (described in Inside Macintosh:
Macintosh Toolbox Essentials) create a color graphics port if color-aware resources (such as
resource types 'wctb' , 'dctb' , or 'actb') are present.

The CGrafPor t record is the same size as the GrafPort record, and most of its fields
are identical. The structure of the CGrafPort record, is as follows:

TYPE CGrafPtr = ^CGrafPort;

CGrafPort =

RECORD

device: Integer; {device ID for font selection}

portPixMap: PixMapHandle; {handle to PixMap record}

portVersion: Integer; {highest 2 bits always set}

grafVars: Handle; {handle to a GrafVars record}

chExtra: Integer; {added width for nonspace characters}

pnLocHFrac: Integer; {pen fraction}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPixPat: PixPatHandle; {background pattern}

rgbFgColor: RGBColor; {requested foreground color}

rgbBkColor: RGBColor; {requested background color}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPixPat: PixPatHandle; {pen pattern}

fillPixPat: PixPatHandle; {fill pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {added width for space characters}

fgColor: LongInt; {actual foreground color}

CHAPTER 4

Color QuickDraw

4-50 Color QuickDraw Reference

bkColor: LongInt; {actual background color}

colrBit: Integer; {plane being drawn}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle ; { polygon being saved, used internally}

grafProcs: CQDProcsPtr ; { low-level drawing routines}

END;

▲ WARNING

You can read the fields of a CGrafPort record directly, but you should
not store values directly into them. Use the QuickDraw routines
described in this book to alter the fields of a graphics port. ▲

Field descriptions

device Device-specific information that’s used by the Font Manager to
achieve the best possible results when drawing text in the graphics
port. There may be physical differences in the same logical font for
different output devices, to ensure the highest-quality printing on
the device being used. For best results on the screen, the default
value of the device field is 0.

portPixMap A handle to a PixMap record (described on page 4-46), which
describes the pixels in this color graphics port.

portVersion In the highest 2 bits, flags set to indicate that this is a CGrafPort
record and, in the remainder of the field, the version number of
Color QuickDraw that created this record.

grafVars A handle to the GrafVars record (described on page 4-62), which
contains additional graphics fields of color information.

chExtra A fixed-point number by which to widen every character, excluding
the space character, in a line of text. This value is used in
proportional spacing. The value in this field is in 4.12 fractional
notation: 4 bits of signed integer are followed by 12 bits of fraction.
This value is multiplied by the value in the txSize field before it is
used. By default, this field contains the value 0.

pnLocHFrac The fractional horizontal pen position used when drawing text. The
value in this field represents the low word of a Fixed number; in
decimal, its initial value is 0.5.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-51

portRect The port rectangle that defines a subset of the pixel map to be used
for drawing. All drawing done by the application occurs inside the
port rectangle. (In a window’s graphics port, the port rectangle is
also called the content region.) The port rectangle uses the local
coordinate system defined by the boundary rectangle in the
portPixMap field of the PixMap record. The upper-left corner
(which for a window is called the window origin) of the port
rectangle usually has a vertical coordinate of 0 and a horizontal
coordinate of 0, although you can use the SetOrigin procedure
(described in the chapter “Basic QuickDraw”) to change the
coordinates of the window origin. The port rectangle usually falls
within the boundary rectangle, but it’s not required to do so.

visRgn The region of the graphics port that’s actually visible on the
screen—that is, the part of the window that’s not covered by other
windows. By default, the visible region is equivalent to the port
rectangle. The visible region has no effect on images that aren’t
displayed on the screen.

clipRgn The graphics port’s clipping region, an arbitrary region that you can
use to limit drawing to any region within the port rectangle. The
default clipping region is set arbitrarily large; using the ClipRect
procedure (described in the chapter “Basic QuickDraw”), you have
full control over its setting. Unlike the visible region, the clipping
region affects the image even if it isn’t displayed on the screen.

bkPixPat A handle to a PixPat record (described on page 4-58) that
describes the background pixel pattern. Procedures such as
ScrollRect (described in the chapter “Basic QuickDraw”) and
EraseRect (described in the chapter “QuickDraw Drawing”) use
this pattern for filling scrolled or erased areas. Your application can
use the BackPixPat procedure (described on page 4-69) to change
the background pixel pattern.

rgbFgColor An RGBColor record (described on page 4-55) that contains the
requested foreground color. By default, the foreground color is
black, but you can use the RGBForeColor procedure (described on
page 4-70) to change the foreground color.

rgbBkColor An RGBColor record that contains the requested background color.
By default, the background color is white, but you can use the
RGBBackColor procedure (described on page 4-72) to change the
background color.

CHAPTER 4

Color QuickDraw

4-52 Color QuickDraw Reference

pnLoc The point where QuickDraw will begin drawing the next line,
shape, or character. It can be anywhere on the coordinate plane;
there are no restrictions on the movement or placement of the pen.
The location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a pixel image. The upper-left
corner of the pen is at the pen location; the graphics pen hangs
below and to the right of this point. The graphics pen is described in
detail in the chapter “QuickDraw Drawing.”

pnSize The vertical height and horizontal width of the graphics pen. The
default size is a 1-by-1 pixel square; the vertical height and
horizontal width can range from 0 by 0 to 32,767 by 32,767. If either
the pen width or the pen height is 0, the pen does not draw. Heights
or widths of less than 0 are undefined. You can use the PenSize
procedure (described in the chapter “QuickDraw Drawing”) to
change the value in this field.

pnMode The pattern mode—that is, a Boolean operation that determines the
how Color QuickDraw transfers the pen pattern to the pixel map
during drawing operations. When the graphics pen draws into
a pixel map, Color QuickDraw first determines what pixels in the
pixel image are affected and finds their corresponding pixels in the
pen pattern. Color QuickDraw then does a pixel-by-pixel
comparison based on the pattern mode, which specifies one of eight
Boolean transfer operations to perform. Color QuickDraw stores the
resulting pixel in its proper place in the image. Pattern modes for a
color graphics port are described in “Boolean Transfer Modes With
Color Pixels” beginning on page 4-32.

pnPixPat A handle to a PixPat record (described on page 4-58) that
describes a pixel pattern used like the ink in the graphics pen. Color
QuickDraw uses the pixel pattern defined in the PixPat record
when you use the Line and LineTo procedures to draw lines with
the pen, framing procedures such as FrameRect to draw shape
outlines with the pen, and painting procedures such as PaintRect
to paint shapes with the pen.

fillPixPat A handle to a PixPat record (described on page 4-58) that
describes the pixel pattern that’s used when you call a procedure
such as FillRect to fill an area. Notice that this is not in the same
location as the fillPat field in a GrafPort record.

pnVis The graphics pen’s visibility—that is, whether it draws on the
screen. The graphics pen is described in detail in the chapter
“QuickDraw Drawing.”

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-53

txFont A font number that identifies the font to be used in the graphics
port. The font number 0 represents the system font. (A font is
defined as a collection of images that represent the individual
characters of the font.) Fonts are described in detail in Inside
Macintosh: Text.

txFace The character style of the text, with values from the set defined
by the Style data type, which includes such styles as bold, italic,
and shaded. You can apply stylistic variations either alone or in
combination. Character styles are described in detail in Inside
Macintosh: Text.

txMode One of three Boolean source modes that determines the way
characters are placed in the bit image. This mode functions much
like a pattern mode specified in the pnMode field: when drawing a
character, Color QuickDraw determines which pixels in the image
are affected, does a pixel-by-pixel comparison based on the mode,
and stores the resulting pixels in the image. Only three source
modes—srcOr , srcXor , and srcBic —should be used for
drawing text. See the chapter “QuickDraw Text” in Inside Macintosh:
Text for more information about QuickDraw’s text-handling
capabilities.

txSize The text size in pixels. The Font Manager uses this information to
provide the bitmaps for text drawing. (The Font Manager is
described in detail in the chapter “Font Manager” in Inside
Macintosh: Text.) The value in this field can be represented by

point size × device resolution / 72 dpi

where point is a typographical term meaning approximately
1/72 inch.

spExtra A fixed-point number equal to the average number of pixels by
which each space character should be widened to fill out the line.
The spExtra field is useful when a line of characters is to be
aligned with both the left and the right margin (sometimes called
full justification).

fgColor The pixel value of the foreground color supplied by the Color
Manager. This is the best available approximation in the CLUT to
the color specified in the rgbFgColor field.

bkColor The pixel value of the background color supplied by the Color
Manager. This is the best available approximation in the CLUT to
the color specified in the rgbBkColor field.

colrBit Reserved.
patStretch A value used during output to a printer to expand patterns if

necessary. Your application should not change this value.

CHAPTER 4

Color QuickDraw

4-54 Color QuickDraw Reference

picSave The state of the picture definition. If no picture is open, this field
contains NIL ; otherwise it contains a handle to information related
to the picture definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the picture definition, and later restore it to the saved value
to resume defining the picture. Pictures are described in the chapter
“Pictures” in this book.

rgnSave The state of the region definition. If no region is open, this field
contains NIL ; otherwise it contains a handle to information related
to the region definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the region definition, and later restore it to the saved value
to resume defining the region.

polySave The state of the polygon definition. If no polygon is open, this field
contains NIL ; otherwise it contains a handle to information related
to the polygon definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the polygon definition, and later restore it to the saved value
to resume defining the polygon.

grafProc s An optional pointer to a CQDProcs record (described on page 4-60)
that your application can store into if you want to customize Color
QuickDraw drawing routines or use Color QuickDraw in other
advanced, highly specialized ways.

All Color QuickDraw operations refer to a graphics port by a pointer defined by the data
type CGrafPtr . (For historical reasons, a graphics port is one of the few objects in the
Macintosh system software that’s referred to by a pointer rather than a handle.) All
Window Manager routines that accept a window pointer also accept a pointer to a color
graphics port.

Your application should never need to directly change the fields of a CGrafPort record.
If you find it absolutely necessary for your application to so, immediately use the
PortChanged procedure to notify Color QuickDraw that your application has changed
the CGrafPort record. The PortChanged procedure is described on page 4-99.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-55

RGBColor

You usually specify a color to Color QuickDraw by creating an RGBColor record in
which you assign the red, green, and blue values of the color. For example, when you
want to set the foreground color for drawing, you create an RGBColor record that
defines the foreground color you desire; then you pass that record as a parameter to the
RGBForeColor procedure.

In an RGBColor record, three 16-bit unsigned integers give the intensity values for the
three additive primary colors.

TYPE RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

Field descriptions

red An unsigned integer specifying the red value of the color.
green An unsigned integer specifying the green value of the color.
blue An unsigned integer specifying the blue value of the color.

ColorSpec

When creating a PixMap record (described on page 4-46) for an indexed device, Color
QuickDraw creates a ColorTable record that defines the best colors available for the
pixel image on that graphics device. The Color Manager also stores a ColorTable
record for the currently available colors in the graphics device’s CLUT.

One of the fields in a ColorTable record requires a value of type cSpecArray , which
is defined as an array of ColorSpec records. Typically, your application never needs to
create ColorTable records or ColorSpec records. For completeness, the data structure
of type ColorSpec is shown here, and the data structure of type ColorTable is shown
next.

TYPE

cSpecArray: ARRA Y[0..0] Of ColorSpec;

ColorSpec =

RECORD

value: Integer; {index or other value}

rgb: RGBColor; {true color}

END;

CHAPTER 4

Color QuickDraw

4-56 Color QuickDraw Reference

Field descriptions

value The pixel value assigned by Color QuickDraw for the color
specified in the rgb field of this record. Color QuickDraw assigns a
pixel value based on the capabilities of the user’s screen. For
indexed devices, the pixel value is an index number assigned by the
Color Manager to the closest color available on the indexed device;
for direct devices, this value expresses the best available red, green,
and blue values for the color on the direct device.

rgb An RGBColor record (described in the previous section) that fully
specifies the color whose approximation Color QuickDraw specifies
in the value field.

ColorTable

When creating a PixMap record (described on page 4-46) for a particular graphics
device, Color QuickDraw creates a ColorTable record that defines the best colors
available for the pixel image on that particular graphics device. The Color Manager also
creates a ColorTable record of all available colors for use by the CLUT on indexed
devices.

Typically, your application needs to create ColorTable records only if it uses the
Palette Manager, as described in the chapter “Palette Manager” in Inside Macintosh:
Advanced Color Imaging. The data structure of type ColorTable is shown here.

TYPE CTabHandle = ^CTabPtr;

CTabPtr = ^ColorTable;

ColorTable =

RECORD

ctSeed: LongInt; {unique identifier from table}

ctFlags: Integer; {flags describing the value in the }

{ ctTable field; clear for a pixel map}

ctSize: Integer; {number of entries in the next field }

{ minus 1}

ctTable: cSpecArra y; { an array of ColorSpec records}

END;

Field descriptions

ctSeed Identifies a particular instance of a color table. The Color Manager
uses the ctSeed value to compare an indexed device’s color table
with its associated inverse table (a table it uses for fast color
lookup). When the color table for a graphics device has been
changed, the Color Manager needs to rebuild the inverse table. See
the chapter “Color Manager” in Inside Macintosh: Advanced Color
Imaging for more information on inverse tables.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-57

ctFlags Flags that distinguish pixel map color tables from color tables in
GDevice records (which are described in the chapter “Graphics
Devices” in this book).

ctSiz e One less than the number of entries in the table.
ctTable An array of ColorSpec entries, each containing a pixel value and a

color specified by an RGBColor record, as described in the previous
section.

Your application should never need to directly change the fields of a ColorTable
record. If you find it absolutely necessary for your application to so, immediately use the
CTabChanged procedure to notify Color QuickDraw that your application has changed
the ColorTable record. The CTabChanged procedure is described on page 4-97.

MatchRec

As described in “Application-Defined Routine” on page 4-101, you can customize the
SeedCFill and CalcCMask procedures by writing your own color search functions
and pointing to them in the matchProc parameters for these procedures.

When SeedCFill or CalcCMask calls your color search function, the GDRefCon field
of the current GDevice record (described in the chapter “Graphics Devices”) contains a
pointer to a MatchRec record. This record contains the RGB value of the seed pixel or
seed color for which your color search function should search. This record has the
following structure:

MatchRec =

RECORD

red: Integer; {red component of seed}

green: Integer; {green component of seed}

blue: Integer; {blue component of seed}

matchData: LongInt; { value in matchData parameter of }

{ SeedCFill or Ca lcC Mask}

END;

Field descriptions

red Red value of the seed.
green Green value of the seed.
blue Blue value of the seed.
matchData The value passed in the matchData parameter of the SeedCFill

or CalcCMask procedure.

CHAPTER 4

Color QuickDraw

4-58 Color QuickDraw Reference

PixPat

Your application typically does not create PixPat records. Although you can create such
records in your program code, it is usually easier to create pixel patterns using the pixel
pattern resource, which is described on page 4-103.

