
Contents 3-1

CHAPTER 3

Contents

QuickDraw Drawing

About QuickDraw Drawing 3-3
The Graphics Pen 3-4
Bit Patterns 3-5
Boolean Transfer Modes With 1-Bit Pixels 3-8
Lines and Shapes 3-11

Defining Lines and Shapes 3-11
Framing Shapes 3-12
Painting and Filling Shapes 3-12
Erasing Shapes 3-12
Inverting Shapes 3-13
Other Graphic Entities 3-13

The Eight Basic QuickDraw Colors 3-14
Drawing With QuickDraw 3-16

Drawing Lines 3-17
Drawing Rectangles 3-22
Drawing Ovals, Arcs, and Wedges 3-25
Drawing Regions and Polygons 3-27
Performing Calculations and Other Manipulations of Shapes 3-31
Copying Bits Between Graphics Ports 3-32
Customizing QuickDraw’s Low-Level Routines 3-35

QuickDraw Drawing Reference 3-36
Data Structures 3-36
Routines 3-41

Managing the Graphics Pen 3-41
Changing the Background Bit Pattern 3-48
Drawing Lines 3-49
Creating and Managing Rectangles 3-52
Drawing Rectangles 3-58
Drawing Rounded Rectangles 3-63
Drawing Ovals 3-68

CHAPTER 3

3-2 Contents

Drawing Arcs and Wedges 3-71
Creating and Managing Polygons 3-78
Drawing Polygons 3-81
Creating and Managing Regions 3-85
Drawing Regions 3-100
Scaling and Mapping Points, Rectangles, Polygons, and Regions 3-104
Calculating Black-and-White Fills 3-108
Copying Images 3-112
Drawing With the Eight-Color System 3-122
Determining Whether QuickDraw Has Finished Drawing 3-125
Getting Pattern Resources 3-126
Customizing QuickDraw Operations 3-129

Resources 3-140
The Pattern Resource 3-140
The Pattern List Resource 3-141

Summary of QuickDraw Drawing 3-142
Pascal Summary 3-142

Constants 3-142
Data Types 3-144
Routines 3-145

C Summary 3-149
Constants 3-149
Data Types 3-151
Functions 3-152

Assembly-Language Summary 3-157
Data Structures 3-157
Global Variables 3-158

CHAPTER 3

About QuickDraw Drawing 3-3

QuickDraw Drawing

This chapter describes routines common to both basic QuickDraw and Color QuickDraw
that you can use to draw lines, rectangles, rounded rectangles, ovals, arcs, wedges,
polygons, and regions, and to copy images from one graphics port to another. This
chapter also describes the routines that you can use to perform calculations and other
manipulations of these shapes—including comparing them and finding their unions and
intersections, and moving, shrinking, and expanding them.

Read this chapter to learn how to draw on all models of Macintosh computers. All of the
routines described in this chapter depend on your application to create a graphics port
drawing environment as described in the previous chapter, “Basic QuickDraw.” As
noted in this chapter, many of these routines have additional capabilities when
performed in the more sophisticated color drawing environments described in the next
chapter in this book, “Color QuickDraw.” However, if your application does not
use color, or uses only a few colors, you may find it unnecessary to create the drawing
environment described in the chapter “Color QuickDraw.”

This chapter also describes how to copy a bit image from one onscreen graphics port to
another onscreen graphics port. To prevent the choppiness that can occur when you
build complex images onscreen, your application should use the drawing routines
described in this chapter to create complex images in offscreen graphics worlds. Your
application can then copy these images to onscreen graphics ports, as described in the
chapter “Offscreen Graphics Worlds” in this book.

QuickDraw also supports the creation and manipulation of pictures and text. The
chapter “Pictures” in this book describes the routines for drawing pictures. For
information about drawing text, see the chapter “QuickDraw Text” in Inside Macintosh:
Text.

This chapter describes how to

■ use the graphics pen

■ create, draw, and manipulate the shapes supported by QuickDraw

■ draw a copy of a bit image from one graphics port into another graphics port

■ use the eight-color system supported by basic QuickDraw

■ customize QuickDraw’s drawing operations

About QuickDraw Drawing

QuickDraw provides your application with routines for rapidly creating, manipulating,
and drawing graphic objects such as lines, arcs, rectangles, ovals, regions, and bitmaps.

These routines extract information from and affect the fields of the current graphics port,
without specifically naming it as a parameter. For example, the Move procedure moves
the graphics pen of the current graphics port, changing the value of its pnLoc field,
and the PaintOval procedure paints an oval using the pattern and pattern mode of the
graphics pen for the current graphics port.

CHAPTER 3

QuickDraw Drawing

3-4 About QuickDraw Drawing

The previous chapter, “Basic QuickDraw,” describes the basic graphics port. The next
chapter, “Color QuickDraw,” describes the color graphics port. The routines described in
this chapter operate in both types of graphics ports.

Whenever you use QuickDraw, all drawing is performed with the graphics pen, which is
described next.

The Graphics Pen
Every graphics port contains one, and only one, graphics pen with which to perform
drawing operations. You use this metaphorical pen to draw lines, shapes, and text. Using
QuickDraw routines, you can set these five characteristics of the graphics pen for the
current graphics port:

■ visibility, as stored in the pnVis fields of the GrafPort and CGrafPort records

■ size, as stored in the pnSize fields of the GrafPort and CGrafPort records

■ location, as stored in the pnLoc fields of the GrafPort and CGrafPort records

■ pattern, as stored in the pnPat field of the GrafPort and CGrafPort records

■ pattern mode, as stored in the pnMode fields of GrafPort and CGrafPort records

The visibility of the graphics pen simply determines whether the pen draws on the
screen. You can use the HidePen and ShowPen procedures to change the pen’s visibility.

The graphics pen is rectangular in shape, and its size (that is, its height and width) are
measured in pixels. The default size is a 1-by-1 pixel square, but you can use the
PenSize procedure to change its shape from a 0-by-0 pixel square to a 32,767-by-32,767
pixel square. If you set either the width or the height to 0, however, the graphics pen
does not draw. (Heights or widths of less than 0 are undefined.) Figure 3-1 illustrates a
graphics pen of 8 pixels by 8 pixels.

Figure 3-1 A graphics pen

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-5

The graphics pen can be located anywhere on the local coordinate plane of the graphics
port, and there are no restrictions on the movement or placement of the pen. You can use
the MoveTo and Move procedures to change the pen’s location, which is defined by the
point that positions the upper-left corner of the pen. You can use the GetPen procedure
to determine the pen’s current location. As shown in Figure 3-1, the pen draws below
and to the right of the point specifying its location.

The pattern and pattern mode determine how the bits under the pen are affected when
your application draws lines or shapes. A bit pattern is a repeating 8-by-8 bit image, such
as that shown in Figure 3-1. You can use the PenPat procedure to change the bit pattern
for the graphics pen. Bit patterns are described in more detail in the next section. The
pattern mode for the graphics pen determines how the bit pattern interacts with the
existing bit image according to one of eight Boolean operations, as described in detail in
“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8. You can use the
PenMode procedure to change the pattern mode of the graphics pen.

To determine the size, location, pattern, and pattern mode of the graphics pen, you can
use the GetPenState procedure, which returns a PenState record that contains fields
for each of these characteristics. If you need to temporarily change these characteristics,
you can use the SetPenState procedure to restore the graphics pen to the state saved
in the record returned by GetPenState .

Upon the creation of a graphics port, QuickDraw assigns these initial values to the
graphics pen: a size of (1,1), a pattern of all-black pixels, and a pattern mode of patCopy .
After changing any of these values, you can use the PenNormal procedure to return
these initial values to the graphics pen.

“Lines and Shapes” beginning on page 3-11 describes how to use the graphics pen to
draw lines and shapes.

Bit Patterns
A bit pattern is a 64-pixel image, organized as an 8-by-8 pixel square, that defines a
repeating design (such as stripes) or a tone (such as gray). The patterns defined in bit
patterns are usually black and white, although any two colors can be used on a color
screen. Pixel patterns (which are supported only in color graphics ports) define color
patterns at any pixel depth. (Pixel patterns are described in the chapter “Color
QuickDraw” in this book.) Figure 3-2 shows a typical bit pattern—the one used for the
standard gray desktop pattern on most Macintosh computers with black-and-white
screens.

Figure 3-2 A bit pattern

CHAPTER 3

QuickDraw Drawing

3-6 About QuickDraw Drawing

You can use bit patterns to draw lines and shapes on the screen. In a basic graphics port,
the graphics pen has a pattern specified in the pnPat field of its GrafPort record. This
bit pattern acts like the ink in the pen; the bits in the pattern interact with the pixels in
the bitmap according to the pattern mode of the graphics pen. When you use the
FrameRect , FrameRoundRect , FrameArc , FramePoly , FrameRgn, PaintRect ,
PaintRoundRect , PaintArc , PaintPoly , and PaintRgn procedures to draw shapes,
these procedures draw the shape with the bit pattern specified in the pnPat field.

You can use the FillRect , FillRoundRect , FillArc , FillPoly , and FillRgn
procedures to draw shapes with a bit pattern other than that specified in the pnPat field
of the graphics port. When your application uses one of these procedures, the procedure
stores the pattern your application specifies in the fillPat field of the GrafPort
record (or its handle in the fillPixPat field of a CGrafPort record) and then calls a
low-level drawing routine that gets the pattern from that field.

Each graphics port also has a background pattern that’s used when an area is erased
(such as by using the EraseRect , EraseRoundRect , EraseArc , ErasePoly , and
EraseRgn procedures) and when pixels are scrolled out of an area (such as by using the
ScrollRect procedure as described in the chapter “Basic QuickDraw”). Every basic
graphics port stores a background bit pattern in the bkPat field of its GrafPort record.
(Color graphics ports store a handle to the background pattern in their bkPixPat field.)

So that adjacent areas of the same pattern form a continuous, coordinated pattern, all
patterns are always drawn relative to the origin of the graphics port.

A basic graphics port supports only bit patterns. Bit patterns are defined in data
structures of type Pattern , in which each pixel is represented by a single bit. Five such
bit patterns are predefined as global variables for your use. These patterns are illustrated
in Figure 3-3.

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-7

Figure 3-3 Windows filled with the predefined bit patterns

The upper-left window in this figure is filled with the predefined pattern white , in
which every pixel is white. By default, this is the background pattern for a graphics port;
that is, this is the pattern displayed when an area is erased or when bits are scrolled out
of it. The white pattern can also produce useful effects when transferred with an
appropriate pattern mode to an existing bit image. (Pattern modes are explained in
“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.)

The middle window in the top row of Figure 3-3 is filled with the predefined bit pattern
black , in which every pixel is black. This is the initial pattern that QuickDraw assigns to
the graphics pen.

Figure 3-3 illustrates a window filled with the predefined pattern gray , which uses a
combination of black and white pixels. As illustrated in this figure, fewer black pixels
in the combination produce the predefined pattern ltGra y, and more black pixels
produce the predefined pattern dkGray .

CHAPTER 3

QuickDraw Drawing

3-8 About QuickDraw Drawing

These predefined patterns use colored pixels to produce similar effects in color graphics
ports, as described in the chapter “Color QuickDraw.”

You can create your own bit patterns in your program code, but it’s usually simpler and
more convenient to store them in resources of type 'PAT ' or 'PAT#' and to read them
in when you need them. The five predefined patterns are available not only through the
global variables provided by QuickDraw but also as system resources stored in the
system resource file. You can use the GetPattern function and the GetIndPattern
procedure to get patterns stored as resources.

The result of the transfer of a pattern to a bitmap depends on the pattern mode, which is
described next.

Boolean Transfer Modes With 1-Bit Pixels
A Boolean transfer mode describes an interaction between the pixels that your
application draws and the pixels that are already in the destination bitmap—for
example, when you draw a patterned line into a graphics port. Black-and-white drawing
uses two types of Boolean transfer modes:

■ source modes for copying bit images or drawing text

■ pattern modes for drawing lines and shapes

Color QuickDraw uses Boolean transfer mode differently than basic QuickDraw. Color
QuickDraw also has transfer modes that perform arithmetic operations on the red, green,
and blue values of color pixels. Using transfer modes with Color QuickDraw is
described in the chapter “Color QuickDraw” in this book.

Your application uses source modes when using CopyBits procedure (described in
“Copying Bits Between Graphics Ports” beginning on page 3-32) and the
CopyDeepMask procedure (described in the chapter “Color QuickDraw”).

Your application uses pattern modes to transfer patterns to lines and shapes. The
penMode field of a graphics port stores the pattern mode for the graphics pen. You use
the pattern mode to draw lines, rectangles, rounded rectangles, ovals, arcs, wedges,
polygons, and regions, as follows:

■ When you use a procedure like LineTo , FrameRect , or FrameOval , the procedure
draws the lines of your shape with the pattern specified in the pnPat field of the
graphics port, but the procedure transfers that pattern into the graphics port by using
the pattern mode specified in the pnMode field of the current graphics port.

■ When you use a procedure like PaintRect or PaintOval , the procedure draws
your shape with the pattern specified in the pnPat field by transferring the pattern
with the pattern mode specified in the pnMode field.

■ When you use a procedure like FillRect or FillOval , the procedure draws your
shape with the pattern you request and uses the patCopy pattern mode (which
copies your requested pattern directly into the shape).

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-9

You use the source mode when using the CopyBits procedure to copy a bit image from
one graphics port to another and when drawing text using the QuickDraw routines
described in the chapter “QuickDraw Text” in Inside Macintosh: Text. (The source mode
for text is stored in the textMode field of a graphics port.)

For both pattern and source modes there are four Boolean operations: COPY, OR, XOR
(for exclusive-or), and BIC (for bit clear). Each of these operations has an inverse variant
in which the pattern or source is inverted before the transfer, so in fact there are eight
operations in all.

The eight operations in the pattern and source modes have names defined as constants.
Their effects on 1-bit destination pixels are summarized in Table 3-1. (See the chapter
“Color QuickDraw” for information about the effects of these operations on colored
pixels—that is, those with a pixel depth of more than 1 pixel.)

The COPY operations completely replace the pixels in the destination bitmap with either
the pixels in the pattern (for the patCopy mode) or the pixels in the source bitmap
(for the srcCopy mode). The inverse COPY operations completely replace the pixels in
the destination bitmap with a “photographic negative” of the pattern (for the
notP atCopy mode) or the source bitmap (for the notS rcCopy mode).

The OR operations add the black pixels from either the pattern (for the patOr mode) or
the source bitmap (for the srcOr mode) to the destination bitmap. The inverse OR
operations (notP atOr and notS rcOr modes) take a “photographic negative” of the
pattern or the source bitmap, and then add the black pixels from this negative to the
destination bitmap.

Table 3-1 Effect of Boolean transfer modes on 1-bit pixels

Pattern mode Source mode Action on destination pixe l

If pattern or source
pixel is black

If pattern or source
pixel is white

patCopy srcCopy Force black Force white

notPatCopy notSrcCopy Force white Force black

patOr srcOr Force black Leave alone

notPatOr notSrcOr Leave alone Force black

patXor srcXor Invert Leave alone

notPatXor notSrcXor Leave alone Invert

patBic srcBic Force white Leave alone

notPatBic notSrcBic Leave alone Force white

CHAPTER 3

QuickDraw Drawing

3-10 About QuickDraw Drawing

The XOR operations (patXor and sr cXor modes) invert the pixels in the destination
bitmap that correspond to black pixels in the pattern or source bitmap. The inverse XOR
operations (notP atXor and notS r cXor modes) invert the pixels in the destination
bitmap that correspond to white pixels in the pattern or source bitmap.

The BIC operations (patBic and srcBic modes) turn pixels in the destination bitmap
white when they correspond to black pixels in the pattern or source bitmap. The inverse
BIC operations (notP atBic and notS rcBic modes) turn pixels in the destination
bitmap white when they correspond to white pixels in the pattern or source bitmap.

These actions are illustrated in Figure 3-4, where a black X is transferred to a destination
bitmap consisting of a black O.

Figure 3-4 Examples of Boolean transfer modes

On computers running System 7, you can add dithering to any source mode by adding
the following constant or the value it represents to the source mode:

CONST ditherCopy = 64;

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-11

Dithering mixes existing colors to create the effect of additional colors on indexed
devices. It also improves images that you shrink or that you copy from a direct
pixel device to an indexed device. Using dithering even when shrinking 1-bit images
between basic graphics ports can produce much better representations of the original
images. The CopyBits procedure always dithers images when shrinking them between
pixel maps on direct devices. Dithering is explained in the chapter “Color QuickDraw.”

The next section describes how your application uses pattern modes to transfer patterns
to lines and shapes.

Lines and Shapes
As explained in the chapter “Basic QuickDraw,” rectangles and regions are mathematical
models that QuickDraw defines as data types. However, they also can be graphic
elements that appear on the screen. A rectangle, for example, can mathematically define
a visible area, but it can also be an object to draw.

Defining Lines and Shapes

You use two points to define a line. Using the LineTo and Line procedures, you can
draw lines onscreen using the size, pattern, and pattern mode of the graphics pen for the
current graphics port. You can also define a rectangle with two points (the upper-left and
lower-right corners of the rectangle) or with four boundary coordinates (one for each
side of the rectangle). Using the FrameRect procedure, you can draw rectangles that are
framed by lines rendered with the size, pattern, and pattern mode of the graphics pen.

You use rectangles to define ovals and rounded rectangles. Rectangles used to define
other shapes are called bounding rectangles. The lines of bounding rectangles
completely enclose the shapes they bound; in other words, no pixels from these shapes
lie outside the infinitely thin lines of the bounding rectangles.

Ovals are circular or elliptical shapes defined by the height and width of their bounding
rectangles, and rounded rectangles are rectangles with rounded corners defined by the
width and height of the ovals forming their corners. Using the FrameOval and
FrameRoundRect procedures, you can draw, respectively, framed ovals and framed
rounded rectangles.

You can use rectangles to define ovals that, in turn, you can use to define arcs and
wedges. An arc is a portion of an oval’s circumference bounded by a pair of radii.
A wedge is a pie-shaped segment of an oval. The wedge starts at the center of the oval, is
bounded by a pair of radii, and extends to the oval’s circumference. You use the
FrameArc procedure to draw a framed arc, and you use the PaintArc or FillArc
procedure to draw a wedge.

CHAPTER 3

QuickDraw Drawing

3-12 About QuickDraw Drawing

You use lines to define a polygon. First, however, you must call the OpenPol y function
and then some number of LineT o procedures to create lines from the first vertex of the
polygon to the second, from the second to the third, and so on, until you’ve created a line
to the last vertex. You then use the ClosePoly procedure, which completes the figure
by drawing a connecting line from the last vertex back to the first. After defining a
polygon in this way, you can draw a framed outline of it using the FramePoly
procedure.

To define a region, you can use any set of lines or shapes, including other regions, so
long as the region’s outline consists of one or more closed loops. First, however, you
must call the NewRgn function and OpenRgn procedure. You then use line-, shape-, or
region-drawing commands to define the region, which can be concave or convex, can
consist of one connected area or many separate ones, and can even have holes in the
middle. When you are finished collecting commands to define the outline of the region,
you use the CloseRgn procedure. You can then draw a framed outline of the region
using the FrameRgn procedure.

Framing Shapes

Using the FrameRect , FrameOval , FrameRoundRect , FrameArc , FramePoly , or
FrameRgn procedure to frame a shape draws just its outline, using the size, pattern, and
pattern mode of the graphics pen for the current graphics port. The interior of the shape
is unaffected, allowing previously existing pixels in the bit image to show through.

Painting and Filling Shapes

Using the PaintRect , PaintOval , PaintRoundRect , PaintArc , PaintPoly , or
PaintRgn procedure to paint a shape draws both its outline and its interior with the
pattern of the graphics pen, using the pattern mode of the graphics pen.

Using the FillRect , FillOval , FillRoundRect , FillArc , FillPoly , or FillRgn
procedure to fill a shape draws both its outline and its interior with any pattern you
specify. The procedure transfers the pattern with the patCopy pattern mode, which
directly copies your requested pattern into the shape.

Erasing Shapes

Using the EraseRect , EraseOval , EraseRoundRect , EraseArc , ErasePoly , or
EraseRgn procedure to erase a shape draws both its outline and its interior with
the background pattern for the current graphics port. The background pattern is
typically solid white on a black-and-white monitor or a solid background color on a
color monitor. Making the shape blend into the background pattern of the graphics port
effectively erases the shape.

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-13

Inverting Shapes

Using the InvertRect , InvertOval , InvertRoundRect , InvertArc , InvertPoly ,
or InvertRgn procedure to invert a shape reverses the colors of all pixels within its
boundary. On a black-and-white monitor, this changes all the black pixels in the shape to
white and changes all the white pixels to black.

The inversion procedures were designed for 1-bit images in basic graphics ports. These
procedures operate on color pixels in color graphics ports, but the results are predictable
only with direct devices or 1-bit pixel maps.

For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes. The
results depend entirely on the contents of the video device’s color lookup table (CLUT).
(The CLUT is described in the chapter “Color QuickDraw.”)

The eight colors used in basic QuickDraw are stored in a color table represented by the
global variable QDColor s . To display those eight basic QuickDraw colors on an indexed
device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the
CLUT that best map to the colors in the QDColors color table. Because the index, not the
color value, is inverted, the results are again unpredictable. (The eight-color system is
described in “The Eight Basic QuickDraw Colors” beginning on page 3-14.)

Inversion works better for direct devices. Inverting a pure green, for example, that has
red, green, and blue component values of $0000, $FFFF, and $0000 results in magenta,
which has component values of $FFFF, $0000, and $FFFF.

Other Graphic Entities

“Drawing With QuickDraw” beginning on page 3-16 provides an introduction to
creating and drawing lines, rectangles, rounded rectangles, ovals, arcs, wedges,
polygons, and regions. You can also use QuickDraw routines to draw pictures, cursors,
icons, and text.

A QuickDraw picture is the recorded transcription of a sequence of drawing operations
that can be played back with the DrawPicture procedure. See the chapter “Pictures”
for information about creating and displaying QuickDraw pictures.

A cursor is a 16-by-16 pixel image that maps the user’s movement of the mouse to
relative locations on the screen. An icon is an image (usually 32 by 32 or 16 by 16 pixels)
that represents an object, a concept, or a message. For example, the Finder uses icons to
represent files and disks. Cursors and icons are stored as resources. See the chapter
“Cursor Utilities” for information about drawing cursors. See the chapter “Icon Utilities”
in Inside Macintosh: More Macintosh Toolbox for information about drawing icons.

See the chapter “QuickDraw Text” in Inside Macintosh: Text for information about using
QuickDraw routines to draw text.

CHAPTER 3

QuickDraw Drawing

3-14 About QuickDraw Drawing

The Eight Basic QuickDraw Colors
On a color screen, you can draw with colors, even when you are using a basic graphics
port. Although basic QuickDraw graphics routines were designed for black-and-white
drawing, they also support the eight-color system that basic QuickDraw predefines for
display on color screens and color printers. Because Color QuickDraw also supports this
system, it is compatible across all Macintosh platforms. (This section describes the
rudimentary color capabilities included in basic QuickDraw. See the next chapter, “Color
QuickDraw,” for information about more sophisticated color use in your application.)

A pair of fields in a graphics port, fgColor and bkColor , specify a foreground and
background color. The foreground color is the color used for bit patterns and for the
graphics pen when drawing. By default, the foreground color is black. The background
color is the color of the pixels in the bitmap wherever no drawing has taken place. By
default, the background color is white. However, you can use the ForeColor and
BackColor procedures to change these fields. (When printing, however, use the
ColorBit procedure to set the foreground color.) For example, on a color screen the
following lines of code draw a red rectangle against a blue background.

BackColor(blueColor); {make a blue background}

ForeColor(redColor); {draw with red ink}

PenMode(patCopy); {when drawing, replace background color }

{ with in k's color}

PaintRect(20,20,80,80); {create and paint the red rectangle }

If you use the OpenCPicture or OpenPicture function to include this code in a
picture definition, these colors are stored in the picture. However, basic QuickDraw
cannot store these colors in a bitmap. See the chapter “Pictures” in this book for more
information about defining and drawing pictures.

The basic QuickDraw color values consist of 1 bit for normal black-and-white drawing
(black on white), 1 bit for inverted black-and-white drawing (white on black), 3 bits for
the additive primary colors (red, green, blue) used in video display, and 4 bits for the
subtractive primary colors (cyan, magenta, yellow, black) used in printing. QuickDraw
includes a set of predefined constants for those standard colors:

CONST

 whiteColor = 30;

 blackColor = 33

 yellowColor = 69;

 magentaC olo r = 137;

 redC olor = 205;

 cyanColor = 273;

 greenC olor = 341;

 blueC olor = 409 ;

CHAPTER 3

QuickDraw Drawing

About QuickDraw Drawing 3-15

These are the only colors available in basic QuickDraw (or with Color QuickDraw
drawing into a basic graphics port). When you specify these colors on a Macintosh
computer with Color QuickDraw, Color QuickDraw draws these colors if the user has
set the screen to a color mode.

These eight color values are based on a planar model: each bit position corresponds to a
different color plane, and the value of each bit indicates whether a particular color plane
should be activated. (The term color plane refers to a logical plane, rather than a physical
plane.) The individual color planes combine to produce the full-color image.

There are three advantages to using basic QuickDraw’s color system:

■ It is available across all platforms, so you don’t have to check for the presence of Color
QuickDraw.

■ It is much simpler to use than Color QuickDraw.

■ It works well on an ImageWriter printer with a color ribbon.

The main disadvantage is that basic QuickDraw is limited to eight predefined colors.
Another problem is that, if the graphics port in which you are working happens to be a
color graphics port, then the two color systems may clash. For example, saving the
current foreground color (from the fgColor field of the color graphics port) and then
later restoring it with the ForeColor procedure doesn’t work: the original content of
the fgColor field is an index value for a color graphics port using indexed colors. This
index value is not what basic QuickDraw’s ForeColor procedure expects as a
parameter.

In System 7, these Color QuickDraw routines are available to basic QuickDraw:
RGBForeColor , RGBBackColor , GetForeColor , and GetBackColor . Described
in the next chapter, “Color QuickDraw,” these routines can also assist you in
manipulating the eight-color system of basic QuickDraw. When running on a System 7
computer, your application should use GetForeColor and GetBackColor to
determine the foreground color and background color instead of checking the fgColor
and bkColor fields of the GrafPort record.

The next section provides an introduction to creating and drawing lines and shapes.
Without using a color graphics port, you can use the ForeColor or RGBForeColor
procedure on a color screen to draw these lines and shapes in color, against the
background color you set with the BackColor or RGBBackColor procedure.

CHAPTER 3

QuickDraw Drawing

3-16 Drawing With QuickDraw

Drawing With QuickDraw

You can use QuickDraw’s basic drawing routines to

■ draw lines of various thicknesses and in various patterns

■ draw rectangles, rounded rectangles, ovals, arcs, wedges, polygons, and regions in
various patterns

■ draw lines and shapes in any of eight predefined colors, against a background of any
of these eight predefined colors

■ perform calculations on and manipulate rectangles and regions

■ copy bits from the bit image in the bitmap of one graphics port into the bitmap of
another graphics port

■ customize QuickDraw’s drawing behavior

System software uses QuickDraw’s drawing routines to implement the Macintosh user
interface. The next several sections provide an introduction to these routines, which your
application can use to create complex onscreen images.

To draw lines, your application

■ moves the graphics pen to a location within its graphics port

■ draws a line to a different coordinate

To draw rectangles, rounded rectangles, ovals, arcs, and wedges, your application
generally

■ defines the outline of the shape in the local coordinates of the graphics port

■ frames the shape’s outline to draw it

■ transfers patterns to the outline and interior of the shape to paint or fill it

To draw regions and polygons, your application

■ uses an open routine to start building the shape

■ calls drawing routines to build the shape

■ uses a close routine to stop collecting drawing routines for the shape

■ frames the shape’s outline to draw it

■ transfers patterns to the outline and interior of the shape to paint or fill it

These tasks are explained in greater detail in the rest of this chapter.

