
Contents 2-1

CHAPTER 2

Contents

Basic QuickDraw

About Basic QuickDraw 2-3
The Mathematical Foundations of QuickDraw 2-4

The Coordinate Plane 2-4
Points 2-4
Rectangles 2-5
Regions 2-7

The Black-and-White Drawing Environment: Basic Graphics Ports 2-7
Bitmaps 2-9
The Graphics Port Drawing Area 2-11
Graphics Port Bit Patterns 2-13
The Graphics Pen 2-13
Text in a Graphics Port 2-13
The Limited Colors of a Basic Graphics Port 2-14
Other Fields 2-14

Using Basic QuickDraw 2-14
Initializing Basic QuickDraw 2-16
Creating Basic Graphics Ports 2-16
Setting the Graphics Port 2-18
Switching Between Global and Local Coordinate Systems 2-19
Scrolling the Pixels in the Port Rectangle 2-20

Basic QuickDraw Reference 2-26
Data Structures 2-26
Routines 2-36

Initializing QuickDraw 2-36
Opening and Closing Basic Graphics Ports 2-37
Saving and Restoring Graphics Ports 2-41
Managing Bitmaps, Port Rectangles, and Clipping Regions 2-43
Manipulating Points in Graphics Ports 2-51

CHAPTER 2

2-2 Contents

Summary of Basic QuickDraw 2-56
Pascal Summary 2-56

Data Types 2-56
Routines 2-57

C Summary 2-58
Data Types 2-58
Functions 2-60

Assembly-Language Summary 2-61
Data Structures 2-61
Global Variables 2-62

Result Codes 2-62

CHAPTER 2

About Basic QuickDraw 2-3

Basic QuickDraw

This chapter describes how to initialize basic QuickDraw and how to create and manage
a basic graphics port—the drawing environment in which your application can create
graphics and text in either black and white or eight basic colors. Many of the routines
described in this chapter also operate in color graphics ports, and are noted as such. This
chapter also describes the mathematical foundation of both basic QuickDraw and Color
QuickDraw.

Read this chapter to learn how to set up a drawing environment for your application on
all models of Macintosh computers. The chapter “Color QuickDraw” in this book
describes additional data structures and routines necessary for preparing the more
sophisticated color drawing environments that are supported on the more powerful
Macintosh computers.

If your application ever draws to the screen, it uses basic QuickDraw—either directly, as
when it draws shapes or patterns into a window, or indirectly, as when it uses another
Macintosh Toolbox manager (such as the Window Manager or Menu Manager) to
implement elements of the standard Macintosh user interface. If your application does
not use color, or uses only a few colors, you may find that all the tools you need for
preparing a graphics environment are provided by basic QuickDraw. Once you prepare
a basic drawing environment as described in this chapter, you can begin drawing into it
as described in the next chapter, “QuickDraw Drawing.”

About Basic QuickDraw

Basic QuickDraw, designed for the earliest Macintosh models with their built-in
black-and-white screens, is a collection of system software routines that your application
can use to manipulate images on all Macintosh computers.

Note

All Macintosh computers support basic QuickDraw. Only those
computers based on the Motorola 68000 processor, such as the
Macintosh Classic and PowerBook 100 computers, provide no support
for Color QuickDraw. ◆

Basic QuickDraw performs its operations in a graphics port based on a data structure of
types GrafPor t . (Color QuickDraw, described in the chapter “Color QuickDraw,” can
work with data structures of type GrafPort or CGrafPor t , the latter offering extensive
color and grayscale facilities.)

As described in the chapter “Introduction to QuickDraw,” each graphics port has its
own local coordinate system. All fields in a graphics port are expressed in these
coordinates, and all calculations and actions that QuickDraw performs use the
local coordinate system of the current graphics port. The mathematical constructs of
this coordinate system are described next.

CHAPTER 2

Basic QuickDraw

2-4 About Basic QuickDraw

The Mathematical Foundations of QuickDraw
QuickDraw defines some mathematical constructs that are widely used in its procedures,
functions, and data types: the coordinate plane, the point, the rectangle, and the region.
Points are defined in terms of the coordinate plane. Points in turn are used to define a
rectangle. Rectangles assign coordinates to boundaries and images, and rectangles frame
graphic objects such as regions and ovals. Regions define arbitrary areas on the
coordinate plane.

For example, each graphics port has its own local coordinate system on the coordinate
plane; the location of the graphics pen used for drawing into a graphics port is expressed
as a point; a commonly used rectangle is the port rectangle, which in a graphics port for
a window represents the window’s content area; and a commonly used region in
QuickDraw is the visible region, which in a graphics port for a window represents the
portion of the window that’s actually visible on the screen—that is, the part that’s not
covered by other windows.

The Coordinate Plane

As described in the chapter “Introduction to QuickDraw,” all information about location
or movement is specified to QuickDraw in terms of coordinates on a plane. The plane is
a two-dimensional grid whose coordinates range from –32768 to 32767. On a user’s
computer, there is one global coordinate system that represents all potential QuickDraw
drawing space. The origin of the global coordinate system—that is, the point with a
horizontal coordinate of 0 and a vertical coordinate of 0—is at the upper-left corner of
the user’s main screen. Each graphics port on that user’s computer has its own local
coordinate system, which is defined relative to the port rectangle of the graphics port.
Typically, the upper-left corner of a port rectangle is assigned a local horizontal
coordinate of 0 and a local vertical coordinate of 0, although you can use the SetOrigin
procedure to change the coordinates of this corner.