A PixPat record is defined as follows:

TYPE PixPatHandle = ^PixPatPtr;

PixPatPtr = ^PixPat;

PixPat =

RECORD

patType : Integer; {pattern type}

patMap: PixMapHandle; {pattern characteristics}

patData: Handle; {pixel image defining pattern}

patXData: Handle; {expanded pixel image}

patXValid: Integer; {flags for expanded pattern data}

patXMap: Handle; {handle to expanded pattern data}

pat1Data: Pattern; {a bit pattern for a GrafPor t }

{ record }

END;

Field descriptions

patType The pattern’s type. The value 0 specifies a basic QuickDraw bit
pattern, the value 1 specifies a full-color pixel pattern, and the value
2 specifies an RGB pattern. These pattern types are described in
greater detail in the rest of this section.

patMap A handle to a PixMap record (described on page 4-46) that
describes the pattern’s pixel image. The PixMap record can contain
indexed or direct pixels.

patData A handle to the pattern’s pixel image.
patXData A handle to an expanded pixel image used internally by Color

QuickDraw.
patXValid A flag that, when set to –1, invalidates the expanded data.
patXMap Reserved for use by Color QuickDraw.
pat1Data A bit pattern (described in the chapter “QuickDraw Drawing”) to

be used when this pattern is drawn into a GrafPort record
(described in the chapter “Basic QuickDraw”). The NewPixPat
function (described on page 4-88) sets this field to 50 percent gray.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-59

When used for a color graphics port, the basic QuickDraw procedures PenPat and
BackPat (described in the chapter “Basic QuickDraw”) store pixel patterns in,
respectively, the pnPixPat and bkPixPat fields of the CGrafPort record and set the
patType field of the PixPat field to 0 to indicate that the PixPat record contains a bit
pattern. Such patterns are limited to 8-by-8 pixel dimensions and, instead of being
drawn in black and white, are always drawn using the colors specified in the
CGrafPort record’s rgbFgColor and rgbBkColor fields, respectively.

In a full-color pixel pattern, the patType field contains the value 1, and the pattern’s
dimensions, depth, resolution, set of colors, and other characteristics are defined by a
PixMap record, referenced by the handle in the patMap field of the PixPat record.
Full-color pixel patterns contain color tables that describe the colors they use. Generally
such a color table contains one entry for each color used in the pattern. For instance, if
your pattern has five colors, you would probably create a 4 bits per pixel pattern that
uses pixel values 0–4, and a color table with five entries, numbered 0–4, that contain the
RGB specifications for those pixel values.

However, if you don’t specify a color table for a pixel value, Color QuickDraw assigns
a color to that pixel value. The largest unassigned pixel value becomes the foreground
color; the smallest unassigned pixel value is assigned the background color. Remaining
unassigned pixel values are given colors that are evenly distributed between the
foreground and background.

For instance, in the color table mentioned above, pixel values 5–15 are unused. Assume
that the foreground color is black and the background color is white. Pixel value 15 is
assigned the foreground color, black; pixel value 5 is assigned the background color,
white; the nine pixel values between them are assigned evenly distributed shades of
gray. If the PixMap record’s color table is set to NIL , all pixel values are determined by
blending the foreground and background colors.

Full-color pixel patterns are not limited to a fixed size: their height and width can be any
power of 2, as specified by the height and width of the boundary rectangle for the
PixMap record specified in the patMap field. A pattern 8 bits wide, which is the size of a
bit pattern, has a row width of just 1 byte, contrary to the usual rule that the rowBytes
field must be even. Read this pattern type into memory using the GetPixPat function
(described on page 4-88), and set it using the PenPixPat or BackPixPat
procedure (described on page 4-67 and page 4-69, respectively).

The pixel map specified in the patMap field of the PixPat record defines the pattern’s
characteristics. The baseAddr field of the PixMap record for that pixel map is ignored.
For a full-color pixel pattern, the actual pixel image defining the pattern is stored in the
handle in the patData field of the PixPat record. The pattern’s pixel depth need not
match that of the pixel map into which it’s transferred; the depth is adjusted
automatically when the pattern is drawn. Color QuickDraw maintains a private copy of
the pattern’s pixel image, expanded to the current screen depth and aligned to the
current graphics port, in the patXData field of the PixPat record.

CHAPTER 4

Color QuickDraw

4-60 Color QuickDraw Reference

In an RGB pixel pattern, the patType field contains the value 2. Using the MakeRGBPat
procedure (described on page 4-90), your application can specify the exact color it wants
to use. Color QuickDraw selects a pattern to approximate that color. In this way, your
application can effectively increase the color resolution of the screen. RGB pixel patterns
are particularly useful for dithering: mixing existing colors together to create the illusion
of a third color that’s unavailable on an indexed device. The MakeRGBPat procedure
aids in this process by constructing a dithered pattern to approximate a given absolute
color. An RGB pixel pattern can display 125 different patterns on a 4-bit screen, or 2197
different patterns on an 8-bit screen.

An RGB pixel pattern has an 8-by-8 pixel pattern that is 2 bits deep. For an RGB pixel
pattern, the RGBColor record that you specify to the MakeRGBPat procedure defines
the image; there is no image data.

Your application should never need to directly change the fields of a PixPat record.
If you find it absolutely necessary for your application to so, immediately use the
PixPatChanged procedure to notify Color QuickDraw that your application has
changed the PixPat record. The PixPatChanged procedure is described on page 4-98.

CQDProcs

You need to use the CQDProcs record only if you customize one or more of
QuickDraw’s standard low-level drawing routines, which are described in the
chapter “QuickDraw Drawing.” You can use the SetStdCProcs procedure, described
on page 4-96, to create a CQDProcs record.

CQDProcsPtr = ^CQDProcs

CQDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr ; {picture saving}

opcodeProc: Ptr; {reserved for future use}

newProc1: Ptr; {reserved for future use}

newProc2: Ptr; {reserved for future use}

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-61

newProc3: Ptr; {reserved for future use}

newProc4: Ptr; {reserved for future use}

newProc5: Ptr; {reserved for future use}

newProc6: Ptr; {reserved for future use}

END;

Field descriptions

textProc A pointer to the low-level routine that draws text. The standard
QuickDraw routine is the StdText procedure.

lineProc A pointer to the low-level routine that draws lines. The standard
QuickDraw routine is the StdLine procedure.

rectProc A pointer to the low-level routine that draws rectangles. The
standard QuickDraw routine is the StdRect procedure.

rRectProc A pointer to the low-level routine that draws rounded rectangles.
The standard QuickDraw routine is the StdRRect procedure.

ovalProc A pointer to the low-level routine that draws ovals. The standard
QuickDraw routine is the StdOval procedure.

arcProc A pointer to the low-level routine that draws arcs. The standard
QuickDraw routine is the StdArc procedure.

polyProc A pointer to the low-level routine that draws polygons. The
standard QuickDraw routine is the StdPoly procedure.

rgnProc A pointer to the low-level routine that draws regions. The standard
QuickDraw routine is the StdRgn procedure.

bitsProc A pointer to the low-level routine that copies bitmaps. The standard
QuickDraw routine is the StdBits procedure.

commentProc A pointer to the low-level routine for processing a picture comment.
The standard QuickDraw routine is the StdComment procedure.

txMeasProc A pointer to the low-level routine for measuring text width. The
standard QuickDraw routine is the StdTxMeas function.

getPicProc A pointer to the low-level routine for retrieving information from
the definition of a picture. The standard QuickDraw routine is the
StdGetPic procedure.

putPicProc A pointer to the low-level routine for saving information as the
definition of a picture. The standard QuickDraw routine is the
StdPutPic procedure.

opcodeProc Reserved for future use.
newProc1 Reserved for future use.
newProc2 Reserved for future use.
newProc3 Reserved for future use.
newProc4 Reserved for future use.
newProc5 Reserved for future use.
newProc6 Reserved for future use.

CHAPTER 4

Color QuickDraw

4-62 Color QuickDraw Reference

GrafVars

The GrafVars record contains color information in addition to that in the CGrafPort
record, of which it is logically a part; the information is used by Color QuickDraw and
the Palette Manager.

TYPE GrafVars =

RECORD

rgbOpColor: RGBColor; {color for addPin, subPin, and }

{ blend}

rgbHiliteColor : RGBColor; {color for hi ghli ghting}

pmFgColor: Handle; {palette handle for foreground }

{ color}

pmFgIndex: Integer; {index value for foreground}

pmBkColor: Handle; {palette handle for background }

{ color}

pmBkIndex: Integer; {index value for background}

pmFlags: Integer; {flags for Palette Manager}

END;

Field descriptions

rgbOpColor The color for the arithmetic transfer operations addPin , subPin ,
and blend .

rgbHiliteColor
The highlight color for this graphics port.

pmFgColo r A handle to the palette that contains the foreground color.
pmFgInde x The index value into the palette for the foreground color.
pmBkColo r A handle to the palette that contains the background color.
pmBkInde x The index value into the palette for the background color.
pmFlag s Flags private to the Palette Manager.

See the chapter “Palette Manager” in Inside Macintosh: Advanced Color Imaging for further
information on how the Palette Manager handles colors in a color graphics port.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-63

Color QuickDraw Routines
This section describes Color QuickDraw’s routines for creating and closing color
graphics ports, managing a color graphics pen, changing the background pixel pattern,
drawing with Color QuickDraw colors, determining current colors and best intermediate
colors, calculating color fills, creating and disposing of pixel maps, creating and
disposing of pixel patterns, creating and disposing of color tables, customizing Color
QuickDraw operations, and reporting to QuickDraw that your application has directly
changed those data structures that applications generally shouldn’t manipulate.

To initialize Color QuickDraw, use the InitGraf procedure, described in the chapter
“Basic QuickDraw.” Besides initializing basic QuickDraw, this procedure initializes
Color QuickDraw on computers that support it.

In addition to InitGraf , all other basic QuickDraw routines work with Color
QuickDraw. For example, you can use the GetPort procedure to save the current color
graphics port, and you can use the CopyBits procedure to copy an image between two
different color graphics ports. See the chapters “Basic QuickDraw” and “QuickDraw
Drawing” for descriptions of additional routines that you can use with Color QuickDraw.

Opening and Closing Color Graphics Ports

All graphics operations are performed in graphics ports. Before a color graphics port can
be used, it must be allocated with the OpenCPort procedure and initialized with the
InitCPort procedure. Normally, your application does not call these procedures
directly. Instead, your application creates a graphics port by using the GetNewCWindow
or NewCWindow function (described in the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials) or the NewGWorld function (described in the
chapter “Offscreen Graphics Worlds” in this book). These functions automatically call
OpenCPort , which in turn calls InitCPort .

To dispose of a color graphics port when you are finished using a color window, you
normally use the DisposeWindow procedure (if you let the Window Manager allocate
memory for the window) or the CloseWindow procedure (if you allocated memory for
the window). You use the DisposeGWorld procedure when you are finished with a
color graphics port for an offscreen graphics world. These routines automatically call the
CloseCPort procedure. If you use the CloseWindow procedure, you also dispose of
the window record containing the graphics port by calling the Memory Manager
procedure DisposePtr .

CHAPTER 4

Color QuickDraw

4-64 Color QuickDraw Reference

OpenCPort

The OpenCPort procedure allocates space for and initializes a color graphics port. The
Window Manager calls OpenCPort for every color window that it creates, and the
NewGWorld procedure calls OpenCPort for every offscreen graphics world that it
creates on a Color QuickDraw computer.

PROCEDURE OpenCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The OpenCPort procedure is analogous to OpenPort (described in the chapter “Basic
QuickDraw”), except that OpenCPort opens a CGrafPort record instead of a
GrafPort record. The OpenCPort procedure is called by the Window Manager’s
NewCWindow and GetNewCWindow procedures, as well as by the Dialog Manager when
the appropriate color resources are present. The OpenCPort procedure allocates storage
for all the structures in the CGrafPort record, and then calls InitCPort to initialize
them. The InitCPort procedure does not allocate a color table for the PixMa p record
for the color graphics port; instead, I nitCPor t copies the handle to the current device’s
CLUT into the PixMap record. The initial values for the CGrafPort record are shown in
Table 4-3.

Table 4-3 Initia l values in the CGrafPort record

Field Data type Initial setting

device Integer 0 (the screen)

portPixMap PixMapHandle Handle to the port’s PixMap record

portVersion Integer $C000

grafVars Handle Handle to a GrafVars record where black is assigned to the
rgbOpColor field, the default highlight color is assigned to
the rgbHiliteColor field, and all other fields are set to 0

chExtra Integer 0

pnLocHFrac Integer The value in this field represents the low word of a Fixed
number; in decimal, its initial value is 0.5.

portRect Rect screenBits.bounds (boundary for entire main screen)

visRgn RgnHandle Handle to a rectangular region coincident with
screenBits.bounds

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-65

The additional structures allocated are the portPixMap , pnPixPat , fillPixPat ,
bkPixPat , and grafVars handles, as well as the fields of the GrafVars record.

SPECIAL CONSIDERATIONS

The OpenCPort procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

clipRgn RgnHandle Handle to the rectangular region (–32768,–32768,32767,32767)

bkPixPat Pattern White

rgbFgColor RGBColor Black

rgbBkColor RGBColor White

pnLoc Point (0,0)

pnSize Point (1,1)

pnMode Integer patCopy

pnPixPat PixPatHandle Black

fillPixPat PixPatHandle Black

pnVis Integer 0 (visible)

txFont Integer 0 (system font)

txFace Style Plain

txMode Integer srcOr

txSize Integer 0 (system font size)

spExtra Fixed 0

fgColor LongInt blackColor

bkColor LongInt whiteColor

colrBit Integer 0

patStretch Integer 0

picSave Handle NIL

rgnSave Handle NIL

polySave Handle NIL

grafProcs CQDProcsPtr NIL

Table 4-3 Initia l values in the CGrafPort record (continued)

Field Data type Initial setting

CHAPTER 4

Color QuickDraw

4-66 Color QuickDraw Reference

InitCPort

The OpenCPort procedure uses the InitCPort procedure to initialize a color graphics
port.

PROCEDURE InitCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The InitCPort procedure is analogous to InitPort (described in the chapter “Basic
QuickDraw”), except InitCPort initializes a CGrafPort record instead of a
GrafPort record. The InitCPort procedure does not allocate any storage; it merely
initializes all the fields in the CGrafPort and GrafVars records to the default values
shown in Table 4-3 on page 4-64.

The PixMap record for the new color graphics port is set to be the same as the current
device’s PixMap record. This allows you to create an offscreen graphics world that is
identical to the screen’s port for drawing offscreen. If you want to use a different set of
colors for offscreen drawing, you should create a new GDevice record and set it as the
current GDevice record before opening the CGrafPort record.

Remember that InitCPort does not copy the data from the current device’s CLUT
to the color table for the graphics port’s PixMa p record. It simply replaces whatever is in
the PixMap record’s pmTable field with a copy of the handle to the current device’s
CLUT.

If you try to initialize a GrafPort record using InitCPort , it simply returns without
doing anything.

SPECIAL CONSIDERATIONS

The InitCPort procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The chapter “Graphics Devices” in this book describes GDevice records; the chapter
“Offscreen Graphics Worlds” in this book describes how to use offscreen graphics
worlds.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-67

CloseCPort

The CloseCPort procedure closes a color graphics port. The Window Manager calls
this procedure when you close or dispose of a window, and the Dispose GWorld
procedure calls it when you dispose of an offscreen graphics world containing a color
graphics port.

PROCEDURE CloseCPort (port: CGrafPtr);

port A pointer to a CGrafPort record.

DESCRIPTION

The CloseCPort procedure releases the memory allocated to the CGrafPort record. It
disposes of the visRgn , clipRgn , bkPixPat , pnPixPat , fillPixPat , and
grafVars handles. It also disposes of the graphics port’s pixel map, but it doesn’t
dispose of the pixel map’s color table (which is really owned by the GDevice record). If
you have placed your own color table into the pixel map, either dispose of it before
calling CloseCPor t or store another reference.

SPECIAL CONSIDERATIONS

The CloseCPort procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

Managing a Color Graphics Pen

You can use the PenPixPat procedure to give the graphics pen a pixel pattern so that it
draws with a colored, patterned “ink.” The QuickDraw painting procedures (such as
PaintRect) also use this pixel pattern when drawing a shape.