Before using QuickDraw’s drawing routines, you must initialize QuickDraw with the
InitGraf procedure, as explained in the chapter “Basic QuickDraw.”

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-17

The routines described in this chapter are available on all models of Macintosh
computers. However, all nonwhite colors that you specify with the ForeColor and
BackColor procedures are displayed as black on a black-and-white screen. Before using
the ForeColor and BackColor procedures to display colors in a basic graphics port,
you can use the DeviceLoop procedure, which is described in the chapter “Graphics
Device,” to determine the color characteristics of the current screen.

Drawing Lines
A line is defined by two points: the current location of the graphics pen and its
destination. The graphics pen draws below and to the right of the defining points. As
described in “The Graphics Pen” on page 3-4, the pen draws the line between its
defining points with the size, pattern, and pattern mode stored in the current graphics
port.

You specify where to begin drawing a line by using the MoveTo or Move procedure to
place the graphics pen at some point in the window’s local coordinate system. Then you
call the LineTo or Line procedure to draw a line from there to another point. Take, for
example, the following lines of code:

MoveTo(20 ,2 0);

LineTo(70 ,2 0);

LineTo(70 ,7 0);

The MoveTo procedure moves the graphics pen to a point with a horizontal coordinate
of 20 and a vertical coordinate of 20 (in the local coordinate system of the graphics port).
The first call to the LineTo procedure draws a line from that position to the point with a
horizontal coordinate of 70 and a vertical coordinate of 20. The second call to the LineTo
procedure draws a line from the pen’s new position to the point with a horizontal
coordinate of 70 and a vertical coordinate of 70, as shown in Figure 3-5.

Figure 3-5 Using the LineTo procedure

CHAPTER 3

QuickDraw Drawing

3-18 Drawing With QuickDraw

Listing 3-1 illustrates how to use the LineTo procedure to draw the four sides of a
square, which is shown on the left side of Figure 3-6. In Figure 3-6, the current graphics
port is the window “untitled.”

Listing 3-1 Drawing lines with the LineTo and Line procedures

PROCEDURE MyDrawLines;

BEGIN

MoveTo(20 ,2 0);

LineTo(70 ,2 0);

LineTo(70 ,7 0);

LineTo(2 0,7 0);

LineTo(20 ,2 0);

Move(70 ,0);

Line(50 ,0);

Line(0 ,5 0);

Line(-50 ,0);

Line(0 ,- 50);

END;

Figure 3-6 Drawing lines

The MoveTo and LineTo procedures require you to specify a point in the local
coordinate system of the current graphics port. These procedures then transfer the
graphics pen to that specific location. As alternatives to using the MoveTo and LineTo
procedures, you can use the Move and Line procedures, which require you to pass
relative horizontal and vertical distances to move the pen from its current location. The
square on the right side of Figure 3-6 is drawn using the Move and Line procedures.

The final call to LineTo in Listing 3-1 moves the graphics pen to the point with a
horizontal coordinate of 20 and a vertical coordinate of 20. Listing 3-1 then uses the Move
procedure to move the graphics pen a horizontal distance of 70 points—that is, to the
point with a horizontal coordinate of 90. The first call to the Line procedure draws a

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-19

horizontal line 50 pixels long—that is, to the point with a horizontal coordinate of 140
and a vertical coordinate of 20. Starting from there, the second call to Line draws a
vertical line 50 pixels long—that is, to the point with a horizontal coordinate of 140 and
a vertical coordinate of 70, as shown in Figure 3-7.

Figure 3-7 Using the LineTo and Line procedures

In Figure 3-6, the lines are drawn using the default pen size (1,1), giving the line a
vertical depth of one pixel and a horizontal width of one pixel. You can use the PenSize
procedure to change the width and height of the graphics pen so that it draws thicker
lines, as shown in Figure 3-8.

Figure 3-8 Resizing the pen

The square on the left side of Figure 3-8 is drawn with a pen that has a width of two
pixels and a height of eight pixels. The square on the right side of this figure is drawn
with a pen that has a width of eight pixels and a height of two pixels. Listing 3-2 shows
the code that draws these squares.

CHAPTER 3

QuickDraw Drawing

3-20 Drawing With QuickDraw

Listing 3-2 Using the PenSize procedure

PROCEDURE MyResizePens;

BEGIN

PenSize(2 ,8);

MoveTo(20 ,2 0);

LineTo(70 ,2 0); LineTo(70 ,7 0); LineTo(20 ,7 0); LineTo(20 ,2 0);

PenSize(8 ,2);

Move(70 ,0);

Line(50 ,0); Line(0 ,5 0); Line(-50 ,0); Line(0 ,- 50);

PenNormal;

END;

At the end of Listing 3-2, the PenNormal procedure is used to restore the graphics pen
to its default size, pattern, and pattern mode.

The default pattern for the graphics pen consists of all black pixels. However, you can
use the PenPat procedure to change the pen’s pattern. When you use the PenPat
procedure, you can pass it any one of the predefined global variables listed in Table 3-2
to specify the bit pattern for the graphics pen.

Table 3-2 The global variables for five predefined bit patterns

Global variable Result

black All-black pattern

dkGray 75% gray pattern

gray 50% gray pattern

ltGray 25% gray pattern

white All-white pattern

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-21

In Figure 3-9, the pen pattern for the square on the left has changed to ltGray ; the pen
pattern for the square on the right has changed to dkGray .

Figure 3-9 Changing the pen pattern

Listing 3-3 shows the code that produces these squares.

Listing 3-3 Using the PenPat procedure to change the pattern of the graphics pen

PROCEDURE MyRepatternPens;

BEGIN

PenSize(2 ,8);

PenPat(ltGray);

MoveTo(20 ,20);

LineTo(70 ,2 0); LineTo(70 ,7 0); LineTo(20 ,7 0); LineTo(20 ,2 0);

PenSize(8 ,2);

PenPat(dkGray);

Move(70 ,0);

Line(50 ,0); Line(0 ,5 0); Line(-50 ,0); Line(0 ,- 50);

PenNormal;

END;

QuickDraw provides methods for drawing squares and rectangles that are easier than
drawing each side individually as a line. The next section describes how to draw
rectangles.

CHAPTER 3

QuickDraw Drawing

3-22 Drawing With QuickDraw

Drawing Rectangles
As explained in the chapter “Basic QuickDraw,” rectangles are mathematical entities.
There are two ways to specify a rectangle: by its four boundary coordinates, as shown in
the left rectangle in Figure 3-10, or by its upper-left and lower-right points, as shown
in the right rectangle.

Figure 3-10 Two ways to specify a rectangle

However, specifying a rectangle does not draw one. Because the border of a rectangle is
infinitely thin, it can have no direct representation on the screen until you use the
FrameRect procedure to draw its outline, or you can use the PaintRect or FillRect
procedure to draw its outline and its interior with a pattern. Figure 3-11 illustrates two
rectangles that are drawn with the FrameRect procedure.

Figure 3-11 Drawing rectangles

Listing 3-4 shows the code that draws the rectangles in Figure 3-11. This listing uses the
PenSize procedure to assign a size of (2,2) to the graphics pen. Then the code assigns
four boundary coordinates to the rectangle on the left side of this figure, and it calls
FrameRect to use the graphics pen to draw the rectangle’s outline.

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-23

Listing 3-4 Using the FrameRect procedure to draw rectangles

PROCEDURE MyDrawRects;

VAR

firstRect, secondRect: Rect;

BEGIN

PenSize(2 ,2);

firstRect.top := 20;

firstRect.left := 20;

firstRect.bottom := 70;

firstRect.right := 70;

FrameRect(firstRect);

SetRect(secondRect ,9 0,2 0,1 40,7 0);

FrameRect(secondRect);

PenNormal;

END;

To shorten code text, Listing 3-4 uses the SetRect procedure to define the rectangle on
the right side of Figure 3-11. Again, FrameRect is used to draw an outline around the
rectangle. Notice that while a Rect record lists the fields for a rectangle’s boundaries
in the order top , left , bottom , and right , you pass these boundaries as parameters
to the SetRect procedure in the order left , top , right , and botto m.

Remember that the graphics pen hangs to the right of and below its location point;
therefore, the lower-right corner of the two-pixel outline around the rectangle on the
right side of Figure 3-11 lies at the point with a horizontal coordinate of 142 and a
vertical coordinate of 72.

Figure 3-12 illustrates painted and filled rectangles. Listing 3-5 shows the code that
creates these images.

Figure 3-12 Painting and filling rectangles

CHAPTER 3

QuickDraw Drawing

3-24 Drawing With QuickDraw

Listing 3-5 uses the PaintRect procedure to draw the outline and the interior of the
rectangle on the left side of Figure 3-12 with the pattern of the graphics pen, according to
the pattern mode of the graphics pen. Because Listing 3-5 calls the PenNormal
procedure immediately before calling PaintRect , the graphics pen has its default
characteristics: a pattern of all-black pixels and the patCopy pattern mode, which
changes all of the pixels in the destination to the pen’s pattern.

Listing 3-5 Using the PaintRect and FillRect procedures

PROCEDURE MyPaintAndFillRects;

VAR

firstRect, secondRect: Rect;

BEGIN

PenNormal;

SetRect(firstRect ,2 0,2 0,7 0,7 0);

PaintRect(firstRect);

SetRect(secondRect,20,90 , 70,140);

FillRect (secondRect,l tGray);

END;

The PaintRect procedure always uses the pattern and pattern mode of the graphics
pen when drawing a rectangle. If you want to use a pattern other than that of the
graphics pen, you can use the FillRect procedure. The FillRect procedure,
however, always uses the patCopy pattern mode. Listing 3-5 uses the FillRect
procedure to draw the outline and the interior of the rectangle on the right side of
Figure 3-12 with a light gray pattern.

Note

Neither the PaintRec t nor FillRect procedure changes the location
of the graphics pen. ◆

If the application that draws the rectangles in Figure 3-12 uses the EraseRect
procedure to erase them both, then they would be filled with the background pattern
specified by the bkPat field of the current graphics port. If the application uses the
InvertRect procedure to invert the rectangles, then the black pixels in each would
become white and the white pixels would become black.

QuickDraw provides a similar set of routines for drawing rounded rectangles, which are
defined by their rectangles and the widths and heights of the ovals forming their corners.
See “Drawing Rounded Rectangles” beginning on page 3-63 for detailed information
about these routines.

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-25

Drawing Ovals, Arcs, and Wedges
An oval is a circular or elliptical shape defined by the bounding rectangle that encloses
it. After specifying the bounding rectangle for an oval, you use the FrameOval
procedure to draw its outline, or the PaintOval or FillOval procedure to draw its
outline and its interior with a pattern. Figure 3-13 illustrates two ovals drawn with the
FrameOval procedure.

Figure 3-13 Drawing ovals

Listing 3-6 shows the code that produces the ovals in Figure 3-13. The
bounding rectangles for the ovals are created with the SetRect procedure. The
resulting rectangles are then passed to the FrameOval procedure.

Listing 3-6 Using the FrameOval procedure to draw ovals

PROCEDURE MyDrawOvals;

VAR

firstRect, secondRect: Rect;

BEGIN

PenSize(2 ,2);

SetRect(firstRect,20,20,70,70); {create a bounding rectangle}

FrameOval (firstRect) ; {draw the oval}

SetRect(secondRect ,9 0,2 0,1 40,7 0) ; {create a bounding rectangle}

FrameOval(secondRect) ; {draw the oval}

PenNormal;

END;

CHAPTER 3

QuickDraw Drawing

3-26 Drawing With QuickDraw

An arc is defined as a portion of an oval’s circumference bounded by a pair of radii. A
wedge is a pie-shaped segment bounded by a pair of radii, and it extends from the center
of the oval to its circumference. You use the FrameArc procedure to draw an arc (as
shown on the left side of Figure 3-14), and you use the PaintArc or FillArc
procedure to draw a wedge (as shown on the right side of Figure 3-14).

Figure 3-14 Drawing an arc and a wedge

Listing 3-7 shows the code that produces the images in Figure 3-14. The FrameArc ,
PaintArc , and FillArc procedures take three parameters: a rectangle that defines an
oval’s boundaries, an angle indicating the start of the arc, and an angle indicating the
arc’s extent. For the angle parameters, 0° indicates a vertical line straight up from the
center of the oval. Positive values indicate angles in the clockwise direction from this
vertical line, and negative values indicate angles in the counterclockwise direction. The
arc and the wedge in Figure 3-14 both begin at 45° and extend to 135°.

Listing 3-7 Using the FrameArc and PaintArc procedures

PROCEDURE MyDrawArcAndPaintWedge;

VAR

firstRect, secondRect: Rect;

BEGIN

SetRect(firstRect ,2 0,2 0,7 0,7 0); {create a bounding rectangle}

FrameArc(firstRect ,4 5,1 35) ; {draw an arc}

SetRect(secondRect ,9 0,2 0,1 40,7 0) ; {create a bounding rectangle}

PaintArc(secondRect ,4 5,1 35); {draw a wedge}

END;

You can also fill, erase, and invert wedges by using, respectively, the FillArc ,
EraseArc , and InvertArc procedures.

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-27

Drawing Regions and Polygons
Before drawing regions and polygons, you must call several routines to create them. To
create a region or polygon, you first call an open routine, which tells QuickDraw to
collect subsequent routines to construct the shape. You use a close procedure when you
are finished constructing the region or polygon. You can then frame the shape, fill it,
paint it, erase it, and invert it.

To begin defining a region, you must use the NewRgn function to allocate space for it,
and then call the OpenRgn procedure. You can then use any QuickDraw routine to
construct the outline of the region. The outline can be any set of lines and shapes
(including other regions) forming one or more closed loops. When you are finished
constructing the region, use the CloseRgn procedure.

▲ WARNING

Ensure that the memory for a region is valid before calling routines to
manipulate that region; if there isn’t sufficient memory, the system may
crash. Regions are limited to 32 KB in size in basic QuickDraw and 64
KB in Color QuickDraw. Before defining a region, you can use the
Memory Manager function MaxMem to determine whether the memory
for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize .
(Both MaxMem and GetHandleSize are described in Inside Macintosh:
Memory.) When you record drawing operations in an open region, the
resulting region description may overflow the 32 KB or 64 KB limit.
Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the
result code regionTooBigError . ▲

To draw the region, use the FrameRgn , PaintRgn , or FillRgn procedure. To draw the
region with the background pattern of the graphics port, use the EraseRgn procedure;
to invert the pixels in the region, use the InvertRgn procedure. When you no longer
need the region, use the DisposeRgn procedure to release the memory used by the
region.

CHAPTER 3

QuickDraw Drawing

3-28 Drawing With QuickDraw

Listing 3-8 illustrates how to create and open a region, define a shape, close the region,
fill it with the all-black pattern, and dispose of the region.

Listing 3-8 Creating and drawing a region

PROCEDURE MyDrawDumbbell;

VAR

grow: LongInt;

dumbbell: RgnHandle;

tempRect: Rect;

BEGIN

IF MaxMem(grow) > kMinReserve THEN

BEGIN

dumbbell := NewRgn ; { create a new region}

OpenRgn; { begin drawing instructions}

SetRect(tempRect,20,20,30,50);

FrameOval(tempRect) ; { form the left "weight"}

SetRect(tempRect,25,30,85,40);

FrameRect(tempRect) ; { form the bar}

SetRect(tempRect,80,20,90,50);

FrameOval(tempRect) ; { form the right "weight"}

CloseRgn(dumbbell) ; {s top collecting}

FillRgn(dumbbell,black) ; { draw the shape onscreen}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

DisposeRgn(dumbbell) {dispose of the region}

END;

END;

Figure 3-15 shows the shape created by Listing 3-8.

Figure 3-15 A shape created by a region

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-29

To assist you with scrolling, you can use QuickDraw routines to define a clipping region
that excludes the scroll bars of the content region of a window. You can then scroll that
area so that the region being updated does not draw into the scroll bars. Listing 3-9
illustrates how to create such a clipping region and, for illustrative purposes, how to fill
it with a pattern. (The chapter “Basic QuickDraw” illustrates how to scroll the pixels in a
rectangle such as the one created with the ClipRect procedure in Listing 3-9.)

Listing 3-9 Creating a clipping region and filling it with a pattern

FUNCTION MyFillClipRegion: RgnHandle;

VAR

grow: LongInt;

newClip: Rect;

oldClipRegion: RgnHandle;

newClipRegion: RgnHandle;

myWindow: WindowPtr;

BEGIN

IF MaxMem(grow) > kMinReserve THEN

BEGIN

oldClipRegion := NewRgn; {allocate old clipping region}

myWindow := FrontWindow; {get the front window}

SetPort(myWindow); {make the front window the current }

{ graphics port}

GetClip(oldClipRegion); {save the old clipping region}

newClip := myWindow^.portRect; {create a new rectangle}

newClip.right := newClip.right - 15; {exclude scroll bar}

newClip.bottom := newClip.bottom - 15; {exclude scroll bar}

ClipRect(newClip); {make the new rectangle the clipping region}

newClipRegion := NewRgn; {allocate new clipping region}

RectRgn(newClipRegion, newClip);

FillRgn(newClipRegion, ltGray); {paint clipping region gray}

SetClip(oldClipRegion); {restore previous clipping region}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

DisposeRgn(oldClipRegion); {dispose previous clipping region}

MyFillClipRect := (newClipRegion);

END;

END;

CHAPTER 3

QuickDraw Drawing

3-30 Drawing With QuickDraw

Figure 3-16 shows the results of using the code in Listing 3-9.

Figure 3-16 Filling a clipping region

To create a polygon, you first call the OpenPol y function and then some number of
LineTo procedures to draw lines from the first vertex of the polygon to the second, from
the second to the third, and so on, until you’ve drawn a line to the last vertex. You then
use the ClosePoly procedure, which completes the figure by drawing a connecting line
from the last vertex back to the first. After defining a polygon in this way, you can
display it with the FramePoly , PaintPoly , FillPoly , ErasePoly , and InvertPoly
procedures. When you are finished using the polygon, use the KillPoly procedure to
release its memory.

▲ WARNING

Do not create a height or width for the polygon greater than 32,767
pixels, or PaintPoly will crash. ▲

Listing 3-10 illustrates how to create a triangular polygon and fill it with a gray pattern.

Listing 3-10 Creating a triangular polygon

PROCEDURE MyDrawTriangle;

VAR

triPoly: PolyHandle;

BEGIN

triPoly := OpenPoly ; { save handle and begin collecting lines}

MoveTo(300,100) ; { move to first poin t}

LineTo(400,200) ; {f orm the triangle's sides }

LineTo(200,200) ;

ClosePoly ; { stop collecting lines}

FillPoly(triPoly,gray); {fill t he polygon with gray}

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

KillPoly(triPoly) ; { dispose of its memory}

END;

DRAW-L-23: Filling the clipping region
NIIM: Imaging: QuickDraw Drawing

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-31

Performing Calculations and Other Manipulations of Shapes
QuickDraw provides a multitude of routines for manipulating rectangles and regions.
You can use the routines that manipulate rectangles to manipulate any shape based on a
rectangle—namely, rounded rectangles, ovals, arcs, and wedges. For example, you could
define a rectangle to bound an oval and then frame the oval. You could then use the
OffsetRect procedure to move the oval’s bounding rectangle downward. Using the
offset bounding rectangle, you could frame a second, connected oval to form a figure
eight with the first oval. You could use that shape to help define a region. You could
create a second region, and then use the UnionRgn procedure to create a region from the
union of the two.

The routines for performing calculations and other manipulations of rectangles are
summarized in Table 3-3 and are described in detail in “Creating and Managing
Rectangles” beginning on page 3-52.

Table 3-3 QuickDraw routines for calculating and manipulating rectangles

Routine Description

EmptyRect Determines whether a rectangle is an empty rectangle

EqualRect Determines whether two rectangles are equal

InsetRect Shrinks or expands a rectangle

OffsetRect Moves a rectangle

PtInRect Determines whether a pixel is enclosed in a rectangle

PtToAngle Calculates the angle from the middle of a rectangle to a point

Pt2Rect Determines the smallest rectangle that encloses two points

SectRect Determines whether two rectangles intersect

UnionRect Calculates the smallest rectangle that encloses two rectangles

CHAPTER 3

QuickDraw Drawing

3-32 Drawing With QuickDraw

The routines for performing calculations and other manipulations of regions are
summarized in Table 3-4 and are described in detail in “Creating and Managing
Regions” beginning on page 3-85.

Note that while you can use the OffSetPoly procedure to move a polygon, QuickDraw
provides no other routines for calculating or manipulating polygons.

Copying Bits Between Graphics Ports
You can use the CopyBits procedure to copy a bit image from one graphics port to
another. Along with the CopyMask procedure and the Color QuickDraw procedure
CopyDeepMask , CopyBits is integral to QuickDraw’s image-processing capabilities.
You can use CopyBits to move offscreen graphics images into an onscreen window, to
blend colors for the image in a pixel map, and to shrink and expand images. For
example, Figure 3-17 illustrates how CopyBits can be used to scale the image in one
window to a smaller image in another window.

Table 3-4 QuickDraw routines for calculating and manipulating regions

Routine Description

CopyRgn Makes a copy of a region

DiffRgn Subtracts one region from another

EmptyRgn Determines whether a region is empty

EqualRgn Determines whether two regions have identical sizes, shapes,
and locations

InsetRgn Shrinks or expands a region

OffsetRgn Moves a region

PtInRgn Determines whether a pixel is within a region

RectInRgn Determines whether a rectangle intersects a region

RectRgn Changes a region to a rectangle

SectRgn Calculates the intersection of two regions

SetEmptyRgn Sets a region to empty

SetRectRgn Changes a region to a rectangle

UnionRgn Calculates the union of two regions

XorRgn Calculates the difference between the union and the intersection
of two regions

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-33

Figure 3-17 Shrinking images between graphics ports

Listing 3-11 shows the code that produces the scaled image in Figure 3-17.

Listing 3-11 Using the CopyBits procedure to copy between two windows

PROCEDURE MyShrinkImages;

VAR

myWindow: WindowPtr;

sourceRect, destRect: rect;

halfHeight, halfWidth: Integer;

BEGIN

myWindow := FrontWindow;

sourceRect.top := myWindow^.portRect.top; {create source rectangle}

sourceRect.left := myWindow^.portRect.left;

sourceRect.bottom := myWindow^.portRect.bottom - 15; {exclude scroll bar}

sourceRect.right := myWindow^.portRect.right - 15; {exclude scroll bar}

destRect.top := gShrinkWindow^.portRect.top; {create destination rect}

destRect.left := gShrinkWindow^.portRect.left;

halfHeight := {make destination half as tall as the source}

Integer((sourceRect.bottom - sourceRect.top)) DIV 2;

destRect.bottom := destRect.top + halfHeight;

halfWidth := {make destination half as wide as the source}

Integer((sourceRect.right - sourceRect.left)) DIV 2;

destRect.right := destRect.left + halfWidth;

GetPort(myWindow); {save the graphics port for the active window}

SetPort(gShrinkWindow); {make the target window the current }

{ graphics port for drawing purposes}

CHAPTER 3

QuickDraw Drawing

3-34 Drawing With QuickDraw

CopyBits(myWindow^.portBits,

gShrinkWindow^.portBits,

sourceRect,

destRect,

srcCopy +ditherCopy , NIL);

IF QDError <> noErr THEN

; {likely error is that there is insufficient memory}

SetPort(myWindow); {restore active window as current graphics port}

END;

When copying between basic graphics ports, you specify a source bitmap and a
destination bitmap to CopyBits . Remember that the bitmap is stored in the portBits
field of a GrafPort record. By dereferencing the desired window record when it calls
CopyBits , Listing 3-11 uses the bitmap for the front window, “untitled” in Figure 3-17,
as the source bitmap. Listing 3-11 uses the bitmap for the window titled “50%” as the
destination bitmap.

When copying images between color graphics ports, as explained in the chapter “Color
QuickDraw,” you must coerce each CGrafPort record to a GrafPort record,
dereference the portBits fields of each, and then pass these “bitmaps” to CopyBits .

Note

If there is insufficient memory to complete a CopyBits operation
in Color QuickDraw, the QDError function (described in the chapter
“Color QuickDraw” in this book) returns the result code –143. ◆

You can specify differently sized source and destination rectangles, and CopyBits scales
the source image to fit the destination. Listing 3-11 uses the area of the port rectangle
excluding the scroll bars as the source rectangle. To scale the image in the front window,
Listing 3-11 creates a destination rectangle that is half as high and half as wide as the
source rectangle.

The manner by which CopyBits transfers the bits between bitmaps depends on the
source mode that you specify. In Listing 3-11, the srcCopy mode is used to copy bits
from the source directly into the destination. Source modes are described in “Boolean
Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

Note

To scale shapes and regions within the same graphics port, you can use
the routines described in “Scaling and Mapping Points, Rectangles,
Polygons, and Regions” beginning on page 3-104. ◆

To gracefully display complex images that your application creates, your application
should use the drawing routines described in this chapter to construct such images in
offscreen graphics worlds. Your application can then use the CopyBits procedure to
transfer these images to onscreen graphics ports. This technique prevents the choppiness
that can occur when you build complex images onscreen, and is described in the chapter
“Offscreen Graphics Worlds,” which also offers an example of using a mask to copy
color pixels from an offscreen graphics world.

CHAPTER 3

QuickDraw Drawing

Drawing With QuickDraw 3-35

To copy only certain bits from a bitmap, you can use the CopyMask procedure, which is
a specialized variant of CopyBits . The CopyMask procedure, which is described on
page 3-119, transfers bits only where the corresponding bits of another bit image, which
serves as a mask, are set to 1 (that is, black). The CopyMask procedure does not allow
scaling or resizing. However, the CopyDeepMask procedure, which is described on
page 3-120, does allow scaling and resizing; in effect it combines the capabilities of the
CopyBits and CopyMask procedures.

Customizing QuickDraw’s Low-Level Routines
For each shape that QuickDraw knows how to draw, there are procedures that perform
these basic graphics operations on the shape: frame, paint, erase, invert, and fill. Those
procedures in turn call a low-level drawing routine for the shape. For example, the
FrameOval , PaintOval , EraseOval , InvertOval , and FillOval procedures all call
the low-level procedure StdOval , which draws the oval. For each type of object
QuickDraw can draw, including text and lines, there’s a pointer to such a low-level
routine. By changing these pointers, you can install your own routines, and either
completely override the standard ones or call them after your routines have modified
their parameters as necessary.

Other low-level routines that you can install in this way include

■ The procedure (called by CopyBits) that performs bit and pixel transfer.

■ The function that measures the width of text and is called by the QuickDraw text
routines CharWidth , StringWidth , and TextWidth . (These QuickDraw text
routines are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.)

■ The procedure that processes picture comments. The standard procedure ignores
picture comments. (Picture comments are described in Appendix B of this book.)

■ The procedure that saves drawing commands as the definition of a picture, and the
procedure that retrieves them. These enable your application to draw on remote
devices, print to the disk, get picture input from the disk, and support large pictures.

All of the low-level QuickDraw routines that your application can replace or call after
performing its own operations are described in “Customizing QuickDraw Operations”
beginning on page 3-129.

The grafProcs field of a graphics port determines which low-level routines are called.
If that field contains the value of NIL , the standard routines are called, so that all
operations in that graphics port are done in the standard ways described in this chapter.
You can set the grafProcs field to point to a record of pointers to your own routines.
This record of pointers is defined by a data structure of type QDProcs , which is
described on page 3-39.