IMPORTANT

QuickDraw stores points and rectangles in its own data structures of
types Point and Rect . In these structures, the vertical coordinate (v)
appears first, followed by the horizontal coordinate (h). However, in
parameters to all QuickDraw routines, you specify the horizontal
coordinate first and the vertical coordinate second. ▲

So that the user can select onscreen objects across this coordinate plane, QuickDraw
predefines several cursors, described in the chapter “Cursor Utilities” in this book, that
the user manipulates with the mouse.

Points

A point is located by the combination of a vertical coordinate and a horizontal
coordinate. Points themselves are dimensionless; if a visible pixel is located at a point,
the pixel hangs down and to the right of the point. You can store the coordinates of a
point into a variable of type Point , which QuickDraw defines as a record of two
integers.

CHAPTER 2

Basic QuickDraw

About Basic QuickDraw 2-5

TYPE VHSelect = (v,h);

Point =

RECORD

CASE Integer OF

0: (v: Integer: {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer) ;

END;

The third field of this record lets you access the vertical and horizontal coordinates of a
point either individually or as an array. For example, the following code fragment
illustrates how to assign values to the coordinates of points:

VAR

westPt, eastPt: Point;

westPt.v := 40; westPt.h := 60;

eastPt.vh[v] := 90; eastPt.vh[h] := 110;

“Manipulating Points in Graphics Ports” beginning on page 2-51 describes several
QuickDraw routines you can use to change and calculate points.

Rectangles

Any two points can define the upper-left and lower-right corners of a rectangle. Just as
points are infinitely small, the borders of the rectangle are infinitely thin.

The data type for rectangles is Rect , and the data structure consists of either four
integers or two points:

TYPE Rect =

RECORD

CASE Integer OF {cases: four sides or two points}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Poin t); {lower-right corner of rectangle}

END;

CHAPTER 2

Basic QuickDraw

2-6 About Basic QuickDraw

You can access a variable of type Rect either as four boundary coordinates or as two
diagonally opposite corner points. All of the following coordinates to the rectangle
named shipRect are permissible:

VAR

shipRect: Rect;

{specify rectangle with boundary coordinates}

shipRect.top := 20; shipRect.left := 20; shipRect.bottom := 70;

shipRect.right := 70;

{specify rectangle with upper-left and bottom-right points}

shipRect.topLef t := (20,20); s hipRect.botRigh t := (70,70);

{specify individual coordinates for rectangle's upper-left }

{ and bottom-right points}

shipRect.topLeft. v := 20; s hipRect.topLeft. h :=20;

shipRect.botRight. v := 70; s hipRect.botRight. h :70;

{specify individual coordinates for rectangle's upper-left }

{ and bottom-right points, where the points are arrays}

shipRect.topLeft.vh[v] := 20; s hipRect.topLeft.vh[h] := 20;

shipRect.botRight.vh[v] := 70; s hipRect.botRight.vh[h] := 70;

As described in the chapter “QuickDraw Drawing” in this book, many calculations and
graphics operations can be performed on rectangles.

Note

If the bottom coordinate of a rectangle is equal to or less than the top, or
the right coordinate is equal to or less than the left, the rectangle is an
empty rectangle, one that contains no data. ◆

CHAPTER 2

Basic QuickDraw

About Basic QuickDraw 2-7

Regions

The data structure for a region consists of two fixed-length fields followed by a
variable-length field:

TYPE Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if region is not rectangular}

END;

The rgnSize field contains the size, in bytes, of the region. The maximum size is 32 KB
when using basic QuickDraw (and 64 KB when using Color QuickDraw). The rgnBBox
field is a rectangle that completely encloses the region.

The simplest region is a rectangle. In this case, the rgnBBox field defines the entire
region, and there’s no optional region data. For rectangular regions (or empty regions),
the rgnSize field contains 10. The data for more complex regions is stored in a
proprietary format.

As described in the chapter “QuickDraw Drawing” in this book, you can gather an
arbitrary set of spatially coherent points into a region and rapidly perform complex
manipulations and calculations on them.

The Black-and-White Drawing Environment: Basic Graphics
Ports
A graphics port is a complete drawing environment that defines where and how
graphics operations take place. You can have many graphics ports open at once; each one
has its own local coordinate system, drawing pattern, background pattern, pen size and
location, font and font style, and bitmap or pixel map (for a color graphics port). You can
quickly switch from one graphics port to another.

As described in the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials, the Window Manager incorporates a graphics port in each window record it
creates. Similarly, the Printing Manager (described in the chapter “Printing Manager” in
this book) incorporates a graphics port in each print record it creates. You can also use
the NewGWorld function to create graphics ports that are not in a window, and hence not
visible on a screen. As described in the chapter “Offscreen Graphics Worlds” in this
book, such offscreen graphics worlds are useful for preparing images for display; when
the image is ready, you can quickly copy it to an onscreen graphics port.

There are two kinds of graphics ports: the black-and-white, basic graphics port based on
the data structure of type GrafPor t , and the color graphics port based on the data
structure of type CGrafPor t (used only with Color QuickDraw). The basic graphics
port is discussed here; the color graphics port is discussed in the chapter “Color
QuickDraw.” (Using the basic eight-color system described in the chapter “QuickDraw
Drawing,” you can also use a basic graphics port to display eight predefined colors.)

CHAPTER 2

Basic QuickDraw

2-8 About Basic QuickDraw

The GrafPort record is diagrammed in Figure 2-1. Some aspects of its contents are
discussed after the figure; see page 2-30 for a complete description of the record fields.
Your application should not directly set any fields of a GrafPort record; instead you
should use QuickDraw routines to manipulate them.