PenPixPat

To set the pixel pattern to be used by the graphics pen in the current color graphics port,
use the PenPixPat procedure. To assign a pixel pattern as the background pattern, you
can use the BackPixPat procedure; this allows the ScrollRect procedure and the
shape-erasing procedures (for example, EraseRect) to fill the background with a
colored, patterned “ink.”

PROCEDURE PenPixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to use as the pen pattern.

CHAPTER 4

Color QuickDraw

4-68 Color QuickDraw Reference

DESCRIPTION

The PenPixPat procedure sets the graphics pen to use the pixel pattern that you specify
in the ppat parameter. The PenPixPat procedure is similar to the basic QuickDraw
procedure PenPat , except that you pass PenPixPat a handle to a multicolored pixel
pattern rather than a bit pattern.

The PenPixPat procedure stores the handle to the pixel pattern in the pnPixPat field
of the CGrafPort record. Because the handle to the pixel pattern is stored in the
CGrafPort record, you should not dispose of this handle. QuickDraw removes all
references to your pattern from an existing graphics port when you dispose of it.

If you use PenPixPat to set a pixel pattern in a basic graphics port, the data in the
pat1Data field of the PixPat record is placed into the pnPat field of the GrafPort
record.

SPECIAL CONSIDERATIONS

The PenPixPat procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The PixPat record is described on page 4-58. To define your own pixel pattern, you can
create a pixel pattern resource, which is described on page 4-103, or you can use the
NewPixPat function, which is described on page 4-88.

The GrafPort record is described in the chapter “Basic QuickDraw.” To set the graphics
pen to use a bit pattern, you can also use the PenPat procedure, which is described in
the chapter “QuickDraw Drawing” in this book. The PenPat procedure creates a
handle, of type PixPatHandle , for the bit pattern and stores this handle in the
pnPixPat field of the CGrafPort record.

Changing the Background Pixel Pattern

Each graphics port has a background pattern that’s used when an area is erased (such as
by using the EraseRect procedure, described in the chapter “QuickDraw Drawing”)
and when pixels are scrolled out of an area (such as by using the ScrollRect
procedure, described in the chapter “Basic QuickDraw”). The background pattern is
stored in the bkPixPat field of every CGrafPort record. You can use the BackPixPat
procedure to change the pixel pattern used as the background color by the current color
graphics port.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-69

BackPixPat

To assign a pixel pattern as the background pattern, you can use the BackPixPat
procedure; this allows the ScrollRect procedure and the shape-erasing procedures
(for example, EraseRect) to fill the background with a colored, patterned “ink.”

PROCEDURE BackPixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to use as the background pattern.

DESCRIPTION

The BackPixPat procedure sets the background pattern for the current graphics device
to a pixel pattern. The BackPixPa t procedure is similar to the basic QuickDraw
procedure BackPat , except that you pass BackPixPat a handle to a multicolored pixel
pattern instead of a bit pattern.

The BackPixPat procedure stores the handle to the pixel pattern in the bkPixPat field
of the CGrafPort record. Because the handle to the pixel pattern is stored in the
CGrafPort record, you should not dispose of this handle. QuickDraw removes all
references to your pattern from an existing graphics port when you dispose of it.

If you use BackPixPat to set a background pixel pattern in a basic graphics port, the
data in the pat1Data field of the PixPat record is placed into the bkPat field of the
GrafPort record.

SPECIAL CONSIDERATIONS

The BackPixPat procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The PixPat record is described on page 4-58. To define your own pixel pattern, you can
create a pixel pattern resource, which is described on page 4-103, or you can use the
NewPixPat function, which is described on page 4-88.

The GrafPort record is described in the chapter “Basic QuickDraw.” To set the
background pattern to a bit pattern, you can also use the BackPat procedure, which is
described in the chapter “QuickDraw Drawing” in this book. The BackPat procedure
creates a handle, of type PixPatHandle , for the bit pattern and stores this handle in the
bkPixPat field of the CGrafPort record. As in basic graphics ports, Color QuickDraw
draws patterns in color graphics ports at the time of drawing, not at the time you use
BackPat to set the pattern.

CHAPTER 4

Color QuickDraw

4-70 Color QuickDraw Reference

Drawing With Color QuickDraw Colors

You can set the foreground and background colors using either Color QuickDraw or
Palette Manager routines. If your application uses the Palette Manager, it should set the
foreground and background colors with the PmForeColor and PmBackColor routines,
as described in the chapter “Palette Manager” in Inside Macintosh: Advanced Color
Imaging. Otherwise, it can use the RGBForeColor procedure to set the foreground color,
and it can use the RGBBackColor procedure to set the background color. Both of these
Color QuickDraw procedures also operate for basic graphics ports created in System 7.
(To set the foreground and background colors for basic graphics ports on older versions
of system software, use the ForeColor and BackColor procedures, described in the
chapter “QuickDraw Drawing” in this book.)

To give the graphics pen a pixel pattern so that it draws with a colored, patterned “ink,”
use the PenPixPat procedure. To assign a pixel pattern as the background pattern, you
can use the BackPixPat procedure; this allows the ScrollRect procedure and the
shape-erasing procedures (for example, EraseRect) to fill the background with the
pixel pattern.

To set the color of an individual pixel, use the SetCPixel procedure.

The FillCRect , FillCRoundRect , FillCOval , Fill CArc , FillCPoly , and
FillCRgn procedures allow you to fill shapes with multicolored patterns.

To change the highlight color for the current color graphics port, use the HiliteColor
procedure. To set values used by arithmetic transfer modes, use the OpColor procedure.

As described in “Copying Pixels Between Color Graphics Ports” beginning on page 4-26,
you can also use the basic QuickDraw procedures CopyBits , CopyMask , and
CopyDeepMask to transfer images between color graphics ports. See the chapter
“QuickDraw Drawing” in this book for complete descriptions of these procedures.

RGBForeColor

To change the color of the “ink” used for framing and painting, you can use the
RGBForeColor procedure.

PROCEDURE RGBForeColor (colo r: RGBColor);

color An RGBColor record.

DESCRIPTION

The RGBForeColor procedure lets you set the foreground color to any color available
on the current graphics device.

If the current port is defined by a CGrafPort record, Color QuickDraw supplies its
rgbFgColor field with the RGB value that you specify in the color parameter, and
places the pixel value most closely matching that color in the fgColor field. For

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-71

indexed devices, the pixel value is an index to the current device’s CLUT; for direct
devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort record, basic QuickDraw supplies its
fgColor field with a color value determined by taking the high bit of each of the red,
green, and blue components of the color that you supply in the color parameter. Basic
QuickDraw uses that 3-bit number to select a color from its eight-color system. Table 4-4
lists the default set of eight colors represented by the global variable QDColors
(adjusted to match the colors produced on the ImageWriter II printer.)

SPECIAL CONSIDERATIONS

Color QuickDraw ignores the foreground color (and the background color) when your
application draws with a pixel pattern. You can draw with a pixel pattern by using the
PenPixPat procedure to assign a pixel pattern to the foreground pattern used by the
graphics pen; by using the BackPixPat procedure to assign a pixel pattern as the
background pattern for the current color graphics port; and by using the FillCRect ,
FillCOval , FillCRoundRect , FillCArc , FillCRgn , and FillCPoly procedures to
fill shapes with a pixel pattern.

The RGBForeColor procedure is available for basic QuickDraw only in System 7.

The RGBForeColor procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

If you want to use one of the eight predefined colors of basic QuickDraw, you can also
use the ForeColor procedure. The ForeColor procedure and the eight-color system of
basic QuickDraw are described in the chapter “QuickDraw Drawing” in this book.

To determine the current foreground color, use the GetForeColor procedure, which is
described on page 4-79.

Table 4-4 The colors defined by the global variable QDColors

Value Color Red Green Blue

0 Black $0000 $0000 $0000

1 Yellow $FC00 $F37D $052F

2 Magenta $F2D7 $0856 $84EC

3 Red $DD6B $08C2 $06A2

4 Cyan $0241 $AB54 $EAFF

5 Green $0000 $64AF $11B0

6 Blue $0000 $0000 $D400

7 White $FFFF $FFFF $FFFF

CHAPTER 4

Color QuickDraw

4-72 Color QuickDraw Reference

RGBBackColor

For the current graphics port, you can use the RGBBackColor procedure to change the
background color (that is, the color of the pixels in the pixel map or bitmap where no
drawing has taken place).

PROCEDURE RGBBackColor (colo r: RGBColor);

color An RGBColor record.

DESCRIPTION

The RGBBackColor procedure lets you set the background color to any color available
on the current graphics device.

If the current port is defined by a CGrafPort record, Color QuickDraw supplies its
rgbBkColor field with the RGB value that you specify in the color parameter, and
places the pixel value most closely matching that color in the bkColor field. For
indexed devices, the pixel value is an index to the current device’s CLUT; for direct
devices, the value is the 16-bit or 32-bit equivalent to the RGB value.

If the current port is defined by a GrafPort record, basic QuickDraw supplies its
fgColor field with a color value determined by taking the high bit of each of the red,
green, and blue components of the color that you supply in the color parameter. Basic
QuickDraw uses that 3-bit number to select a color from its eight-color system. Table 4-4
on page 4-71 lists the default colors.

SPECIAL CONSIDERATIONS

Because a pixel pattern already contains color, Color QuickDraw ignores the background
color (and the foreground color) when your application draws with a pixel pattern. You
can draw with a pixel pattern by using the PenPixPat procedure to assign a pixel
pattern to the foreground pattern used by the graphics pen; by using the BackPixPat
procedure to assign a pixel pattern as the background pattern for the current color
graphics port; and by using the FillCRect , FillCOval , FillCRoundRect ,
FillCArc , FillCRgn , and FillCPoly procedures to fill shapes with a pixel pattern.

This procedure is available for basic QuickDraw only in System 7.

The RGBBackColor procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-73

SEE ALSO

If you want to use one of the eight predefined colors of basic QuickDraw, you can also
use the BackColor procedure. The BackColor procedure and the eight-color system of
basic QuickDraw are described in the chapter “QuickDraw Drawing” in this book.

To determine the current background color, use the GetBackColor procedure, which is
described on page 4-80.

SetCPixel

To set the color of an individual pixel, use the SetCPixel procedure.

PROCEDURE SetCPixel (h,v: Integer; cPix: RGBColor);

h The horizontal coordinate of the point at the upper-left corner of the pixel.

v The vertical coordinate of the point at the upper-left corner of the pixel.

cPix An RGBColor record.

DESCRIPTION

For the pixel at the location you specify in the h and v parameters, the SetCPixel
procedure sets a pixel value that most closely matches the RGB color that you specify in
the cPix parameter. On an indexed color system, the SetCPixel procedure sets the
pixel value to the index of the best-matching color in the current device’s CLUT. In
a direct environment, the SetCPixel procedure sets the pixel value to a 16-bit or 32-bit
direct pixel value.

SPECIAL CONSIDERATIONS

The SetCPixel procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

To determine the color of an individual pixel, use the GetCPixel procedure, which is
described on page 4-80.

CHAPTER 4

Color QuickDraw

4-74 Color QuickDraw Reference

FillCRect

Use the FillCRect procedure to fill a rectangle with a pixel pattern.

PROCEDURE FillCRect (r: Rect; ppat: PixPatHandle);

r The rectangle to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode, the FillCRect procedure fills the rectangle you
specify in the r parameter with the pixel pattern defined by a PixPat record, the handle
for which you pass in the ppat parameter. This procedure ignores the pnPat , pnMode,
and bkPat fields of the current graphics port and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

FillCRoundRect

Use the FillCRoundRect procedure to fill a rounded rectangle with a pixel pattern.

PROCEDURE FillCRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;

 p pat: PixPatHandle);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-75

DESCRIPTION

Using the patCopy pattern mode, the FillCRoundRect procedure fills the rectangle
you specify in the r parameter with the pixel pattern defined in a PixPat record, the
handle for which you pass in the ppat parameter. Use the ovalWidth and
ovalHeight parameters to specify the diameters of curvature for the corners. This
procedure ignores the pnPat , pnMode, and bkPat fields of the current graphics port
and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCRoundRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

FillCOval

Use the FillCOval procedure to fill an oval with a pixel pattern.

PROCEDURE FillCOval (r: Rect; ppat: PixPatHandle);

r The rectangle containing the oval to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in the PixPat record
(the handle for which you pass in the ppat parameter), the FillCOval procedure fills
an oval just inside the bounding rectangle that you specify in the r parameter. This
procedure ignores the pnPat , pnMode, and bkPat fields of the current graphics port
and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 4

Color QuickDraw

4-76 Color QuickDraw Reference

FillCArc

Use the FillCArc procedure to fill a wedge with a pixel pattern.

PROCEDURE FillCArc (r: Rect; startAngle,arcAngle: Integer ;

 ppat: P ixPatHandle);

r The rectangle that defines the oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the
handle for which you pass in the ppat parameter), the FillCArc procedure fills a
wedge of the oval bounded by the rectangle that you specify in the r parameter. As in
the FrameArc procedure, described in the chapter “QuickDraw Drawing” in this book,
use the startAngle and arcAngle parameters to define the arc of the wedge. This
procedure ignores the pnPat , pnMode, and bkPat fields of the current graphics port
and leaves the pen location unchanged.

SPECIAL CONSIDERATIONS

The FillCArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

FillCPoly

Use the FillCPoly procedure to fill a polygon with a pixel pattern.

PROCEDURE FillCPoly (poly: PolyHandle; ppat: PixPatHandle);

poly A handle to the polygon to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-77

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the
handle for which you pass in the ppat parameter), the FillCPoly procedure fills the
polygon whose handle you pass in the poly parameter. This procedure ignores the
pnPat , pnMode, and bkPat fields of the current graphics port and leaves the pen
location unchanged.

SPECIAL CONSIDERATIONS

The FillCPoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

FillCRgn

Use the FillCRgn procedure to fill a region with a pixel pattern.

PROCEDURE FillCRgn (rgn: RgnHandle; ppat: PixPatHandle);

rgn A handle to the region to be filled.

ppat A handle to the PixPat record for the pixel pattern to be used for the fill.

DESCRIPTION

Using the patCopy pattern mode and the pixel pattern defined in a PixPat record (the
handle for which you pass in the ppat parameter), the FillCRgn procedure fills the
region whose handle you pass in the rgn parameter. This procedure ignores the pnPat ,
pnMode, and bkPat fields of the current graphics port and leaves the pen location
unchanged.

SPECIAL CONSIDERATIONS

The FillCRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 4

Color QuickDraw

4-78 Color QuickDraw Reference

OpColor

Use the OpColor procedure to set the maximum color values for the addPin and
su bPin arithmetic transfer modes, and the weight color for the bl end arithmetic
transfer mode.

PROCEDURE OpColor (color: RGBColor);

color An RGBColor record that defines a color.

DESCRIPTION

If the current port is defined by a CGrafPort record, the OpColor procedure sets the
red, green, and blue values used by the addPin , sub Pin , and bl end arithmetic transfer
modes. You specify these red, green, and blue values in the RGBColor record, and you
specify this record in the color parameter. This information is actually stored in the
rgbOpColor field of the GrafVars record, but you should never need to refer to it
directly.

If the current graphics port is defined by a GrafPort record, OpColor has no effect.

SEE ALSO

Arithmetic transfer modes are described in “Arithmetic Transfer Modes” beginning on
page 4-38.

HiliteColor

Use the HiliteColor procedure to change the highlight color for the current color
graphics port.

PROCEDURE HiliteColor (color: RGBColor);

color An RGBColor record that defines the highlight color.