CHAPTER 3

QuickDraw Drawing

3-36 QuickDraw Drawing Reference

To assist you in setting up a record, QuickDraw provides the SetStdProcs procedure,
which is described on page 3-130. You can use the SetStdProcs procedure to get a
QDProcs record with fields that point to the standard routines. You can reset the ones
with which you are concerned. You can replace these low-level routines with your own,
and then point to your modified QDProcs record in the grafProcs field of a
GrafPort record to change basic QuickDraw’s standard low-level behavior.

IMPORTANT

When modifying the low-level routines for a color graphics port, you
must always use the SetStdCProcs procedure instead of
SetStdProcs . ▲

The chapter “Pictures” in this book provides sample code and explanations for changing
the standard low-level routines for reading and writing pictures.

QuickDraw Drawing Reference

This section describes the data structures, routines, and resources that QuickDraw
provides to assist you in drawing lines and shapes onscreen.

“Data Structures” shows the Pascal data structures for the Polygon , PenState ,
QDProcs , and Patter n data types.

“Routines” describes QuickDraw routines for drawing lines, rectangles, rounded
rectangles, ovals, arcs, wedges, polygons, and regions. “Routines” also describes
routines for calculating, scaling, mapping, copying bits between, and otherwise
manipulating these graphic entities.

“Resources” describes the pattern and pattern list resources, which your application can
create to define its own bit patterns for drawing lines and shapes.

Data Structures
This section describes the Polygon record, the PenSt ate record, the QDProcs record,
and the Pattern record. Although this chapter describes routines for creating and
manipulating rectangles and regions, the data structures you can use to define these
entities are described in the chapter “Basic QuickDraw.”

Your application typically does not create Polygon or Pattern records. Instead, you
use the OpenPoly function (described on page 3-78) to create a polygon, and
QuickDraw creates the necessary record. Although you can create a Pattern record in
your program code, it is usually easier to create patterns using the pattern or pattern list
resources, which are described beginning on page 3-140.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-37

You need to use the QDProcs record only if you customize one or more of QuickDraw’s
low-level drawing routines. You can use the SetStdProcs procedure, described on
page 3-130, to create a QDProcs record.

You can use a PenSt ate record to save the location, size, pattern, and pattern mode of a
graphics pen. The GetPenState procedure, described on page 3-43, automatically
creates a pen state record. You can use the SetPenState procedure, described on
page 3-43, to restore the values stored in a PenState record to the current graphics pen.

Polygon

After you use the OpenPoly function to create a polygon, QuickDraw begins collecting
the line-drawing information you provide into a Polygon record, which is a data
structure of type Polygon . The OpenPoly function returns a handle to the newly
allocated Polygon record. Thereafter, your application normally refers to your new
polygon by this handle, because QuickDraw routines such as FramePoly and
PaintPoly expect a handle to a Polygon record as their first parameter.

A polygon is defined by a sequence of connected lines. A Polygon record consists of
two fixed-length fields followed by a variable-length array of points: the starting point
followed by each successive point to which a line is drawn.

Polygon =

RECORD

polySize: Integer; {size in bytes}

polyBBox: Rect; {bounding rectangle}

polyPoints: ARRAY[0..0] OF Poin t; {vertices of polygon}

END;

Field descriptions

polySize The size in bytes of this record.
polyBBox The rectangle that bounds the polygon.
polyPoints An array of points: the starting point followed by each successive

point to which a line is drawn.

PenState

The GetPenState procedure (described on page 3-43) saves the location, size, pattern,
and pattern mode of the graphics pen for the current graphics port in a PenState
record, which is a data structure of type PenState . After changing the graphics pen as
necessary, you can later restore these pen states with the SetPenState procedure
(described on page 3-43).

CHAPTER 3

QuickDraw Drawing

3-38 QuickDraw Drawing Reference

Here is how a PenState record is defined:

TYPE PenState =

RECORD

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pen's pattern mode}

pnPat: Pattern ; {pen pattern}

END;

Field descriptions

pnLoc For the current graphics port at the time the GetPenState
procedure was called, the value of that graphics port’s pnLoc field.
This value is the point where QuickDraw begins drawing next. The
location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a bit image. The upper-left corner
of the pen is at the pen location; the graphics pen hangs below and
to the right of this point.

pnSize For the current graphics port at the time the GetPenState
procedure was called, the value of that graphics port’s pnSize
field. The graphics pen is rectangular in shape, and its width and
height are specified by the values in the pnSize field. The default
size is a 1-by-1 bit square; the width and height can range from 0 by
0 to 32,767 by 32,767. If either the pen width or the pen height is 0,
the pen does not draw. Heights or widths of less than 0 are
undefined.

pnMode The pattern mode—that is, for the current graphics port at the time
the GetPenState procedure was called, the value of that graphics
port’s pnMode field. This value determines how the pen pattern is
to affect what’s already in the bit image when lines or shapes are
drawn. When the graphics pen draws, QuickDraw first determines
what bits in the bit image are affected, finds their corresponding bits
in the pattern, and then transfers the bits from the pattern into the
image according to this mode, which specifies one of eight Boolean
transfer operations. The resulting bit is stored into its proper place
in the bit image. The various pattern modes are described in
“Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.

pnPat For the current graphics port at the time the GetPenState
procedure was called, the pen pattern for that graphics port. This
pattern determines how the bits under the graphics pen are affected
when lines or shapes are drawn.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-39

QDProcs

You need to use the QDProcs record, which is a data structure of type QDProcs , only
if you customize one or more of QuickDraw’s low-level drawing routines. You can use
the SetStdProcs procedure, described on page 3-130, to create a QDProcs record.

The QDProcs record contains pointers to low-level drawing routines. QuickDraw’s
standard low-level drawing routines are described in “Customizing QuickDraw
Operations” beginning on page 3-129. You can change the fields of this record to point to
routines of your own devising.

TYPE QDProcsPtr = ^QDProcs;

QDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

polyProc: Ptr; {polygon drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc: Ptr; {picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr ; {picture saving}

 END;

Field descriptions

textProc A pointer to the low-level routine that draws text. The standard
QuickDraw routine is the StdText procedure.

lineProc A pointer to the low-level routine that draws lines. The standard
QuickDraw routine is the StdLine procedure.

rectProc A pointer to the low-level routine that draws rectangles. The
standard QuickDraw routine is the StdRect procedure.

rRectProc A pointer to the low-level routine that draws rounded rectangles.
The standard QuickDraw routine is the StdRRect procedure.

ovalProc A pointer to the low-level routine that draws ovals. The standard
QuickDraw routine is the StdOval procedure.

arcProc A pointer to the low-level routine that draws arcs. The standard
QuickDraw routine is the StdArc procedure.

polyProc A pointer to the low-level routine that draws polygons. The
standard QuickDraw routine is the StdPoly procedure.

CHAPTER 3

QuickDraw Drawing

3-40 QuickDraw Drawing Reference

rgnProc A pointer to the low-level routine that draws regions. The standard
QuickDraw routine is the StdRgn procedure.

bitsProc A pointer to the low-level routine that copies bitmaps. The standard
QuickDraw routine is the StdBits procedure.

commentProc A pointer to the low-level routine for processing a picture comment.
The standard QuickDraw routine is the StdComment procedure.

txMeasProc A pointer to the low-level routine for measuring text width. The
standard QuickDraw routine is the StdTxtMeas function.

getPicProc A pointer to the low-level routine for retrieving information from
the definition of a picture. The standard QuickDraw routine is the
StdGetPi c procedure.

putPicProc A pointer to the low-level routine for saving information as the
definition of a picture. The standard QuickDraw routine is the
StdPutPi c procedure.

You can use the SetStdProcs procedure to set all the fields of the QDProcs record to
point to QuickDraw’s standard routines, and then reset the ones for which you have
your own routines.

Pattern

Your application typically does not create Pattern records, which are data structures of
type Pattern . Although you can create Pattern records in your program code, it is
usually easier to create bit patterns using the pattern or pattern list resource, described
beginning on page 3-140.

A bit pattern is a 64-bit image, organized as an 8-by-8 bit square, that defines a repeating
design or tone. When a pattern is drawn, it’s aligned so that adjacent areas of the same
pattern in the same graphics port form a continuous, coordinated pattern. QuickDraw
provides predefined patterns in global variables named white , black , gray , ltGray ,
and dkGray . A Pattern record is defined as follows:

TYPE PatPtr = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255;

The row width of a pattern is 1 byte.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-41

Routines
This section describes QuickDraw’s routines for drawing lines, rectangles, rounded
rectangles, ovals, arcs, wedges, polygons, and regions. This section also describes
routines for calculating, scaling, mapping, copying bits between, and otherwise
manipulating these graphic entities.

These routines use your current graphics port as their drawing environment. You can
use these routines to draw into basic graphics ports (described in the chapter “Basic
QuickDraw”) and color graphics ports (described in the chapter “Color QuickDraw”).

See the chapter “Pictures” for descriptions of routines that create and draw pictures. See
the chapter “Cursor Utilities” for information about drawing cursors. See the chapter
“QuickDraw Text” in Inside Macintosh: Text for descriptions of QuickDraw’s routines for
drawing and manipulating text.

Managing the Graphics Pen

Every graphics port contains one, and only one, graphics pen with which to perform
drawing operations. You use this metaphorical pen to draw lines, shapes, and text.

You can use the HidePen and ShowPen procedures to change the pen’s visibility, the
PenSize procedure to change its shape, the PenPat procedure to change its pattern,
and the PenMode procedure to change its pattern mode. To determine the size, location,
pattern, and pattern mode of the graphics pen, you can use the GetPenState
procedure. If you need to temporarily change these characteristics, you can use the
SetPenState procedure to restore the graphics pen to a state previously captured
by GetPenState .

Upon the creation of a graphics port, QuickDraw assigns these initial values to the
graphics pen: a size of (1,1), a pattern of all-black pixels, and the patCopy pattern mode.
After changing any of these values, you can use the PenNormal procedure to return
these initial values to the graphics pen.

These pen-manipulation routines use the local coordinate system of the current graphics
port. Remember that each graphics port has its own pen, the state of which is stored in
several fields of its GrafPort or CGrafPort record. If you draw in one graphics port,
change to another, and return to the first, the pen for the first graphics port has the same
state as when you left it. (The basic graphics port is described in the chapter “Basic
QuickDraw,” and the color graphics port is described in the chapter “Color QuickDraw.”)

CHAPTER 3

QuickDraw Drawing

3-42 QuickDraw Drawing Reference

HidePen

To give the graphics pen invisible ink (which means that pen drawing doesn’t show on
the screen), use the HidePen procedure.

PROCEDURE HidePen;

DESCRIPTION

The HidePen procedure decrements the pnVis field of the current graphics port. The
pnVis field is initialized to 0 by the OpenPort procedure. Whenever pnVis is negative,
the pen doesn’t draw on the screen. The pnVis field keeps track of the number of
times the pen has been hidden to compensate for nested calls to the HidePen and
ShowPen routines.

Every call to HidePen should be balanced by a subsequent call to ShowPen, which is
described next.

The HidePen procedure is called by the OpenRgn, OpenPicture , and OpenPoly
routines so that you can create regions, pictures, and polygons without drawing on the
screen.

ShowPen

To change the ink of a graphics pen from invisible (which means that pen drawing
doesn’t show on the screen) to visible (so that pen drawing does appear on the screen),
you can use the ShowPen procedure.

PROCEDURE ShowPen;

DESCRIPTION

The ShowPen procedure increments the pnVis field of the current graphics port. For 0
or positive values, pen drawing shows on the screen.

For example, if you have used the HidePen procedure to decrement the pnVis field
from 0 to –1, you can use the ShowPen procedure to make its value 0 so that QuickDraw
resumes drawing on the screen. Subsequent calls to ShowPen increment pnVis beyond
0, so every call to ShowPen should be balanced by a call to HidePen .

ShowPen is called by the procedures CloseRgn (described on page 3-89), Close Poly
(described on page 3-79), and Clos ePicture (described in the chapter “Pictures” in
this book).

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-43

GetPen

To determine the location of the graphics pen, use the GetPen procedure.

PROCEDURE GetPen (VAR pt: Point);

pt The graphics pen’s current position in the current graphics port.

DESCRIPTION

In the pt parameter, the GetPen procedure returns the current pen position. The point
returned is in the local coordinates of the current graphics port.

GetPenState

To determine the graphics pen’s location, size, pattern, and pattern mode, you can use
the GetPenState procedure.

PROCEDURE GetPenState (VAR pnState : Pe nState);

pnState A PenState record for holding information about the graphics pen.

DESCRIPTION

The GetPenState procedure saves the location, size, pattern, and pattern mode of the
graphics pen for the current graphics port in a PenState record, which the
GetPenState procedure returns in the pnState parameter.

After changing the graphics pen as necessary, you can later restore these pen states with
the SetPenState procedure (described next).

SEE ALSO

The PenState record is described on page 3-37.

SetPenState

To restore the state of the graphics pen that was saved with the GetPenState
procedure, use the SetPenState procedure.

PROCEDURE SetPenState (pnState: PenState);

pnState A PenState record previously created with the GetPenState
procedure.

CHAPTER 3

QuickDraw Drawing

3-44 QuickDraw Drawing Reference

DESCRIPTION

The SetPenState procedure sets the graphics pen’s location, size, pattern, and pattern
mode in the current graphics port to the values stored in the PenState record that you
specify in the pnState parameter.

SEE ALSO

The PenState record is described on page 3-37.

PenSize

To set the dimensions of the graphics pen in the current graphics port, use the PenSize
procedure.

PROCEDURE PenSize (width ,h eight: Integer);

width The pen width, as an integer from 0 to 32,767. If you set the value to 0, the
pen does not draw. Values less than 0 are undefined.

height The pen height, as an integer from 0 to 32,767. If you set the value to 0, the
pen does not draw. Values less than 0 are undefined.

DESCRIPTION

The PenSize procedure sets the width that you specify in the width parameter and the
height that you specify in the height parameter for the graphics pen in the current
graphics port. All subsequent calls to the Line and LineTo procedures and to the
procedures that draw framed shapes in the current graphics port use the new pen
dimensions.

You can get the current pen dimensions from the pnSize field of the current graphics
port, where the width and height are stored as a Point record.

SEE ALSO

Listing 3-2 on page 3-20 illustrates how to use this procedure.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-45

PenMode

To set the pattern mode of the graphics pen in the current graphics port, use the
PenMode procedure.

PROCEDURE PenMode (mode: Integer);

mode The pattern mode. The following list shows the constants you can
use—and the values they represent—for specifying the pattern mode.

CONST

patCop y = 8; { where pattern pixel is black, apply }

{ foreground color to destination pixel; }

{ where pattern pixel is white, apply }

{ background color to destination pixel}

patO r = 9; { where pattern pixel is black, invert }

{ destination pixel; where pattern }

{ pixel is white, leave }

{ destination pixel unaltered}

patXo r = 10 ; { where pattern pixel is black, invert }

{ destination pixel; where pattern }

{ pixel is white, leave destination }

{ pixel unaltered}

patBi c = 11 ; { where pattern pixel is black, apply }

{ background color to destination pixel; }

{ where pattern pixel is white, leave }

{ destination pixel unaltered}

notPatCop y = 12 ; { where pattern pixel is black, apply }

{ background color to destination pixel; }

{ where pattern pixel is white, apply }

{ foreground color to destination pixel}

notPatO r = 13 ; { where pattern pixel is black, leave }

{ destination pixel unaltered; where }

{ pattern pixel is white, apply }

{ foreground color to destination pixel}

notPatXo r = 14 ; { where pattern pixel is black, }

{ leave destination pixel unaltered; }

{ where pattern pixel is white, }

{ invert destination pixel}

notPatBi c = 15 ; { where pattern pixel is black, }

{ leave destination pixel unaltered; }

{ where pattern pixel is white, apply }

{ background color to destination pixel}

CHAPTER 3

QuickDraw Drawing

3-46 QuickDraw Drawing Reference

DESCRIPTION

Using the pattern mode you specify in the mode parameter, the PenMode procedure sets
the manner in which the pattern of the graphics pen is transferred onto the bitmap (or
pixel map) when you draw lines or shapes in the current graphics port. These actions are
illustrated in Figure 3-4 on page 3-10.

If you specify a source mode (such as one used with the CopyBits procedure) instead of
a pattern mode, no drawing is performed.

The current pattern mode is stored in the pnMode field of the current graphics port. The
initial pattern mode value is patCopy , in which the pen pattern is copied directly to the
bitmap.

To use highlighting, you can add this constant or its value to the source or pattern mode:

CONST

 hilite = 50; {add to source or pattern mode for highlighting}

With highlighting, QuickDraw replaces the background color with the highlight color
when your application draws or copies images between graphics ports. This has the
visual effect of using a highlighting pen to select the object. (The global variable
HiliteRGB is read from parameter RAM when the machine starts. Basic graphics ports
use the color stored in the HiliteRGB global variable as the highlight color. Color
graphics ports default to the HiliteRGB global variable, but can be overridden by the
HiliteColor procedure, described in the chapter “Color QuickDraw.”)

SPECIAL CONSIDERATIONS

When your application draws with a pixel pattern, Color QuickDraw ignores the pattern
mode and simply transfers the pattern directly to the pixel map without regard to the
foreground and background colors.

The results of inverting a pixel are predictable only with direct pixels or 1-bit pixel maps.
For indexed pixels, Color QuickDraw performs the inversion on the pixel indexes, which
means the results depend entirely on the contents of the color table (which is described
in the chapter “Color QuickDraw”). The eight colors used in basic QuickDraw are
stored in a color table represented by the global variable QDColors . To display those
eight basic QuickDraw colors on an indexed device, Color QuickDraw uses the Color
Manager to obtain indexes to the colors in the CLUT that best map to the colors in the
QDColors color table. Because the index, not the color value, is inverted, the results are
unpredictable.

SEE ALSO

Pattern modes are discussed in detail in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8 of this chapter and in “Boolean Transfer Modes With Color
Pixels” beginning on page 4-32 in the chapter “Color QuickDraw.”

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-47

PenPat

To set the bit pattern to be used by the graphics pen in the current graphics port, use the
PenPat procedure.

PROCEDURE PenPat (pat: Pattern);

pat A bit pattern, as defined by a Pattern record.

DESCRIPTION

The PenPat procedure sets the graphics pen to use the bit pattern defined in the
Pattern record that you specify in the pat parameter. (The standard patterns white ,
black , gray , ltGray , and dkGray are predefined; the initial bit pattern for the pen
is black .) This pattern is stored in the pnPat field of a GrafPort record. The
QuickDraw painting procedures (such as PaintRect) also use the pen’s pattern when
drawing a shape.

The PenPat procedure also sets a bit pattern for the graphics pen in a color graphics
port. The PenPat procedure creates a handle, of type PixPatHandle , for the bit pattern
and stores this handle in the pnPixPat field of the CGrafPort record. This pattern
always uses the graphics port’s current foreground and background colors.

SPECIAL CONSIDERATIONS

The PenPat procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

SEE ALSO

The Pattern record is described on page 3-40. To define your own patterns, you
typically create pattern or pattern list resources, which are described beginning on
page 3-140.

The CGrafPort record is described in the chapter “Color QuickDraw.” To set the
graphics pen to use a multicolored pixel pattern in a color graphics port, use the
PenPixPat procedure, which is described in the chapter “Color QuickDraw.”

Listing 3-3 on page 3-21 illustrates how to use the PenPat procedure.

CHAPTER 3

QuickDraw Drawing

3-48 QuickDraw Drawing Reference

PenNormal

To set the size, pattern, and pattern mode of the graphics pen in the current graphics port
to their initial values, use the PenNormal procedure.

PROCEDURE PenNormal;

DESCRIPTION

The PenNormal procedure restores the size, pattern, and pattern mode of the graphics
pen in the current graphics port to their initial values: a size of 1 pixel by 1 pixel, a
pattern mode of patCopy , and a pattern of black . The pen location does not change.

SPECIAL CONSIDERATIONS

The PenNormal procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

Changing the Background Bit Pattern

Each graphics port has a background pattern that’s used when an area is erased (such as
by using the EraseRect , EraseRoundRect , EraseArc , ErasePoly , and EraseRgn
procedures) and when pixels are scrolled out of an area (such as by using the
ScrollRect procedure described in the chapter “Basic QuickDraw”). The background
pattern is stored in the bkPat field of every basic graphics port. You can use the
BackPat procedure to change the bit pattern used as the background color by the
current graphics port (black and white or color).

BackPat

To change the bit pattern used as the background pattern by the current graphics port,
use the BackPat procedure.

PROCEDURE BackPat (pat: Pattern);

pat A bit pattern, as defined by a Pattern record.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-49

DESCRIPTION

The BackPat procedure sets the bit pattern defined in the Pattern record, which you
specify in the pat parameter, to be the background pattern. (The standard bit patterns
white , black , gray , ltGray , and dkGray are predefined; the initial background
pattern for the graphics port is white .) This pattern is stored in the bkPat field of a
GrafPort record.

The BackPat procedure also sets a bit pattern for the background color in a color
graphics port. The BackPat procedure creates a handle, of type PixPatHandle , for the
bit pattern and stores this handle in the bkPixPat field of the CGrafPort record. As in
basic graphics ports, Color QuickDraw draws patterns in color graphics ports at the time
of drawing, not at the time you use PenPat to set the pattern.

SPECIAL CONSIDERATIONS

The BackPat procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The Pattern record is described on page 3-40. To define your own patterns, you
typically create pattern or pattern list resources, which are described beginning on
page 3-140.

The CGrafPort record is described in the chapter “Color QuickDraw.” To use a
multicolored background pattern in a color graphics port, use the BackPixPat
procedure, which is described in the chapter “Color QuickDraw.”

Drawing Lines

A line is defined by two points: the current location of the graphics pen and its
destination. You specify where to begin drawing a line by using the MoveTo or Move
procedure to place the graphics pen at some point in the window’s local coordinate
system, and then using the LineTo or Line procedure to draw a line from there to
another point.

CHAPTER 3

QuickDraw Drawing

3-50 QuickDraw Drawing Reference

MoveTo

To move the graphics pen to a particular location in the current graphics port, use the
MoveTo procedure.

PROCEDURE MoveTo (h,v : Integer);

h The horizontal coordinate of the graphics pen’s new position.

v The vertical coordinate of the graphics pen’s new position.

DESCRIPTION

The MoveTo procedure changes the graphics pen’s current location to the new horizontal
coordinate you specify in the h parameter and the new vertical coordinate you specify in
the v parameter. Specify the new location in the local coordinates of the current graphics
port. The MoveTo procedure performs no drawing.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Move

To move the graphics pen a particular distance, use the Move procedure.

PROCEDURE Move (dh,d v: Integer);

dh The horizontal distance of the graphics pen’s movement.

dv The vertical distance of the graphics pen’s movement.

DESCRIPTION

The Move procedure moves the graphics pen from its current location in the current
graphics port a horizontal distance that you specify in the dh parameter and a vertical
distance that you specify in the dv parameter. The Move procedure calls

MoveTo(h+dh,v+dv)

where (h,v) is the graphics pen’s current location in local coordinates. The Move
procedure performs no drawing.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-51

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

LineTo

To draw a line from the graphics pen’s current location to a new location, use the
LineTo procedure.

PROCEDURE LineTo (h ,v : Integer);

h The horizontal coordinate of the graphics pen’s new location.

v The vertical coordinate of the graphics pen’s new location.

DESCRIPTION

The LineTo procedure draws a line from the graphics pen’s current location in the
current graphics port to the new location (h,v) , which you specify in the local
coordinates of the current graphics port. If you are using LineTo to draw a region or
polygon, its outline is infinitely thin and is not affected by the values of the pnSize ,
pnMode, or pnPat field of the graphics port.

SPECIAL CONSIDERATIONS

The LineTo procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Line

To draw a line a specified distance from the graphics pen’s current location in the current
graphics port, use the Line procedure.

PROCEDURE Line (dh ,d v: Integer);

dh The horizontal distance of the graphics pen’s movement.

dv The vertical distance of the graphics pen’s movement.

CHAPTER 3

QuickDraw Drawing

3-52 QuickDraw Drawing Reference

DESCRIPTION

Starting at the current location of the graphics pen, the Line procedure draws a line the
horizontal distance that you specify in the dh parameter and the vertical distance that
you specify in the dv parameter. The Line procedure calls

LineTo(h+dh,v+dv)

where (h,v) is the current location in local coordinates. The pen location becomes the
coordinates of the end of the line after the line is drawn. If you are using Line to draw a
region or polygon, its outline is infinitely thin and is not affected by the values of the
pnSize , pnMode, and pnPat fields of the graphics port.

SPECIAL CONSIDERATIONS

The Line procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-1 on page 3-18 illustrates how to use this procedure.

Creating and Managing Rectangles

You can use a rectangle, which is defined by a Rect record, to specify locations and sizes
for various graphics operations. (The Rect data type is described in the chapter “Basic
QuickDraw.”) You can use the SetRect procedure to create a rectangle, OffsetRect to
move one, and InsetRect to shrink or expand one. You can determine whether
two rectangles intersect with the SectRect procedure, whether a pixel is enclosed in a
rectangle with the PtInRect procedure, whether two rectangles are equal with the
EqualRect procedure, and whether a rectangle is an empty rectangle with the
EmptyRect procedure. You can use the UnionRect procedure to calculate the smallest
rectangle that encloses two other rectangles, PtToAngle to calculate the angle from the
middle of a rectangle to a point, and Pt2Rect to determine the smallest rectangle that
encloses two points.

If the points or rectangles supplied to these routines are defined in a graphics port other
than your current graphics port, you must convert them to the local coordinate system of
your current graphics port. You can accomplish this by using the SetPort procedure to
change to the graphics port containing the points or rectangles, using the LocalGlobal
procedure to convert their locations to global coordinates, using SetPort to return to
your starting graphics port, and then using the GlobalToLocal procedure to convert
the locations of points or rectangles to the local coordinates of your current graphics
port. These procedures are described in the chapter “Basic QuickDraw.”

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-53

SetRect

To assign coordinates to a rectangle, you can use the SetRect procedure.

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: Integer);

r The rectangle to set.

lef t The horizontal coordinate of the new upper-left corner of the rectangle.

t op The vertical coordinate of the new upper-left corner of the rectangle.

righ t The horizontal coordinate of the new lower-right corner of the rectangle.

botto m The vertical coordinate of the new lower-right corner of the rectangle.

DESCRIPTION

The SetRect procedure assigns the coordinates you specify in the left , top , right ,
and bottom parameters to the rectangle that you specify in the r parameter. This
procedure is provided to help you shorten your program text. If you want a more
readable text, at the expense of source text length, you can instead assign integers (or
points) directly into the fields of a Rect record.

SEE ALSO

Listing 3-4 on page 3-23 illustrates how to use this procedure. The data structure of type
Rect is described in the chapter “Basic QuickDraw.”

OffsetRect

To move a rectangle, use the OffsetRect procedure.

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: Integer);

r The rectangle to move.

dh The horizontal distance to move the rectangle.

dv The vertical distance to move the rectangle.

CHAPTER 3

QuickDraw Drawing

3-54 QuickDraw Drawing Reference

DESCRIPTION

The OffsetRect procedure moves the rectangle that you specify in the r parameter by
adding the value you specify in the dh parameter to each of its horizontal coordinates
and the value you specify in the dv parameter to each of its vertical coordinates. If the
dh and dv parameters are positive, the movement is to the right and down; if either is
negative, the corresponding movement is in the opposite direction. The rectangle retains
its shape and size; it’s merely moved on the coordinate plane. The movement doesn’t
affect the screen unless you subsequently call a routine to draw within the rectangle.