Figure 2-1 The GrafPort record and the BitMap record

CHAPTER 2

Basic QuickDraw

About Basic QuickDraw 2-9

Bitmaps

The portBits field of a GrafPort record contains the bitmap, a data structure of type
BitMap that defines a black-and-white physical bit image in terms of the QuickDraw
coordinate plane. The structure of a bitmap is illustrated in Figure 2-1.

The baseAddr field of the BitMap record contains a pointer to the beginning of the bit
image. (There can be several bitmaps pointing to the same bit image, each imposing its
own coordinate system on it.) A bit image is a collection of bits in memory that form a
grid. To visualize the relationship between the bits in memory and the bits in an image,
take a sequence of words in memory and lay them end to end so that bit 15 of the
lowest-numbered word is on the left and bit 0 of the highest-numbered word is on the
far right. Then take this line of bits and divide it, on word boundaries, into a number of
equal-size rows. Stack these rows vertically so that the first row is on the top and the last
row is on the bottom. The result is a matrix like the one shown in Figure 2-2—rows and
columns of bits, with each row containing the same number of bytes. A bit image can be
any length that’s a multiple of the row’s width in bytes.

Figure 2-2 A bit image

The screen itself is one large visible bit image. On a Macintosh Classic, for example, the
screen is a 342-by-512 bit image, with a row width of 64 bytes. These 21,888 bytes of
memory are displayed as a matrix of 175,104 pixels on the screen; each bit corresponds to
one screen pixel. If a bit’s value is 0, its screen pixel is white; if the bit’s value is 1, it is
black. (Color QuickDraw can work with images that store more than 1 bit for each screen
pixel. Such images are called pixel images; they are described in the chapter “Color
QuickDraw” in this book.)

CHAPTER 2

Basic QuickDraw

2-10 About Basic QuickDraw

The rowBytes field of the bitmap contains the width of a row of the image in bytes. A
bitmap must always begin on a word boundary and contain an integral number of
words in each row. The value of the rowBytes field must be less than $4000.

The bounds field is the bitmap’s boundary rectangle, which serves two purposes. First,
it links the local coordinate system of a graphics port to QuickDraw’s global coordinate
system. Second, it defines the area of an image into which QuickDraw can draw.

The coordinates of the upper-left corner of the boundary rectangle define the distance
from the origin of the graphics port’s local coordinate system to the origin of
QuickDraw’s global coordinate system. In this way, the boundary rectangle links the
local coordinate system of a graphics port to QuickDraw’s global coordinate system. For
example, by subtracting the vertical and horizontal coordinates of the upper-left corner
of the boundary rectangle from any other point local to the graphics port, you convert
that point into global coordinates. By comparing the origin of a window to the origin of
the main screen, Figure 2-3 illustrates the relationship of the boundary rectangle’s local
coordinate system to QuickDraw’s global coordinate system.

Figure 2-3 Relationship of the boundary rectangle and the port rectangle to the global
coordinate system

The origin of the local coordinate system is defined by the upper-left corner of the port
rectangle for the graphics port. (The port rectangle, as described in “The Graphics Port
Drawing Area” on page 2-11, is specified in the portRect field of the GrafPort
record.) In a graphics port for a window, this point is called the window origin, and it
marks the upper-left corner of a window’s content region. As shown in Figure 2-3, this
point usually has horizontal and vertical coordinates of 0 in the local coordinate system.

The origin for the global coordinate system has horizontal and vertical coordinates of 0
in the global coordinate system, and, as shown in Figure 2-3, this point lies at the
upper-left corner of the main screen.

CHAPTER 2

Basic QuickDraw

About Basic QuickDraw 2-11

By default, QuickDraw assigns the entire main screen as the boundary rectangle for a
bitmap. Therefore, the local coordinates of the upper-left corner of the boundary
rectangle reflect the distance from the window origin to the screen origin. In Figure 2-3,
for example, the upper-left corner of the boundary rectangle has a horizontal coordinate
of –60 and a vertical coordinate of –90 in the local coordinate system because the
window origin has a horizontal coordinate of 60 and a vertical coordinate of 90 in the
global coordinate system.

The boundary rectangle defines the area of an image into which QuickDraw can
draw. The upper-left corner of the boundary rectangle is aligned around the first bit in
the bit image. The width of the boundary rectangle determines how many bits of one
row are logically owned by the bitmap. This width must not exceed the number of bits in
each row of the bit image (although the width may be smaller than the number of bits
in each row).

The height of the boundary rectangle determines how many rows of the bit image are
logically owned by the bitmap. The number of rows enclosed by the boundary rectangle
must not exceed the number of rows in the bit image (although the number of rows
enclosed by the boundary rectangle may be fewer than those in the bit image).

Normally, the boundary rectangle exactly encloses the bit image. If the rectangle is
smaller than either dimension of the image, the rightmost bits in each row, or the last
rows in the image, or both, are not considered part of the bitmap. All drawing that
QuickDraw does in a bitmap is clipped to the edges of the boundary rectangle—bits
(and their corresponding pixels) that lie outside the rectangle are unaffected by drawing
operations.

The bitmap may be changed to point to a different bit image in memory. All graphics
routines work in exactly the same way regardless of whether their effects are visible on
the screen. Your application can, for example, prepare an image to be printed on a
printer without ever displaying the image on the screen (as described in the chapter
“Printing Manager” in this book), or it can prepare an image in an offscreen graphics
world before transferring it to the screen (as described in the chapter “Offscreen
Graphics Worlds” in this book).

The Graphics Port Drawing Area

Several fields in the GrafPort record define your application’s drawing area.