DESCRIPTION

The HiliteColor procedure changes the highlight color for the current color graphics
port. All drawing operations that use the hilite transfer mode use the highlight color.
When a color graphics port is created, its highlight color is initialized from the global
variable HiliteRGB . (This information is stored in the rgbHiliteColor field of the
GrafVars record, but you should never need to refer to it directly.)

If the current graphics port is a basic graphics port, HiliteColor has no effect.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-79

SEE ALSO

The hilite mode is described in “Highlighting” beginning on page 4-41.

Determining Current Colors and Best Intermediate Colors

The GetForeColor and GetBackColor procedures allow you to obtain the
foreground and background colors for the current graphics port, both basic and color.
You can use the GetCPixel procedure to determine the color of an individual pixel. The
GetGray function can do more than its name implies: it can return the best gray for a
given graphics device, but it can also return the best available intermediate color
between any two colors.

GetForeColor

Use the GetForeColor procedure to obtain the color of the foreground color for the
current graphics port.

PROCEDURE GetForeColor (VAR colo r: RGBColor);

color An RGBColor record.

DESCRIPTION

In the color parameter, the GetForeColor procedure returns the RGBColor record
for the foreground color of the current graphics port. This procedure operates for
graphics ports defined by both the GrafPort and CGrafPort records. If the
current graphics port is defined by a CGrafPort record, the returned value is taken
directly from the rgbFgColor field.

If the current graphics port is defined by a GrafPort record, then only eight possible
RGB values can be returned. These eight values are determined by the values in a global
variable named QDColors , which is a handle to a color table containing the current
QuickDraw colors. These colors are listed in Table 4-4 on page 4-71. This default set of
colors has been adjusted to match the colors produced on the ImageWriter II printer.

SPECIAL CONSIDERATIONS

This procedure is available for basic QuickDraw only in System 7.

SEE ALSO

You can use the RGBForeColor procedure, described on page 4-70, to change the
foreground color.

CHAPTER 4

Color QuickDraw

4-80 Color QuickDraw Reference

GetBackColor

Use the GetBackColor procedure to obtain the background color of the current
graphics port.

PROCEDURE GetBackColor (VAR colo r: RGBColor);

color An RGBColor record.

DESCRIPTION

In the color parameter, the GetBackColor procedure returns the RGBColor record
for the background color of the current graphics port. This procedure operates for
graphics ports defined by both the GrafPort and CGrafPort records. If the
current graphics port is defined by a CGrafPort record, the returned value is taken
directly from the rgbBkColor field.

If the current graphics port is defined by a GrafPort record, then only eight possible
colors can be returned. These eight colors are determined by the values in a global
variable named QDColors , which is a handle to a color table containing the current
QuickDraw colors. These colors are listed in Table 4-4 on page 4-71.

SPECIAL CONSIDERATIONS

This procedure is available for basic QuickDraw only in System 7.

SEE ALSO

You can use the RGBBackColor procedure, described on page 4-72, to change the
background color.

GetCPixel

To determine the color of an individual pixel, use the GetCPixel procedure.

PROCEDURE GetCPixel (h,v: Integer; VAR cPix: RGBColor);

h The horizontal coordinate of the point at the upper-left corner of the pixel.

v The vertical coordinate of the point at the upper-left corner of the pixel.

cPix The RGBColor record for the pixel.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-81

DESCRIPTION

In the cPix parameter, the GetCPixel procedure returns the RGB color for the pixel at
the location you specify in the h and v parameters.

SEE ALSO

You can use the SetCPixel procedure, described on page 4-73, to change the color of
this pixel.

GetGray

To determine the best intermediate color between two colors on a given graphics device,
use the GetGray function.

FUNCTION GetGray (device: GDHandle; backGround: RGBColor;

VAR foreGround: RGBColor): Boolean;

device A handle to the graphics device for which an intermediate color or gray is
needed.

backGround
The RGBColor record for one of the two colors for which you want an
intermediate color.

foreGround
On input, the RGBColor record for the other of the two colors; upon
completion, the best intermediate color between these two.

DESCRIPTION

The GetGray function determines the midpoint values for the red, green, and blue
values of the two colors you specify in the backGround and foreGround parameters.
In the device parameter, supply a handle to the graphics device; in the backGround
and foreGround parameters, supply RGBColor records for the two colors for which
you want the best intermediate RGB color. When GetGray completes, it returns the best
intermediate color in the foreGround parameter.

One use for GetGray is to return the best gray. For example, when dimming an object,
supply black and white as the two colors, and GetGray returns the best available gray
that lies between them. (The Menu Manager does this when dimming unavailable menu
items.)

If no gray is available (or if no distinguishable third color is available), the foreGround
parameter is unchanged, and the function returns FALSE. If at least one gray or
intermediate color is available, it is returned in the foreGround parameter, and the
function returns TRUE.

CHAPTER 4

Color QuickDraw

4-82 Color QuickDraw Reference

Calculating Color Fills

Just as basic QuickDraw provides a pair of procedures (SeedFill and CalcMask) to
help you determine the results of filling operations on portions of bitmaps, Color
QuickDraw provides the SeedCFill and CalcCMask procedures to help you
determine the results of filling operations on portions of pixel maps.

SeedCFill

To determine how far filling will extend to pixels matching the color of a particular pixel,
use the SeedCFill procedure.

PROCEDURE SeedCFill (srcBits ,d stBits: BitMap ;

srcRect,d stRect: Rect; seedH,seedV: Integer;

matchProc: ProcPtr; matchData: LongInt);

srcBits The source image. If the image is in a pixel map, you must coerce its
PixMap record to a BitMap record.

dstBits The destination mask.

srcRect The rectangle of the source image.

dstRect The rectangle of the destination image.

seedH The horizontal position of the seed point.

seedV The vertical position of the seed point.

matchProc An optional color search function.

matchData Data for the optional color search function.

DESCRIPTION

The SeedCFill procedure generates a mask showing where the pixels in an image can
be filled from a starting point, like the paint pouring from the MacPaint paint-bucket
tool. The SeedCFill procedure returns this mask in the dstBits parameter. This mask
is a bitmap filled with 1’s to indicate all pixels adjacent to a seed point whose colors do
not exactly match the RGBColor record for the pixel at the seed point. You can then use
this mask with the CopyBits , CopyMask , and CopyDeepMask procedures.

You specify a source image in the srcBits parameter, and in the srcRect
parameter you specify a rectangle within that source image. You specify where to begin
seeding in the seedH and seedV parameters, which must be the horizontal and vertical
coordinates of a point in the local coordinate system of the source bitmap. By default,
the 1’s returned in the mask indicate all pixels adjacent to the seed point whose pixel
values do not exactly match the pixel value of the pixel at the seed point. To use this
default, set the matchProc and matchData parameters to 0.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-83

In generating the mask, SeedCFill uses the CopyBits procedure to convert the source
image to a 1-bit mask. The SeedCFill procedure installs a default color search function
that returns 0 if the pixel value matches that of the seed point; all other pixel values
return 1’s.

The SeedCFill procedure does not scale: the source and destination rectangles must be
the same size. Calls to SeedCFill are not clipped to the current port and are not stored
into QuickDraw pictures.

You can customize SeedCFill by writing your own color search function and pointing
to it in the matchProc procedure; SeedCFill will then use your procedure instead of
the default. You can use the matchData parameter for whatever you’d like. In the
matchData parameter, for instance, your application could pass the handle to a color
table. Your color search function could then check whether the pixel value for the pixel
currently under analysis matches any of the colors in the table.

SEE ALSO

See “Application-Defined Routine” on page 4-101 for a description of how to customize
the SeedCFill procedure.

CalcCMask

To determine where filling will not occur when filling from the outside of a rectangle,
you can use the CalcCMask procedure, which indicates pixels that match, or are
surrounded by pixels that match, a particular color.

PROCEDURE CalcCMask (srcBits ,d stBits: BitMap;

srcRect ,d stRect : R ect;

seedRGB: RGBColor; matchProc : P rocPtr ;

matchData: LongInt);

srcBits The source image. If the image is in a pixel map, you must coerce its
PixMap record to a BitMap record.

dstBits The destination image, a Bi tMap record.

srcRect The rectangle of the source image.

dstRect The rectangle of the destination image.

seedRGB An RGBColor record specifying the color for pixels that should not be
filled.

matchProc An optional matching procedure.

matchData Data for the optional matching procedure.

CHAPTER 4

Color QuickDraw

4-84 Color QuickDraw Reference

DESCRIPTION

The CalcCMask procedure generates a mask showing where pixels in an image cannot
be filled from any of the outer edges of the rectangle you specify. The CalcCMask
procedure returns this mask in the dstBits parameter. This mask is a bitmap filled
with 1’s only where the pixels in the source image cannot be filled. You can then use this
mask with the CopyBits , CopyMask , and CopyDeepMask procedures.

You specify a source image in the srcBits parameter, and in the srcRect
parameter you specify a rectangle within that source image. Starting from the edges of
this rectangle, CalcCMask calculates which pixels cannot be filled. By default,
CalcCMask returns 1’s in the mask to indicate which pixels have the exact color that you
specify in the seedRGB parameter, as well as which pixels are enclosed by shapes whose
outlines consist entirely of pixels with this color.

For instance, if the source image in srcBits contains a dark blue rectangle on a red
background, and your application sets seedRGB equal to dark blue, then CalcCMask
returns a mask with 1’s in the positions corresponding to the edges and interior of the
rectangle, and 0’s outside of the rectangle.

If you set the matchProc and matchData parameters to 0, CalcCMask uses the exact
color specified in the RGBColor record that you supply in the seedRGB parameter. You
can customize CalcCMask by writing your own color search function and pointing to it
in the matchProc procedure; your color search function might, for example, search for
colors that approximate the color specified in the RGBColor record. As with
SeedCFill , you can then use the matchData parameter in any manner useful for your
application.

The CalcCMask procedure does not scale—the source and destination rectangles must
be the same size. Calls to CalcCMask are not clipped to the current port and are not
stored into QuickDraw pictures.

SEE ALSO

See “Application-Defined Routine” on page 4-101 for a description of how to customize
the CalcCMask procedure.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-85

Creating, Setting, and Disposing of Pixel Maps

QuickDraw automatically creates pixel maps when you create a color window with the
GetNewCWindow or NewCWindow function (described in the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials), when you create offscreen
graphics worlds with the NewGWorld function (described in the chapter
“Offscreen Graphics Worlds” in this book), and when you use the OpenCPort function.
QuickDraw also disposes of a pixel map when it disposes of a color graphics port.
Although your application typically won’t need to create or dispose of pixel maps, you
can use the NewPixMap function and the CopyPixMap procedure to create them, and
you can use the DisposePixMap procedure to dispose of them. Although you should
never need to do so, you can also set the pixel map for the current color graphics port by
using the SetPortPix procedure.

NewPixMap

Although you typically don’t need to call this routine in your application code, you can
use the NewPixMap function to create a new, initialized PixMa p record.

FUNCTION NewPixMap: PixMapHandle;

DESCRIPTION

The NewPixMap function creates a new, initialized PixMa p record and returns a handle
to it. All fields of the PixMap record are copied from the current device’s PixMap record
except the color table. In System 7, the hRes and vRes fields are set to 72 dpi, no matter
what values the current device’s PixMap record contains. A handle to the color table is
allocated but not initialized.

You typically don’t need to call this routine. PixMap records are created for you
when you create a window using the Window Manager functions NewCWindow and
GetNewCWindow and when you create an offscreen graphics world with the
NewGWorld function.

If your application creates a pixel map, your application must initialize the PixMap
record’s color table to describe the pixels. You can use the GetCTable function
(described on page 4-92) to read such a table from a resource file; you can then use the
Dispos eCTable procedure (described on page 4-93) to dispose of the PixMap record’s
color table and replace it with the one returned by GetCTable .

CHAPTER 4

Color QuickDraw

4-86 Color QuickDraw Reference

SPECIAL CONSIDERATIONS

The NewPixMap function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

CopyPixMap

Although you typically don’t need to call this routine in your application code, you can
use the CopyPixMap procedure to duplicate a PixMa p record.

PROCEDURE CopyPixMap (srcPM,dstPM: PixMapHandle);

srcP M A handle to the PixMap record to be copied.

dstP M A handle to the duplicated PixMap record.

DESCRIPTION

The CopyPixMap procedure copies the contents of the source PixMa p record to the
destination PixMa p record. The contents of the color table are copied, so the destination
PixMap has its own copy of the color table. Because the baseAddr field of the PixMap
record is a pointer, the pointer, but not the image itself, is copied.

SetPortPix

Although you should never need to do so, you can set the pixel map for the current color
graphics port by using the SetPortPix procedure.

PROCEDURE SetPortPix (pm: PixMapHandle);

pm A handle to the PixMap record.

DESCRIPTION

The SetPortPix procedure replaces the portPixMap field of the current CGrafPort
record with the handle you specify in the pm parameter.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-87

SPECIAL CONSIDERATIONS

The SetPortPix procedure is analogous to the basic QuickDraw procedure
SetPortBits , which sets the bitmap for the current basic graphics port.
The SetPortPix procedure has no effect when used with a basic graphics port.
Similarly, SetPortBits has no effect when used with a color graphics port.

Both SetPortPix and SetPortBit s allow you to perform drawing and calculations
on a buffer other than the screen. However, instead of using these procedures, you
should use the offscreen graphics capabilities described in the chapter “Offscreen
Graphics Worlds.”

DisposePixMap

Although you typically don’t need to call this routine in your application code, you can
use the DisposePixMap procedure to dispose of a PixMa p record. The
DisposePixMap procedure is also available as the DisposPixMap procedure.

PROCEDURE DisposePixMap (pm: PixMapHandle);

pm A handle to the PixMap record to be disposed of.

DESCRIPTION

The DisposePixMap procedure disposes of the PixMap record and its color table. The
Clo seCPort procedure calls DisposePixMap .

SPECIAL CONSIDERATIONS

If your application uses DisposePixMap , take care that it does not dispose of a PixMap
record whose color table is the same as the current device’s CLUT.

Creating and Disposing of Pixel Patterns

Pixel patterns can use colors at any pixel depth and can be of any width and height that’s
a power of 2. To create a pixel pattern, you typically define it in a 'ppat' resource,
which you store in a resource file. To retrieve the pixel pattern stored in a 'ppat'
resource, you can use the GetPixPat function.

Color QuickDraw also allows you to create and dispose of pixel patterns by using the
NewPixPat , CopyPixPat , MakeRGBPat, and DisposePixPat routines, although
generally you should create them in 'ppat' resources (described on page 4-103).

When your application is finished using a pixel pattern, it should dispose of it with the
DisposePixPat procedure.

CHAPTER 4

Color QuickDraw

4-88 Color QuickDraw Reference

GetPixPat

To get a pixel pattern ('ppat') resource stored in a resource file, you can use the
GetPixPat function.

FUNCTION GetPixPat (patID: Integer): PixPatHandle;

patID The resource ID for a resource of type 'ppat' .

DESCRIPTION

The GetPixPat function returns a handle to the pixel pattern having the resource ID
you specify in the patID parameter. The GetPixPat function calls the following
Resource Manager function with these parameters:

GetResource('ppat', patID);

If a 'ppat' resource with the ID that you request does not exist, the GetPixPat
function returns NIL .

When you are finished with the pixel pattern, use the DisposePixPat procedure
(described on page 4-91).

SPECIAL CONSIDERATIONS

The GetPixPat function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

The 'ppat' resource format is described on page 4-103. See the chapter “Resource
Manager” in Inside Macintosh: More Macintosh Toolbox for more information about
resources, the Resource Manager, and the GetResource function.

NewPixPat

Although you should generally create a pixel pattern in a 'ppat' resource and retrieve
it with the GetPixPat function, you can use the NewPixPat function to create a new
pixel pattern.