InsetRect

To shrink or expand a rectangle, use the InsetRect procedure.

PROCEDURE InsetRect (VAR r: Rect; dh,dv: Integer);

r The rectangle to alter.

dh The horizontal distance to move the left and right sides in toward or
outward from the center of the rectangle.

dv The vertical distance to move the top and bottom sides in toward or
outward from the center of the rectangle.

DESCRIPTION

The InsetRect procedure shrinks or expands the rectangle that you specify in the
r parameter: the left and right sides are moved in by the amount you specify in the dh
parameter; the top and bottom are moved toward the center by the amount you specify
in the dv parameter. If the value you pass in dh or dv is negative, the appropriate pair of
sides is moved outward instead of inward. The effect is to alter the size by 2*dh
horizontally and 2*dv vertically, with the rectangle remaining centered in the same
place on the coordinate plane.

If the resulting width or height becomes less than 1, the rectangle is set to the empty
rectangle (0,0,0,0).

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-55

SectRect

To determine whether two rectangles intersect, you can use the SectRect function.

FUNCTION SectRect (src1,src2: Rect; VAR dstRect: Rect): Boolean;

src 1 The first of two rectangles to test for intersection.

src 2 The second of two rectangles to test for intersection.

dstRect The rectangle marking the intersection of the first two rectangles.

DESCRIPTION

The SectRect function calculates the rectangle that delineates the intersection of the
two rectangles you specify in the src1 and src2 parameters. The SectRect function
returns the area of intersection in the dstRect parameter and a function result of TRUE
if they intersect or FALSE if they don’t. Rectangles that touch at a line or a point are not
considered intersecting, because their intersection rectangle (actually, in this case, an
intersection line or point) doesn’t enclose any pixels in the bit image.

If the rectangles don’t intersect, the destination rectangle is set to (0,0,0,0). The
SectRect procedure works correctly even if one of the source rectangles is also the
destination.

UnionRect

To calculate the smallest rectangle that encloses two rectangles, use the UnionRect
procedure.

PROCEDURE UnionRect (src1,src2: Rect; VAR dstRect: Rect);

src 1 The first of two rectangles to enclose.

src2 The second of two rectangles to enclose.

dstRect The rectangle that encloses them.

DESCRIPTION

The UnionRect procedure returns in the dstRect parameter the smallest rectangle that
encloses both of the rectangles you specify in the src1 and src2 parameters. One of the
source rectangles may also be the destination.

CHAPTER 3

QuickDraw Drawing

3-56 QuickDraw Drawing Reference

PtInRect

To determine whether a pixel below is enclosed in a rectangle, use the PtInRect
function.

FUNCTION PtInRect (pt: Point; r: Rect): Boolean;

pt The point to test.

r The rectangle to test.

DESCRIPTION

The PtInRect function determines whether the pixel below and to the right of the point
you specify in the pt parameter is enclosed in the rectangle that you specify in the Rect
parameter. The PtInRect function returns TRUE if it is, FALSE if it is not.

Pt2Rect

To determine the smallest rectangle that encloses two given points, use the Pt 2Rect
procedure.

PROCEDURE Pt2R ect (pt1 ,p t2: Point; VAR dstRect: Rect);

pt 1 The first of two points to enclose.

pt2 The second of two points to enclose.

dstRect The smallest rectangle that can enclose them.

DESCRIPTION

The Pt2R ect procedure returns in the dstRect parameter the smallest rectangle that
encloses the two points you specify in the pt1 and pt2 parameters.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-57

PtToAngle

To calculate an angle between a vertical line pointing straight up from the center of a
rectangle and a line from the center to a given point, use the PtToAngle procedure.

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: Integer);

r The rectangle to examine.

pt The point to which an angle is to be calculated.

angle The resulting angle.

DESCRIPTION

The PtToAngle procedure returns in the angle parameter the angle between a vertical
line (pointing straight up from the center of the rectangle that you specify in the r
parameter) and a line from the center of that rectangle to a point (which you specify in
the pt parameter).

The result returned in the angle parameter is specified in degrees from 0 to 359,
measured clockwise from 12 o’clock, with 90° at 3 o’clock, 180° at 6 o’clock, and 270° at
9 o’clock. Other angles are measured relative to the rectangle. If the line to the given
point goes through the upper-right corner of the rectangle, the angle returned is 45°,
even if the rectangle isn’t square; if it goes through the lower-right corner, the angle is
135°, and so on, as shown in Figure 3-18.

Figure 3-18 Forty-five-degree angles as returned by the PtToAngle procedure

The angle returned might be used as input to one of the procedures that manipulate arcs
and wedges, as described in “Drawing Arcs and Wedges” beginning on page 3-71.

CHAPTER 3

QuickDraw Drawing

3-58 QuickDraw Drawing Reference

EqualRect

To determine whether two rectangles are equal, you can use the EqualRect function.

FUNCTION EqualRect (rect1 ,r ect2: Rect): Boolean;

rect 1 The first of two rectangles to compare.

r ect 2 The second of two rectangles to compare.

DESCRIPTION

The EqualRect function compares the rectangles you specify in the rect1 and rect2
parameters and returns TRUE if they’re equal, FALSE if they’re not.

EmptyRect

To determine whether a rectangle is an empty rectangle, use the EmptyRect function.

FUNCTION EmptyRect (r: Rect): Boolean;

r The rectangle to examine.

DESCRIPTION

The EmptyRect function returns TRUE if the rectangle that you specify in the r
parameter is an empty rectangle, FALSE if it is not. A rectangle is considered empty if the
bottom coordinate is less than or equal to the top coordinate or if the right coordinate is
less than or equal to the left.

Drawing Rectangles

A rectangle is defined by a data structure of type Rect , in which you specify two points
(for the upper-left and lower-right corners of the rectangle) or four boundary coordinates
(one for each side of the rectangle). After defining a rectangle (such as by using the
SetRect procedure), you can use the FrameRect procedure to outline it with the size,
pattern, and pattern mode of the graphics pen.

You can use the PaintRect procedure to draw a rectangle’s interior with the pattern of
the graphics pen, using the pattern mode of the graphics pen.

Using the FillRect procedure, you can draw a rectangle’s interior with any pattern
you specify. The procedure transfers the pattern with the patCopy pattern mode, which
directly copies your requested pattern into the shape.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-59

You can use the EraseRect procedure to erase a rectangle; this procedure fills the
rectangle’s interior with the background pattern for the current graphics port. Making
the shape blend into the background pattern of the graphics port effectively erases the
shape. For example, you can use EraseRect to erase the port rectangle for a window
before redrawing into the window.

You can use the InvertRect procedure to invert a rectangle; this procedure reverses the
colors of all pixels within the rectangle’s boundary. On a black-and-white monitor, this
changes all black pixels in the shape to white, and changes all white pixels to black.
Although this procedure operates on color pixels in color graphics ports, the results are
predictable only with direct pixels or 1-bit pixel maps.

FrameRect

To draw an outline inside a rectangle, use the FrameRect procedure.

PROCEDURE FrameRect (r: Rect);

r The rectangle to frame.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics
port, the FrameRect procedure draws an outline just inside the rectangle that you
specify in the r parameter. The outline is as wide as the pen width and as tall as the pen
height. The pen location does not change.

If a region is open and being formed, the outside outline of the new rectangle is
mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-4 on page 3-23 illustrates how to use this procedure.

CHAPTER 3

QuickDraw Drawing

3-60 QuickDraw Drawing Reference

PaintRect

To paint a rectangle with the graphics pen’s pattern and pattern mode, use the
PaintRect procedure.

PROCEDURE PaintRect (r: Rect);

r The rectangle to paint.

DESCRIPTION

The PaintRect procedure draws the interior of the rectangle that you specify in the r
parameter with the pen pattern for the current graphics port, according to the pattern
mode for the current graphics port. The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-5 on page 3-24 illustrates how to use this procedure.

You can use the FillRect procedure, described next, to draw the interior of a rectangle
with a pen pattern different from that for the current graphics port.

FillRect

To fill a rectangle with any available bit pattern, use the FillRect procedure.

PROCEDURE FillRect (r: Rect; pat: Pattern);

r The rectangle to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-61

DESCRIPTION

Using the patCopy pattern mode, the FillRect procedure draws the interior of the
rectangle that you specify in the r parameter with the pattern defined in the Pattern
record that you specify in the pat parameter. This procedure leaves the pen location
unchanged.

SPECIAL CONSIDERATIONS

The FillRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-5 on page 3-24 illustrates how to use this procedure.

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8. The Pattern record is described on page 3-40. You can use the
GetPattern and GetIndPattern routines, described on page 3-126 and page 3-127,
respectively, to get a pattern stored in a resource.

You can use the PaintRect procedure, described in the previous section, to draw the
interior of a rectangle with the pen pattern for the current graphics port. To fill a
rectangle with a pixel pattern, use the FillCRect procedure, which is described in the
chapter “Color QuickDraw.”

EraseRect

To erase a rectangle, use the EraseRect procedure.

PROCEDURE EraseRect (r: Rect);

r The rectangle to erase.

DESCRIPTION

Using the patCopy pattern mode, the EraseRect procedure draws the interior of the
rectangle that you specify in the r parameter with the background pattern for the current
graphics port. This effectively erases the rectangle specified in the r parameter. For
example, you can use EraseRect to erase the port rectangle for a window before
redrawing into the window.

This procedure leaves the location of the graphics pen unchanged.

CHAPTER 3

QuickDraw Drawing

3-62 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The EraseRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 6-2 on page 6-10 in the chapter “Offscreen Graphics Worlds” in this book
illustrates how to use EraseRect to initialize an offscreen pixel map. The patCopy
pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on
page 3-8.

InvertRect

To invert the pixels enclosed by a rectangle, use the InvertRect procedure.

PROCEDURE InvertRect (r: Rect);

r The rectangle whose enclosed pixels are to be inverted.

DESCRIPTION

The InvertRect procedure inverts the pixels enclosed by the rectangle that you specify
in the r parameter. Every white pixel becomes black and every black pixel becomes
white. The pen location does not change.

SPECIAL CONSIDERATIONS

The Inver tRect procedure was designed for 1-bit images in basic graphics ports. This
procedure operates on color pixels in color graphics ports, but the results are predictable
only with direct pixels or 1-bit pixel maps. For indexed pixels, Color QuickDraw
performs the inversion on the pixel indexes, which means the results depend entirely on
the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The
eight colors used in basic QuickDraw are stored in a color table represented by the global
variable QDColors . To display those eight basic QuickDraw colors on an indexed
device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the
CLUT that best map to the colors in the QDColors color table. Because the index, not the
color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-63

Drawing Rounded Rectangles

As with rectangles, QuickDraw provides routines with which you can frame, paint, fill,
erase, and invert rounded rectangles. Rounded rectangles are rectangles with rounded
corners defined by the width and height of the ovals forming their corners.

You can use the FrameRoundRect procedure to draw an outline of a rounded rectangle
with the size, pattern, and pattern mode of the graphics pen. You can use the
PaintRoundRect procedure to draw a rounded rectangle’s interior with the pattern of
the graphics pen, using the pattern mode of the graphics pen.

Using the FillRoundRect procedure, you can draw a rounded rectangle’s interior with
any pattern you specify. The procedure transfers the pattern with the patCopy pattern
mode, which directly copies your requested pattern into the shape.

You can use the EraseRoundRect procedure to erase a rounded rectangle; this
procedure fills the rectangle’s interior with the background pattern for the current
graphics port.

You can use the InvertRoundRect procedure to invert a rounded rectangle; this
procedure reverses the colors of all pixels within the rounded rectangle. Although
this procedure operates on color pixels in color graphics ports, the results are predictable
only with 1-bit and direct color pixels.

When using these procedures, you specify a rectangle, which is defined by a data
structure of type Rect . You must also specify the width and height of the ovals that
describe the curvature of the rounded corners, as shown in Figure 3-19.

Figure 3-19 Oval width and height in rounded rectangles

CHAPTER 3

QuickDraw Drawing

3-64 QuickDraw Drawing Reference

FrameRoundRect

To draw an outline inside a rounded rectangle, use the FrameRoundRect procedure.

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics
port, the FrameRoundRect procedure draws an outline just inside the rounded
rectangle bounded by the rectangle that you specify in the r parameter. The outline is as
wide as the pen width and as tall as the pen height. The pen location does not change.

Use the ovalWidth and ovalHeight parameters to specify the diameters of curvature
for the corners of the rounded rectangle.

If a region is open and being formed, the outside outline of the new rounded rectangle is
mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameRoundRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

PaintRoundRect

To paint a rounded rectangle with the graphics pen’s pattern and pattern mode, use the
PaintRoundRect procedure.

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-65

DESCRIPTION

Using the pattern and pattern mode of the graphics pen for the current graphics port, the
PaintRoundRect procedure draws the interior of the rounded rectangle bounded by
the rectangle that you specify in the r parameter. Use the ovalWidth and ovalHeight
parameters to specify the diameters of curvature for the corners of the rounded rectangle.

The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRoundRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillRoundRect procedure, described next, to draw the interior of a
rounded rectangle with a pen pattern different from that for the current graphics port.

FillRoundRect

To fill a rounded rectangle with any available bit pattern, use the FillRoundRect
procedure.

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;

pat: Pattern);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillRoundRect procedure draws the interior
of the rounded rectangle bounded by the rectangle that you specify in the r parameter
with the bit pattern defined in the Pattern record that you specify in the pat
parameter. Use the ov alWidth and ovalHeight parameters to specify the diameters of
curvature for the corners. The pen location does not change.

CHAPTER 3

QuickDraw Drawing

3-66 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillRoundRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126
and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern
mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.
The Pattern record is described on page 3-40.

You can use the PaintRoundRect procedure, described in the previous section, to draw
the interior of a rounded rectangle with the pen pattern for the current graphics port. To
fill a rounded rectangle with a pixel pattern, use the FillCRoundRect procedure,
which is described in the chapter “Color QuickDraw.”

EraseRoundRect

To erase a rounded rectangle, use the EraseRoundRect procedure.

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

Using the patCopy pattern mode, the EraseRoundRect procedure draws the interior
of the rounded rectangle bounded by the rectangle that you specify in the r parameter
with the background pattern of the current graphics port. This effectively erases the
rounded rectangle. Use the ovalWidth and ovalHeight parameters to specify the
diameters of curvature for the corners of the rounded rectangle.

This procedure leaves the location of the graphics pen unchanged.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-67

SPECIAL CONSIDERATIONS

The EraseRoundRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8.

InvertRoundRect

To invert the pixels enclosed by a rounded rectangle, use the InvertRoundRect
procedure.

PROCEDURE InvertRoundRect (r: Rect;

 o valWidth ,

 o valHeight: Integer);

r The rectangle that defines the rounded rectangle’s boundaries.

ovalWidth The width of the oval defining the rounded corner.

ovalHeight
The height of the oval defining the rounded corner.

DESCRIPTION

The InvertRoundRect procedure inverts the pixels enclosed by the rounded rectangle
bounded by the rectangle that you specify in the r parameter. Every white pixel becomes
black and every black pixel becomes white. The ov alWidth and ovalHeight
parameters specify the diameters of curvature for the corners. The pen location does not
change.

SPECIAL CONSIDERATIONS

The InvertRoundRect procedure was designed for 1-bit images in basic graphics
ports. This procedure operates on color pixels in color graphics ports, but the results are
predictable only with direct devices or 1-bit pixel maps. For indexed pixels, Color
QuickDraw performs the inversion on the pixel indexes, which means the results
depend entirely on the contents of the CLUT (which is described in the chapter “Color
QuickDraw”). The eight colors used in basic QuickDraw are stored in a color table
represented by the global variable QDColors . To display those eight basic QuickDraw
colors on an indexed device, Color QuickDraw uses the Color Manager to obtain indexes
to the colors in the CLUT that best map to the colors in the QDColors color table.
Because the index, not the color value, is inverted, the results are unpredictable.

CHAPTER 3

QuickDraw Drawing

3-68 QuickDraw Drawing Reference

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertRoundRect procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

Drawing Ovals

An oval is a circular or elliptical shape defined by the bounding rectangle that encloses
it. You can use the FrameOval procedure to draw its outline, or the PaintOval or
FillOval procedure to draw its interior with a pattern. You can use the EraseOval
procedure to erase an oval, and you can use the InvertOval procedure to reverse the
colors of all pixels within the oval. (Although this procedure operates on color pixels
in color graphics ports, the results of InvertOval are predictable only with 1-bit or
direct color pixels.)

FrameOval

To draw an outline inside an oval, use the FrameOval procedure.

PROCEDURE FrameOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics
port, the FrameOval procedure draws an outline just inside the oval with the bounding
rectangle that you specify in the r parameter. The outline is as wide as the pen width
and as tall as the pen height. The pen location does not change.

If a region is open and being formed, the outside outline of the new oval is
mathematically added to the region’s boundary.

SPECIAL CONSIDERATIONS

The FrameOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-6 on page 3-25 illustrates how to use this procedure.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-69

PaintOval

To paint an oval with the graphics pen’s pattern and pattern mode, use the PaintOval
procedure.

PROCEDURE PaintOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintOval
procedure draws the interior of an oval just inside the bounding rectangle that you
specify in the r parameter. The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillOval procedure, described next, to draw the interior of an oval
with a pen pattern different from that for the current graphics port.

FillOval

To fill an oval with any available bit pattern, use the FillOval procedure.

PROCEDURE FillOval (r: Rect ; pat: Pattern);

r The rectangle that defines the oval’s boundaries.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode and the bit pattern defined in the Patter n record that
you specify in the pat parameter, the FillOval procedure draws the interior of an oval
just inside the bounding rectangle that you specify in the r parameter. The pen location
does not change.

CHAPTER 3

QuickDraw Drawing

3-70 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126
and page 3-127, respecively, to get a pattern stored in a resource. The patCopy pattern
mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.
The Pattern record is described on page 3-40.

You can use the PaintOval procedure, described in the previous section, to draw the
interior of an oval with the pen pattern for the current graphics port. To fill an oval with
a pixel pattern, use the FillCOval procedure, which is described in the chapter “Color
QuickDraw.”

EraseOval

To erase an oval, use the EraseOval procedure.

PROCEDURE EraseOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

Using the background pattern for the current graphics port and the patCopy pattern
mode, the EraseOval procedure draws the interior of an oval just inside the bounding
rectangle that you specify in the r parameter. This effectively erases the oval bounded by
the specified rectangle.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-71

InvertOval

To invert the pixels enclosed by an oval, use the InvertOval procedure.

PROCEDURE InvertOval (r: Rect);

r The rectangle that defines the oval’s boundary.

DESCRIPTION

The InvertOval procedure inverts the pixels enclosed by an oval just inside the
bounding rectangle that you specify in the r parameter. Every white pixel becomes
black and every black pixel becomes white. The pen location does not change.

SPECIAL CONSIDERATIONS

The InvertOval procedure was designed for 1-bit images in basic graphics ports. This
procedure operates on color pixels in color graphics ports, but the results are predictable
only with direct devices or 1-bit pixel maps. For indexed pixels, Color QuickDraw
performs the inversion on the pixel indexes, which means the results depend entirely
on the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The
eight colors used in basic QuickDraw are stored in a color table represented by the global
variable QDColors . To display those eight basic QuickDraw colors on an indexed
device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the
CLUT that best map to the colors in the QDColors color table. Because the index, not the
color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertOval procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

Drawing Arcs and Wedges

An arc is defined as a portion of an oval’s circumference bounded by a pair of radii. A
wedge is a pie-shaped segment bounded by a pair of radii, and it extends from the center
of the oval to the circumference. You use the FrameArc procedure to draw an arc, and
you use the PaintArc or FillArc procedure to draw a wedge. Using the EraseArc
procedure, you can erase a wedge, and, using InvertArc , you can reverse the colors of
all pixels within a wedge. (Although this procedure operates on color pixels in color
graphics ports, the results of InvertArc are predictable only with 1-bit and direct color
pixels.)

CHAPTER 3

QuickDraw Drawing

3-72 QuickDraw Drawing Reference

These procedures take three parameters: a rectangle that defines an oval’s boundaries, an
angle indicating the start of the arc (the variable startAngle), and an angle indicating
the arc’s extent (the variable arcAngle). For the angle parameters, 0° indicates a
vertical line straight up from the center of the oval. Positive values indicate angles in the
clockwise direction from this vertical line, and negative values indicate angles in the
counterclockwise direction, as shown in Figure 3-20.

Figure 3-20 Using angles to define the radii for arcs and wedges

FrameArc

To draw an arc of the oval that fits inside a rectangle, use the FrameArc procedure.

PROCEDURE FrameArc (r : R ect; startAngle,arcAngle: I nteger);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-73

DESCRIPTION

Using the pattern, pattern mode, and size of the graphics pen for the current graphics
port, the FrameArc procedure draws an arc of the oval bounded by the rectangle that
you specify in the r parameter. Use the startAngle parameter to specify where the arc
begins as modulo 360. Use the arcAngle parameter to specify how many degrees the
arc covers. Specify whether the angles are in positive or negative degrees; a positive
angle goes clockwise, while a negative angle goes counterclockwise. Zero degrees is at
12 o’clock high, 90° (or –270°) is at 3 o’clock, 180° (or –180°) is at 6 o’clock, and 270°
(or –90°) is at 9 o’clock. Measure other angles relative to the bounding rectangle.

A line from the center of the rectangle through its upper-right corner is at 45°, even if the
rectangle isn’t square; a line through the lower-right corner is at 135°, and so on, as
shown in Figure 3-20.

The arc is as wide as the pen width and as tall as the pen height. The pen location does
not change.

SPECIAL CONSIDERATIONS

The FrameArc procedure differs from other QuickDraw procedures that frame shapes
in that the arc is not mathematically added to the boundary of a region that’s open and
being formed.

The FrameArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-7 on page 3-26 illustrates how to use this procedure.

PaintArc

To paint a wedge of the oval that fits inside a rectangle with the graphics pen’s pattern
and pattern mode, use the PaintArc procedure.

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

CHAPTER 3

QuickDraw Drawing

3-74 QuickDraw Drawing Reference

DESCRIPTION

Using the pen pattern and pattern mode of the current graphics port, the PaintArc
procedure draws a wedge of the oval bounded by the rectangle that you specify in the r
parameter. As in the FrameArc procedure described in the previous section and
illustrated in Figure 3-21, use the startAngle and arcAngle parameters to define the
arc of the wedge.

The pen location does not change.

Figure 3-21 Using PaintArc to paint a 45° angle

SPECIAL CONSIDERATIONS

The PaintArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-7 on page 3-26 illustrates how to use this procedure.

You can use the FillArc procedure, described next, to draw a wedge with a pattern
different from that specified in the pnPat field of the current graphics port.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-75

FillArc

To fill a wedge with any available bit pattern, use the FillArc procedure.

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: Integer;

 pat: Pattern);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode and the pattern defined in the Pattern record that
you specify in the pat parameter, the FillArc procedure draws a wedge of the oval
bounded by the rectangle that you specify in the r parameter. As in the FrameArc
procedure described on page 3-72 and as illustrated in Figure 3-21, use the startAngle
and arcAngle parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The FillArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the GetPattern and GetIndPattern routines, described on page 3-126
and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern
mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.
The Pattern record is described on page 3-40.

You can use the PaintArc procedure, described in the previous section, to draw a
wedge with the pen pattern for the current graphics port. To fill a wedge with a pixel
pattern, use the FillCArc procedure, which is described in the chapter “Color
QuickDraw.”

CHAPTER 3

QuickDraw Drawing

3-76 QuickDraw Drawing Reference

EraseArc

To erase a wedge, use the EraseArc procedure.

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

DESCRIPTION

Using the patCopy pattern mode, the EraseArc procedure draws a wedge of the oval
bounded by the rectangle that you specify in the r parameter with the background
pattern for the current graphics port. As in the FrameArc procedure described on
page 3-72 and as illustrated in Figure 3-21, use the startAngle and arcAngle
parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-77

InvertArc

To invert the pixels of a wedge, use the InvertArc procedure.

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: Integer);

r The rectangle that defines an oval’s boundaries.

startAngle
The angle indicating the start of the arc.

arcAngle The angle indicating the arc’s extent.

DESCRIPTION

The InvertArc procedure inverts the pixels enclosed by a wedge of the oval bounded
by the rectangle that you specify in the r parameter. Every white pixel becomes black
and every black pixel becomes white. As in the FrameArc procedure described on
page 3-72 and as illustrated in Figure 3-21, use the startAngle and arcAngle
parameters to define the arc of the wedge.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertArc procedure was designed for 1-bit images in basic graphics ports. This
procedure operates on color pixels in color graphics ports, but the results are predictable
only with direct devices or 1-bit pixel maps. For indexed pixels, Color QuickDraw
performs the inversion on the pixel indexes, which means the results depend entirely on
the contents of the CLUT (which is described in the chapter “Color QuickDraw”). The
eight colors used in basic QuickDraw are stored in a color table represented by the global
variable QDColors . To display those eight basic QuickDraw colors on an indexed
device, Color QuickDraw uses the Color Manager to obtain indexes to the colors in the
CLUT that best map to the colors in the QDColors color table. Because the index, not the
color value, is inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertArc procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

3-78 QuickDraw Drawing Reference

Creating and Managing Polygons

A polygon is defined by a sequence of connected lines. To create a polygon, you first call
the OpenPoly function and then some number of LineTo procedures to draw lines
from the first vertex of the polygon to the second, from the second to the third, and so
on, until you’ve drawn a line to the last vertex. You then use the ClosePoly procedure,
which completes the figure by drawing a connecting line from the last vertex back to the
first.

After you use the OpenPoly function to create a polygon, QuickDraw begins collecting
the line-drawing information you provide into a Polygon record. The OpenPoly
function returns a handle to the newly allocated Polygon record.

After defining a polygon in this way, you can draw it with the FramePoly , PaintPoly ,
and FillPoly procedures. You can move it by using the OffSetPoly procedure.
When you are finished using the polygon, use the KillPoly procedure to release its
memory. When using the ClosePoly , Off setPoly , and KillPoly procedures, you
refer to a polygon by the handle returned by OpenPoly when you first created the
polygon.

Note

If, while your application draws a polygon, it exceeds available stack
space in Color QuickDraw, the QDError function (described in the
chapter “Color QuickDraw” in this book) returns the result code –144. ◆

OpenPoly

To begin defining a polygon, use the OpenPoly function.

FUNCTION OpenPol y: PolyHandle;

DESCRIPTION

The OpenPoly function returns a handle to a new polygon and starts saving lines for
processing as a polygon definition. While a polygon is open, all calls to the Line and
LineT o procedures affect the outline of the polygon. Only the line endpoints affect the
polygon definition; the pattern mode, pattern, and size do not affect it. The OpenPoly
function calls the HidePen procedure, so no drawing occurs on the screen while the
polygon is open (unless you call the ShowPen procedure just after calling OpenPoly , or
you called ShowPen previously without balancing it by a call to HidePen).

A polygon should consist of a sequence of connected lines. The OpenPoly function
stores the definition for a polygon in a Polygon record.

When a polygon is open, the current graphics port’s polySave field contains a handle to
information related to the polygon definition. If you want to temporarily disable the
polygon definition, you can save the current value of this field, set the field to NIL , and
later restore the saved value to resume the polygon definition.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-79

Even though the onscreen presentation of a polygon is clipped, the definition of a
polygon is not; you can define a polygon anywhere on the coordinate plane.

When you are finished calling the line-drawing routines that define your polygon, use
the ClosePoly procedure, described next.

SPECIAL CONSIDERATIONS

Do not call OpenPoly while a region or another polygon is already open.

Polygons are limited to 64 KB. You can determine the polygon size while it’s being
formed by calling the Memory Manager function GetHandleSize , which is described
in Inside Macintosh: Memory.