The portRect field denotes the port rectangle that defines a subset of the bitmap to be
used for drawing. All drawing done by your application occurs inside the port rectangle.
As explained in the previous section, the boundary rectangle defines the local coordinate
system used by the port rectangle. The port rectangle usually falls within the bitmap’s
boundary rectangle, but it’s not required to do so.

The visRgn field designates the visible region of the graphics port. The visible region is
the region of the graphics port that’s actually visible on the screen. The visible region is
manipulated by the Window Manager. For example, if the user moves one window in
front of another, the Window Manager logically removes the area of overlap from the

CHAPTER 2

Basic QuickDraw

2-12 About Basic QuickDraw

visible region of the window in back. When you draw into the back window, whatever’s
being drawn is clipped to the visible region so that it doesn’t run over onto the front
window.

The clipRgn field specifies the graphics port’s clipping region, which you can use to
limit drawing to any region within the port rectangle. The initial clipping region of a
graphics port is an arbitrarily large rectangle: one that covers the entire QuickDraw
coordinate plane. You can set the clipping region to any arbitrary region, to aid you in
drawing inside the graphics port. If, for example, you want to draw a half-circle on the
screen, you can set the clipping region to half of the square that would enclose the whole
circle, and then draw the whole circle. Only the half within the clipping region is actually
drawn in the graphics port.

All drawing in a graphics port occurs in the intersection of the graphics port’s boundary
rectangle and its port rectangle, and, within that intersection, all drawing is cropped to
the graphics port’s visible region and its clipping region. No drawing occurs outside the
intersection of the port rectangle, the visible region, and the clipping region. Figure 2-4
illustrates several of the previously described fields of the GrafPort record.

Figure 2-4 Comparing the boundary rectangle, port rectangle, visible region, and clipping
region

CHAPTER 2

Basic QuickDraw

About Basic QuickDraw 2-13

As shown in this figure, QuickDraw assigns the entire screen as the boundary rectangle
for window A. This boundary rectangle shares the same local coordinate system as
the port rectangle for window A. Although not shown in this figure, the upper-left
corner—that is, the window origin—of this port rectangle has a horizontal coordinate of
0 and a vertical coordinate of 0, whereas the upper-left corner for window A’s boundary
rectangle has a horizontal coordinate of –40 and a vertical coordinate of –40.

In this figure, to avoid drawing over scroll bars when drawing into window B, the
application that created that window has defined a clipping region that excludes the
scroll bars.

Graphics Port Bit Patterns

The bkPat and fillPat fields of a GrafPort record contain patterns used by certain
QuickDraw routines. The bk Pat field contains the background pattern that’s used when
an area is erased or when bits are scrolled out of it. When asked to fill an area with a
specified pattern, QuickDraw stores the given pattern in the fillPat field and then
calls a low-level drawing routine that gets the pattern from that field.

Bit patterns—which are usually black and white, although any two colors can be used on
a color screen—are described in the chapter “QuickDraw Drawing” in this book;
patterns with colors at any pixel depth, called pixel patterns, are described in the chapter
“Color QuickDraw” in this book.

The Graphics Pen

The pnLoc , pnSize , pnMode, pnPat , and pnVis fields of a graphics port deal with the
graphics pen. Each graphics port has one and only one such pen, which is used for
drawing lines, shapes, and text. The pen has four characteristics: a location, a size (height
and width), a drawing mode, and a drawing pattern. The routines for determining and
changing these four characteristics are described in the chapter “QuickDraw Drawing.”

Text in a Graphics Port

The txFont , txFace , txMode , txSize , and spExtra fields of a graphics port
determine how text is drawn—the typeface, font style, and font size of characters and
how they are placed in the bit image. QuickDraw can draw characters as quickly and
easily as it draws lines and shapes, and in many prepared typefaces. The characters may
be drawn in any size and font style (that is, with stylistic variations such as bold, italic,
and underline). Text is drawn with the base line positioned at the pen location.

For information on using text in your application, including how to use the QuickDraw
routines that manipulate text characteristics stored in a graphics port, see Inside
Macintosh: Text.

CHAPTER 2

Basic QuickDraw

2-14 Using Basic QuickDraw

The Limited Colors of a Basic Graphics Port

The fgColor , bkColor , and colrBit fields contain values for drawing in the
eight-color system available with basic QuickDraw. Although limited to eight
predefined colors, this system has the advantage of being compatible across all
Macintosh platforms. The fg Color field contains the graphics port’s foreground color,
and bkColor contains its background color. The co lrBit field tells the color imaging
software which plane of the color picture to draw into.

These colors are recorded when drawing into a QuickDraw picture (described in the
chapter “Pictures” in this book)—for example, drawing a line with a red foreground
color stores a red line in the picture—but these colors cannot be stored in a bitmap. The
basic graphics port’s color drawing capabilities are discussed in the chapter “QuickDraw
Drawing.”

Other Fields

The patStretch field is used during printing to expand patterns if necessary. Your
application should not change the value of this field.

The picSave , rgnSave , and polySave fields reflect the states of picture, region, and
polygon definitions, respectively. To define a region, for example, you open it, call
routines that draw it, and then close it. The chapter “QuickDraw Drawing” describes in
detail how to use pictures, regions, and polygons to draw into a graphics port.

Finally, the grafProcs field may point to a special data structure that your application
can store into if you want to customize QuickDraw drawing routines or use QuickDraw
in other specialized ways, as described in the chapter “QuickDraw Drawing.”