FUNCTION NewPixPat: PixPatHandle;

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-89

DESCRIPTION

The NewPixPat function creates a new PixPat record (described on page 4-58) and
returns a handle to it. This function calls the NewPixMap function to allocate the
pattern’s PixMap record (described on page 4-46) and initialize it to the same settings
as the pixel map of the current GDevice record—that is, as stored in the gdPMap field of
the global variable TheGDevice . This function also sets the pat1Data field of the
new PixPat record to a 50 percent gray pattern. NewPixPat allocates new handles for
the PixPat record’s data, expanded data, expanded map, and color table but does not
initialize them; instead, your application must initialize them.

Set the rowBytes , bounds , and pixelSize fields of the pattern’s PixMap record to the
dimensions of the desired pattern. The rowBytes value should be equal to

(width of bounds) × pixelSize /8

The rowBytes value need not be even. The width and height of the bounds must be a
power of 2. Each scan line of the pattern must be at least 1 byte in length—that is,
([width of bounds] × pixelSize) must be at least 8.

Your application can explicitly specify the color corresponding to each pixel value with a
color table. The color table for the pattern must be placed in the pmTable field in the
pattern’s PixMap record.

Including the PixPat record itself, NewPixPat allocates a total of five handles. The
sizes of the handles to the PixPat and PixMap records are the sizes of their respective
data structures. The other three handles are initially small in size. Once the pattern is
drawn, the size of the expanded data is proportional to the size of the pattern data, but
adjusted to the depth of the screen. The color table size is the size of the record plus 8
bytes times the number of colors in the table.

When you are finished using the pixel pattern, use the DisposePixPat procedure,
which is described on page 4-91, to make the memory used by the pixel pattern available
again.

SPECIAL CONSIDERATIONS

The NewPixPat function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

CHAPTER 4

Color QuickDraw

4-90 Color QuickDraw Reference

CopyPixPat

Use the CopyPixPat procedure to copy the contents of one pixel pattern to another.

PROCEDURE CopyPixPat (srcPP,dstPP: PixPatHandle);

srcPP A handle to a source pixel pattern, the contents of which you want to
copy.

dstPP A handle to a destination pixel pattern, into which you want to copy the
contents of the pixel pattern in the srcPP parameter.

DESCRIPTION

The CopyPixPat procedure copies the contents of one PixPat record (the handle to
which you pass in the srcPP parameter) into another PixPat record (the handle
to which you pass in the dstPP parameter). The CopyPixPat procedure copies all of
the fields in the source PixPat record, including the contents of the data handle,
expanded data handle, expanded map, pixel map handle, and color table.

SEE ALSO

The PixPat record is described on page 4-58.

MakeRGBPat

To create the appearance of otherwise unavailable colors on indexed devices, you can
use the MakeRGBPat procedure.

PROCEDURE MakeRGBPat (ppat: PixPatHandle; myColor: RGBColor);

ppat A handle to hold the generated pixel pattern.

myColor An RGBColor record that defines the color you want to approximate.

DESCRIPTION

The MakeRGBPat procedure generates a PixPat record that, when used to draw a pixel
pattern, approximates the color you specify in the myColor parameter. For example, if
your application draws to an indexed device that supports 4 bits per pixel, you only
have 16 colors available if you simply set the foreground color and draw. If you use
MakeRGBPat to create a pattern, and then draw using that pattern, you effectively
get 125 different colors. If the graphics device has 8 bits per pixel, you effectively get
2197 colors. (More colors are theoretically possible; this implementation opted for a fast
pattern selection rather than the best possible pattern selection.)

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-91

For a pixel pattern, the patMap^^.bounds field of the PixPat record always contains
the values (0,0,8,8), and the patMap^^.rowbytes field equals 2.

SPECIAL CONSIDERATIONS

Because patterns produced with MakeRGBPat aren’t usually solid—they provide a
selection of colors by alternating between colors, with up to four colors in a pattern—
lines that are only one pixel wide may not look good.

When MakeRGBPat creates a ColorTable record, it fills in only the rgb fields of its
ColorSpec records; the value fields are computed at the time the drawing actually
takes place, using the current pixel depth for the system.

DisposePixPat

Use the DisposePixPat procedure to release the storage allocated to a pixel pattern.
The DisposePixPat procedure is also available as the DisposPixPat procedure.

PROCEDURE DisposePixPat (ppat: PixPatHandle);

ppat A handle to the pixel pattern to be disposed of.

DESCRIPTION

The DisposePixPat procedure disposes of the data handle, expanded data handle, and
pixel map handle allocated to the pixel pattern that you specify in the ppat parameter.

Creating and Disposing of Color Tables

You use a color table, which is defined by a data structure of type ColorTable , to
specify colors in the form of RGBColor records. You can create and store color tables in
'clut' resources. To retrieve a color table stored in a 'clut' resource, you can use the
GetCTable function. To dispose of the handle allocated for a color table, you use the
DisposeCTable procedure.

The Palette Manager, described in the chapter “Palette Manager” in Inside Macintosh:
Advanced Color Imaging, has additional routines that enable you to copy colors between
palettes and color tables and to restore the default colors to a CLUT belonging to a
graphics device.

The Color Manager, described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging, contains low-level routines for directly manipulating the fields
of the CLUT on a graphics device; most applications do not need to use those routines.

CHAPTER 4

Color QuickDraw

4-92 Color QuickDraw Reference

GetCTable

To get a color table stored in a 'clut' resource, use the GetCTable function.

FUNCTION GetCTable (ctID: Integer): CTabHandle;

ctID The resource ID of a 'clut' resource.

DESCRIPTION

For the color table defined in the 'clut' resource that you specify in the ctID
parameter, the GetCTable function returns a handle to a ColorTable record. If the
'clut' resource with that ID is not found, GetCTable returns NIL .

If you place this handle in the pmTable field of a PixMap record, you should first use
the DisposeCTable procedure to dispose of the handle already there.

If you modify a ColorTable record, you should invalidate it by changing its ctSeed
field. An easy way to do this is with the CTabChanged procedure, described on
page 4-97.

The GetCTable function recognizes a number of standard 'clut' resource IDs. You
can obtain the default grayscale color table for a given pixel depth by calling
GetCTable , adding 32 (decimal) to the pixel depth, and passing this value in the ctID
parameter, as shown in Table 4-5.

Table 4-5 The default color tables for grayscale graphics devices

Pixel depth Resource ID Color table composition

1 33 Black, white

2 34 Black, 33% gray, 66% gray, white

4 36 Black, 14 shades of gray, white

8 40 Black, 254 shades of gray, white

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-93

For full color, you can obtain the default color tables by adding 64 to the pixel depth and
passing this in the ctID parameter, as shown in Table 4-6. These default color tables are
illustrated in Plate 1 at the front of this book.

SPECIAL CONSIDERATIONS

The GetCTable function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

The 'clut' resource is described on page 4-104.

DisposeCTable

Use the DisposeCTable procedure to dispose of a ColorTable record. The
DisposeCTable procedure is also available as the DisposCTable procedure.

PROCEDURE DisposeCTable (cTable: CTabHandle);

cTable A handle to a ColorTable record.

DESCRIPTION

The DisposeCTable procedure disposes of the ColorTable record whose handle you
pass in the cTable parameter.

Table 4-6 The default color tables for color graphics devices

Pixel depth Resource I D Color table composition

2 66 Black, 50% gray, highlight color, white

4 68 Black, 14 colors including the highlight color, white

8 72 Black, 254 colors including the highlight color, white

CHAPTER 4

Color QuickDraw

4-94 Color QuickDraw Reference

Retrieving Color QuickDraw Result Codes

Most QuickDraw routines do not return result codes. However, you can use the
QDError function to get a result code from the last applicable Color QuickDraw or
Color Manager routine that you called.

QDError

To get a result code from the last applicable Color QuickDraw or Color Manager routine
that you called, use the QDError function.

FUNCTION QDError: Integer;

DESCRIPTION

The QDError function returns the error result from the last applicable Color QuickDraw
or Color Manager routine. On a system with only basic QuickDraw, QDError always
returns noErr .

The QDError function is helpful in determining whether insufficient memory caused a
drawing operation—particularly those involving regions, polygons, pictures, and images
copied with CopyBits —to fail in Color QuickDraw.

Basic QuickDraw uses stack space for work buffers. For complex operations such as
depth conversion, dithering, and image resizing, stack space may not be sufficient. Color
QuickDraw attempts to get temporary memory from other parts of the system. If that is
still not enough, QDError returns the nsStackErr error. If your application receives
this result, reduce the memory required by the operation—for example, divide the image
into left and right halves—and try again.

When you record drawing operations in an open region, the resulting region description
may overflow the 64 KB limit. Should this happen, QDError returns
regionTooBigError . Since the resulting region is potentially corrupt, the CloseRgn
procedure (described in the chapter “QuickDraw Drawing” in this book) returns an
empty region if it detects QDError has returned regionTooBigError . A similar error,
rgnTooBigErr , can occur when using the BitMapToRegion function (described in the
chapter “Basic QuickDraw” in this book) to convert a bitmap to a region.

The BitMapToRegion function can also generate the pixmapTooDeepErr error if a
PixMap record is supplied that is greater than 1 bit per pixel. You may be able to recover
from this problem by coercing your PixMap record into a 1-bit PixMap record and
calling the BitMapToRegion function again.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-95

RESULT CODES

In addition to these result codes, QDErr also returns result codes from the Memory
Manager.

SECIAL CONSIDERATIONS

The QDError function does not report errors returned by basic QuickDraw.

SEE ALSO

Listing 3-8 on page 3-28, Listing 3-10 on page 3-30, and Listing 3-11 on page 3-33 in the
chapter “QuickDraw Drawing” in this book—and Listing 7-8 on page 7-20 in the chapter
“Pictures” in this book—illustrate how to use QDError to report insufficient memory
conditions for various drawing operations.

The NewGWorld function is described in the chapter “Offscreen Graphics Worlds” in this
book. The Color2Index function and the MakeITable procedure are described in the
chapter “Color Manager” in Inside Macintosh: Advanced Color Imaging . Graphics devices
are described in the chapter “Graphics Devices” in this book. Memory Manager result
codes are listed in Inside Macintosh: Memory.

noErr 0 No error
paramErr –50 Illegal parameter to NewGWorld

–143 CopyBits couldn’t allocate required
temporary memory

–144 Ran out of stack space while drawing
polygon

noMemForPictPlaybackErr –145 Insufficient memory for drawing the
picture

regionTooBigError –147 Region too big or complex
pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
nsStackErr –149 Insufficient stack
cMatchErr –150 Color2Index failed to find an index
cTempMemErr –151 Failed to allocate memory for temporary

structures
cNoMemErr –152 Failed to allocate memory for structure
cRangeErr –153 Range error on color table request
cProtectErr –154 ColorTable record entry protection

violation
cDevErr –155 Invalid type of graphics device
cResErr –156 Invalid resolution for MakeITable
cDepthErr –157 Invalid pixel depth specified to

NewGWorld
rgnTooBigErr –500 Bitmap would convert to a region greater

than 64 KB

CHAPTER 4

Color QuickDraw

4-96 Color QuickDraw Reference

Customizing Color QuickDraw Operations

For each shape that QuickDraw can draw, there are procedures that perform these basic
graphics operations on the shape: framing, painting, erasing, inverting, and filling. As
described in the chapter “QuickDraw Drawing” in this book, those procedures in turn
call a low-level drawing routine for the shape. For example, the FrameOval ,
PaintOval , EraseOval , InvertOval , and FillOval procedures all call the low-level
procedure StdOval , which draws the oval.

The grafProcs field of a CGrafPort record determines which low-level routines are
called. If that field contains the value of NIL , the standard routines are called. You can set
the grafProcs field to point to a record of pointers to your own routines. This record of
pointers is defined by a data structure of type CQDProcs. By changing these pointers,
you can install your own routines, and either completely override the standard ones or
call them after your routines have modified their parameters as necessary.

To assist you in setting up a record, QuickDraw provides the SetStdCProcs procedure.
You can use the SetStdCProcs procedure to set all the fields of the CQDProcs record
to point to the standard routines. You can then reset the ones with which you are
concerned.

SetStdCProcs

You can use the SetStdCProcs procedure to get a CQDProcs record with fields that
point to Color QuickDraw’s standard low-level routines. You can replace these low-level
routines with your own, and then point to your modified CQDProcs record in the
grafProcs field of a CGrafPort record to change Color QuickDraw’s standard
low-level behavior.

PROCEDURE SetStdCProcs (VAR cProcs: CQDProcs);

cProc s Upon completion, a CQDProcs record with fields that point to Color
QuickDraw’s standard low-level routines.

DESCRIPTION

In the cProcs parameter, the SetStdCProcs procedure returns a CQDProcs record
with fields that point to the standard low-level routines. You can change one or more
fields to point to your own routines and then set the color graphics port to use this
modified CQDProcs record.

SPECIAL CONSIDERATIONS

When drawing in a color graphics port, your application must always use
SetStdCProcs instead of SetStdProcs .

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-97

SEE ALSO

The routines you install in the CQDProcs record must have the same calling sequences
as the standard basic QuickDraw routines, which are described in the chapter
“QuickDraw Drawing” in this book. The SetStdProcs procedure is also described in
the chapter “QuickDraw Drawing.”

The chapter “Pictures” in this book describes how to replace the low-level routines that
read and write pictures.

The data structure of type CQDProcs is described on page 4-60.

Reporting Data Structure Changes to QuickDraw

In quest of faster execution time, some applications directly modify ColorTable ,
PixPat , GrafPort , CGrafPort , or GDevice records rather than using the routines
provided for that purpose. Direct manipulation of the fields of these records can cause
problems now, and may cause additional problems as QuickDraw continues to evolve.

For example, the Color Manager (described in the chapter “Color Manager” in Inside
Macintosh: Advanced Color Imaging) maintains an inverse table for every color table with
which it works in order to speed up the process of searching the color table. If your
application directly changes an entry in the color table, the Color Manager doesn’t know
that its inverse table no longer works correctly.

However, by using the routines CTabChanged , PixPatChanged , PortChanged , and
GDeviceChanged , you can lessen the adverse effects of directly modifying the fields of
ColorTable , PixPat , GrafPort , CGrafPort , and GDevice records. For example,
should you directly change the field of a ColorTable record and then call the
CTabChanged procedure, it invalidates the ctSeed field of the ColorTable record,
which signals the Color Manager that the table has been changed and its inverse table
needs to be rebuilt.

CTabChanged

If you modify the content of a ColorTable record (described on page 4-56), use the
CTabChanged procedure.

PROCEDURE CTabChanged (ctab: CTabHandle);

ctab A handle to the ColorTable record changed by your application.

DESCRIPTION

For the ColorTable record you specify in the ctab parameter, the CTabChanged
procedure calls the Color Manager function GetCTSeed to get a new seed (that is, a
new, unique identifier in the ctSeed field of the ColorTable record) and notifies Color
QuickDraw of the change.

CHAPTER 4

Color QuickDraw

4-98 Color QuickDraw Reference

SPECIAL CONSIDERATIONS

The CTabChanged procedure may move or purge memory in the application heap. Your
application should not call the CTabChanged procedure at interrupt time.

Your application should never need to directly modify a ColorTable record and use
the CTabChanged procedure; instead, your application should use the QuickDraw
routines described in this book for manipulating the values in a ColorTable record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the CTabChanged procedure are

SEE ALSO

The GetCTSeed function is described in the chapter “Color Manager” in Inside
Macintosh: Advanced Color Imaging.

PixPatChanged

If you modify the content of a PixPat record (described on page 4-58), including its
PixMap record or the image in its patData field, use the PixPatChanged procedure.