The OpenPoly function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this function to create a triangle. The
Polygon record is described on page 3-37.

ClosePoly

To complete the collection of lines that defines your polygon, use the ClosePoly
procedure.

PROCEDURE ClosePoly;

DESCRIPTION

The ClosePoly procedure stops collecting line-drawing commands for the currently
open polygon and computes the polyBBox field of the Polygon record. You should call
ClosePoly only once for every call to the OpenPoly function.

The ClosePoly procedure uses the ShowPen procedure, balancing the call to the
HidePen procedure made by the OpenPoly function.

SPECIAL CONSIDERATIONS

The ClosePoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure when creating a triangle.

CHAPTER 3

QuickDraw Drawing

3-80 QuickDraw Drawing Reference

OffsetPoly

To move a polygon, use the OffsetPoly procedure.

PROCEDURE OffsetPoly (poly: PolyHandle; dh ,d v: Integer);

poly A handle to a polygon to move.

dh The horizontal distance to move the polygon.

dv The vertical distance to move the polygon.

DESCRIPTION

The OffsetPoly procedure moves the polygon whose handle you pass in the poly
parameter by adding the value you specify in the dh parameter to the horizontal
coordinates of its points, and by adding the value you specify in the dv parameter to the
vertical coordinates of all points of its region boundary. If the values of dh and dv are
positive, the movement is to the right and down; if either is negative, the corresponding
movement is in the opposite direction. The region retains its size and shape. This doesn’t
affect the screen unless you subsequently call a routine to draw the region.

Note
OffsetPoly is an especially efficient operation, because the data
defining a polygon is stored relative to the first point of the polygon and
so isn’t actually changed by OffsetPoly . ◆

KillPoly

To release the memory occupied by a polygon, use the KillPoly procedure.

PROCEDURE KillPoly (poly: PolyHandle);

poly A handle to the polygon to dispose of.

DESCRIPTION

The KillPoly procedure releases the memory used by the polygon whose handle you
pass in the poly parameter. Use KillPoly only when you’re completely through with
a polygon.

SPECIAL CONSIDERATIONS

The KillPoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-81

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure.

Drawing Polygons

After defining a polygon by using the OpenPoly function, a number of line-drawing
procedures, and the ClosePoly procedure, you can draw the polygon’s outline with the
FramePoly procedure. You can draw its interior with the PaintPoly and FillPoly
procedures. You can erase its interior by using the ErasePoly procedure, and you can
use the InvertPoly procedure to reverse the colors of the pixels within it. In all of these
procedures, you refer to a polygon by the handle returned by OpenPoly when you first
created the polygon.

Four of these procedures—PaintPoly , ErasePoly , InvertPoly , and FillPoly —
temporarily convert the polygon into a region to perform their operations. The amount
of memory required for this temporary region may be far greater than the amount
required by the polygon alone.

You can estimate the size of this region by scaling down the polygon with the MapPoly
procedure (described on page 3-108), converting the polygon into a region, checking the
region’s size with the Memory Manager function GetHandleSize , and multiplying
that value by the factor by which you scaled the polygon.

▲ WARNING

The results of these graphics operations are undefined whenever any
horizontal or vertical line drawn through the polygon would intersect
the polygon’s outline more than 50 times. ▲

FramePoly

To draw the outline of a polygon, use the FramePoly procedure.

PROCEDURE FramePoly (poly: PolyHandle);

poly A handle to the polygon to draw.

DESCRIPTION

Using the current graphics port’s pen pattern, pattern mode, and size, the FramePoly
procedure plays back the line-drawing commands that define the polygon whose handle
you pass in the poly parameter.

The graphics pen hangs below and to the right of each point on the boundary of the
polygon. Thus, the drawn polygon extends beyond the right and bottom edges of
the polygon’s bounding rectangle (which is stored in the polyBBox field of the
Polygon record) by the pen width and pen height, respectively. All other graphics

CHAPTER 3

QuickDraw Drawing

3-82 QuickDraw Drawing Reference

operations, such as painting a polygon with the PaintPoly procedure, occur strictly
within the boundary of the polygon, as illustrated in Figure 3-22.

Figure 3-22 Framing and painting polygons

If a polygon is open and being formed, FramePoly affects the outline of the polygon
just as if the line-drawing routines themselves had been called. If a region is open and
being formed, the outside outline of the polygon being framed is mathematically added
to the region’s boundary.

SPECIAL CONSIDERATIONS

The FramePoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

PaintPoly

To paint a polygon with the graphics pen’s pattern and pattern mode, use the
PaintPoly procedure.

PROCEDURE PaintPoly (poly: PolyHandle);

poly A handle to the polygon to paint.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-83

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintPoly
procedure draws the interior of a polygon whose handle you pass in the poly
parameter. The pen location does not change.

SPECIAL CONSIDERATIONS

Do not create a height or width for the polygon greater than 32,767 pixels, or
PaintPoly will crash.

The PaintPoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillPoly procedure, described next, to draw the interior of a polygon
with a pattern different from that specified in the pnPat field of the current graphics
port.

FillPoly

To fill a polygon with any available bit pattern, use the FillPoly procedure.

PROCEDURE FillPoly (poly: P olyHandle; pat: P attern);

poly A handle to the polygon to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillPoly procedure draws the interior of the
polygon whose handle you pass in the poly parameter with the pattern defined in the
Pattern record that you specify in the pat parameter.

This procedure leaves the location of the graphics pen unchanged.

CHAPTER 3

QuickDraw Drawing

3-84 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The FillPoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-10 on page 3-30 illustrates how to use this procedure to fill a triangle.

You can use the GetPattern and GetIndPattern routines, described on page 3-126
and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern
mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.
The Pattern record is described on page 3-40.

You can use the PaintPoly procedure, described in the previous section, to draw the
interior of a polygon with the pen pattern for the current graphics port. To fill a polygon
with a pixel pattern, use the FillCPoly procedure, which is described in the chapter
“Color QuickDraw.”

ErasePoly

To erase a polygon, use the ErasePoly procedure.

PROCEDURE ErasePoly (poly: P olyHandle);

poly A handle to the polygon to erase.

DESCRIPTION

Using the patCopy pattern mode, the ErasePoly procedure draws the interior of the
polygon whose handle you pass in the poly parameter with the background pattern for
the current graphics port.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The ErasePoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-85

InvertPoly

To invert the pixels enclosed by a polygon, use the InvertPoly procedure.

PROCEDURE InvertPoly (poly: P olyHandle);

poly A handle to a polygon, the pixels of which you want to invert.

DESCRIPTION

The InvertPoly procedure inverts the pixels enclosed by the polygon whose handle
you pass in the poly parameter. Every white pixel becomes black and every black pixel
becomes white.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertPoly procedure was designed for 1-bit images in basic graphics ports. This
procedure operates on color pixels in color graphics ports, but the results are predictable
only with 1-bit or direct pixels. For indexed pixels, Color QuickDraw performs the
inversion on the pixel indexes, which means the results depend entirely on the contents
of the CLUT (which is described in the chapter “Color QuickDraw”). The eight colors
used in basic QuickDraw are stored in a color table represented by the global variable
QDColors . To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best
map to the colors in the QDColors color table. Because the index, not the color value, is
inverted, the results are unpredictable.

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertPoly procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

Creating and Managing Regions

To define a region, you can use any set of lines or shapes, including other regions, so
long as the region’s outline consists of one or more closed loops. To begin defining a
region, you must use the NewRgn function to allocate space for it, and then call the
OpenRgn procedure. You can then use any QuickDraw routines to construct the outline
of the region. When you are finished constructing the region, use the CloseRgn
procedure.

CHAPTER 3

QuickDraw Drawing

3-86 QuickDraw Drawing Reference

The NewRgn function returns a handle to the newly allocated Region record. After you
use the OpenRgn procedure, QuickDraw begins collecting the drawing information you
provide into this Region record. (The Region record is described in the chapter “Basic
QuickDraw.”)

After defining a region in this way, you can display it with the FrameRgn , PaintRgn ,
and FillRgn procedures. When you are finished using the region, use the DisposeRgn
procedure to release its memory.

You can use the SetEmptyRgn procedure to set a region to be empty, SetRectRgn to
change it into a rectangle, OffsetRgn to move it, InsetRgn to shrink or expand it,
PtInRgn to determine whether a pixel lies within it, RectInRgn to determine whether
a rectangle intersects it, EmptyRgn to determine whether it is an empty region, and
CopyRgn to make a copy of it. You can use the RectRgn procedure to make a region out
of a rectangle. You can use the SectRgn procedure to calculate the intersection of
two regions, UnionRgn to calculate the union of two regions, DiffRgn to subtract one
region from another, XorRgn to calculate the difference between the union and the
intersection of two regions, and EqualRgn to determine whether two regions have
identical sizes, shapes, and locations.

When using these procedures, you refer to a region by the handle returned by
NewRgn when you first allocated memory for the region.

▲ WARNING

Ensure that the memory for a region is valid before calling these routines
to manipulate that region; if there isn’t sufficient memory, the system
may crash. Regions are limited to 32 KB in size in basic QuickDraw and
64 KB in Color QuickDraw. Before defining a region, you can use the
Memory Manager function MaxMem to determine whether the memory
for the region is valid. You can determine the current size of an existing
region by calling the Memory Manager function GetHandleSize .
(Both MaxMem and GetHandleSize are described in Inside Macintosh:
Memory.) When you record drawing operations in an open region, the
resulting region description may overflow the 32 KB or 64 KB limit.
Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the
result code regionTooBigError . ▲

If the points or rectangles supplied to these routines are defined in a graphics port other
than your current graphics port, you must convert them to the local coordinate system of
your current graphics port. You can accomplish this by using the SetPort procedure to
change to the graphics port containing the points or rectangles, using the LocalGlobal
procedure to convert their locations to global coordinates, using SetPort to return to
your starting graphics port, and then using the GlobalToLocal procedure to convert
the locations of points or rectangles to the local coordinates of your current graphics
port. These procedures are described in the chapter “Basic QuickDraw.”

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-87

NewRgn

To begin creating a new region, use the NewRgn function.

FUNCTION NewRgn: RgnHandle;

DESCRIPTION

The NewRgn function allocates space for a new, variable-size region; initializes it to the
empty region defined by the rectangle (0,0,0,0); and returns a handle to the new region.
This is the only function that creates a new region; other routines merely alter the size or
shape of existing regions.

To begin defining a region, use the OpenRgn procedure, described next.

SPECIAL CONSIDERATIONS

The NewRgn function may move or purge memory blocks in the application heap. Your
application should not call this function at interrupt time.

Use the Memory Manager function MaxMem (described in Inside Macintosh: Memory) to
determine whether the memory for the region is valid before using NewRgn.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this function.

OpenRgn

To begin defining a region, use the OpenRgn procedure.

PROCEDURE OpenRgn;

DESCRIPTION

The OpenRgn procedure allocates temporary memory to start saving lines and framed
shapes for processing as a region definition. Call OpenRgn only after initializing a region
with the NewRgn function.

The NewRgn function stores the definition for a region in a Regio n record.

While a region is open, all calls to Line , LineTo , and the procedures that draw framed
shapes (except arcs) affect the outline of the region. Only the line endpoints and shape
boundaries affect the region definition—the pattern mode, pattern, and size do not
affect it.

When you are finished defining the region, call the CloseRgn procedure.

CHAPTER 3

QuickDraw Drawing

3-88 QuickDraw Drawing Reference

The OpenRgn procedure calls HidePen , so no drawing occurs on the screen while the
region is open (unless you call ShowPen just after OpenRgn, or you called ShowPen
previously without balancing it by a call to HidePen). Since the pen hangs below and
to the right of the pen location, drawing lines with even the smallest pen changes pixels
that lie outside the region you define.

The outline of a region is mathematically defined and infinitely thin, and it separates the
bit or pixel image into two groups of pixels: those within the region and those outside it.

A region should consist of one or more closed loops. Each framed shape itself constitutes
a loop. Any lines drawn with the Line or LineTo procedure should connect with each
other or with a framed shape. Even if the onscreen presentation of a region is clipped,
the definition of a region is not; you can define a region anywhere on the coordinate
plane with complete disregard for the location of various graphics port entities on
that plane.

When a region is open, the current graphics port’s rgnSave field contains a handle to
information related to the region definition. If you want to temporarily disable the
collection of lines and shapes, you can save the current value of this field, set the field to
NIL , and later restore the saved value to resume the region definition. Also, calling
SetPort while a region is being formed discontinues formation of the region until
another call to SetPort resets the region’s original graphics port.

SPECIAL CONSIDERATIONS

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw.
You can determine the current size of an existing region by calling the Memory Manager
function GetHandleSiz e (described in Inside Macintosh: Memory). When you record
drawing operations in an open region, the resulting region description may overflow the
32 KB or 64 KB limit. Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the result code
regionTooBigError .

Do not call OpenRgn while another region or a polygon is already open. When you are
finished constructing the region, use the CloseRgn procedure, which is described next.

The OpenRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 illustrates how to use this procedure. The Region record is
described in the chapter “Basic QuickDraw.”

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-89

CloseRgn

To organize a collection of lines and shapes into a region definition, use the CloseRgn
procedure.

PROCEDURE CloseRgn (dstRgn: rgnHandle);

dstRgn The handle to the region to close.

DESCRIPTION

The CloseRgn procedure stops the collection of lines and framed shapes, organizes
them into a region definition, and saves the result in the region whose handle you pass
in the dstRgn parameter. The handle you pass in the dstRgn parameter should be a
region handle returned by the NewRgn function.

The CloseRgn procedure does not create the destination region; you must have already
allocated space for it by using the OpenRgn procedure. The CloseRgn procedure calls
the ShowPen procedure, balancing the call to the HidePen procedure made by OpenRgn.

When you no longer need the memory occupied by the region, use the DisposeRgn
procedure, described next.

SPECIAL CONSIDERATIONS

Regions are limited to 32 KB in size in basic QuickDraw and 64 KB in Color QuickDraw.
When you record drawing operations in an open region, the resulting region description
may overflow this limit. Should this happen in Color QuickDraw, the QDError function
(described in the chapter “Color QuickDraw” in this book) returns the result code
regionTooBigError . Since the resulting region is potentially corrupt, the CloseRgn
procedure returns an empty region if it detects QDError has returned
regionTooBigError .

The CloseRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 illustrates how to use this procedure.

CHAPTER 3

QuickDraw Drawing

3-90 QuickDraw Drawing Reference

DisposeRgn

To release the memory occupied by a region, use the DisposeRgn procedure.

PROCEDURE DisposeRgn (rgn: R gnHandle);

rgn A handle to the region to dispose.

DESCRIPTION

The DisposeRgn procedure releases the memory occupied by the region whose handle
you pass in the rgn parameter.

Use DisposeRgn only after you’re completely through with a region.

SPECIAL CONSIDERATIONS

The DisposeRgn procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this procedure.

CopyRgn

To make a copy of a region, use the CopyRgn procedure.

PROCEDURE CopyRgn (srcRgn,dstRgn: R gnHandle);

srcRgn A handle to the region to copy.

dstRgn A handle to the region to receive the copy.

DESCRIPTION

The CopyRgn procedure copies the mathematical structure of the region whose handle
you pass in the srcRgn parameter into the region whose handle you pass in the dstRgn
parameter; that is, CopyRgn makes a duplicate copy of srcRgn . When calling CopyRgn,
pass handles that have been returned by the NewRgn function in the srcRgn and
dstRgn parameters.

Once this is done, the region indicated by srcRgn may be altered (or even disposed of)
without affecting the region indicated by dstRgn . The CopyRgn procedure does not
create the destination region; space must already have been allocated for it by using the
NewRgn function.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-91

SPECIAL CONSIDERATIONS

The CopyRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SetEmptyRgn

To set an existing region to be empty, use the SetEmptyRgn procedure.

PROCEDURE SetEmptyRgn (rgn: R gnHandle);

rgn A handle to the region to be made empty.

DESCRIPTION

The SetEmptyRgn procedure destroys the previous structure of the region whose
handle you pass in the rgn parameter; it then sets the new structure to the empty region
defined by the rectangle (0,0,0,0).

SPECIAL CONSIDERATIONS

The SetEmptyRgn procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SetRectRgn

To change the structure of an existing region to that of a rectangle, you can use the
SetRectRgn procedure.

PROCEDURE SetRectRgn (rgn: RgnHandle;

 left ,t op,r ight ,b ottom: Integer);

rgn A handle to the region to restructure as a rectangle.

left The horizontal coordinate of the upper-left corner of the rectangle to set
as the new region.

top The vertical coordinate of the upper-left corner of the rectangle to set
as the new region.

right The horizontal coordinate of the lower-right corner of the rectangle to set
as the new region.

bottom The vertical coordinate of the lower-right corner of the rectangle to set
as the new region.

CHAPTER 3

QuickDraw Drawing

3-92 QuickDraw Drawing Reference

DESCRIPTION

The SetRectRgn procedure destroys the previous structure of the region whose handle
you pass in the rgn parameter, and it then sets the new structure to the rectangle
that you specify in the left , top , right , and bottom parameters. If you specify an
empty rectangle (that is, right <= left or bottom <= top), the SetRectRgn procedure
sets the region to the empty region defined by the rectangle (0,0,0,0).

As an alternative to the SetRectRgn procedure, you can change the structure of an
existing region to that of a rectangle by using the RectRgn procedure, which accepts as a
parameter a rectangle instead of four coordinates. The RectRgn procedure is described
next.

SPECIAL CONSIDERATIONS

The SetRectRgn procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RectRgn

To change the structure of an existing region to that of a rectangle, you can use the
RectRgn procedure.

PROCEDURE RectRgn (rgn: R gnHandle; r: R ect);

rgn A handle to the region to restructure as a rectangle.

r The rectangle structure to use.

DESCRIPTION

The RectRgn procedure destroys the previous structure of the SetRectRgn procedure,
and it then sets the new structure to a rectangle that you specify in the r parameter.

As an alternative to the RectRgn procedure, you can use the SetRectRgn procedure,
which accepts as parameters four coordinates instead of a rectangle.

SPECIAL CONSIDERATIONS

The RectRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-93

OffsetRgn

To move a region, use the OffsetRgn procedure.

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: Integer);

rgn A handle to the region to move.

dh The horizontal distance to move the region.

dv The vertical distance to move the region.

DESCRIPTION

The OffsetRgn procedure moves the region whose handle you pass in the rgn
parameter by adding the value you specify in the dh parameter to the horizontal
coordinates of all points of its region boundary, and by adding the value you specify in
the dv parameter to the vertical coordinates of all points of its region boundary. If the
values of dh and dv are positive, the movement is to the right and down; if either is
negative, the corresponding movement is in the opposite direction. The region retains its
size and shape. This doesn’t affect the screen unless you subsequently call a routine to
draw the region.

The OffsetRgn procedure is an especially efficient operation, because most of the data
defining a region is stored relative to the r gnBBox field in its Region record and so isn’t
actually changed by OffsetRgn .

InsetRgn

To shrink or expand a region, use the InsetRgn procedure.

PROCEDURE InsetRgn (rgn: R gnHandle; dh,dv: I nteger);

rgn A handle to the region to alter.

dh The horizontal distance to move points on the left and right boundaries in
toward or outward from the center.

dv The vertical distance to move points on the top and bottom boundaries in
toward or outward from the center.

DESCRIPTION

The InsetRgn procedure moves all points on the region boundary of the region whose
handle you pass in the rgn parameter inward by the vertical distance that you specify in
the dv parameter and by the horizontal distance that you specify in the dh parameter. If
you specify negative values for dh or dv, the InsetRgn procedure moves the points
outward in that direction.

CHAPTER 3

QuickDraw Drawing

3-94 QuickDraw Drawing Reference

The InsetRgn procedure leaves the region’s center at the same position, but moves the
outline in (for positive values of dh and dv) or out (for negative values of dh and dv).
Using InsetRgn on a rectangular region has the same effect as using the InsetRect
procedure.

SPECIAL CONSIDERATIONS

The InsetRgn procedure temporarily uses heap space that’s twice the size of the
original region.

The InsetRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SectRgn

To calculate the intersection of two regions, use the SectRgn procedure.

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgn A A handle to the first of two regions whose intersection is to be determined.

srcRgn B A handle to the second of two regions whose intersection is to be
determined.

dstRgn A handle to the region to receive the intersection area.

DESCRIPTION

The SectRgn procedure calculates the intersection of the two regions whose handles
you pass in the srcRgnA and srcRgnB parameters, and it places the intersection in the
region whose handle you pass in the dstRgn parameter. If the regions do not intersect,
or one of the regions is empty, SectRgn sets the destination to the empty region defined
by the rectangle (0,0,0,0).

The SectRgn procedure does not create a destination region; you must have already
allocated memory for it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-95

SPECIAL CONSIDERATIONS

The SectRgn procedure may temporarily use heap space that’s twice the size of the two
input regions.

The SectRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

UnionRgn

To calculate the union of two regions, use the UnionRgn procedure.

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle) ;

srcRgnA A handle to the first of two regions whose union is to be determined.

srcRgnB A handle to the second of two regions whose union is to be determined.

dstRgn A handle to the region to hold the resulting union area.

DESCRIPTION

The UnionRgn procedure calculates the union of the two regions whose handles you
pass in the srcRgnA and srcRgnB parameters, and it places the union in the region
whose handle you pass in the dstRgn parameter. If both regions are empty, UnionRgn
sets the destination to the empty region defined by the rectangle (0,0,0,0).

The UnionRgn procedure does not create the destination region; you must have already
allocated memory for it by using the NewRgn function.

The destination region may be one of the source regions, if desired.

SPECIAL CONSIDERATIONS

The UnionRgn procedure may temporarily use heap space that’s twice the size of the
two input regions.

The UnionRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

3-96 QuickDraw Drawing Reference

DiffRgn

To subtract one region from another, use the DiffRgn procedure.

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle);

srcRgnA A handle to the region to subtract from.

srcRgnB A handle to the region to subtract.

dstRgn A handle to the region to hold the resulting area.

DESCRIPTION

The DiffRgn procedure subtracts the region whose handle you pass in the srcRgnB
parameter from the region whose handle you pass in the srcRgnA parameter and places
the difference in the region whose handle you pass in the dstRgn parameter. If the first
source region is empty, DiffRgn sets the destination to the empty region defined by the
rectangle (0,0,0,0).

The DiffRgn procedure does not create the destination region; you must have already
allocated memory for it by using the NewRgn function. The destination region may be
one of the source regions, if desired.

SPECIAL CONSIDERATIONS

The DiffRgn procedure may temporarily use heap space that’s twice the size of the two
input regions.

XorRgn

To calculate the difference between the union and the intersection of two regions, use the
XorRgn procedure.

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: RgnHandle);

srcRgnA A handle to the first of two regions to compare.

srcRgnB A handle to the second of two regions to compare.

dstRgn A handle to the region to hold the result.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-97

DESCRIPTION

The XorRgn procedure calculates the difference between the union and the intersection
of the regions whose handles you pass in the srcRgnA and srcRgnB parameters and
places the result in the region whose handle you pass in the dstRgn parameter.

This does not create the destination region; you must have already allocated memory for
it by using the NewRgn function.

If the regions are coincident, XorRgn sets the destination region to the empty region
defined by the rectangle (0,0,0,0).

SPECIAL CONSIDERATIONS

The XorRgn procedure may temporarily use heap space that’s twice the size of the two
input regions.

The XorRgn procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

PtInRgn

To determine whether a pixel is within a region, use the PtInRgn function.

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): Boolean;

pt The point whose pixel is to be checked.

rgn A handle to the region to test.

DESCRIPTION

The PtInRgn function checks whether the pixel below and to the right of the point you
specify in the pt parameter is within the region whose handle you pass in the rgn
parameter. The PtInRgn function returns TRUE if so or FALSE if not.

CHAPTER 3

QuickDraw Drawing

3-98 QuickDraw Drawing Reference

RectInRgn

To determine whether a rectangle intersects a region, use the RectInRgn function.

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): Boolean;

r The rectangle to check for intersection.

rgn A handle to the region to check.

DESCRIPTION

The RectInRgn function checks whether the rectangle specified in the r parameter
intersects the region whose handle you pass in the rgn parameter. The RectInRgn
function returns TRUE if the intersection encloses at least 1 bit or FALSE if it does not.

SPECIAL CONSIDERATIONS

The RectInRgn function sometimes returns TRUE when the rectangle merely intersects
the region’s bounding rectangle. If you need to know exactly whether a given rectangle
intersects the actual region, you can use the RectRg n procedure (described on
page 3-92) to set the rectangle to a region, and call SectRgn (described on page 3-94) to
see whether the two regions intersect. If the result of SectRgn is an empty region, then
the rectangle doesn’t intersect the region.

EqualRgn

To determine whether two regions have identical sizes, shapes, and locations, use the
EqualRgn function.

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle): Boolean ;

srcRgnA A handle to the first of two regions to compare.

srcRgnB A handle to the second of two regions to compare.

DESCRIPTION

The EqualRgn function compares the two regions whose handles you pass in the rgnA
and rgnB parameters and returns TRUE if they’re equal or FALSE if they’re not.

The two regions must have identical sizes, shapes, and locations to be considered equal.
Any two empty regions are always equal.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-99

EmptyRgn

To determine whether a region is empty, use the EmptyRgn function.

FUNCTION EmptyRgn (rgn: RgnHandle): Boolean;

rgn A handle to the region to test for emptiness.

DESCRIPTION

The EmptyRgn function returns TRUE if the region whose handle you pass in the rgn
parameter is an empty region or FALSE if it is not.

SEE ALSO

The EmptyRgn function does not create an empty region. To create an empty region, you
can perform any of the following operations:

■ use the NewRgn function (described on page 3-87)

■ pass the handle to an empty region to the CopyRgn procedure (described on
page 3-90)

■ pass an empty rectangle to either the SetRectRgn procedure (described on
page 3-91) or the RectRgn procedure (described on page 3-92)

■ call the CloseRgn procedure (described on page 3-89) without a previous call to the
OpenRgn procedure

■ call CloseRgn without performing any drawing after calling OpenRgn

■ pass an empty region to the OffsetRgn procedure (described on page 3-93)

■ pass an empty region or too large an inset to the InsetRgn procedure (described on
page 3-93)

■ pass two nonintersecting regions to the SectRgn procedure (described on page 3-94)

■ pass two empty regions to the UnionRgn procedure (described on page 3-95)

■ pass two identical or nonintersecting regions to the DiffRgn (described on page 3-96)
or XorRgn (described on page 3-96) procedure

CHAPTER 3

QuickDraw Drawing

3-100 QuickDraw Drawing Reference

Drawing Regions

After defining a region by using the NewRgn function and OpenRgn procedure, a
number of drawing procedures, and the CloseRgn procedure, you can draw the
region’s outline with the FrameRgn procedure. You can draw its interior with the
PaintRgn and FillRgn procedures. You can erase it by using the EraseRgn
procedure, and you can use the InvertRgn procedure to reverse the colors of the pixels
within it. In all of these procedures, you refer to a region by the handle returned by the
NewRgn function when you first created the region.

These routines depend on the local coordinate system of the current graphics port. If you
draw a region in a graphics port different from the one in which you defined the region,
it may not appear in the proper position in the graphics port.

▲ WARNING

If any horizontal or vertical line drawn through the region would
intersect the region’s outline more than 50 times, the results of these
graphics operations are undefined. The FrameRgn procedure in
particular requires that there would be no more than 25 such
intersections. ▲

FrameRgn

To draw an outline inside a region, use the FrameRgn procedure.

PROCEDURE FrameRgn (rgn: RgnHandle);

rgn A handle to the region to frame.