Using Basic QuickDraw

To create a basic QuickDraw drawing environment, you generally

■ initialize QuickDraw

■ create one or more graphics ports—typically, by using the Window Manager or the
NewGWorld function

■ set a current graphics port whenever your application has multiple graphics ports
into which it can draw

■ use the coordinate system—local or global—appropriate for the QuickDraw or
Macintosh Toolbox routine you wish to use next

■ move the document’s bit image in relation to the port rectangle of the graphics port
when scrolling through a document in a window

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-15

These tasks are explained in greater detail in the rest of this chapter. After
performing these tasks, your application can draw into the current graphics port,
as described in the next chapter, “QuickDraw Drawing.”

System 7 added new features to basic QuickDraw that were not available in earlier
versions of system software. In particular, System 7 added

■ the capability to work with the offscreen graphics worlds described in the chapter
“Offscreen Graphics Worlds”

■ support for the OpenCPicture function to create—and the ability to display—the
extended version 2 pictures described in the chapter “Pictures”

■ additional capabilities to the CopyBits procedure as described in the chapter
“QuickDraw Drawing”

■ support for the Color QuickDraw routines RGBForeColor , RGBBackColor ,
GetForeColor , and GetBackColor (which are described in the chapter “Color
QuickDraw”)

■ support for the DeviceLoop procedure (described in the chapter “Graphics Devices”
in this book), which provides your application with information about the current
device’s pixel depth and other attributes

■ support for the Picture Utilities, as described in the chapter “Pictures” in this book
(however, when collecting color information on a computer running only basic
QuickDraw, the Picture Utilities return NIL instead of handles to Palette and
ColorTable records)

Before using these capabilities, you should make sure they are available by using the
Gestalt function with the gestaltSystemVersion selector. Test the low-order word
in the response parameter; if the value is $0700 or greater, then the System 7 features of
basic QuickDraw are supported.

You can test whether a computer supports only basic QuickDraw with no
Color QuickDraw support by using the Gestalt function with the selector
gestaltQuickDrawVersion . The Gestalt function returns a 4-byte value in its
response parameter; the low-order word contains QuickDraw version data. If
Gestalt returns the value represented by the constant gestaltOriginalQD , then
Color QuickDraw is not supported.

The Gestalt function is described in the chapter “Gestalt Manager” of Inside Macintosh:
Operating System Utilities.

CHAPTER 2

Basic QuickDraw

2-16 Using Basic QuickDraw

Initializing Basic QuickDraw
Call the InitGraf procedure to initialize QuickDraw at the beginning of your program,
before initializing any other parts of the Toolbox, as shown in the application-defined
procedure DoIni t in Listing 2-1. The InitGraf procedure initializes both basic
QuickDraw and, on computers that suppport it, Color QuickDraw.

Listing 2-1 Initializing QuickDraw

PROCEDURE DoInit;

BEGIN

 DoSetUpHeap; {perform Memory Manager initialization here}

 InitGraf(@thePort); {initialize Quic kDr aw}

 InitFonts; {initialize Font Manager}

 InitWindows; {initialize Window Manager & other Toolbox }

{ managers here}

{pe r form all other initializations here}

 InitCursor; {set cursor to an arrow instead of a clock}

END; {of DoInit}

When your application starts up, the Finder sets the cursor to a wristwatch; this
indicates that a lengthy operation is in progress. See the chapter “Cursor Utilities” in this
book for information about changing the cursor when appropriate.

Creating Basic Graphics Ports
All graphics operations are performed in graphics ports. Before a basic graphics port can
be used, it must be allocated and initialized with the OpenPort procedure. Normally,
you don’t call OpenPort yourself. In most cases your application draws into a
window you’ve created with the GetNewWindo w or NewWindow function (or, for
color windows, GetNewCWindow or NewCWindow), or it draws into an offscreen
graphics world created with the NewGWorld function. These Window Manager
functions (described in the chapter “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials) and the NewGWorld function (described in the chapter “Offscreen
Graphics Worlds” in this book) call OpenPort to create a basic graphics port. See the
description of the OpenPor t procedure on page 2-38 for a table of initial values for a
basic graphics port.

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-17

Listing 2-2 shows a simplified application-defined procedure called DoNew that uses the
Window Manager function GetNewWindow to create a basic graphics port for computers
that do not support color. The GetNewWindow function returns a window pointer, which
is defined to be a pointer to graphics port.

Listing 2-2 Using the Window Manager to create a basic graphics port

PROCEDURE DoNew (V AR window: WindowPtr);

VAR

windStorage: Ptr; {memory for window record}

BEGIN

window := NIL ;

{allocate memory for window record from previously allocated block}

windStorage := MyPtrAllocationProc;

IF windStorage <> NIL THEN {memory allocation succeeded}

BEGIN

I F gColorQDAvailable THE N { use Gestalt to determine color availability}

window := GetNewCWindow(rDocWindow, windStorage, WindowPtr(-1))

ELSE {create a basic graphics port for a black-and-white screen}

window := GetNewWindow(rDocWindow, windStorage, WindowPtr(-1));

END;

I F (window < > NIL) and (myData < > NIL) THEN

 SetPort(window);

END;

You can allow GetNewWindow to allocate the memory for your window record and its
associated basic graphics port. You can maintain more control over memory use,
however, by allocating the memory yourself from a block allocated for such purposes
during your own initialization routine, and then passing the pointer to GetNewWindow,
as shown in Listing 2-2.

When you call the CloseWindow or DisposeWindow procedure to close or dispose of a
window, the Window Manager disposes of the graphics port’s regions by calling the
ClosePort procedure. If you use the CloseWindow procedure, you also dispose of the
window record containing the graphics port by calling the Memory Manager procedure
DisposePtr .