PROCEDURE PixPatChanged (ppat: PixPatHandle);

ppat A handle to the changed pixel pattern.

DESCRIPTION

The PixPatChanged procedure sets the patXValid field of the PixPat record
specified in the ppat parameter to –1 and notifies QuickDraw of the change.

If your application changes the pmTable field of a pixel pattern’s PixMap record, it
should call PixPatChanged . However, if your application changes the content of the
color table referenced by the PixMap record’s pmTable field, it should call
PixPatChanged and the CTabChanged procedure as well. (The CTabChanged
procedure is described in the preceding section.)

Trap macro Selector

_QDExtensions $00040007

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-99

SPECIAL CONSIDERATIONS

The PixPatChanged procedure may move or purge memory in the application heap.
Your application should not call the PixPatChanged procedure at interrupt time.

Your application should never need to directly modify a PixPat record and use the
PixPatChanged procedure; instead, your application should use the QuickDraw
routines described in this book for manipulating the values in a PixPat record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PixPatChanged procedure are

PortChanged

If you modify the content of a GrafPort record (described in the chapter “Basic
QuickDraw” in this book) or CGrafPort record (described on page 4-48), including any
of the data structures specified by handles within the record, use the PortChanged
procedure.

PROCEDURE PortChanged (port: GrafPtr);

por t A pointer to the GrafPort record that you have changed.

DESCRIPTION

The PortChanged procedure notifies QuickDraw that your application has changed the
graphics port specified in the port parameter. If your application has changed a
CGrafPort record, it must coerce its pointer (that is, its CGrafPtr) to a pointer to
a GrafPort record (that is, to a GrafPtr) before passing the pointer in the port
parameter.

You generally should not directly change any of the PixPat records specified in a
CGrafPort record, but instead use the PenPixPat and BackPixPat procedures.
However, if your application does change the content of a PixPat record, it should call
the PixPatChanged procedure (described in the preceding section) as well as the
PortChanged procedure.

If your application changes the pmTable field of the PixMap record specified in the
graphics port, your application should call PortChanged . If your application changes
the content of the ColorTable record referenced by the pmTable field, it should call
CTabChanged as well.

Trap macro Selector

_QDExtensions $00040008

CHAPTER 4

Color QuickDraw

4-100 Color QuickDraw Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PortChanged procedure are

GDeviceChanged

If you modify the content of a GDevice record (described in the chapter “Graphics
Devices” in this book), use the GDeviceChanged procedure.

PROCEDURE GDeviceChanged (gdh: GDHandle);

DESCRIPTION

The GDeviceChanged procedure notifies Color QuickDraw that your application has
changed the GDevice record specified in the gdh parameter.

If your application changes the pmTable field of the PixMap record specified in a
GDevice record, your application should call GDeviceChanged . If your application
changes the content of the ColorTable record referenced by the PixMap record, it
should call GDeviceChanged and CTabChanged as well.

SPECIAL CONSIDERATIONS

The GDeviceChanged procedure may move or purge memory in the application heap.
Your application should not call the GDeviceChanged procedure at interrupt time.

Your application should never need to directly modify a GDevice record and use the
GDeviceChanged procedure; instead, your application should use the QuickDraw
routines described in this book for manipulating the values in a GDevice record.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GDeviceChanged procedure are

Trap macro Selector

_QDExtensions $00040009

Trap macro Selector

_QDExtensions $0004000A

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-101

Application-Defined Routine
You can customize the SeedCFill and CalcCMask procedures by writing your own
color search function. For example, you might wish to use your own color search
function to make SeedCFill generate a mask that allows filling around pixels that
approximate the color of your seed point, rather than match it exactly.

The SeedCFill procedure generates a mask showing where the pixels in an image can
be filled from a starting point, like the paint pouring from the MacPaint paint-bucket
tool. The CalcCMask procedure generates a mask showing where pixels in an image
cannot be filled from any of the outer edges of a rectangle you specify. You can then use
these masks with the CopyBits , CopyMask , and CopyDeepMask procedures.

By default, SeedCFill returns 1’s in the mask to indicate all pixels adjacent to a seed
point whose colors do not exactly match the RGBColor record for the pixel at the
seed point. By default, CalcCMask returns 1’s in the mask to indicate what pixels have
the exact RGB value that you specify in the seedRGB parameter, as well as which pixels
are enclosed by shapes whose outlines consist entirely of pixels with this exact color.
These procedures use a default color search function that matches exact colors.

You can customize these procedures by writing your own color search function and
pointing to it in the matchProc parameters to these procedures, which then use your
procedure instead of the default.

MyColorSearch

Here’s how to declare a color search function to supply to the SeedCFill or
CalcCMask procedure if you were to name the function MyColorSearch:

FUNCTION MyColorSearch (rgb: RGBColor;

 position: LongInt): Boolean;

rgb The RGBColor record for a pixel.

position The position of the pixel within an image.

DESCRIPTION

Your color search function should analyze the RGBColor record passed to it in the rgb
parameter. To mask a pixel approximating that color, your color search function should
return TRUE; otherwise, it should return FALSE.

Your application should compare the RGBColor records that SeedCFill passes to your
color search function against the RGBColor record for the pixel at the seed point you
specify in that procedure’s seedH and seedV parameters.

CHAPTER 4

Color QuickDraw

4-102 Color QuickDraw Reference

You can use a MatchRec record to determine the color of the seed pixel. When
SeedCFill calls your color search function, the GDRefCon field of the current
GDevice record (described in the chapter “Graphics Devices”) contains a pointer to a
MatchRec record that describes the seed point. This record has the following structure:

MatchRec =

RECORD

red: Integer; {red component of seed pixel}

green: Integer; {green component of seed pixel}

blue: Integer; {blue component of seed pixel}

matchData: LongInt; { value in matchData parameter of }

{ SeedCFill procedure }

END;

The matchData field contains whatever value you pass to SeedCFill in the
matchData parameter. In the matchData parameter, for instance, your application
could pass the handle to a color table. Your color search function could then check
whether the color for the pixel currently under analysis matches any of the colors in the
table.

Similarly, your application should compare the colors that CalcCMask passes to your
color search function against the color that you specify in that procedure’s seedRGB
parameter. When CalcCMask calls your color search function, the GDRefCon field of the
current GDevice record (described in the chapter “Graphics Devices”) contains a
pointer to a MatchRec record for your seed color. The matchData field of this record
contains whatever value you pass to CalcCMask in the matchData parameter.

Resources
This section describes the pixel pattern ('ppat') resource, the color table ('clut')
resource, and the color icon ('cicn') resource. Your application can use a
'ppat' resource to create multicolored patterns for drawing. Your application can use a
'clut' resource to define available colors for a pixel map or an indexed device. When
you want to display a color icon within some element of your application (such as within
a menu, an alert box, or a dialog box), you can create a 'cicn' resource. These resource
types should be marked as purgeable.

Note

These Color QuickDraw resources are compound structures and are
more complex than a simple resource handle. When your application
requests one of these resources, Color QuickDraw reads the requested
resource, copies it, and then alters the copy before passing it to your
application. Each time your application calls Get PixPat , for
example, your application gets a new copy of a pixel pattern resource;
therefore, your application should call Get PixPat only once for a
particular pixel pattern resource. ◆

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-103

The Pixel Pattern Resource

You can use a pixel pattern resource to define a multicolored pattern to display with
Color QuickDraw routines. A pixel pattern resource is a resource of type 'ppat' . All
'ppat' resources should be marked purgeable, and they must have resource IDs greater
than 128. Use the GetPixPat function (described on page 4-88) to create a pixel pattern
defined in a 'ppat' resource. Color QuickDraw uses the information you specify to
create a PixPat record in memory. (The PixPat record is described on page 4-58.)

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level tool
such as the ResEdit application, also available through APDA, to create 'ppat'
resources. You can then use the DeRez decompiler to convert your 'ppat' resources
into Rez input when necessary.

The compiled output format for a 'ppat' resource is illustrated in Figure 4-16.

Figure 4-16 Format of a compiled pixel pattern ('ppat') resource

The compiled version of a 'ppat' resource contains the following elements:

■ A pattern record. This is similar to the PixPat record (described on page 4-58), except
that the resource contains an offset (rather than a handle) to a PixMap record (which
is included in the resource), and it contains an offset (rather than a handle) to the
pattern image data (which is also included in the resource).

■ A pixel map. This is similar to the PixMap record (described on page 4-46), except
that the resource contains an offset (rather than a handle) to a color table (which is
included in the resource).

■ Pattern image data. The size of the image data is calculated by subtracting the offset to
the image data from the offset to the color table data.

■ A color table. This follows the same format as the color table ('clut') resource
described next.

CHAPTER 4

Color QuickDraw

4-104 Color QuickDraw Reference

The Color Table Resource

You can use a color table resource to define a color table for a pixel pattern or an indexed
device. To retrieve a color table stored in a color table resource, use the GetCTable
function described on page 4-92. A color table resource is a resource of type 'clut' . All
'clut' resources should be marked purgeable, and they must have resource IDs greater
than 128.

This section describes the structure of this resource after it has been compiled by the Rez
resource compiler, available from APDA. However, you typically use a high-level tool
such as the ResEdit application, also available through APDA, to create 'clut'
resources. You can then use the DeRez decompiler to convert your 'clut' resources
into Rez input when necessary.

The compiled output format for a 'clut' resource is illustrated in Figure 4-17.

Figure 4-17 Format of a compiled color table ('clut') resource

The compiled version of a 'clut' resource contains the following elements:

■ Seed. This contains the resource ID for this resource.

■ Flags. A value of $0000 identifies this as a color table for a pixel map. A value of $8000
identifies this as a color table for an indexed device.

■ Size. One less than the number of color specification entries in the rest of this resource.

■ An array of color specification entries. Each entry contains a pixel value and a color
specified by the values for the red, green, and blue components of the entry.

CHAPTER 4

Color QuickDraw

Color QuickDraw Reference 4-105

There are several default 'clut' resources for Macintosh computers containing 68020
and later processors. There is a default 'clut' resource for each of the standard pixel
depths. The resource ID for each is the same as the pixel depth. For example, the default
'clut' resource for screens supporting 8 bits per pixel has a resource ID of 8.

Another default 'clut' resource defines the eight colors available for basic
QuickDraw’s eight-color system. This 'clut' resource has a resource ID of 127.

The Color Icon Resource

When you want to display a color icon within some element of your application (such as
within a menu, an alert box, or a dialog box), you can create a color icon resource. A
color icon resource is a resource of type 'cicn' . All color icon resources must be
marked purgeable, and they must have resource IDs greater than 128. The 'cicn'
resource was introduced with early versions of Color QuickDraw and is described here
for completeness.

Using color icon resources, you can create icons similar to the ones that the Finder uses
to display your application’s files on the desktop; however, the Finder does not use or
display any resources that you create of type 'cicn' . Instead, your application uses
icon resources of type 'cicn' to display icons from within your application. (For
information about the small and large 4-bit and 8-bit color icon resources—types
'ics4' , 'icl4' , 'ics8' , and 'icl8' —necessary to define an icon family for the
Finder’s use, see Inside Macintosh: Macintosh Toolbox Essentials.)

Generally, you use color icon resources in menus, alert boxes, and dialog boxes, as
described in the chapters “Menu Manager” and “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. If you provide a color icon ('cicn') resource with the same
resource ID as an icon ('ICON') resource, the Menu Manager and the Dialog Manager
display the color icon instead of the black-and-white icon for users with color monitors.
For information about drawing color icons without the aid of the Menu Manager or
Dialog Manager (for example, to draw an icon in a window), see the chapter “Icon
Utilities” in Inside Macintosh: More Macintosh Toolbox.

You can use a high-level tool such as the ResEdit application to create color icon
resources. You can then use the DeRez decompiler to convert your color icon resources
into Rez input when necessary.

CHAPTER 4

Color QuickDraw

4-106 Color QuickDraw Reference

The compiled output format for a 'cicn' resource is illustrated in Figure 4-18.

Figure 4-18 Format of a compiled color icon ('cicn') resource

The compiled version of a 'cicn' resource contains the following elements:

■ A pixel map. This pixel map describes the image when drawing the icon on a color
screen.

■ A bitmap for the icon’s mask.

■ A bitmap for the icon. This contains the image to use when drawing the icon to a 1-bit
screen.

■ Icon data.

■ The bitmap image data for the icon’s mask.

■ The bitmap image data for the bitmap to be used on 1-bit screens. It may be NIL .

■ A color table containing the color information for the icon’s pixel map.

■ The image data for the pixel map.

See the chapter “Icon Utilities” in Inside Macintosh: More Macintosh Toolbox for
information about Macintosh Toolbox routines available to help you display icons.

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-107

Summary of Color QuickDraw

Pascal Summary

Constants

CONST

{ checking for Color QuickDraw and its features}

gestaltQuickdrawVersion = 'qd '; {Gestalt selector for Color QuickDraw}

gestalt8BitQD = $100; {8-bi t Co lor QD}

gestalt32BitQD = $200; {32-bi t Co lor QD}

gestalt32BitQD11 = $210; {32-bi t Co lor QDv1.1}

gestalt32BitQD12 = $220; {32-bi t Co lor QDv1.2}

gestalt32BitQD13 = $230; {System 7: 32-bi t Co lor QDv1.3}

gestaltQuickdrawFeatures = 'qdrw'; { Gestalt selector for Color }

{ QuickDraw features}

gestaltHasColor = 0; {Color QuickDraw is present}

gestaltHasDeepGWorlds = 1; {GWorlds deeper than 1 bit}

gestaltHasDirectPixMaps = 2; {PixMaps can be direct--16 or 32 bit}

gestaltHasGrayishTextOr = 3; {supports text mode grayishTextOr}

{source modes fo r color g raphics ports}

srcCop y = 0 ; { determine how close the color of the sourc e p ixe l is }

{ to black, and assign this relative amount of }

{ foreground color to the d estination pixe l; determine }

{ how close the color of the source pixel is to white, }

{ and assign this relative amount of background }

{ color to the destination pixel}

srcOr = 1 ; { determine how close the color of the sourc e p ixe l is }

{ to black, and assign this relative amount of }

{ foreground color to the d estination pixe l}

srcXor = 2; {where source pixel is black, invert the destination }

{ pixel--for a colored destination pixel, use the }

{ complement of its color if the pixel is direct, }

{ invert its index if the pixel is indexed}

srcBic = 3 ; { determine how close the color of the sourc e p ixe l is }

{ to black, and assign this relative amount of }

{ background color to the d estination pixe l}

CHAPTER 4

Color QuickDraw

4-108 Summary of Color QuickDraw

notSrcCopy = 4 ; { determine how close the color of the sourc e p ixe l is }

{ to black, and assign this relative amount of }

{ background color to the d estination pixe l; determine }

{ how close the color of the source pixel is to white, }

{ and assign this relative amount of foreground color }

{ to the destination pixel}

notSrcOr = 5 ; { determine how close the color of the sourc e p ixe l is }

{ to white, and assign this relative amount of }

{ foreground color to the d estination pixe l}

notSrcXor = 6 ; { where source pixel is white, inver t the d estinatio n }

{ pixel--for a colored destination pixel, use the }

{ complement of its color if the pixel is direct, }

{ invert its index if the pixel is indexed}

notSrcBic = 7 ; { determine how close the color of the sourc e p ixe l is }

{ to white, and assign this relative amount of }

{ background color to the d estination pixe l}

{sp ecial text transfer mode}

grayishTextOr = 49;

{ar ithmetic transfer mode s available in Color QuickDraw}

blend = 32; {replace destination pixel with a blen d o f the source }

{ a nd destination pixe l c olors; if the destination is }

{ a bitmap o r 1 -bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum o f t he source }