DESCRIPTION

Using the current graphics port’s pen pattern, pattern mode, and pen size, the
FrameRgn procedure draws an outline just inside the region whose handle you pass in
the rgn parameter. The outline never goes outside the region boundary. The pen location
does not change.

If a region is open and being formed, the outside outline of the region being framed is
mathematically added to that region’s boundary.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-101

SPECIAL CONSIDERATIONS

The FrameRgn procedure calls the routines CopyRgn, InsetRgn , and DiffRgn , so
FrameRgn may temporarily use heap space that’s three times the size of the original
region.

The FrameRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

PaintRgn

To paint a region with the graphics pen’s pattern and pattern mode, use the Paint Rgn
procedure.

PROCEDURE PaintRgn (rgn: R gnHandle);

rgn A handle to the region to paint.

DESCRIPTION

Using the pen pattern and pattern mode for the current graphics port, the PaintRgn
procedure draws the interior of the region whose handle you pass in the rgn parameter.
The pen location does not change.

SPECIAL CONSIDERATIONS

The PaintRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the FillRgn procedure, described next, to draw the interior of a region
with a pen pattern different from that for the current graphics port.

CHAPTER 3

QuickDraw Drawing

3-102 QuickDraw Drawing Reference

FillRgn

To fill a region with any available bit pattern, use the FillRgn procedure.

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

rgn A handle to the region to fill.

pat The bit pattern to use for the fill. Figure 3-3 on page 3-7 illustrates the
default fill patterns and the constants you can use to represent them.

DESCRIPTION

Using the patCopy pattern mode, the FillRgn procedure draws the interior of the
region (whose handle you pass in the rgn parameter) with the pattern defined in the
Pattern record that you specify in the pat parameter.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The FillRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 3-8 on page 3-28 and Listing 3-9 on page 3-29 illustrate how to use this procedure.

You can use the GetPattern and GetIndPattern routines, described on page 3-126
and page 3-127, respectively, to get a pattern stored in a resource. The patCopy pattern
mode is described in “Boolean Transfer Modes With 1-Bit Pixels” beginning on page 3-8.
The Pattern record is described on page 3-40.

You can use the PaintRgn procedure, described in the previous section, to draw the
interior of a region with the pen pattern for the current graphics port. To fill a region
with a pixel pattern, use the FillCRegion procedure, which is described in the chapter
“Color QuickDraw.”

EraseRgn

To erase a region, use the EraseRgn procedure.

PROCEDURE EraseRgn (rgn: RgnHandle);

rgn The region to erase.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-103

DESCRIPTION

Using the patCopy pattern mode, the EraseRgn procedure draws the interior of the
region whose handle you pass in the rgn parameter with the background pattern for the
current graphics port.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The EraseRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The patCopy pattern mode is described in “Boolean Transfer Modes With 1-Bit Pixels”
beginning on page 3-8.

InvertRgn

To invert the pixels enclosed by a region, use the InvertRgn procedure.

PROCEDURE InvertRgn (rgn: R gnHandle);

rgn A handle to the region whose pixels are to invert.

DESCRIPTION

The InvertRgn procedure inverts the pixels enclosed by the region whose handle you
pass in the rgn parameter. Every white pixel becomes black and every black pixel
becomes white.

This procedure leaves the location of the graphics pen unchanged.

SPECIAL CONSIDERATIONS

The InvertRgn procedure was designed for 1-bit images in basic graphics ports. This
procedure operates on color pixels in color graphics ports, but the results are predictable
only with 1-bit or direct pixels. For indexed pixels, Color QuickDraw performs the
inversion on the pixel indexes, which means the results depend entirely on the contents
of the CLUT (which is described in the chapter “Color QuickDraw”). The eight colors
used in basic QuickDraw are stored in a color table represented by the global variable
QDColors . To display those eight basic QuickDraw colors on an indexed device, Color
QuickDraw uses the Color Manager to obtain indexes to the colors in the CLUT that best
map to the colors in the QDColors color table. Because the index, not the color value, is
inverted, the results are unpredictable.

CHAPTER 3

QuickDraw Drawing

3-104 QuickDraw Drawing Reference

Inversion works better for direct pixels. Inverting a pure green, for example, that has red,
green, and blue component values of $0000, $FFFF, and $0000 results in magenta, which
has component values of $FFFF, $0000, and $FFFF.

The InvertRgn procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

Scaling and Mapping Points, Rectangles, Polygons, and Regions

QuickDraw provides procedures to help you map points, rectangles, regions, and
polygons from one rectangle to another. You can scale rectangles, regions, and polygons
into other rectangles.

To derive vertical and horizontal scaling factors from the proportions of two rectangles,
use the ScalePt procedure. To map a point in one rectangle to an equivalent position in
another rectangle, use the MapPt procedure. To map and scale a rectangle within one
rectangle to another rectangle, use the MapRect procedure. To map and scale a region
within one rectangle to another rectangle, use the MapRgn procedure. To map and scale a
polygon within one rectangle to another rectangle, use the MapPoly procedure.

If the points or rectangles supplied to these routines are defined in a graphics port other
than your current graphics port, you must convert them to the local coordinate system of
your current graphics port. You can accomplish this by using the SetPort procedure to
change to the graphics port containing the points or rectangles, using the LocalGlobal
procedure to convert their locations to global coordinates, using SetPort to return to
your starting graphics port, and then using the GlobalToLocal procedure to convert
the locations of points or rectangles to the local coordinates of your current graphics
port. These procedures are described in the chapter “Basic QuickDraw.”

ScalePt

To scale a height and width according to the proportions of two rectangles, use the
ScalePt procedure.

PROCEDURE ScalePt (VAR pt: Point; srcRect ,d stRect: Rect);

pt On input, an initial height and width (specified in the two fields of a
Point record) to scale; upon completion, vertical and horizontal scaling
factors derived by multiplying the height and width by ratios of the
height and width of the rectangle in the srcRect parameter to the height
and width of the rectangle in the dstRect parameter.

srcRec t A rectangle. The ratio of this rectangle’s height to the height of the
rectangle in the dstRect parameter provides the vertical scaling factor,
and the ratio of this rectangle’s width to the width of the rectangle in the
dstRect parameter provides the horizontal scaling factor.

dstRec t A rectangle compared to the rectangle in the srcRect parameter to
determine vertical and horizontal scaling factors.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-105

DESCRIPTION

The ScalePt procedure produces horizontal and vertical scaling factors from the
proportions of two rectangles. You can use ScalePt , for example, to scale the
dimensions of the graphics pen.

You specify an initial height and width to scale in the pt parameter. This parameter is of
type Point , although you don’t pass coordinates in this parameter. Instead, you pass
an initial height to scale in the v (or vertical) field of the Point record, and you pass an
initial width to scale in the h (or horizontal) field.

The ScalePt procedure scales these measurements by multiplying the initial height you
specify in the pt parameter by the ratio of the height of the rectangle you specify in the
dstRec t parameter to the height of the rectangle you specify in the srcRec t
parameter, and by multiplying the initial width in the pt parameter by the ratio of the
width of the dstRect rectangle to the width of the srcRect rectangle. The ScalePt
procedure returns the result in the pt parameter.

In Figure 3-23, where the width of the dstRec t rectangle is twice the width of the
srcRec t rectangle, and its height is three times the height of srcRect , ScaleP t scales
the width of the graphics pen from 3 to 6 and scales its height from 2 to 6.

SPECIAL CONSIDERATIONS

The minimum value ScalePt returns is (1,1).

Figure 3-23 Using ScalePt and MapPt

CHAPTER 3

QuickDraw Drawing

3-106 QuickDraw Drawing Reference

MapPt

To map a point in one rectangle to an equivalent position in another rectangle, use the
MapPt procedure.

PROCEDURE MapPt (VAR pt: Point; srcRect ,d stRect: Rect);

pt Upon input, the point in the source rectangle to map; upon completion,
its mapped position in the destination rectangle.

srcRect The source rectangle containing the original point.

dstRect The destination rectangle in which the point will be mapped.

DESCRIPTION

The MapPt procedure maps a point in one rectangle to an equivalent position in another
rectangle.

In the pt parameter, you specify a point that lies within the rectangle that you specify in
the srcRect parameter. The MapPt procedure maps this point to a similarly located
point within the rectangle that you specify in the dstRect parameter—that is, to where
it would fall if it were part of a drawing being expanded or shrunk to fit the destination
rectangle. The MapPt procedure returns the location of the mapped point in the pt
parameter. For example, a corner point of the source rectangle would be mapped to the
corresponding corner point of the destination rectangle in dstRect , and the center of
the source rectangle would be mapped to the center of destination rectangle.

The source and destination rectangles may overlap, and the point you specify need not
actually lie within the source rectangle.

In Figure 3-23 on page 3-105, the point (3,2) in the source rectangle is mapped to (18,7) in
the destination rectangle.

SEE ALSO

If you’re going to draw inside the destination rectangle, you’ll probably also want to
scale the graphics pen size accordingly with the ScalePt procedure, described in the
previous section.

MapRect

To map and scale a rectangle within one rectangle to another rectangle, use the MapRect
procedure.

PROCEDURE MapRect (VAR r: R ect; srcRect,dstRect: R ect);

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-107

r Upon input, the rectangle to map; upon completion, the mapped
rectangle.

srcRect The rectangle containing the rectangle to map.

dstRect The rectangle in which the new rectangle will be mapped.

DESCRIPTION

The MapRect procedure takes a rectangle within one rectangle and maps and scales it to
another rectangle. In the r parameter, you specify a rectangle that lies within the
rectangle that you specify in the srcRect parameter. By calling the MapPt procedure
to map the upper-left and lower-right corners of the rectangle in the r parameter,
MapRect maps and scales it to the rectangle that you specify in the dstRect parameter.
The MapRect procedure returns the newly mapped rectangle in the r parameter.

MapRgn

To map and scale a region within one rectangle to another rectangle, use the MapRgn
procedure.

PROCEDURE MapRgn (rgn: RgnHandle; srcRec t,d stRect: Rect);

rgn A handle to a region. Upon input, this is the region to map. Upon
completion, this region is the one mapped to a new location.

srcRect The rectangle containing the region to map.

dstRect The rectangle in which the new region will be mapped.

DESCRIPTION

The MapRgn procedure takes a region within one rectangle and maps and scales it to
another rectangle. In the rgn parameter, you specify a handle to a region that lies within
the rectangle that you specify in the srcRect parameter. By calling the MapPt
procedure to map all the points of the region in the rgn parameter, MapRgn maps and
scales it to the rectangle that you specify in the dstRect parameter. The MapRgn
procedure returns the result in the region whose handle you initially passed in the rgn
parameter.

The MapRgn procedure is useful for determining whether a region operation will exceed
available memory. By mapping a large region into a smaller one and performing the
operation (without actually drawing), you can estimate how much memory will be
required by the anticipated operation.

SPECIAL CONSIDERATIONS

The MapRgn procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

3-108 QuickDraw Drawing Reference

MapPoly

To map and scale a polygon within one rectangle to another rectangle, use the MapPoly
procedure.

PROCEDURE MapPoly (poly: PolyHandle; srcRect ,d stRect: Rect);

poly A handle to a polygon. Upon input, this is the polygon to map. Upon
completion, this polygon is the one mapped to a new location.

srcRect The rectangle containing the polygon.

dstRect The rectangle in which the new region will be mapped.

DESCRIPTION

The MapPoly procedure takes a polygon within one rectangle and maps and scales it to
another rectangle. In the poly parameter, you specify a handle to a polygon that lies
within the rectangle that you specify in the srcRect parameter. By calling the MapPt
procedure to map all the points that define the polygon specified in the poly parameter,
MapPoly maps and scales it to the rectangle that you specify in the dstRect parameter.
The MapPoly procedure returns the result in the polygon whose handle you initially
passed in the poly parameter.

Similar to the MapRgn procedure described in the previous section, the MapPoly
procedure is useful for determining whether a polygon operation will exceed available
memory.

Calculating Black-and-White Fills

QuickDraw provides the SeedFill and CalcMask procedures to help you determine
the results of filling operations on portions of bitmaps. (Procedures for determining
filling operations on pixel maps—namely, SeedCFill and CalcCMask —are described
in the chapter “Color QuickDraw.”)

The SeedFill procedure produces a mask showing where bits would be filled from a
starting point, like the paint pouring from the MacPaint® paint-bucket tool. The
CalcMask procedure produces a mask showing where paint could not flow from any of
the outer edges of a rectangle. You can use the resulting masks to transfer portions of bit
images from one graphics port to another with the CopyBits or CopyMask procedure,
both of which are described in “Copying Images” beginning on page 3-112.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-109

SeedFill

To determine how far filling will extend from a seeding point, use the SeedFill
procedure.

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr;

 s rcRow ,d stRow ,h eight ,w ord s,

 s eedH,s eedV: Integer);

srcPtr A pointer to the source bit image.

dstPtr On input, a pointer to the destination bit image; upon return, a pointer to
the bitmap containing the resulting mask.

srcRow Row width of the source bitmap.

dstRow Row width of the destination bitmap.

height Height (in pixels) of the fill rectangle.

words Width (in words) of the fill rectangle.

seedH The horizontal offset (in pixels) at which to begin filling the destination
bit image.

seedV The vertical offset (in pixels) at which to begin filling the destination bit
image.

DESCRIPTION

The SeedFill procedure produces a mask showing where bits in an image can be filled
from a starting point, like the paint pouring from the MacPaint paint-bucket tool. The
SeedFill returns this mask in the dstPtr parameter. This mask is a bitmap filled with
1’s only where the pixels in the source image can be filled. This is illustrated in
Figure 3-24. You can then use this mask with the CopyBits , CopyMask , and
CopyDeepMask procedures.

Figure 3-24 A source image and its resulting mask produced by the SeedFill procedure

CHAPTER 3

QuickDraw Drawing

3-110 QuickDraw Drawing Reference

Point to the bit image you want to fill with the srcPtr parameter, which can point to
the image’s base address or a word boundary within the image. Specify a pixel height
and word width with the height and words parameters to define a fill rectangle that
delimits the area you want to fill. The fill rectangle can be the entire bit image or a subset
of it. Point to a destination image with the dstPtr parameter. Specify the row widths of
the source and destination bitmaps (their rowBytes values) with the srcRow and
dstRow parameters. (The bitmaps can be different sizes, but they must be large enough
to contain the fill rectangle at the origins specified by the srcPtr and dstPtr
parameters.) Figure 3-25 illustrates these parameters for the source and destination bit
images.

You specify where to begin filling with the seedH and seedV parameters: they specify a
horizontal and vertical offset in pixels from the origin of the image pointed to by the
srcPtr parameter. The SeedFill procedure calculates contiguous pixels from that
point out to the boundaries of the fill rectangle, and it stores the result in the bit
image pointed to by the dstPtr parameter.

Calls to SeedFill are not clipped to the current port and are not stored into QuickDraw
pictures.

Figure 3-25 Parameters for the SeedFill and CalcMask procedures

SEE ALSO

For color graphics ports, use the SeedCFill procedure, which is described in the
chapter “Color QuickDraw.”

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-111

CalcMask

To determine where filling will not occur when filling from the outside of a rectangle,
use the CalcMask procedure.

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr ;

 s rcRow,dstRow,height ,w ords: Integer);

srcPtr A pointer to the source bit image.

dstPtr A pointer to the destination bit image.

srcRow Row width of the source bitmap.

dstRow Row width of the destination bitmap.

height Height (in pixels) of the fill rectangle.

words Width (in words) of the fill rectangle.

DESCRIPTION

The CalcMask procedure produces a bit image with 1’s in all pixels to which paint
could not flow from any of the outer edges of the rectangle. You can use this bit image as
a mask with the CopyBits or CopyMask procedure. As illustrated in Figure 3-26, a
hollow object produces a solid mask, but an open object produces a mask of itself.

Figure 3-26 A source image and the resulting mask produced by the CalcMask procedure

As with the SeedFill procedure, point to the bit image you want to fill with the
srcPtr parameter, which can point to the image’s base address or a word boundary
within the image. Specify a pixel height and word width with the height and words
parameters to define a fill rectangle that delimits the area you want to fill. The fill
rectangle can be the entire bit image or a subset of it. Point to a destination image with
the dstPtr parameter. Specify the row widths of the source and destination bitmaps
(their rowBytes values) with the srcRow and dstRow parameters. (The bitmaps can be
different sizes, but they must be large enough to contain the fill rectangle at the origins
specified by srcPtr and dstPtr .)

CHAPTER 3

QuickDraw Drawing

3-112 QuickDraw Drawing Reference

Figure 3-25 on page 3-110 illustrates the parameters for the source and destination bit
images.

Calls to CalcMask are not clipped to the current port and are not stored into QuickDraw
pictures.

SEE ALSO

For color graphics ports, use the CalcCMask procedure, which is described in the
chapter “Color QuickDraw.”

Copying Images

QuickDraw provides three procedures for copying portions of bitmaps from one
graphics port or offscreen graphics world into another graphics port. The CopyBits
procedure allows you to copy using source modes and to clip and resize during the copy
operation. The CopyMask procedure allows you to mask areas where you want the
copy operation to occur. These procedures also allow you to use pixel maps instead of
bitmaps when your application runs on systems supporting Color QuickDraw.

The CopyDeepMask procedure, which is available to basic QuickDraw only in System 7,
combines the functionality of both CopyBits and CopyMask .

CopyBits

You can use the CopyBits procedure to copy a portion of a bitmap or a pixel map from
one graphics port (or offscreen graphics world) into another graphics port.

PROCEDURE CopyBits (srcBits,dstBits: BitMap;

 srcRect,dstRect: Rect; mode: Integer;

 maskRgn: RgnHandle);

srcBits The source BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

dstRect The destination rectangle.

mode One of the eight source modes in which the copy is to be performed.

maskRgn A region to use as a clipping mask.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-113

DESCRIPTION

The CopyBits procedure transfers any portion of a bitmap between two basic graphics
ports, or any portion of a pixel map between two color graphics ports. You can use
CopyBits to move offscreen graphic images into an onscreen window, to blend colors
for the image in a pixel map, and to shrink and expand images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the
dstBits parameter. When copying images between color graphics ports, you must
coerce each CGrafPort record to a GrafPort record, dereference the portBits fields
of each, and then pass these “bitmaps” in the srcBits and dstBits parameters. If
your application copies a pixel image from a color graphics port called MyColorPort ,
for example, you could specify GrafPtr(MyColorPort)^.portBits in the srcBits
parameter. In a CGrafPort record, the high 2 bits of the portVersion field are set.
This field, which shares the same position in a CGrafPort record as the
portBits.rowBytes field in a GrafPort record, indicates to CopyBits that you
have passed it a handle to a pixel map rather than a bitmap.

Using the srcRect and dstRect parameters, you can specify identically or differently
sized source and destination rectangles; for differently sized rectangles, CopyBits scales
the source image to fit the destination. As shown in Figure 3-27, for example, if the bit
image is a circle in a square source rectangle, and the destination rectangle is not square,
the bit image appears as an oval in the destination. When you specify rectangles in the
srcRect and dstRect parameters, use the local coordinate systems of, respectively, the
source and destination graphics ports.

Figure 3-27 Using CopyBits to stretch an image

CHAPTER 3

QuickDraw Drawing

3-114 QuickDraw Drawing Reference

In the mode parameter, specify one of the following source modes for transferring the
bits from a source bitmap to a destination bitmap:

CONST {source modes for basic graphics ports}

srcCop y = 0 ; { where source pixel is black, force }

{ destination pixel black; where source pixel }

{ is white, force destination pixel white}

srcO r = 1 ; { where source pixel is black, force }

{ destination pixel black; where source pixel }

{ is white, leave destination pixel unaltered}

srcXo r = 2 ; { where source pixel is black, invert }

{ destination pixel; where source pixel is }

{ white, leave destination pixel unaltered}

srcBi c = 3 ; { where source pixel is black, force }

{ destination pixel white; where source pixel }

{ is white, leave destination pixel unaltered}

notSrcCop y

 = 4 ; { where source pixel is black, force }

{ destination pixel white; where source pixel }

{ is white, force destination pixel black}

notSrcO r = 5 ; { where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, force destination pixel black}

notSrcXo r = 6 ; { where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, invert destination pixel}

notSrcBi c = 7 ; { where source pixel is black, leave }

{ destination pixel unaltered; where source }

{ pixel is white, force destination pixel white}

On computers running System 7, you can add dithering to any source mode by adding
the following constant or the value it represents to the source mode:

CONST ditherCopy = 64; {add to source mode for dithering}

Dithering is a technique that mixes existing colors to create the effect of additional colors.
It also improves images that you shrink or that you copy from a direct pixel device to an
indexed device. The CopyBits procedure always dithers images when shrinking them
between pixel maps on direct devices.

To use highlighting, you can add this constant or its value to the source mode:

CONST hilite = 50; {add to source or pattern mode for highlighting}

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-115

With highlighting, QuickDraw replaces the background color with the highlight color
when your application copies images between graphics ports. This has the visual effect
of using a highlighting pen to select the object. (The global variable HiliteRGB is read
from parameter RAM when the machine starts. Basic graphics ports use the color stored
in the HiliteRGB global variable as the highlight color. Color graphics ports default to
the HiliteRGB global variable, but can be overridden by the HiliteColor procedure,
described in the chapter “Color QuickDraw.”)

When transferring pixels from a source pixel map to a destination pixel map, Color
QuickDraw interprets the source mode constants differently than basic QuickDraw does.
These constants have the following effects under Color QuickDraw:

CONST {source modes for color graphics ports}

srcCop y = 0 ; { determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of foreground color to the }

{ destination pixel; determine how close the }

{ color of the source pixel is to white, and }

{ assign this relative amount of background }

{ color to the destination pixel}

srcO r = 1 ; { determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of foreground color to the }

{ destination pixel}

srcXo r = 2 ; { where source pixel is black, invert the }

{ destination pixel--for a colored destination }

{ pixel, use the complement of its color }

{ if the pixel is direct, invert its index if }

{ the pixel is indexed}

srcBi c = 3 ; { determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of background color to the }

{ destination pixel}

notSrcCop y = 4 ; { determine how close the color of the source }

{ pixel is to black, and assign this relative }

{ amount of background color to the }

{ destination pixel; determine how close the }

{ color of the source pixel is to white, and }

{ assign this relative amount of foreground }

{ color to the destination pixel}

notSrcO r = 5 ; { determine how close the color of the source }

{ pixel is to white, and assign this relative }

{ amount of foreground color to the }

{ destination pixel}

CHAPTER 3

QuickDraw Drawing

3-116 QuickDraw Drawing Reference

notSrcXo r = 6 ; { where source pixel is white, invert the }

{ destination pixel--for a colored destination }

{ pixel, use the complement of its color }

{ if the pixel is direct, invert its index if }

{ the pixel is indexed}

notSrcBi c = 7 ; { determine how close the color of the source }

{ pixel is to white, and assign this relative }

{ amount of background color to the }

{ destination pixel}

When you use CopyBits on a computer running Color QuickDraw, you can also specify
one of the following transfer modes in the mode parameter:

CONST {arithmetic transfer modes available in Color QuickDraw}

blend = 32; {replace destination pixel with a blend }

{ of the source and destination pixel }

{ colors; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcCopy mode}

addPin = 33; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ up to a maximum allowable value; if }

{ the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

addOver = 34; {replace destination pixel with the sum of }

{ the source and destination pixel colors-- }

{ but if the value of the red, green , or }

{ blue component exceeds 65,536, then }

{ subtract 65,536 from that value; if the }

{ destination is a bitmap or 1-bit }

{ pixel map, revert to srcXor mode}

subPin = 35; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but not less than a minimum }

{ allowable value; if the destination }

{ is a bitmap or 1-bit pixel map, revert to }

{ srcOr mode}

transparent = 36; {replace the destination pixel with the }

{ source pixel if the source pixel isn't }

{ equal to the background color}

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-117

addMax = 37; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the greater }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcBic mode}

subOver = 38; {replace destination pixel with the }

{ difference of the source and destination }

{ pixel colors--but if the value of the }

{ red, green, or blue component is }

{ less than 0, add the negative result to }

{ 65,536; if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcXor mode}

adMin = 39; {compare the source and destination pixels, }

{ and replace the destination pixel with }

{ the color containing the lesser }

{ saturation of each of the RGB components; }

{ if the destination is a bitmap or }

{ 1-bit pixel map, revert to srcOr mode}

You can pass a region handle in the MaskRgn parameter to specify a mask region; the
resulting image is always clipped to this mask region and to the boundary rectangle of
the destination bitmap. If the destination bitmap is the current graphics port’s bitmap,
it’s also clipped to the intersection of the graphics port’s clipping region and visible
region. If you don’t want to clip to a masking region, just pass NIL for the maskRgn
parameter.

SPECIAL CONSIDERATIONS

When you use the CopyBits procedure to transfer an image between pixel maps, the
source and destination images may be of different pixel depths, of different sizes, and
they may have different color tables. However, CopyBits assumes that the destination
pixel map uses the same color table as the color table for the current GDevice record.
(This is because the Color Manager requires an inverse table for translating the color
table from the source pixel map to the destination pixel map.)

The CopyBits procedure applies the foreground and background colors of the current
graphics port to the image in the destination pixel map (or bitmap), even if the source
image is a bitmap. This causes the foreground color to replace all black pixels in the
destination and the background color to replace all white pixels. To avoid unwanted
coloring of the image, use the RGBForeColor procedure to set the foreground to black
and use the RGBBackColor procedure to set the background to white before calling
CopyBits .

CHAPTER 3

QuickDraw Drawing

3-118 QuickDraw Drawing Reference

The source bitmap or pixel map must not occupy more memory than half the available
stack space. The stack space required by CopyBits is roughly five times the value of the
rowBytes field of the source pixel map: one rowBytes value for the pixel map (or
bitmap), an additional rowBytes value for dithering, another rowBytes value when
stretching or shrinking the source pixel map into the destination, another rowBytes
value for any color map changing, and a fifth additional rowBytes value for any color
aliasing. If there is insufficient memory to complete a CopyBits operation in Color
QuickDraw, the QDError function (described in the chapter “Color QuickDraw” in this
book) returns the result code –143.

If you use CopyBits to copy between two graphics ports that overlap, you must first
use the LocalToGlobal procedure to convert to global coordinates, and then specify
the global variable screenBits for both the srcBits and dstBits parameters.

The CopyBits procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

If you are reading directly from a NuBus™ video card with a base address of Fs00000
and there is not a card in the slot (s–1) below it, CopyBits reads addresses less than the
base address of the pixel map. This causes a bus error. To work around the problem,
remap the baseAddr field of the pixel map in your video card to at least 20 bytes above
the NuBus boundary; an address link of Fs000020 precludes the problem.

SEE ALSO

Listing 3-11 on page 3-33 illustrates how to use CopyBits to scale an image when
copying it from one window into another. Source modes are described in “Boolean
Transfer Modes With 1-Bit Pixels” beginning on page 3-8. Plate 2 at the front of this book
illustrates how to use CopyBits to colorize an image in a color graphics port; Listing 4-5
on page 4-35 in the chapter “Color QuickDraw” shows the sample code that produced
this plate. Listing 6-1 on page 6-5 in the chapter “Offscreen Graphics Worlds” illustrates
how to use CopyBits to copy an image from an offscreen graphics world to an onscreen
color graphics port.

Dithering, pixel maps, color graphics ports, the RGBForeColor and RGBBackColor
procedures, and color tables are explained in the chapter “Color QuickDraw.” The
LocalToGlobal procedure is described in the chapter “Basic QuickDraw.” The
GDevice record is described in the chapter “Graphics Devices.” Inverse tables and the
Color Manager are described in the chapter “Color Manager” in Inside Macintosh:
Advanced Color Imaging.