For detailed information about managing windows, see the chapter “Window Manager”
in Inside Macintosh: Macintosh Toolbox Essentials. For detailed information about
managing memory, see Inside Macintosh: Memory.

CHAPTER 2

Basic QuickDraw

2-18 Using Basic QuickDraw

Setting the Graphics Port
Before drawing into the window, Listing 2-2 calls the SetPort procedure to make the
window the current graphics port. If your application draws into more than one
graphics port, you can call SetPort to set the graphics port into which you want to
draw. At times you may need to preserve the current graphics port. As shown in
Listing 2-3, you can do this by calling the GetPort procedure to save the current
graphics port, SetPort to set the graphics port you want to draw in, and then SetPort
again when you need to restore the previous graphics port. (The procedures also work
with color graphics ports.)

Listing 2-3 Saving and restoring a graphics port

PROCEDURE DrawInPort (thePort: GrafPtr);

VAR

origPort: GrafPtr;

BEGIN

GetPort(origPort); {save the original port}

SetPort(thePort); {set a new port}

DoDrawWindow(thePort); {draw into the new port}

SetPort(origPort); {restore the original port}

END;

In this example, the application calling DrawInPort may need to temporarily turn an
inactive window into the current graphics port for updating purposes. After drawing
into the inactive window, DrawInPort makes the user ’s active window the current
graphics port again.

Note

When your application runs in Color QuickDraw or uses offscreen
graphics worlds, it should use the GetGWorld procedure instead of
GetPort , and it should use the SetGWorld procedure instead of
SetPort . These procedures save and restore the current graphics port
for basic and color graphics ports as well as offscreen graphics worlds.
See the chapter “Offscreen Graphics Worlds” in this book for more
information. ◆

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-19

Switching Between Global and Local Coordinate Systems
Each graphics port has its own local coordinate system. Some Toolbox routines return or
expect points that are expressed in the global coordinate system, while others use local
coordinates. Sometimes you need to use the GlobalToLocal procedure to convert
global coordinates to local coordinates, and sometimes you need the LocalToGlobal
procedure for the reverse operation. For example, when the Event Manager function
WaitNextEvent reports an event, it gives the cursor location (also called the mouse
location) in global coordinates; but when you call the Control Manager function
FindControl to find out whether the user clicked a control in one of your windows,
you pass the cursor location in local coordinates, as shown in Listing 2-4. (The Event
Manager and the Control Manager are described in Inside Macintosh: Macintosh Toolbox
Essentials.)

Listing 2-4 Changing global coordinates to local coordinates

PROCEDURE DoControlClick (window: WindowPtr; event: EventRecord);

VAR

mouse: Point;

control: ControlHandle;

part: Integer;

windowType: Integer;

BEGIN

SetPort(window);

mouse := event.where; {save th e cursor l ocation}

GlobalToLocal(mouse); {convert to local coordinates}

part := FindControl(mouse, window, control);

CASE part OF

inButton : {mous e-down i n OK button}

DoOKButton(mouse, control);

inCheckBox : {mouse -down i n checkbox}

DoCheckBox(mouse, control);

OTHERWISE

;

END; {of CASE for control part codes}

END; {of DoControlClick}

CHAPTER 2

Basic QuickDraw

2-20 Using Basic QuickDraw

Scrolling the Pixels in the Port Rectangle
If your application scrolls a document in a window, your application can use the
ScrollRect procedure to shift the pixels currently displayed for that document, and
then it can use the SetOrigin procedure to adjust the window’s local coordinate
system for drawing a new portion of the document inside the update region of the
window.

Scrolling a document in response to the user’s manipulation of a scroll bar requires you
to use the Control Manager, the Window Manager, and the File Manager in addition to
QuickDraw. The chapter “Control Manager” in Inside Macintosh: Macintosh Toolbox
Essentials provides a thorough explanation of how to scroll through documents. An
overview of the necessary tasks is provided here.

A window record contains a graphics port in its first field, and the Window Manager
uses the port rectangle of the graphics port as the content area of the window. This
allows you to use the QuickDraw routines ScrollRect and SetOrigin —which
normally operate on the port rectangle of a graphics port—to manipulate the content
area of the window.

The left side of Figure 2-5 illustrates a case where the user has just opened an existing
document, and the application displays the top of the document. In this example,
the document consists of 35 lines of monospaced text, and the line height throughout is
10 pixels. Therefore, the document is 350 pixels long. The application stores the
document in a document record of its own creation. This document record assigns its
own coordinate system to the document. When the user first opens the document, the
upper-left point of the graphics port’s port rectangle (the window origin) is identical to
the upper-left point of the document record’s own coordinate system: both have a
horizontal coordinate of 0 and a vertical coordinate of 0.

In this example, the content area—that is, the port rectangle—of the window displays 15
lines of text, which amount to 150 pixels.

Imagine that the user drags the scroll box part way down the vertical scroll bar. Because
the user wishes to scroll down, the application must move the document up so that more
of the bottom of the document shows. Moving a document up in response to a user
request to scroll down requires a scrolling distance with a negative value. (Likewise,
moving a document down in response to a user request to scroll up requires a scrolling
distance with a positive value.)

Using the Control Manager functions FindControl , TrackControl , and
GetControlValue , the application in this example determines that it must move
the document up by 100 pixels—that is, by a scrolling distance of –100 pixels.

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-21

The application uses the QuickDraw procedure ScrollRect to shift the pixels currently
displayed in the port rectangle of the window by a distance of –100 pixels. This moves
the portion of the document displayed in the window upward by 100 pixels (that is, by
10 lines); 5 lines that were previously displayed at the bottom of the window now
appear at the top of the window, and the application adds the rest of the window to an
update region for later updating.