{ a nd destination pixel colors- -u p to a maximum }

{ a llowabl e v alue; i f t he destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of the source }

{ a nd destination pixel colors- -but if the value of }

{ the red, green, or blue component e xceeds 65,536 , }

{ then s ubtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bi t p ixel map, revert }

{ t o srcXor mode}

subPin = 35; {replace destination pixel with th e d ifference of the }

{ s ource and destinatio n p ixel colors--but not less }

{ t han a minimu m a llowabl e v alue; if the destination }

{ is a bitmap or 1-bit pixel map, revert t o s rcOr mode}

addMax = 37; {compare the source and destination pixels , a nd }

{ replace t he destination pixel wit h t he color }

{ c ontaining the greate r s aturation of each of the RGB }

{ c omponents ; i f the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-109

subOver = 38 ; {replace destination pixel with th e d ifference of the }

{ s ource and destinatio n p ixel colors- -but if the }

{ value of the red, green, or blue component is l ess }

{ t han 0, add the negative result t o 6 5,536; if the }

{ d estination is a bitmap o r 1 -bit pixel map, revert }

{ t o sr cXor m ode}

adMin = 39; {compare the source and destination pixels , a nd }

{ replace the destination pixel wit h t he color }

{ c ontainin g t he lesse r s aturation of each of the RGB }

{ c omponents ; i f the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

{tr ansparent mode constan t}

transparen t = 36 ; { replace the destination pixel with th e s ource pixe l }

{ if t he source pixel is n't e qual to the background }

{ c olor }

hilite = 50; {add to source or pattern mode for highlighting}

hiliteBit = 7 ; { flag bit in HiliteMode (lowMem flag)}

pHiliteBit = 0 ; { flag bit in HiliteMode used with BitClr procedure}

defQDColors = 127; {resource ID of ' clut ' for default QDColors}

{pixel type}

RGBDirect = 16; {1 6 & 32 bit s per p ixel pixelType valu e}

{p mVersion value s}

baseAddr32 = 4; {pixmap base address is 32-bit address}

Data Types

TYPE PixMap =

RECORD

baseAddr: Ptr; {p ixel image}

rowBytes: Integer; {flags, and row width}

bounds: Rect; {boundary rectangle}

pmVersion: Integer; { PixMap record version number}

packType: Integer; {packing format}

packSize: LongInt; {size of data in packed state}

hRes: Fixed; {horizontal resolution (dpi)}

vRes: Fixed; {vertical resolutio n (dpi)}

pixelType: Integer; {format of pixel image}

pixelSize: Integer; {physical bits per pixel}

CHAPTER 4

Color QuickDraw

4-110 Summary of Color QuickDraw

cmpCount: Integer; {logical components per pixel}

cmpSize: Integer; {logical bits per component}

planeBytes: LongInt; {offset to next plane}

pmTable: CTabHandle; {handle to color table for this image}

pmReserved: LongInt ; {reserved for future expansion}

END;

CGrafPtr = ^CGrafPort;

CGrafPort =

RECORD

device: Integer; {device ID for font selection}

portPixMap: PixMapHandle; {handle to PixMap record}

portVersion: Integer; {highest 2 bits always set}

grafVars: Handle; {handle to GrafVars record}

chExtra: Integer; {added width for nonspace characters}

pnLocHFrac: Integer; {pen fraction}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPixPat: PixPatHandle; {background pattern}

rgbFgColor: RGBColor; {requested foreground color}

rgbBkColor: RGBColor; {requested background color}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPixPat: PixPatHandle; {pen pattern}

fillPixPat: PixPatHandle; {fill pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text's font style}

txMode: Integer; {source mode for text }

txSize: Integer; {font size for text}

spExtra: Fixed; {added width for space characters}

fgColor: LongInt; {actual foreground color}

bkColor: LongInt; {actual background color}

colrBit: Integer; {plane being drawn}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: CQDProcsPtr ; {low-level drawing routines}

END;

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-111

RGBColor =

RECORD

red: Integer; {red component}

green: Integer; {green component}

blue: Integer; {blue component}

END;

ColorSpec =

RECORD

value: Integer; {index or other value}

rgb: RGBColor; {true color}

END;

cSpecArray : ARRA Y[0..0] OF ColorSpec;

CTabHandle = ^CTabPtr;

CTabPtr = ^ColorTable;

ColorTable =

RECORD

ctSeed: LongInt; {unique identifier from table}

ctFlags: Integer; {contains flags describing the ctTable field; }

{ c lear for a PixMap record }

ctSize: Integer; {number of entries in the next field minus 1}

ctTable: cSpecArray; {an array of ColorSpec records}

END;

MatchRec =

RECORD

red: Integer; {red component of seed}

green: Integer; {green component of seed}

blue: Integer; {blue component of seed}

matchData: LongInt; { value in matchData parameter of }

{ SeedCFill or C alcC Mask}

END;

CHAPTER 4

Color QuickDraw

4-112 Summary of Color QuickDraw

PixPatHandle = ^PixPatPtr;

PixPatPtr = ^PixPat;

PixPat =

RECORD

patType : Integer; {pattern type}

patMap: PixMapHandle; {PixMap record for pattern}

patData: Handle; {pixel image defining pattern}

patXData: Handle; {expanded pixel image}

patXValid: Integer; {flags for expanded pattern data}

patXMap: Handle; {handle to expanded pattern data}

pat1Data: Pattern; {bit pattern for a GrafPort record}

END;

CQDProcsPtr = ^CQDProcs

CQDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {rounded rectangle drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc and wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr ; { picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr; {picture saving }

opcodeProc: Ptr; { reserve d for future use}

newProc1: Ptr; {reserved for future use}

newProc2: Ptr; {reserved for future use}

newProc3: Ptr; {reserved for future use}

newProc4: Ptr; {reserved for future use}

newProc5: Ptr; {reserved for future use}

newProc6: Ptr; {reserved for future use}

END;

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-113

GrafVars =

RECORD

rgbOpColor: RGBColor; {color for addPin, subPin, and blend}

rgbHiliteColor: RGBColor; {color for hi ghli ghting}

pmFgColor: Handle; {palette handle for foreground color}

pmFgIndex: Integer; {index value for foreground}

pmBkColor: Handle; {palette handle for background color}

pmBkIndex: Integer; {index value for background}

pmFlags: Integer; {flags for Palette Manager}

END;

Color QuickDraw Routines

Opening and Closing Color Graphics Ports

PROCEDURE OpenCPort (port: CGrafPtr);

PROCEDURE InitCPort (port: CGrafPtr);

PROCEDURE CloseCPort (port: CGrafPtr);

Managing a Color Graphics Pen

PROCEDURE PenPixPat (ppat: PixPatHandle);

Changing the Background Pixel Pattern

PROCEDURE BackPixPat (ppat: PixPatHandle);

Drawing With Color QuickDraw Colors

PROCEDURE RGBForeColor (colo r: RGBColor);

PROCEDURE RGBBackColor (colo r: RGBColor);

PROCEDURE SetCPixel (h,v: Integer; cPix: RGBColor);

PROCEDURE FillCRect (r: Rect; ppat: PixPatHandle);

PROCEDURE FillCRoundRect (r: Rect; ov al Wi dth ,ov al Heigh t: Integer;
ppat: PixPatHandle);

PROCEDURE FillCOval (r: Rect; ppat: PixPatHandle);

PROCEDURE FillCArc (r: Rect; startAngle,arcAngle: Integer;
ppat: PixPatHandle);

CHAPTER 4

Color QuickDraw

4-114 Summary of Color QuickDraw

PROCEDURE FillCPoly (poly: PolyHandle; ppat: PixPatHandle);

PROCEDURE FillCRgn (rgn: RgnHandle; ppat: PixPatHandle);

PROCEDURE OpColor (color: RGBColor);

PROCEDURE HiliteColor (color: RGBColor);

Determining Current Colors and Best Intermediate Colors

PROCEDURE GetForeColor (VAR colo r: RGBColor);

PROCEDURE GetBackColor (VAR colo r: RGBColor);

PROCEDURE GetCPixel (h,v: Integer; VAR cPix: RGBColor);

FUNCTION GetGray (device: GDHandle; backGround: RGBColor;
VAR foreGround: RGBColor): Boolean;

Calculating Color Fills

PROCEDURE SeedCFill (srcBits ,d stBits: BitMap;
srcRect ,d stRect: Rect; seedH ,s eedV: Integer;
matchProc: ProcPtr; matchData: LongInt);

PROCEDURE CalcCMask (srcBits ,d stBits: BitMap;
srcRect ,d stRect: Rect; seedRGB: RGBColor;
matchProc: ProcPtr; matchData: LongInt);

Creating, Setting, and Disposing of Pixel Maps

{DisposePixMap is also spelled as DisposPixMap}

FUNCTION NewPixMap : PixMapHandle;

PROCEDURE CopyPixMap (srcPM,dstPM: PixMapHandle);

PROCEDURE SetPortPix (pm: PixMapHandle);

PROCEDURE DisposePixMap (pm: PixMapHandle);

Creating and Disposing of Pixel Patterns

{DisposePixPat is also spelled as DisposPixPat}

FUNCTION GetPixPat (patID: Integer): PixPatHandle;

FUNCTION NewPixPa t : P ixPatHandle;

PROCEDURE CopyPixPat (srcPP,dstPP: PixPatHandle);

PROCEDURE MakeRGBPat (ppat: PixPatHandle; myColor: RGBColor);

PROCEDURE DisposePixPat (ppat: PixPatHandle);

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-115

Creating and Disposing of Color Tables

{DisposeCTable is also spelled as DisposCTable}

FUNCTION GetCTable (ctID: Integer): CTabHandle;

PROCEDURE DisposeCTable (cTable: CTabHandle);

Retrieving Color QuickDraw Result Codes

FUNCTION QDError: Integer;

Customizing Color QuickDraw Operations

PROCEDURE SetStdCProcs (VAR cProcs: CQDProcs);

Reporting Data Structure Changes to QuickDraw

PROCEDURE CTabChanged (ctab: CTabHandle) ;

PROCEDURE PixPatChanged (ppat: PixPatHandle);

PROCEDURE PortChanged (port: GrafPtr);

PROCEDURE GDeviceChanged (gdh: GDHandle);

Application-Defined Routine

FUNCTION MyColorSearch (rgb: RGBColor; position: LongInt): Boolean;

C Summary

Constants

enum {

/ * checking for Color QuickDraw and its features */

gestaltQuickdrawVersion = 'qd ', /* Gestalt selector for Color

QuickDraw */

gestalt8BitQD = 0x100, /* 8-bi t Co lor QD */

gestalt32BitQD = 0x200, /* 32-bi t Co lor QD */

gestalt32BitQD11 = 0x210, /* 32-bi t Co lor QDv1.1 */

gestalt32BitQD12 = 0x220, /* 32-bi t Co lor QDv1.2 */

gestalt32BitQD13 = 0x230, /* System 7: 32-bi t Co lor QDv1.3 */

gestaltQuickdrawFeatures

= 'qdrw', /* Gestalt selector for Color QuickDra w

features */

gestaltHasColor = 0, /* Color QuickDraw is present */

CHAPTER 4

Color QuickDraw

4-116 Summary of Color QuickDraw

gestaltHasDeepGWorlds = 1, /* GWorlds deeper than 1 bit */

gestaltHasDirectPixMaps = 2, /* PixMaps can be direct--16 or 32 bit */

gestaltHasGrayishTextOr = 3, /* supports text mode grayishTextOr */

/* source modes for color graphics port s */

srcCop y = 0 , / * determine how close the color of the source pixel is

t o black, and assign this relativ e a mount o f

f oreground color to th e d estination pixel ; d etermin e

how close th e c olor of the source pixel is to white,

and a ssign this relative amount of backgroun d c olo r

t o the destination pixel */

srcO r = 1 , / * determine how close the color of the sourc e p ixel i s

to black, and assign this relativ e a mount o f

f oregroun d c olor to th e d estination pixel */

srcXo r = 2 , / * where source pixel is black, invert th e d estinatio n

pixel- -for a colored destination pixel, use the

complement of its color if the pixel is direct,

invert its index if the pixel is indexed */

srcBi c = 3 , / * determine how close the color of the sourc e p ixel i s

 t o black, and assign this relativ e a mount o f

 b ackgroun d c olor to th e d estination pixel */

notSrcCop y = 4 , / * determine how close the color of the sourc e p ixel i s

t o black, and assign this relativ e a mount o f

backgroun d c olor to th e d estination pixel; determin e

how close th e c olor of the source pixel is to white ,

and a ssign this relative amount of foregroun d c olo r

t o the destination pixel */

notSrcO r = 5 , / * determine how close the color of the sourc e p ixel i s

to w hite, and assign this relativ e a mount o f

f oregroun d c olor to th e d estination pixel */

notSrcXo r = 6 , / * where source pixel is white, inver t d estinatio n

pixel--for a colored destination pixel, use the

complement of its color if the pixel is direct,

invert its index if the pixel is indexed */

notSrcBi c = 7 , / * determine how close the color of the sourc e p ixel i s

t o white, and assign this relativ e a mount o f

backgroun d c olor to th e d estination pixel */

/* special text transfer mode */

grayishTextOr = 49,

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-117

/* arithmetic transfer modes available in Color QuickDraw */

blend = 32, /* replace destination pixel with a blen d o f the sourc e

and destination pixe l c olors; if the destination is a

bitmap o r 1 -bit pixel map, revert to srcCopy mode */

addPin = 33, /* replace destination pixel with the sum o f t he sourc e

and destination pixel colors- -u p to a maximu m

allowabl e v alue; i f t he destination is a bitmap o r

1-bit pixel map, revert to srcBic mode */

addOver = 34, /* replace destination pixel with the sum o f t he sourc e

and destination pixel colors- -but if the value of

the red, green, or blue component e xceeds 65,53 6,

subtract 65,536 from that value; if th e d estinatio n

is a bitmap or 1-bi t p ixel map, revert to srcXo r

mode */

subPin = 35, / * r eplace destination pixel with th e d ifference of th e

source and destinatio n p ixel colors--but not les s

t han a minimu m a llowabl e v alue; if the destinatio n is

a bitmap or 1-bit pixel map, revert t o s rcOr mode */

addMax = 37, /* compare the source and destination pixels , a nd

r eplac e t he destination pixel wit h t he color

containing the greate r s aturation of each of the RG B

components ; i f the destination is a bitmap o r 1 -bit

pixel map, revert to srcBic mode */

subOver = 38, /* replace destination pixel with th e d ifference of th e

source and destinatio n p ixel colors--but if th e v alu e

of the red, green, or blue component is l ess than 0,

add the negative result t o 6 5,536; if the destinatio n

i s a bitmap o r 1 -bit pixel map, revert to

sr cXor m ode * /

adMin = 39, /* compare the source and destination pixels , a nd

r eplac e t he destination pixel wit h t he color

containin g t he lesse r s aturation of each of the RGB

components ; i f the destination is a bitmap o r 1 -bit

pixel map, revert to srcOr mode */

/ * tr ansparent mode constant */

transparent = 36, /* replace the destination pixel with th e s ource pixel

i f the source pixel is n't e qual to the backgroun d

color */

CHAPTER 4

Color QuickDraw

4-118 Summary of Color QuickDraw

hilite = 50, /* add to source or pattern mode for highlighting */

hiliteBi t = 7, /* flag bit in highlight mode (lowMem flag) */

pHiliteBi t = 0, /* flag bit in highlight mode used with BitCl r

procedure */

defQDColors = 127 , / * resource ID of ' clut ' f or default QDColors */

/* pixel type */

RGBDirect = 16, /* 16 & 32 bits/pixel pixelType value */

/* pmVersion values */

baseAddr32 = 4, /* pi xel map base address is 32-bit address * /

} ;