“Copying Pixels Between Color Graphics Ports” in the chapter “Color QuickDraw”
describes in greater detail how to use CopyBits to transfer colored images.

The CopyDeepMask procedure (described on page 3-120) combines the functions of the
CopyBits and CopyMask procedures. (The CopyMask procedure is described next.)

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-119

CopyMask

You can use the CopyMask procedure to copy a bit or pixel image from one graphics
port (or offscreen graphics world) into another graphics port only where the bits in a
mask are set to 1.

PROCEDURE CopyMask (srcBits,maskBits,dstBits: BitMap;

 srcRect,maskRect,dstRect: Rect);

srcBits The source BitMap record.

maskBits The mask BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

maskRect The mask rectangle. This must be the same size as the rectangle passed in
the srcRect parameter.

dstRect The destination rectangle.

DESCRIPTION

The CopyMask procedure copies the source bitmap or pixel map that you specify in
the srcBits parameter to a destination bitmap or pixel map that you specify in the
dstBits parameter—but only where the bits of the mask bitmap or pixel map that
you specify in the maskBits parameter are set to 1. When copying images between
color graphics ports, you must coerce each CGrafPort record to a GrafPort record,
dereference the portBits fields of each, and then pass these “bitmaps” in the srcBits
and dstBits parameters. If your application copies a pixel image from a color graphics
port called MyColorPort , for example, you could
specify GrafPtr(MyColorPort)^.portBits in the srcBits parameter.

Using the srcRect and dstRect parameters, you can specify identically or differently
sized source and destination rectangles; for differently sized rectangles, CopyMask scales
the source image to fit the destination. When you specify rectangles in the srcRect and
dstRect parameters, use the local coordinate systems of, respectively, the source and
destination graphics ports.

The rectangle you pass in the maskRect parameter selects the portion of the bitmap or
pixel map that you specify in the maskBits parameter to use as the mask.

If you specify pixel maps to CopyMask, they may range from 1 to 32 pixels in depth. The
pixel depth of the mask that you specify in the maskBits parameter is applied as a filter
between the source and destination pixel maps that you specify in the srcBits and
dstBits parameters. A black mask pixel value means that the copy operation is to take
the source pixel; a white value means that the copy operation is to take the destination

CHAPTER 3

QuickDraw Drawing

3-120 QuickDraw Drawing Reference

pixel. Intermediate values specify a weighted average, which is calculated on a color
component basis. For each pixel’s color component value, the calculation is

(1 – mask) × source + (mask) × destination

Thus high mask values for a pixel’s color component reduce that component’s
contribution from the source PixMap record.

SPECIAL CONSIDERATIONS

Calls to CopyMask are not recorded in pictures and do not print.

See the list of special considerations for the CopyBits procedure beginning on
page 3-117; these considerations also apply to CopyMask .

The CopyMask procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

You can use the bitmap returned by the CalcMask procedure, described on page 3-111,
as the mask in order to implement a mask copy similar to that performed by the
MacPaint lasso tool. In the same way, you could use the pixel map returned by the
CalcCMask procedure, described in the chapter “Color QuickDraw.”

The chapter “Color QuickDraw” describes in more detail how to use CopyMask in a
Color QuickDraw environment. Plate 3 at the front of this book illustrates how to use
different colors in the mask to produce different effects in the destination pixel map;
Listing 6-2 on page 6-10 in the chapter “Offscreen Graphics Worlds” shows the code that
produced this plate. Plate 4 at the front of this book provides another illustration of the
effects of the source and mask pixel maps on the destination pixel map.

The CopyDeepMask procedure (described next) combines the functions of the
CopyMask and CopyBits procedures.

CopyDeepMask

To use a mask when copying bitmaps or pixel maps between graphics ports (or from an
offscreen graphics world into a graphics port), you can use the CopyDeepMask
procedure, which combines the effects of the CopyBits and CopyMask procedures.

PROCEDURE CopyDeepMask (srcBits: BitMap; maskBits: BitMap;

 dstBits: BitMap; srcRect: Rect;

 maskRect: Rect; dstRect: Rect;

 mode: Integer; maskRgn: RgnHandle);

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-121

srcBits The source BitMap record.

maskBits The masking BitMap record.

dstBits The destination BitMap record.

srcRect The source rectangle.

maskRect The mask rectangle. This must be the same size as the rectangle passed
in the srcRect parameter.

dstRect The destination rectangle.

mode The source mode.

maskRgn The mask clipping region.

DESCRIPTION

The CopyDeepMask procedure transfers a bitmap between two basic graphics ports or a
pixel map between two color graphics ports. You specify a mask to CopyDeepMask so
that it transfers the source image to the destination image only where the bits of the
mask are set to 1. You can use CopyDeepMask to move offscreen graphic images into an
onscreen window, to blend colors for the image in a pixel map, and to shrink and expand
images.

Specify a source bitmap in the srcBits parameter and a destination bitmap in the
dstBits parameter. Specify a mask in the maskBits parameter. When copying images
between color graphics ports, you must coerce each port’s CGrafPort record to a
GrafPort record, dereference the portBits fields of each, and then pass these
“bitmaps” in the srcBits and dstBits parameters. If your application copies a pixel
image from a color graphics port called MyColorPort , for example, you could specify
GrafPtr(MyColorPort)^.portBits in the srcBits parameter. The transfer can be
performed in any of the transfer modes—with or without adding the ditherCopy
constant—that are available to the CopyBits procedure, described beginning on
page 3-112.

Using the srcRect and dstRect parameters, you can specify identically or differently
sized source and destination rectangles; for differently sized rectangles, CopyDeepMask
scales the source image to fit the destination. When you specify rectangles in the
srcRect and dstRect parameters, use the local coordinate systems of, respectively, the
source and destination graphics ports.

The result (in the parameter dstBits) is clipped to the mask region that you specify
in the maskRgn parameter, and to the boundary rectangle that you specify in the
dstRect parameter. The rectangle you pass in the maskRect parameter selects the
portion of the bitmap or pixel map that you specify in the maskBits parameter to use as
the mask. If you don’t want to clip to the mask region, specify NIL in the maskRgn
parameter.

CHAPTER 3

QuickDraw Drawing

3-122 QuickDraw Drawing Reference

If you specify pixel maps to CopyDeepMask , they may range from 1 to 32 pixels in
depth. The pixel depth of the mask that you specify in the maskBits parameter is
applied as a filter between the source and destination pixel maps that you specify in the
srcBits and dstBits parameters. A black mask pixel value means that the copy
operation is to take the source pixel; a white value means that the copy operation is to
take the destination pixel. Intermediate values specify a weighted average, which
is calculated on a color component basis. For each pixel’s color component value, the
calculation is

(1 – mask) × source + (mask) × destination

Thus high mask values for a pixel’s color component reduce that component’s
contribution from the source PixMap record.

SPECIAL CONSIDERATIONS

This procedure is available to basic QuickDraw only in System 7.

As with the CopyMask procedure, calls to CopyDeepMask are not recorded in pictures
and do not print.

See the list of special considerations for the CopyBits procedure beginning on
page 3-117; these considerations also apply to CopyDeepMask .

The CopyDeepMask procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The chapter “Color QuickDraw” describes in more detail how to use CopyDeepMask in
a Color QuickDraw environment.

Drawing With the Eight-Color System

On a color screen, you can draw using eight predefined colors, even when you are using
a basic graphics port. Although basic QuickDraw graphics routines were designed for
black-and-white drawing, they also include rudimentary color capabilities. Because
Color QuickDraw also supports this system, it is compatible across all Macintosh
platforms. (This section describes the rudimentary color routines included in basic
QuickDraw. See the next chapter, “Color QuickDraw,” for information about more
sophisticated color use in your application.)

A pair of fields in a GrafPort record, fgColor and bkColor , specify a foreground and
background color. The foreground color is the color of the “ink” used to frame, fill, and
paint. By default, the foreground color is black. The background color is the color of the
pixels in the bitmap wherever no drawing has taken place. By default, the background
color is white. However, you can use the ForeColor and BackColor procedures to
change these fields. When printing, however, use the ColorBit procedure to set the
foreground color.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-123

In System 7, these Color QuickDraw routines are available to basic QuickDraw:
RGBForeColor , RGBBackColor , GetForeColor , and GetBackColor . Described
in the next chapter, “Color QuickDraw,” these routines can also assist you in
manipulating the eight-color system of basic QuickDraw.

ForeColor

To change the color of the “ink” used for framing, painting, and filling on computers that
support only basic QuickDraw, you can use the ForeColor procedure.

PROCEDURE ForeColor (color: LongInt);

color One of eight color values. You can use the following constants to
represent these values:

 CONST

 whiteColor = 30;

 blackColor = 33;

 yellowColor = 69;

 magentaColor = 137;

 redColor = 205;

 cyanColor = 273;

 greenColor = 341;

 blueColor = 409;

DESCRIPTION

The ForeColor procedure sets the foreground color for the current graphics port to the
color that you specify in the color parameter. When you draw with the patCopy and
srcCopy transfer modes, for example, black pixels are drawn in the color you specify
with ForeColor .

SPECIAL CONSIDERATIONS

The ForeColor procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

All nonwhite colors appear as black on black-and-white screens. Before you use
ForeColor , you can use the DeviceLoop procedure, which is described in the chapter
“Graphics Devices,” to determine the color characteristics of the current screen.

In System 7, you may instead use the Color QuickDraw procedure RGBForeColor ,
which is described in the chapter “Color QuickDraw.”

CHAPTER 3

QuickDraw Drawing

3-124 QuickDraw Drawing Reference

BackColor

To change a basic graphics port’s background color, use the BackColor procedure.

PROCEDURE BackColor (color: LongInt);

color One of eight color values. You can use the constants described for the
ForeColor procedure in the previous section.

DESCRIPTION

The BackColor procedure sets the background color for the current graphics port to the
color that you specify in the color parameter. When you draw with the patCopy and
srcCopy transfer modes, for example, white pixels are drawn in the color you specify
with BackColor .

SPECIAL CONSIDERATIONS

The BackColor procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

All nonwhite colors appear as black on black-and-white screens. Before you use
BackColor , you can use the DeviceLoop procedure, which is described in the chapter
“Graphics Devices,” to determine the color characteristics of the current screen.

In System 7, you may instead use the Color QuickDraw procedure RGBBackColor ,
which is described in the chapter “Color QuickDraw.”

ColorBit

Use the ColorBit procedure to set the foreground color for all printing in the current
graphics port.

PROCEDURE ColorBit (whichBit: Integer);

whichBit An integer specifying the plane to draw into.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-125

DESCRIPTION

The ColorBit procedure is called by printing software for a color printer (or other
color-imaging software) to set the GrafPort record’s colorBit field to the value in the
whichBit parameter. This value tells QuickDraw which plane of the color picture to
draw into. QuickDraw draws into the plane corresponding to the bit number specified
by the whichBit parameter. Since QuickDraw can support output devices that have up
to 32 bits of color information per pixel, the possible range of values for whichBit is 0
through 31. The initial value of the colorBit field is 0.

Determining Whether QuickDraw Has Finished Drawing

Your application can use the QDDone function to determine whether drawing is
completed in a given graphics port. You can also use it to determine whether drawing
has finished in all open graphics ports.

QDDone

Although you will probably never need to determine whether QuickDraw has
completed drawing, you can do so by using the QDDone function.

FUNCTION QDDone (port: GrafPtr): Boolean;

port The GrafPort record for a graphics port in which your application has
begun drawing; if you pass NIL , QDDone tests all open graphics ports.

DESCRIPTION

The QDDone function returns TRUE if all drawing operations have finished in the
graphics port specified in the port parameter, FALSE if any remain to be executed. If
you pass NIL in the port parameter, then QDDone returns TRUE only if drawing
operations have completed in all ports.

The QDDone function may be useful if a graphics accelerator is present and operating
asynchronously. You could use it to ensure that all drawing is done before issuing new
drawing commands, and to avoid the possibility that the new drawing operations might
be overlaid by previously issued but unexecuted operations.

CHAPTER 3

QuickDraw Drawing

3-126 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The QDDone function has little or no usefulness.

If a graphics port draws a clock or some other continuously operating drawing process,
QDDone may never return TRUE.

To determine whether all drawing in a color graphics port has completed, you must
coerce its CGrafPort record to a GrafPort record, which you pass in the port
parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the QDDone function are

Getting Pattern Resources

As described in “Bit Patterns” beginning on page 3-5, QuickDraw predefines five
patterns for your use in the global variables white , black , gray , ltGray , and dkGray .
However, you can create and store your own patterns in a resource file. To retrieve the
patterns stored in a pattern ('PAT ') resource, you can use the GetPattern function.
To retrieve the patterns stored in a pattern list ('PAT#') resource, you can use the
GetIndPattern procedure.

GetPattern

To get a pattern ('PAT ') resource stored in a resource file, you can use the
GetPattern function.

FUNCTION GetPattern (patID: Integer): PatHandle;

patID The resource ID for a resource of type 'PAT ' .

DESCRIPTION

The GetPattern function returns a handle to the pattern having the resource ID that
you specify in the patID parameter. The GetPattern function calls the following
Resource Manager function with these parameters:

GetResource('PAT ', patID);

Trap macro Selector

_QDExtensions $00040013

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-127

If a pattern resource with the ID that you request does not exist, the GetPattern
function returns NIL .

The data structure of type PatHandle is defined as follows:

TYPE PatPrt = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255 ;

When you are finished using the pattern, dispose of its handle with the Memory
Manager function DisposeHandle .

SPECIAL CONSIDERATIONS

The GetPattern function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

The pattern resource is described on page 3-140; the Pattern record is described on
page 3-40. See the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about resources, the Resource Manager, and the
GetResource function. See Inside Macintosh: Memory for information about the
DisposeHandle procedure.

GetIndPattern

To get a pattern stored in a pattern list ('PAT#') resource, you can use the
GetIndPattern procedure.

PROCEDURE GetIndPattern (VAR thePattern: Pattern;

 patListID: Integer; index: Integer);

thePattern
A Pattern record.

patListID The resource ID for a resource of type 'PAT#' .

index The index number for the desired pattern within the pattern list ('PAT#')
resource.

CHAPTER 3

QuickDraw Drawing

3-128 QuickDraw Drawing Reference

DESCRIPTION

In the parameter thePattern , the GetIndPattern procedure returns a Pattern
record for a pattern stored in a pattern list ('PAT#') resource. Specify the resource ID for
a pattern list ('PAT#') resource in the patListID parameter. In the index parameter,
specify the index number to a particular pattern stored in that resource. The index
number can range from 1 to the number of patterns in the pattern list resource. The
GetIndPattern procedure calls the following Resource Manager function with these
parameters:

GetResource('PAT ', patListID);

There is a pattern list resource in the System file that contains the standard Macintosh
patterns used by MacPaint. Figure 3-28 shows these standard patterns. The resource ID,
and the constant you can use to represent it, are

CONST sysPatListID = 0;

Figure 3-28 Standard patterns

SPECIAL CONSIDERATIONS

The GetIndPattern procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

The pattern list resource is described on page 3-141; the Pattern record is described on
page 3-40. See the chapter “Resource Manager” in Inside Macintosh: More Macintosh
Toolbox for more information about resources, the Resource Manager, and the
GetResource function.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-129

Customizing QuickDraw Operations

For each shape that QuickDraw can draw, there are procedures that perform these basic
graphics operations on the shape: frame, paint, erase, invert, and fill. Those procedures
in turn call a low-level drawing routine for the shape. For example, the FrameOval ,
PaintOval , EraseOval , InvertOval , and FillOval procedures all call the low-level
procedure StdOval , which draws the oval.

Other low-level routines defined by QuickDraw are:

■ The procedure called by CopyBits that performs bit and pixel transfer.

■ The function that measures the width of text and is called by the QuickDraw text
routines CharWidth , StringWidth , and TextWidth . (These QuickDraw
text routines are described in the chapter “QuickDraw Text” in Inside Macintosh: Text.)

■ The procedure that processes picture comments. The standard procedure ignores
picture comments. (Picture comments are described in Appendix B.)

■ The procedure that saves drawing commands as the definition of a picture, and the
procedure that retrieves them. These two enable your application to draw on remote
devices, print to the disk, get picture input from the disk, and support large pictures.

For each type of object QuickDraw can draw, including text and lines, there’s a pointer to
one of these low-level routines.

The grafProcs field of a GrafPort or CGrafPort record determines which low-level
routines are called. If that field contains the value of NIL , the standard routines are
called. You can set the grafProcs field to point to a record of pointers to your own
routines. For a basic graphics port, this record of pointers is defined by a QDProcs
record. As described in the chapter “Color QuickDraw,” these pointers are contained
in a CQDProcs record for a color graphics port. By changing these pointers, you can
install your own routines, and either completely override the standard ones or call them
after your routines have modified their parameters as necessary.

To assist you in setting up a record, basic QuickDraw provides the SetStdProcs
procedure, which is described in the next section. You can use the
SetStdProcs procedure to get a QDProcs record with fields that point to basic
QuickDraw’s standard low-level routines. You can then reset the routines with which
you are concerned. By pointing to your modified QDProcs record in the grafProcs
field of a GrafPort record, you can replace some or all of basic QuickDraw’s standard
low-level routines.

The standard QuickDraw low-level routines are described in the rest of this section.
These low-level routines should be called only from your customized routines.

CHAPTER 3

QuickDraw Drawing

3-130 QuickDraw Drawing Reference

SetStdProcs

You can use the SetStdProcs procedure to get a QDProcs record with fields that point
to basic QuickDraw’s standard low-level routines. You can replace these low-level
routines with your own, and then point to your modified QDProcs record in the
grafProcs field of a GrafPort record to change basic QuickDraw’s standard low-level
behavior.

PROCEDURE SetStdProcs (VAR procs: QDProcs);

proc s Upon completion, a QDProcs record with fields that point to basic
QuickDraw’s standard low-level routines.

DESCRIPTION

In the procs parameter, the SetStdProcs procedure returns a QDProcs record with
fields that point to the standard low-level routines. You can change one or more fields of
this record to point to your own routines and then set the basic graphics port to use this
modified QDProcs record.

The routines you install in this QDProcs record must have the same calling sequences
as the standard routines, which are described in the rest of this section.

SPECIAL CONSIDERATIONS

The Color QuickDraw procedure SetStdCProcs is analogous to the SetStdProcs
procedure, which you should use with computers that support only basic QuickDraw.
When drawing in a color graphics port, your application must always use
SetStdCProcs instead of SetStdProcs .

SEE ALSO

The data structure of type QDProcs is described on page 3-39. The SetStdCProcs
procedure is described in the chapter “Color QuickDraw.”

The chapter “Pictures” in this book describes how to replace the low-level routines that
read and write pictures.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-131

StdText

The StdText procedure is QuickDraw’s standard low-level routine for drawing text.

PROCEDURE StdText (byteCount: Integer; textBuf: Ptr;

 numer ,d enom: Point);

byteCount The number of bytes of text to draw.

textBuf A memory structure containing the text to draw.

numer Scaling numerator.

denom Scaling denominator.

DESCRIPTION

The StdText procedure draws text from the arbitrary structure in memory specified
by the textBuf parameter, starting from the first byte and continuing for the number
of bytes specified in the byteCount parameter. The numer and denom parameters
specify the scaling factor: numer.v over denom.v gives the vertical scaling, and
numer.h over denom.h gives the horizontal scaling factor.

SPECIAL CONSIDERATIONS

The StdText procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

QuickDraw’s text-drawing capabilities are described in the chapter “QuickDraw Text” in
Inside Macintosh: Text.

CHAPTER 3

QuickDraw Drawing

3-132 QuickDraw Drawing Reference

StdLine

The StdLine procedure is QuickDraw’s standard low-level routine for drawing a line.

PROCEDURE StdLine (newPt: Point);

newPt The point to which to draw the line.

DESCRIPTION

The StdLine procedure draws a line from the current pen location to the location (in
local coordinates) specified in the newPt parameter.

SPECIAL CONSIDERATIONS

The StdLine procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

StdRect

The StdRect procedure is QuickDraw’s standard low-level routine for drawing a
rectangle.

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

verb One of the following actions to perform, as defined for the GrafVer b
data type:

 G rafVerb = (frame, paint, erase, invert, fill) ;

r The rectangle to draw.

DESCRIPTION

The StdRect procedure draws the rectangle specified in the r parameter according
to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-133

StdRRect

The StdRRect procedure is QuickDraw’s standard low-level routine for drawing a
rounded rectangle.

PROCEDURE StdRRect (verb: GrafVerb; r: Rect;

 ovalwidth ,o valHeight: Integer)

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 G rafVerb = (frame, paint, erase, invert, fill);

r The rectangle to draw.

ovalwidth The width diameter for the corner oval.

ovalHeight
The height diameter for the corner oval.

DESCRIPTION

The StdRRect procedure draws the rounded rectangle specified in the r parameter
according to the action specified in the verb parameter. The ovalWidth and
ovalHeight parameters specify the diameters of curvature for the corners.

SPECIAL CONSIDERATIONS

The StdRRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

StdOval

The StdOval procedure is QuickDraw’s standard low-level routine for drawing an oval.

PROCEDURE StdOval (verb: G rafVerb; r: R ect);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 G rafVerb = (frame, paint, erase, invert, fill);

r The rectangle to contain the oval.

CHAPTER 3

QuickDraw Drawing

3-134 QuickDraw Drawing Reference

DESCRIPTION

The StdOval procedure draws an oval inside the given rectangle specified in the r
parameter according to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdOval procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

StdArc

The StdArc procedure is QuickDraw’s standard low-level routine for drawing an arc or
a wedge.

PROCEDURE StdArc (verb: GrafVerb; r: Rect;

 startAngle,arcAngle: Integer);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 G rafVerb = (frame, paint, erase, invert, fill);

r The rectangle to contain the arc.

startAngle
The beginning angle.

arcAngle The ending angle.

DESCRIPTION

Using the action specified in the verb parameter, the StdArc procedure draws an arc or
wedge of the oval that fits inside the rectangle specified in the r parameter. The arc
or wedge is bounded by the radii specified in the startAngle and arcAngle
parameters. (The startAngle and arcAngle parameters are illustrated in Figure 3-20
on page 3-72.)

SPECIAL CONSIDERATIONS

The StdArc procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-135

StdPoly

The StdPoly procedure is QuickDraw’s standard low-level routine for drawing a
polygon.

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 G rafVerb = (frame, paint, erase, invert, fill);

poly A handle to the polygon data.

DESCRIPTION

The StdPoly procedure draws the polygon specified in the poly parameter according
to the action specified in the verb parameter.

SPECIAL CONSIDERATIONS

The StdPoly procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

StdRgn

The StdRgn procedure is QuickDraw’s standard low-level routine for drawing a region.

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

verb One of the following actions to perform, as defined for the GrafVerb
data type:

 G rafVerb = (frame, paint, erase, invert, fill);

rgn A handle to the region data.

DESCRIPTION

The StdRgn procedure draws the region specified in the rgn parameter according to the
action specified in the verb parameter.

CHAPTER 3

QuickDraw Drawing

3-136 QuickDraw Drawing Reference

SPECIAL CONSIDERATIONS

The StdRgn procedure may move or purge memory blocks in the application heap. Your
application should not call this procedure at interrupt time.

StdBits

The StdBits procedure is QuickDraw’s standard low-level routine for doing bit and
pixel transfer.

PROCEDURE StdBits (VAR srcBits: BitMap; VAR srcRect,dstRect: Rect;

 mode: Integer; maskRgn: RgnHandle);

srcBits A bitmap or pixel map containing the image to copy.

srcRect The source rectangle.

dstRect The destination rectangle.

mode The source mode for the copy.

maskRgn A handle to a region acting as a mask for the transfer.

DESCRIPTION

The StdBits procedure transfers a bit or pixel image between the bitmap or pixel map
specified in the srcBits parameter and bitmap of the current graphics port, just as if
the CopyBits procedure were called with the same parameters and with a destination
bitmap equal to thePort^.portBits .

SPECIAL CONSIDERATIONS

The StdBits procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

See the description of the CopyBits procedure beginning on page 3-112 for a discussion
of the destination bitmap and of the srcBits , srcRect , dstRect , mode, and maskRgn
parameters.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-137

StdComment

The StdComment procedure is QuickDraw’s standard low-level routine for processing a
picture comment.

PROCEDURE StdComment (kind,dataSize: Integer;

 dataHandle: Handle);

kind The type of comment. See Appendix A in this book for a list of the
standard constants (and the values they represent) used to specify
common picture comment types.

dataSize The size of additional data.

dataHandle
A handle to additional data.

DESCRIPTION

The kind parameter identifies the type of comment. The dataHandle parameter takes a
handle to additional data, and the dataSiz e parameter specifies the size of that data in
bytes. If there’s no additional data for the comment, the value of the dataHandl e
parameter is NIL and the value of the dataSiz e parameter is 0. The StdComment
procedure simply ignores the comment.

SPECIAL CONSIDERATIONS

The StdComment procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

Picture comments are described in detail in Appendix B, “Using Picture Comments for
Printing.”

CHAPTER 3

QuickDraw Drawing

3-138 QuickDraw Drawing Reference

StdTxtMeas

The StdTxtMeas function is QuickDraw’s standard low-level routine for measuring text
width.

FUNCTION StdTx t Meas (byteCount: Integer; textAddr: Ptr;

 VAR n umer ,d enom: Point;

 V AR info: FontInfo): Integer;

byteCount The number of text bytes to measure.

textAddr A pointer to the memory structure containing the text.

numer Scaling numerator.

denom Scaling denominator.

inf o A FontInfo record.

DESCRIPTION

The StdTxtMeas function returns the width of the text stored in the arbitrary structure
in memory specified by textAddr , starting with the first byte and continuing for
byteCount bytes. The numer and denom parameters specify the scaling as in the
StdText procedure; note that StdTx t Meas may change them.

SPECIAL CONSIDERATIONS

The StdTxtMeas function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

SEE ALSO

QuickDraw’s text-drawing capabilities are described in the chapter “QuickDraw Text” in
Inside Macintosh: Text.

StdGetPic

The StdGetPic procedure is QuickDraw’s standard low-level routine for retrieving
information from the definition of a picture.

PROCEDURE StdGetPic (dataPtr: Ptr; byteCount: Integer);

dataPtr A pointer to the collected picture data.

byteCount The size of the picture data.

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-139

DESCRIPTION

The StdGetPic procedure retrieves from the definition of the currently open picture the
next number of bytes as specified in the byteCount parameter. The StdGetPic
procedure stores them in the data structure pointed to by the dataPtr parameter.

SEE ALSO

Pictures are described in the chapter “Pictures,” which also provides a code sample
illustrating how you can supply your application with its own low-level procedure for
retrieving pictures.

StdPutPic

The StdPutPic procedure is QuickDraw’s standard low-level routine for saving
information as the definition of a picture.

PROCEDURE StdPutPic (dataPtr: P tr; byteCount: I nteger);

dataPtr A pointer to the collected picture data.

byteCount The size of the picture data.

DESCRIPTION

The StdPutPic procedure saves as the definition of the currently open picture the
drawing commands stored in the data structure pointed to by the dataPtr parameter,
starting with the first byte and continuing for the next number of bytes as specified in
the byteCount parameter.

SPECIAL CONSIDERATIONS

The StdPutPic procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Pictures are described in the chapter “Pictures,” which also provides a code sample
illustrating how you can supply your application with its own low-level procedure for
saving pictures.

CHAPTER 3

QuickDraw Drawing

3-140 QuickDraw Drawing Reference

Resources
This section describes the resources you can create to define bit patterns for use when
drawing, painting, or filling. The pattern ('PAT ') resource defines a single bit pattern.
The pattern list ('PAT#') resource defines an array of bit patterns.