Figure 2-5 Moving a document relative to its window

The ScrollRect procedure doesn’t change the coordinate system of the graphics port
for the window; instead it moves the pixels in a specified rectangle (in this case, the port
rectangle) to new coordinates that are still in the graphics port’s local coordinate system.
For purposes of updating the window, you can think of this as changing the coordinates
used by the application’s document record, as illustrated in the right side of Figure 2-5.

CHAPTER 2

Basic QuickDraw

2-22 Using Basic QuickDraw

The ScrollRect procedure takes four parameters: a rectangle to scroll, a horizontal
distance to scroll, a vertical distance to scroll, and a region handle. Typically, when
specifying the rectangle to scroll, your application passes a value representing the port
rectangle (that is, the window’s content region) minus the scroll bar regions, as shown in
Listing 2-5.

Listing 2-5 Using ScrollRect to scroll the bits displayed in the window

PROCEDURE DoGraphicsScroll (window: WindowPtr;

 hDistance ,v Distance: Integer);

VAR

myScrollRect: Rect;

updateRegion: RgnHandle;

BEGIN

{initially, use the windo w's portRect as the rectangle to scroll:}

myScrollRect := window^.portRect ;

{ subtrac t v ertical and horizontal scroll bars from rectangle}

myScrollRect.right := myScrollRect.right - 15;

myScrollRect.bottom := myScrollRect.bottom - 15;

updateRegion := NewRgn; {always in i tialize the update region}

ScrollRect(myScrollRect, hDistance, vDistance, updateRegion);

InvalRgn(updateRegion);

DisposeRgn(updateRegion);

END; {of DoGraphicsScroll }

The pixels that ScrollRect shifts outside of the rectangle specified by the
myScrollRect variable are not drawn on the screen, and the bits they represent
are not saved—it is your application’s responsibility to keep track of this data.

The ScrollRect procedure shifts the image displayed inside the port rectangle by a
distance of hDistance pixels horizontally and vDistance pixels vertically; when
the DoGraphicsScroll procedure passes positive values in these parameters,
ScrollRect shifts the pixels in myScrollRect to the right and down, respectively.
This is appropriate when the user intends to scroll left or up because, when the
application finishes updating the window, the user sees more of the left and top of the
document, respectively. (Remember: to scroll up or left, move the pixels down or right,
both of which are in the positive direction.)

When DoGraphicsScroll passes negative values in these parameters, ScrollRect
shifts the pixels in myScrollRect to the left or up. This is appropriate when the user
intends to scroll right or down because, when the application finishes updating the
window, the user sees more of the right and the bottom of the document. (Remember: to
scroll down or right, move the bit image up or left, both of which are in the negative
direction.)

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-23

In Figure 2-5, the application determines a vertical scrolling distance of –100, which it
passes in the vDistance parameter as shown here:

ScrollRect(myScrollRect, 0, –100, updateRegion);

If, however, the user were to move the scroll box back to the beginning of the document
at this point, the application would determine that it has a distance of 100 pixels to scroll
up, and it would therefore pass a positive value of 100 in the vDistance parameter.

By creating an update region for the window, ScrollRect forces an update event. After
using ScrollRect to move the bit image that already exists in the window, the
application must use its own window-updating code to draw pixels in the update region
of the window. (See the chapter “QuickDraw Drawing” in this book for information
about drawing into a window.)

As previously explained, ScrollRect in effect changes the coordinates of the
application’s document record relative to the local coordinates of the port rectangle. In
terms of the graphics port’s local coordinate system, the upper-left corner of the
document now has a vertical coordinate of –100, as shown on the right side of Figure 2-5
on page 2-21. To facilitate updating the window, the application uses the SetOrigin
procedure to change the window origin of the port rectangle so that the application can
treat the upper-left corner of the document as again having a local horizontal coordinate
of 0 and a local vertical coordinate of 0.

The SetOrigin procedure takes two parameters: the first is a new horizontal coordinate
for the upper-left corner of the port rectangle, and the second is a new vertical
coordinate for the upper-left corner of the port rectangle.

Any time you are ready to update a window (for example, after scrolling it), you can use
the Control Manager function GetControlValue to determine the current setting
of the horizontal scroll bar, and you can pass this value to SetOrigin as the new
horizontal coordinate for the window origin. Then use GetControlValue to determine
the current setting of the vertical scroll bar. Pass this value to SetOrigin as the new
vertical coordinate for the window origin. Using SetOrigin in this fashion lets you
treat the upper-left corner of the document as always having a horizontal coordinate of 0
and a vertical coordinate of 0 when you update (that is, redraw) the document within a
window.

For example, after the user manipulates the vertical scroll bar to move (either up or
down) to a location 100 pixels from the top of the document, the application makes the
following call:

SetOrigin(0, 100);

Although the scrolling distance in Figure 2-5 is –100, which is relative, the current setting
for the scroll bar on the right side of the figure is now at 100.

CHAPTER 2

Basic QuickDraw

2-24 Using Basic QuickDraw

The left side of Figure 2-6 shows how the application uses the SetOrigin procedure to
move the window origin so that the upper-left corner of the document now has a
horizontal coordinate of 0 and a vertical coordinate of 0 in the graphics port’s local
coordinate system. This restores the coordinates that the application originally assigned
to the document in its document record and makes it easier for the application to draw
in the update region of the window.