Data Types

struct PixMap {

Ptr baseAddr; / * p ixel image */

short rowBytes; /* flags, and row width */

Rect bounds; /* boundary rectangle */

short pmVersion; /* PixMap version number */

short packType; /* packing format */

long packSize; /* size of data in packed state */

Fixed hRes; /* horizontal resolution (dpi) */

Fixed vRes; /* vertical resolution (dpi) */

short pixelType; /* format of pixel image */

short pixelSize; /* physical bits per pixel */

short cmpCount; /* logical components per pixel */

short cmpSize; /* logical bits per component */

lon g planeBytes; /* offset to next plane */

CTabHandl e pmTable ; / * handle to the ColorTable struct */

long pmReserved; /* reserved for future expansion; must be 0 */

};

typedef struct PixMap PixMap;

typedef PixMap *PixMapPtr, **PixMapHandle;

typedef unsigned char PixelType;

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-119

struct CGrafPort {

short device; /* device ID for font selection */

PixMapHandle portPixMap; /* handle to PixMap struct */

short portVersion; /* highest 2 bits always set */

Handle grafVars; /* handle to a GrafVars struct */

short chExtra; /* added width for nonspace characters */

short pnLocHFrac; /* pen fraction */

Rect portRect; /* port rectangle */

RgnHandle visRgn; /* visible region */

RgnHandle clipRgn; /* clipping region */

PixPatHandle bkPixPat; /* background pattern */

RGBColor rgbFgColor; /* requested foreground color */

RGBColor rgbBkColor; /* requested background color */

Point pnLoc; /* pen location */

Point pnSize; /* pen size */

short pnMode; /* pattern mode */

PixPatHandle pnPixPat; /* pen pattern */

PixPatHandle fillPixPat; /* fill pattern */

short pnVis; /* pen visibility */

short txFont; /* font number for text */

Style txFace; /* text's font style */

char filler;

short txMode; /* source mode for text */

short txSize; /* font size for te xt */

Fixed spExtra; /* added width for space characters */

long fgColor; /* actual foreground color */

long bkColor; /* actual background color */

short colrBit; /* plane being drawn */

short patStretch; /* used internally */

Handle picSave; /* picture being saved, used internally */

Handle rgnSave; /* region being saved, used internally */

Handle polySave; /* polygon being saved, used internally */

CQDProcsPtr grafProcs; /* low-level drawing routines */

};

typedef struct CGrafPort CGrafPort;

typedef CGrafPort *CGrafPtr;

typedef CGrafPtr CWindowPtr;

CHAPTER 4

Color QuickDraw

4-120 Summary of Color QuickDraw

struct RGBColor {

unsigned short red; /* magnitude of red component */

unsigned short green; /* magnitude of green component */

unsigned short blue; /* magnitude of blue component */

};

typedef struct RGBColor RGBColor;

struct ColorSpec {

shor t value ; / * index or other value */

RGBColor r gb; / * true color */

};

typedef struct ColorSpec ColorSpec;

typedef ColorSpec *ColorSpecPtr;

typedef ColorSpec CSpecArray[1];

struct ColorTable {

long ctSeed ; / * unique identifier for table */

short ctFlags ; / * high bit: 0 = PixMap; 1 = device */

short ctSize ; / * number of entries in next field */

CSpecArra y ctTable ; / * arra y[0 ..0] of ColorSpec records * /

};

typedef struct ColorTable ColorTable;

typedef ColorTable *CTabPtr, **CTabHandle;

struct MatchRec {

unsigned shor t r ed; / * red component of seed */

unsigned shor t g reen ; / * green component of seed */

unsigned shor t b lue ; / * blue component of seed */

lon g matchData ; / * value in matchData parameter o f

SeedCFill or C alcC Mask */

};

typedef struct MatchRec MatchRec;

struct PixPat {

short patType; /* pattern type */

PixMapHandle patMap; /* PixMap structure for pattern */

Handle patData; /* pixel-image defining pattern */

Handle patXData; /* expanded pattern image */

short patXValid; /* for expanded pattern data */

Handle patXMap; /* handle to expanded pattern data */

Pattern pat1Data; /* a bit pattern for a GrafPort structure */

};

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-121

typedef struct PixPat PixPat;

typedef PixPat *PixPatPtr, **PixPatHandle;

struct CQDProcs {

Ptr textProc; /* text drawing */

Ptr lineProc; /* line drawing */

Ptr rectProc; /* rectangle drawing */

Ptr rRectProc; /* rounded rectangle drawing */

Ptr ovalProc; /* oval drawing */

Ptr arcProc; /* arc/wedge drawing */

Ptr polyProc; /* polygon drawing */

Ptr rgnProc; /* region drawing */

Ptr bitsProc; /* bit transfer */

Ptr commentProc; /* picture comment processing */

Ptr txMeasProc; /* text width measurement */

Ptr getPicProc; /* picture retrieval */

Ptr putPicProc; /* picture saving */

Ptr opcodeProc; /* reserve d for future use */

Ptr newProc1; /* reserved for future use */

Ptr newProc2; /* reserved for future use */

Ptr newProc3; /* reserved for future use */

Ptr newProc4; /* reserved for future use */

Ptr newProc5; /* reserved for future use */

Ptr newProc6; /* reserved for future use */

};

typedef struct CQDProcs CQDProcs;

typedef CQDProcs *CQDProcsPtr;

struct GrafVars {

RGBColor rgbOpColor; /* color for addPin,subPin,and blend * /

RGBColor rgbHiliteColor; /* color for hi ghlighting */

Handle pmFgColor; /* palette handle for foreground color */

short pmFgIndex; / * i ndex value for foreground */

Handle pmBkColor; /* palette handle for background color */

short pmBkIndex; /* index value for background */

short pmFlags; /* flags for Palette Manager */

};

typedef struct GrafVars GrafVars;

typedef GrafVars *GVarPtr, **GVarHandle;

CHAPTER 4

Color QuickDraw

4-122 Summary of Color QuickDraw

Color QuickDraw Functions

Opening and Closing Color Graphics Ports

pascal void OpenCPort (CGrafPtr port);

pascal void InitCPort (CGrafPtr port);

pascal void CloseCPort (CGrafPtr port);

Managing a Color Graphics Pen

pascal void PenPixPat (PixPatHandle pp);

Changing the Background Pixel Pattern

pascal void BackPixPat (PixPatHandle pp);

Drawing With Color QuickDraw Colors

pascal void RGBForeColor (const RGBColor *color);

pascal void RGBBackColor (const RGBColor *color);

pascal void SetCPixel (short h, short v, const RGBColor *cPix);

pascal void FillCRect (const Rect *r, PixPatHandle pp);

pascal void FillCRoundRect (const Rect *r, short ovalWidth,
short ovalHeight, PixPatHandle pp);

pascal void FillCOval (const Rect *r, PixPatHandle pp);

pascal void FillCArc (const Rect *r, short startAngle,
short arcAngle, PixPatHandle pp);

pascal void FillCPoly (PolyHandle poly, PixPatHandle pp);

pascal void FillCRgn (RgnHandle rgn, PixPatHandle pp);

pascal void OpColor (const RGBColor *color);

pascal void HiliteColor (const RGBColor *color);

Determining Current Colors and Best Intermediate Colors

pascal void GetForeColor (RGBColor *color);

pascal void GetBackColor (RGBColor *color);

pascal void GetCPixel (short h, short v, RGBColor *cPix);

pascal Boolean GetGray (GDHandle device, const RGBColor *backGround,
RGBColor *foreGround);

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-123

Calculating Color Fills

pascal void SeedCFill (const BitMap *srcBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *dstRect,
short seedH, short seedV,
ColorSearchProcPtr matchProc, long matchData);

pascal void CalcCMask (const BitMap *srcBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *dstRect,
const RGBColor *seedRGB,
ColorSearchProcPtr matchProc, long matchData);

Creating, Setting, and Disposing of Pixel Maps

/* DisposePixMap is also spelled as DisposPixMap */

pascal PixMapHandle NewPixMap

(void);

pascal void CopyPixMap (PixMapHandle srcPM, PixMapHandle dstPM);

pascal void SetPortPix (PixMapHandle pm);

pascal void DisposePixMap (PixMapHandle pm);

Creating and Disposing of Pixel Patterns

/* DisposePixPat is also spelled as DisposPixPat */

pascal PixPatHandle GetPixPat
(short patID);

pascal PixPatHandle NewPixPat
(void);

pascal void CopyPixPat (PixPatHandle srcPP, PixPatHandle dstPP);

pascal void MakeRGBPat (PixPatHandle pp, const RGBColor *myColor);

pascal void DisposePixPat (PixPatHandle pp);

Creating and Disposing of Color Tables

/* DisposeCTable is also spelled as DisposCTable */

pascal CTabHandle GetCTable
(short ctID);

pascal void DisposeCTable (CTabHandle cTable);

Retrieving Color QuickDraw Result Codes

pascal short QDError (void);

CHAPTER 4

Color QuickDraw

4-124 Summary of Color QuickDraw

Customizing Color QuickDraw Operations

pascal void SetStdCProcs (CQDProcs *procs);

Reporting Data Structure Changes to QuickDraw

pascal void CTabChanged (CTabHandle ctab) ;

pascal void PixPatChanged (PixPatHandle ppat);

pascal void PortChanged (GrafPtr port);

pascal void GDeviceChanged (GDHandle gdh);

Application-Defined Function

pascal Boolean MyColorSearch (rgb RGBColor, position LongInt);

Assembly-Language Summary

Data Structures

PixMap Data Structure

0 pmBaseAddr long pixel image
4 pmRowBytes word flags, and row width
6 pmBounds 8 bytes boundary rectangle

14 pmVersion word PixMa p version number
16 pmPackType word packing format
18 pmPackSize long size of data in packed state
22 pmHRes long horizontal resolution (dpi)
26 pmVRes long vertical resolution (dpi)
30 pmPixelType word format of pixel image
32 pmPixelSize word physical bits per pixel
34 pmCmpCount word logical components per pixel
36 pmCmpSize word logical bits per component
38 pmPlaneBytes long offset to next plane
42 pmTable long handle to next ColorTable record
46 pmReserved long reserved; must be 0

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-125

CGrafPort Data Structure

Relative Offsets of Additional Fields in a CGrafPort Record

0 device short device ID for font selection
2 portPixMap long handle to PixMap record
6 portVersion short highest 2 bits always set
8 gr afVars long handle to GrafVars record

12 chExtra short added width for nonspace characters
14 pnLocHFrac short pen fraction
16 portRect 8 bytes port rectangle
24 visRgn long visible region
28 clipRgn long clipping region
32 bkPixPat long background pattern
36 rgbForeColor 6 bytes requested foreground color
42 rgbBackColor 6 bytes requested background color
48 pnLoc long pen location
52 pnSize long pen size
56 pnMode word pattern mode
58 pnPixPat long pen pattern
62 fillPixPat long fill pattern
66 pnVis word pen visibility
68 txFont word font number for text
70 txFace word text’s font style
72 txMode word source mode for text
74 txSize word font size for text
76 spExtra long added width for space characters
80 fgColor long actual foreground color
84 bkColor long actual background color
88 colrBit word plane being drawn
90 patStretch word used internally
92 picSave long picture being saved, used internally
96 rgnSave long region being saved, used internally

100 polySave long polygon being saved, used internally
104 grafProcs long low-level drawing routines

portBits portPixMap long handle to PixMap record
portPixMap+4 portVersion word highest 2 bits always set
portVersion+2 grafVars long handle to a GrafVars record
grafVars+4 chExtra word added width for nonspace characters
chExtra+2 pnLocHFrac word pen fraction
bkPat bkPixPat long background pattern
bkPixPat+ 4 rgbFgColor 6 bytes requested foreground color
rgbFgColor+6 rgbBkColor 6 bytes requested background color
pnPat pnPixPat long pen pattern
pnPixPat+4 fillPixPat long fill pattern

CHAPTER 4

Color QuickDraw

4-126 Summary of Color QuickDraw

RGBColor Data Structure

ColorSpec Data Structure

ColorTable Data Structure

MatchRec Data Structure

PixPat Data Structure

0 red short magnitude of red component
2 green short magnitude of green component
4 blue short magnitude of blue component

0 value short index or other value
2 rgb 6 bytes true color

0 ctSeed long unique identifier for table
4 transIndex word index of transparent pixel (obsolete)
8 ctFlags word high bit: 0 = pixel map; 1 = device

10 ctSize word number of entries in next field
12 ctTable variable array of ColorSpe c records

0 red word red component of seed
2 green word green component of seed
4 blue word blue component of seed
6 matchData long value in matchData parameter of SeedCFill or CalcCMask

0 patType word pattern type
2 patMap long handle to PixMap record for pattern
6 patData long pixel-image defining pattern

10 patXData long expanded pattern data
14 patXValid word for expanded pattern data
16 patXMap long handle to expanded pattern data
20 pat1Data 8 bytes a bit pattern for a GrafPort record

CHAPTER 4

Color QuickDraw

Summary of Color QuickDraw 4-127

CQDProcs Data Structure

GrafVars Data Structure

Trap Macros Requiring Routine Selectors

_QDExtensions

0 textProc long pointer to text-drawing routine
4 lineProc long pointer to line-drawing routine
8 rectProc long pointer to rectangle-drawing routine

12 rRectProc long pointer to rounded rectangle–drawing routine
16 ovalProc long pointer to oval-drawing routine
20 arcProc long pointer to arc/wedge-drawing routine
24 polyProc long pointer to polygon-drawing routine
28 rgnProc long pointer to region-drawing routine
32 bitsProc long pointer to bit transfer routine
36 commentProc long pointer to picture comment–processing routine
40 txMeasProc long pointer to text-width measurement routine
44 getPicProc long pointer to picture retrieval routine
48 putPicProc long pointer to picture-saving routine
52 opcodeProc long reserved for future use
56 newProc1 long reserved for future use
60 newProc2 long reserved for future use
64 newProc3 long reserved for future use
68 newProc4 long reserved for future use
72 newProc5 long reserved for future use
76 newProc6 long reserved for future use

0 rgbOpColor 6 bytes color for addPin , subPin , and blend
6 rgbHiliteColor 6 bytes color for highlighting

12 pmFgColor long palette handle for foreground color
16 pmFgIndex short index value for foreground color
18 pmBkColor long palette handle for background color
22 pmBkIndex short index value for background color
24 pmFlags short flags for Palette Manager

Selector Routine

$00040007 CTabChanged

$00040008 PixPatChanged

$00040009 PortChanged

$0004000A GDeviceChanged

CHAPTER 4

Color QuickDraw

4-128 Summary of Color QuickDraw

Result Codes
noErr 0 No error
paramErr –50 Illegal parameter to NewGWorld

–143 CopyBits couldn’t allocate required temporary memory
–144 Ran out of stack space while drawing polygon

noMemForPictPlaybackErr –145 Insufficient memory for drawing the picture
regionTooBigError –147 Region too big or complex
pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
nsStackErr –149 Insufficient stack
cMatchErr –150 Color2Index failed to find an index
cTempMemErr –151 Failed to allocate memory for temporary structures
cNoMemErr –152 Failed to allocate memory for structure
cRangeErr –153 Range error on color table request
cProtectErr –154 ColorTable record entry protection violation
cDevErr –155 Invalid type of graphics device
cResErr –156 Invalid resolution for MakeITable
cDepthErr –157 Invalid pixel depth specified to NewGWorld
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