A bit pattern is a 64-bit image, organized as an 8-by-8 pixel square, that defines a
repeating design or tone. (Resources for color pixel patterns are described in the chapter
“Color QuickDraw.”)

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. To create pattern and pattern list resources, you
typically use a high-level tool such as the ResEdit application. You can then use the
DeRez decompiler to convert your resources into Rez input when necessary.

The Pattern Resource

You can use a pattern resource to define a single bit pattern. A pattern resource is a
resource of type 'PAT ' . All pattern resources that you create must have resource ID
numbers greater than 128.

To retrieve the bit pattern stored in a pattern resource, you can use the GetPattern
function, which is described on page 3-126. You can then specify that bit pattern for a fill
pattern, background pattern, or pen pattern.

A pattern resource is defined to be of type hex String[8] ; every bit represents a pixel
in the 8-by-8 pixel pattern. If you examine the compiled version of a pattern resource, as
represented in Figure 3-29, you find that it contains 8 bytes of information that define the
8-by-8 pixel square of the pattern.

Figure 3-29 Format of a compiled pattern ('PAT ') resource

CHAPTER 3

QuickDraw Drawing

QuickDraw Drawing Reference 3-141

The Pattern List Resource

You can use a pattern list resource to define an array of bit patterns. A pattern list
resource is a resource of type 'PAT#' . All pattern list resources that you create must
have resource ID numbers greater than 128.

To retrieve one of the bit patterns stored in a pattern list resource, you can use the
GetIndPattern procedure, which is described on page 3-127. You can then specify that
bit pattern for a fill pattern, background pattern, or pen pattern.

If you examine the compiled version of a pattern list resource, as represented in
Figure 3-30, you find that it contains the following information:

■ Pattern count. This is the number of bit patterns defined in this resource.

■ An array of bit patterns, each of which contains 8 bytes of information that define the
8-by-8 pixel square of the pattern.

Figure 3-30 Format of a compiled pattern list ('PAT#') resource

CHAPTER 3

QuickDraw Drawing

3-142 Summary of QuickDraw Drawing

Summary of QuickDraw Drawing

Pascal Summary

Constants

CONST

{basic QuickDraw colors }

whiteC olor = 30;

blackC olor = 33;

yellowC olor = 69;

magentaC olor = 137;

redC olor = 205;

cyanColor = 273 ;

greenC olor = 341;

blueC olor = 409 ;

{source modes for basic graphics ports }

srcCopy = 0; {where source pixel is black, force destination }

{ pixel black; where source pixel is white, force }

{ destination pixel white}

srcOr = 1; {where source pixel is black, force destination }

{ pixel black; where source pixel is white, leave }

{ destination pixel unaltered}

srcXor = 2; {where source pixel is black, invert destination }

{ pixel; where source pixel is white, leave }

{ destination pixel unaltered}

srcBic = 3; {where source pixel is black, force destination }

{ pixel white; where source pixel is white, leave }

{ destination pixel unaltered}

notSrcCopy = 4; {where source pixel is black, force destination }

{ pixel white; where source pixel is white, force }

{ destination pixel black}

notSrcOr = 5; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ force destination pixel black }

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-143

notSrcXor = 6; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ invert destination pixel}

notSrcBic = 7; {where source pixel is black, leave destination }

{ pixel unaltered; where source pixel is white, }

{ force destination pixel white}

{pattern modes}

patCopy = 8; {where pattern pixel is black, apply foreground }

{ color to destination pixel; where pattern pixel }

{ is white, apply background color to destination }

{ pixel}

patOr = 9; {where pattern pixel is black, invert destination }

{ pixel; where pattern pixel is white, leave }

{ destination pixel unaltered}

patXor = 10; {where pattern pixel is black, invert destination }

{ pixel; where pattern pixel is white, leave }

{ destination pixel unaltered}

patBic = 11; {where pattern pixel is black, apply background }

{ color to destination pixel; where pattern pixel }

{ is white, leave destination pixel unaltered}

notPatCopy = 12; {where pattern pixel is black, apply background }

{ color to destination pixel; where pattern pixel }

{ is white, apply foreground color to destination }

{ pixel}

notPatOr = 13; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ apply foreground color to destination pixel}

notPatXor = 14; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ invert destination pixel}

notPatBic = 15; {where pattern pixel is black, leave destination }

{ pixel unaltered; where pattern pixel is white, }

{ apply background color to destination pixel}

ditherCopy = 64; {add to source mode for dithering}

{pattern list resource ID for patterns in the System file}

sysPatListID = 0;

CHAPTER 3

QuickDraw Drawing

3-144 Summary of QuickDraw Drawing

Data Types

TYPE PolyPtr = ^Polygon;

PolyHandle = ^PolyPtr;

Polygon =

RECORD

polySize: Integer; {size in bytes}

polyBBox: Rect; {bounding r ectangle}

polyPoints: ARRAY[0..0] OF Poin t; { vertices for polygon}

END;

PenState =

RECORD

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pen's pattern mode}

pnPat: Pattern ; {pen pattern}

END;

QDProcsPtr = ^QDProcs;

QDProcs =

RECORD

textProc: Ptr; {text drawing}

lineProc: Ptr; {line drawing}

rectProc: Ptr; {rectangle drawing}

rRectProc: Ptr; {roundRect drawing}

ovalProc: Ptr; {oval drawing}

arcProc: Ptr; {arc/wedge drawing}

rgnProc: Ptr; {region drawing}

bitsProc: Ptr; {bit transfer}

commentProc : Ptr ; { picture comment processing}

txMeasProc: Ptr; {text width measurement}

getPicProc: Ptr; {picture retrieval}

putPicProc: Ptr ; {picture saving}

END;

GrafVerb = (frame,paint,erase,invert,fill);

PatPtr = ^Pattern;

PatHandle = ^PatPtr;

Pattern = PACKED ARRAY[0..7] OF 0..255;

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-145

Routines

Managing the Graphics Pen

PROCEDURE HidePen;

PROCEDURE ShowPen;

PROCEDURE GetPen (VAR pt: Point);

PROCEDURE GetPenState (VAR pnState : Pe nState);

PROCEDURE SetPenState (pnState : Pe nState);

PROCEDURE PenSize (width ,h eight: Integer);

PROCEDURE PenMode (mode: Integer);

PROCEDURE PenPat (pat: Pattern);

PROCEDURE PenNormal;

Changing the Background Bit Pattern

PROCEDURE BackPat (pat: Pattern);

Drawing Lines

PROCEDURE MoveTo (h ,v : Integer);

PROCEDURE Move (dh ,d v: Integer);

PROCEDURE LineTo (h,v : Integer);

PROCEDURE Line (dh ,d v: Integer);

Creating and Managing Rectangles

PROCEDURE SetRect (VAR r: Rect; left,top,right,bottom: Integer);

PROCEDURE OffsetRect (VAR r: Rect; dh,dv: Integer);

PROCEDURE InsetRect (VAR r: Rect; dh,dv: Integer);

FUNCTION SectRect (src1,src2: Rect; VAR dstRect: Rect): Boolean;

PROCEDURE UnionRect (src1,src2: Rect; VAR dstRect: Rect);

FUNCTION PtInRect (pt: Point; r: Rect): Boolean;

PROCEDURE Pt2Rect (pt1 ,p t2: Point; VAR dstRect: Rect);

PROCEDURE PtToAngle (r: Rect; pt: Point; VAR angle: Integer);

FUNCTION EqualRect (rect1 ,r ect2: Rect): Boolean;

FUNCTION EmptyRect (r: Rect): Boolean;

CHAPTER 3

QuickDraw Drawing

3-146 Summary of QuickDraw Drawing

Drawing Rectangles

PROCEDURE FrameRect (r: Rect);

PROCEDURE PaintRect (r: Rect);

PROCEDURE FillRect (r: Rect; pat: Pattern);

PROCEDURE EraseRect (r: Rect);

PROCEDURE InvertRect (r: Rect);

Drawing Rounded Rectangles

PROCEDURE FrameRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE PaintRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE FillRoundRect (r: Rect; ovalWidth,ovalHeight: Integer;
pat: Pattern);

PROCEDURE EraseRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

PROCEDURE InvertRoundRect (r: Rect; ovalWidth,ovalHeight: Integer);

Drawing Ovals

PROCEDURE FrameOval (r: Rect);

PROCEDURE PaintOval (r: Rect);

PROCEDURE FillOval (r: Rect ; pat: Pattern);

PROCEDURE EraseOval (r: Rect);

PROCEDURE InvertOval (r: Rect);

Drawing Arcs and Wedges

PROCEDURE FrameArc (r: R ect; startAngle,arcAngle: I nteger);

PROCEDURE PaintArc (r: Rect; startAngle,arcAngle: Integer);

PROCEDURE FillArc (r: Rect; startAngle,arcAngle: Intege r;
pat: Pattern);

PROCEDURE EraseArc (r: Rect; startAngle,arcAngle: Integer);

PROCEDURE InvertArc (r: Rect; startAngle,arcAngle: Integer);

Creating and Managing Polygons

FUNCTION OpenPol y : PolyHandle;

PROCEDURE ClosePoly;

PROCEDURE OffsetPoly (poly: PolyHandle; dh,dv: Integer);

PROCEDURE KillPoly (poly: PolyHandle);

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-147

Drawing Polygons

PROCEDURE FramePoly (poly: PolyHandle);

PROCEDURE PaintPoly (poly: PolyHandle);

PROCEDURE FillPoly (poly: PolyHandle; pat: P attern);

PROCEDURE ErasePoly (poly: PolyHandle);

PROCEDURE InvertPoly (poly: PolyHandle);

Creating and Managing Regions

FUNCTION NewRgn : R gnHandle;

PROCEDURE OpenRgn;

PROCEDURE CloseRgn (dstRgn: rgnHandle);

PROCEDURE DisposeRgn (rgn: R gnHandle);

PROCEDURE CopyRgn (srcRgn,dstRgn: R gnHandle);

PROCEDURE SetEmptyRgn (rgn: R gnHandle);

PROCEDURE SetRectRgn (rgn: RgnHandle;
l eft,top,right,bottom: Integer);

PROCEDURE RectRgn (rgn: R gnHandle; r: R ect);

PROCEDURE OffsetRgn (rgn: RgnHandle; dh,dv: Integer);

PROCEDURE InsetRgn (rgn: R gnHandle; dh,dv: I nteger);

PROCEDURE SectRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle);

PROCEDURE UnionRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle);

PROCEDURE DiffRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle);

PROCEDURE XorRgn (srcRgnA,srcRgnB,dstRgn: R gnHandle);

FUNCTION PtInRgn (pt: Point; rgn: RgnHandle): Boolean;

FUNCTION RectInRgn (r: Rect; rgn: RgnHandle): Boolean;

FUNCTION EqualRgn (rgnA,rgnB: RgnHandle): B oolean;

FUNCTION EmptyRgn (rgn: RgnHandle): Boolean;

Drawing Regions

PROCEDURE FrameRgn (rgn: RgnHandle);

PROCEDURE PaintRgn (rgn: RgnHandle);

PROCEDURE FillRgn (rgn: RgnHandle; pat: Pattern);

PROCEDURE EraseRgn (rgn: RgnHandle);

PROCEDURE InvertRgn (rgn: RgnHandle);

CHAPTER 3

QuickDraw Drawing

3-148 Summary of QuickDraw Drawing

Scaling and Mapping Points, Rectangles, Polygons, and Regions

PROCEDURE ScalePt (VAR pt: Point; srcRect,dstRect: Rect);

PROCEDURE MapPt (VAR pt: Point; srcRect,dstRect: Rect);

PROCEDURE MapRect (VAR r: Rect; srcRect,dstRect: Rect);

PROCEDURE MapRgn (rgn: RgnHandle; srcRect,dstRect: Rect);

PROCEDURE MapPoly (poly: PolyHandle; srcRect,dstRect: Rect);

Calculating Black-and-White Fills

PROCEDURE SeedFill (srcPtr,dstPtr: Ptr;
srcRow,dstRow,height ,w ords ,
seedH,seedV: Integer);

PROCEDURE CalcMask (srcPtr,dstPtr: Ptr;
srcRow,dstRow,height ,w ords: I nteger);

Copying Images

PROCEDURE CopyBits (srcBits,dstBits: BitMap;
srcRect,dstRect: Rect; mode: Integer;
maskRgn: RgnHandle);

PROCEDURE CopyMask (srcBits,maskBits ,d stBits: BitMap;
srcRect,maskRect ,d stRect: Rect) ;

PROCEDURE CopyDeepMask (srcBits: BitMap; maskBits: BitMap;
dstBits: BitMap; srcRect: Rect;
maskRect: Rect; dstRect: Rect;
mode: Integer; maskRgn: RgnHandle);

Drawing With the Eight-Color System

PROCEDURE ForeColor (color: LongInt);

PROCEDURE BackColor (color: LongInt);

PROCEDURE ColorBit (whichBit: Integer);

Determining Whether QuickDraw Has Finished Drawing

FUNCTION QDDone (port: GrafPtr): Boolean;

Getting Pattern Resources

FUNCTION GetPattern (patID: Integer): PatHandle;

PROCEDURE GetIndPattern (VAR thePattern: Pattern; patListID: Integer;
index: Integer);

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-149

Customizing QuickDraw Operations

PROCEDURE SetStdProcs (VAR procs: QDProcs);

PROCEDURE StdText (byteCount: Integer; textBuf: Ptr;
numer,denom: Point);

PROCEDURE StdLine (newPt: Point);

PROCEDURE StdRect (verb: GrafVerb; r: Rect);

PROCEDURE StdRRect (verb: GrafVerb; r: Rect;
ovalwidth ,o valHeight: Integer);

PROCEDURE StdOval (verb : GrafVerb; r: R ect);

PROCEDURE StdArc (verb: GrafVerb; r: Rect;
startAngle,arcAngle: Integer);

PROCEDURE StdPoly (verb: GrafVerb; poly: PolyHandle);

PROCEDURE StdRgn (verb: GrafVerb; rgn: RgnHandle);

PROCEDURE StdBits (VAR srcBits: BitMap;
VAR srcRect,dstRect: Rect; mode: Integer;
maskRgn: RgnHandle);

PROCEDURE StdComment (kind,dataSize: Integer; dataHandle: Handle);

FUNCTION StdT xtM eas (byteCount: Integer; textAddr: Ptr;
VAR numer, denom: Point;
VAR info: FontInfo): Integer;

PROCEDURE StdGetPic (dataPtr: Ptr; byteCount: Integer);

PROCEDURE StdPutPic (dataPtr: P tr; byteCount: I nteger);

C Summary

Constants

enum {

/* basic QuickDraw colors */

whiteColor = 30;

blackColor = 33;

yellowColor = 69;

magentaColor = 137;

redColor = 205;

cyanColor = 273;

greenColor = 341;

blueColor = 409;

CHAPTER 3

QuickDraw Drawing

3-150 Summary of QuickDraw Drawing

/* source modes */

srcCopy = 0, /* where source pixel is black, force destination

pixel black; where source pixel is white, force

destination pixel white */

srcOr = 1, /* where source pixel is black, force destination

pixel black; where source pixel is white, leave

destination pixel unaltered */

srcXor = 2, /* where source pixel is black, invert destination

pixel; where source pixel is white, leave

destination pixel unaltered */

srcBic = 3, /* where source pixel is black, force destination

pixel white; where source pixel is white, leave

destination pixel unaltered */

notSrcCopy = 4, /* where source pixel is black, force destination

pixel white; where source pixel is white, force

destination pixel black */

notSrcOr = 5, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

force destination pixel black */

notSrcXor = 6, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

invert destination pixel*/

notSrcBic = 7, /* where source pixel is black, leave destination

pixel unaltered; where source pixel is white,

force destination pixel white */

/* pattern modes */

patCopy = 8, /* where pattern pixel is black, apply foreground

color to destination pixel; where pattern pixel

is white, apply background color to destination

pixel */

patOr = 9, /* where pattern pixel is black, invert destination

pixel; where pattern pixel is white, leave

destination pixel unaltered */

patXor = 10; /* where pattern pixel is black, invert destination

pixel; where pattern pixel is white, leave

destination pixel unaltered */

patBic = 11; /* where pattern pixel is black, apply background

color to destination pixel; where pattern pixel

is white, leave destination pixel unaltered */

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-151

notPatCopy = 12; /* where pattern pixel is black, apply background

color to destination pixel; where pattern pixel

is white, apply foreground color to destination

pixel */

notPatOr = 13; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

apply foreground color to destination pixel */

notPatXor = 14; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

invert destination pixel */

notPatBic = 15; /* where pattern pixel is black, leave destination

pixel unaltered; where pattern pixel is white,

apply background color to destination pixel */

ditherCopy = 64, /* add to source mode for dithering */

/* pattern list resource ID for patterns in the System file */

sysPatListID = 0

};

Data Types

struct Polygon {

shor t polySize ; / * size in bytes */

Rect polyBBox ; / * bounding r ectangle */

Poin t polyPoints[1] ; / * vertices for polygon */

};

typedef struct Polygon Polygon;

typedef Polygon *PolyPtr, **PolyHandle;

struct PenState {

Poin t pnLoc ; / * pen location */

Poin t pnSize ; / * pen size */

shor t pnMode; / * pen's pattern mode */

Patter n pnPat ; / * pen pattern */

};

typedef struct PenState PenState;

struct QDProcs {

Ptr textProc; /* text drawing */

Ptr lineProc; /* line drawing */

Ptr rectProc; /* rectangle drawing */

Ptr rRectProc; /* roundRect drawing */

Ptr ovalProc; /* oval drawing */

CHAPTER 3

QuickDraw Drawing

3-152 Summary of QuickDraw Drawing

Ptr arcProc; /* arc and wedge drawing */

Ptr polyProc; /* region drawing */

Ptr rgnProc; /* region drawing */

Ptr bitsProc; /* bit transfer */

Ptr commentProc; /* picture comment processing */

Ptr txMeasProc; /* text width measurement */

Ptr getPicProc; /* picture retrieval */

Ptr putPicProc; /* picture saving */

};

typedef struct QDProcs QDProcs;

typedef QDProcs *QDProcsPtr;

enum {frame,paint,erase,invert,fill};

typedef unsigned char GrafVerb;

struct Pattern{

unsigned char pat[8];

};

typedef struct Pattern Pattern;

typedef Pattern *PatPtr;

typedef const unsigned char *ConstPatternParam;

typedef PatPtr *PatHandle;

Functions

Managing the Graphics Pen

pascal void HidePen (void);

pascal void ShowPen (void);

pascal void GetPen (Point *pt);

pascal void GetPenState (PenState *pnState);

pascal void SetPenState (const PenState *pnState);

pascal void PenSize (short width, short height);

pascal void PenMode (short mode);

pascal void PenPat (ConstPatternParam pat);

pascal void PenNormal (void);

Changing the Background Bit Pattern

pascal void BackPat (ConstPatternParam pat);

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-153

Drawing Lines

pascal void MoveTo (short h, short v);

pascal void Move (short dh, short dv);

pascal void LineTo (short h, short v);

pascal void Line (short dh, short dv);

Creating and Managing Rectangles

pascal void SetRect (Rect *r, short left, short top, short right,
short bottom);

pascal void OffsetRect (Rect *r, short dh, short dv);

pascal void InsetRect (Rect *r, short dh, short dv);

pascal Boolean SectRect (const Rect *src1, const Rect *src2,
Rect *dstRect);

pascal void UnionRect (const Rect *src1, const Rect *src2,
Rect *dstRect);

pascal Boolean PtInRect (Point pt, const Rect *r);

pascal void Pt2Rect (Point pt1, Point pt2, Rect *dstRect);

pascal void PtToAngle (const Rect *r, Point pt, short *angle);

pascal Boolean EqualRect (const Rect *rect1, const Rect *rect2);

pascal Boolean EmptyRect (const Rect *r);

Drawing Rectangles

pascal void FrameRect (const Rect *r);

pascal void PaintRect (const Rect *r);

pascal void FillRect (const Rect *r, ConstPatternParam pat);

pascal void EraseRect (const Rect *r);

pascal void InvertRect (const Rect *r);

Drawing Rounded Rectangles

pascal void FrameRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void PaintRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void FillRoundRect (const Rect *r, short ovalWidth ,
short ovalHeight, ConstPatternParam pat) ;

CHAPTER 3

QuickDraw Drawing

3-154 Summary of QuickDraw Drawing

pascal void EraseRoundRect (const Rect *r, short ovalWidth,
short ovalHeight);

pascal void InvertRoundRect
(const Rect *r, short ovalWidth,

short ovalHeight);

Drawing Ovals

pascal void FrameOval (const Rect *r) ;

pascal void PaintOval (const Rect *r);

pascal void FillOval (const Rect *r, ConstPatternParam pat);

pascal void EraseOval (const Rect *r);

pascal void InvertOval (const Rect *r);

Drawing Arcs and Wedges

pascal void FrameArc (const Rect *r, short startAngle,
short arcAngle);

pascal void PaintArc (const Rect *r, short startAngle,
short arcAngle);

pascal void FillArc (const Rect *r, short startAngle,
short arcAngle, ConstPatternParam pat);

pascal void EraseArc (const Rect *r, short startAngle,
short arcAngle);

pascal void InvertArc (const Rect *r, short startAngle,
short arcAngle);

Creating and Managing Polygons

pascal PolyHandl e O penPoly (void);

pascal void ClosePoly (void);

pascal void OffsetPoly (PolyHandle poly, short dh, short dv);

pascal void KillPoly (PolyHandle poly);

Drawing and Painting Polygons

pascal void FramePoly (PolyHandle poly);

pascal void PaintPoly (PolyHandle poly);

pascal void FillPoly (PolyHandle poly, ConstPatternParam pat);

pascal void ErasePoly (PolyHandle poly);

pascal void InvertPoly (PolyHandle poly);

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-155

Creating and Managing Regions

pascal RgnHandle NewRgn (void);

pascal void OpenRgn (void) ;

pascal void CloseRgn (RgnHandle dstRgn);

pascal void DisposeRgn (RgnHandle rgn);

pascal void CopyRgn (RgnHandle srcRgn, RgnHandle dstRgn);

pascal void SetEmptyRgn (RgnHandle rgn);

pascal void SetRectRgn (RgnHandle rgn, short left, short top,
short right, short bottom);

pascal void RectRgn (RgnHandle rgn, const Rect *r);

pascal void OffsetRgn (RgnHandle rgn, short dh, short dv);

pascal void InsetRgn (RgnHandle rgn, short dh, short dv);

pascal void SectRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void UnionRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void DiffRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal void XorRgn (RgnHandle srcRgnA, RgnHandle srcRgnB,
RgnHandle dstRgn);

pascal Boolean PtInRgn (Point pt, RgnHandle rgn);

pascal Boolean RectInRgn (const Rect *r, RgnHandle rgn);

pascal Boolean EqualRgn (RgnHandle rgnA, RgnHandle rgnB);

pascal Boolean EmptyRgn (RgnHandle rgn);

Drawing Regions

pascal void FrameRgn (RgnHandle rgn);

pascal void PaintRgn (RgnHandle rgn);

pascal void FillRgn (RgnHandle rgn, ConstPatternParam pat);

pascal void EraseRgn (RgnHandle rgn);

pascal void InvertRgn (RgnHandle rgn);

Scaling and Mapping Points, Rectangles, Polygons, and Regions

pascal void ScalePt (Point *pt, const Rect *srcRect,
const Rect *dstRect);

pascal void MapPt (Point *pt, const Rect *srcRect,
const Rect *dstRect);

pascal void MapRect (Rect *r, const Rect *srcRect,
const Rect *dstRect);

CHAPTER 3

QuickDraw Drawing

3-156 Summary of QuickDraw Drawing

pascal void MapRgn (RgnHandle rgn, const Rect *srcRect,
const Rect *dstRect);

pascal void MapPoly (PolyHandle poly, const Rect *srcRect,
const Rect *dstRect);

Calculating Black-and-White Fills

pascal void SeedFill (const void *srcPtr, void *dstPtr,
short srcRow, short dstRow, short height,
short words, short seedH, short seedV);

pascal void CalcMask (const void *srcPtr, void *dstPtr,
short srcRow, short dstRow, short height,
short words);

Copying Images

pascal void CopyBits (const BitMap *srcBits,
const BitMap *dstBits, const Rect *srcRect,
const Rect *dstRect, short mode,
RgnHandle maskRgn);

pascal void CopyMask (const BitMap *srcBits,
const BitMap *maskBits, const BitMap *dstBits,
const Rect *srcRect, const Rect *maskRect,
const Rect *dstRect) ;

pascal void CopyDeepMask (const BitMap *srcBits, const BitMap *maskBits,
const BitMap *dstBits, const Rect *srcRect,
const Rect *maskRect, const Rect *dstRect,
short mode, RgnHandle maskRgn);

Drawing With the Eight-Color System

pascal void ForeColor (long color);

pascal void BackColor (long color);

pascal void ColorBit (short whichBit);

Determining Whether QuickDraw Has Finished Drawing

pascal Boolean QDDone (GrafPtr port) ;

Getting Pattern Resources

pascal PatHandle GetPattern
(short patternID);

pascal void GetIndPattern (Pattern thePat, short patternListID,
short index);

CHAPTER 3

QuickDraw Drawing

Summary of QuickDraw Drawing 3-157

Customizing QuickDraw Operations

pascal void SetStdProcs (QDProcs *procs);

pascal void StdText (short count, const void *textAddr,
Point numer, Point denom);

pascal void StdLine (Point newPt);

pascal void StdRect (GrafVerb verb, const Rect *r);

pascal void StdRRect (GrafVerb verb, const Rect *r,
short ovalWidth, short ovalHeight);

pascal void StdOval (GrafVerb verb, const Rect *r);

pascal void StdArc (GrafVerb verb, const Rect *r,
short startAngle, short arcAngle);

pascal void StdPoly (GrafVerb verb, PolyHandle poly);

pascal void StdRgn (GrafVerb verb, RgnHandle rgn);

pascal void StdBits (const BitMap *srcBits,
const Rect *srcRect, const Rect *dstRect,
short mode, RgnHandle maskRgn);

pascal void StdComment (short kind, short dataSize, Handle dataHandle);

pascal short StdT xtM eas (short byteCount, const void *textAddr,
Point *numer, Point *denom, FontInfo *info);

pascal void StdGetPic (void *dataPtr, short byteCount);

pascal void StdPutPic (const void *dataPtr, short byteCount);

Assembly-Language Summary

Data Structures

Polygon Data Structure

PenState Data Structure

0 polySize word total bytes in this structure
2 polyBBox 8 bytes bounding rectangle

10 polyPoints variable vertices, each consisting of a long (point)

0 psLoc long pen location
4 psSize long pen size
8 psMode word pattern mode

10 psPat 8 bytes pattern

CHAPTER 3

QuickDraw Drawing

3-158 Summary of QuickDraw Drawing

QDProcs Data Structure

Trap Macro Requiring Routine Selector

_QDExtensions

Global Variables

0 textProc long pointer to text-drawing routine
4 lineProc long pointer to line-drawing routine
8 rectProc long pointer to rectangle-drawing routine

12 rRectProc long pointer to rounded rectangle–drawing routine
16 ovalProc long pointer to oval-drawing routine
20 arcProc long pointer to arc/wedge-drawing routine
24 polyProc long pointer to polygon-drawing routine
28 rgnProc long pointer to region-drawing routine
32 bitsProc long pointer to bit transfer routine
36 commentProc long pointer to picture comment–processing routine
40 txMeasProc long pointer to text-width measurement routine
44 getPicProc long pointer to picture retrieval routine
48 putPicProc long pointer to picture-saving routine

Selector Routine

$00040013 QDDone

black All-black pattern.
dkGray 75% gray pattern.
gray 50% gray pattern.
ltGray 25% gray pattern.
white All-white pattern.