Figure 2-6 Updating the contents of a scrolled window

After restoring the document’s original coordinates, the application updates the window,
as shown on the right side of Figure 2-6. The application draws lines 16 through 24,
which it stores in its own document record as beginning at a vertical coordinate of 160
and ending at a vertical coordinate of 250.

To review what has happened up to this point: the user has dragged the scroll box down
the vertical scroll bar; the application determines that this amounts to a scroll distance
of –100 pixels; the application passes this distance to ScrollRect , which shifts the
document displayed in the window upward by 100 pixels and creates an update region
for the rest of the window; the application passes the vertical scroll bar’s current setting
(100 pixels) in a parameter to SetOrigin so that the upper-left corner of the document
has a horizontal coordinate of 0 and a vertical coordinate of 0 in the local coordinate
system of the graphics port; and, finally, the application draws the text in the update
region of the window.

CHAPTER 2

Basic QuickDraw

Using Basic QuickDraw 2-25

However, the window origin of the port rectangle cannot be left at the point with a
horizontal value of 0 and a vertical value of 100; instead, the application must use
SetOrigin to reset it to a horizontal coordinate of 0 and a vertical coordinate of 0 after
performing its own drawing, because the Window Manager and Control Manager
always assume the window’s upper-left point has a horizontal coordinate of 0 and a
vertical coordinate of 0 when they draw in a window. Figure 2-7 shows how the
application uses SetOrigin to set the upper-left corner of the port rectangle back to a
horizontal coordinate of 0 and a vertical coordinate of 0 at the conclusion of its
window-updating routine.

Figure 2-7 Restoring the window origin of the port rectangle to a horizontal coordinate of 0
and a vertical coordinate of 0

This example illustrates how to use SetOrigin to offset the port rectangle’s coordinate
system so that you can treat objects in a document as fixed in the document’s own
coordinate space. Alternatively, it’s possible to leave the coordinate system for the
graphics port fixed and instead offset the items in a document by the amount equal to
the scroll bar settings. The OffsetRect and OffsetRgn procedures (which are
described in the chapter “QuickDraw Drawing”), the SubPt procedure (described on
page 2-53), and the AddPt procedure (described on page 2-52) are useful if you pursue
this approach. However, it is recommended that you use SetOrigin instead.

CHAPTER 2

Basic QuickDraw

2-26 Basic QuickDraw Reference

IMPORTANT

For optimal performance and future compatibility, you should use the
SetOrigin procedure when reconciling document coordinate space
with the local coordinate system of your graphics port. ▲

The SetOrigin procedure does not move the window’s clipping region. If you use
clipping regions in your windows, use the GetClip procedure (described on page 2-47)
to store your clipping region immediately after your first call to SetOrigin . Before
calling your own window-drawing routine, use the ClipRect procedure (described on
page 2-49) to define a new clipping region—to avoid drawing over your scroll bars, for
example. (Listing 3-9 on page 3-29 in the chapter “QuickDraw Drawing” illustrates how
to do this.) After calling your own window-drawing routine, use the SetClip
procedure (described on page 2-48) to restore the original clipping region. You can then
call SetOrigin again to restore the window origin to a horizontal coordinate of 0 and a
vertical coordinate of 0 with your original clipping region intact.

Basic QuickDraw Reference

This section describes the data structures and routines that are specific to basic
QuickDraw.

“Data Structures” shows the data structures for a point, rectangle, region, bitmap, and
basic graphics port. “Routines” describes basic QuickDraw routines for initializing
QuickDraw; opening and closing basic graphics ports; saving and restoring graphics
ports; managing bitmaps, port rectangles, and clipping regions; and manipulating points
in graphics ports.

Data Structures
This section describes the data structures that represent a point, rectangle, region,
bitmap, and basic graphics port.

You use the point (a data structure of type Point) to specify a location on the
QuickDraw coordinate plane; two points are sufficient to define a rectangle. The
rectangle (a data structure of type Rect) in turn assigns coordinates to boundaries and
images; rectangles also bound graphic objects such as regions and ovals.

The region (a data structure of type Region) defines an arbitrary area, such as the visible
and clipping regions of a window’s graphics port.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-27

The bitmap (a data structure of type BitMap) defines a physical bit image in terms of the
QuickDraw coordinate plane.

The basic graphics port is a data structure (of type GrafPort) upon which your
application builds windows.

Point

You use a point, which is a data structure of type Point , to specify a location on the
QuickDraw coordinate plane. For example, the window origin is specified by the point
in the upper-left corner of the port rectangle of a graphics port.

TYPE VHSelect = (v,h);

Point =

RECORD

CASE Integer OF

0: (v: Integer: {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer) ;

END;

Field descriptions

v The vertical coordinate of the point.
h The horizontal coordinate of the point.
vh A variant definition in which v and h are array elements.

Note that while the vertical coordinate (v) appears first in this data structure, followed
by the horizontal coordinate (h), the parameters to all QuickDraw routines expect the
horizontal coordinate first and the vertical coordinate second.

QuickDraw routines for calculating and changing points are described in “Manipulating
Points in Graphics Ports” beginning on page 2-51.

Rect

You can use a rectangle, which is a data structure of type Rect , to define areas on the
screen and to specify the locations and sizes for various graphics operations. For
example, a port rectangle represents the area of a graphics port (described on page 2-30)
available for drawing.

CHAPTER 2

Basic QuickDraw

2-28 Basic QuickDraw Reference

The Rect data type can be defined by two points or four integers. The two points define
the upper-left and lower-right corners of a rectangle; the four integers define the vertical
and horizontal coordinates of the two points.

TYPE Rect =

RECORD

CASE Integer O F {cases: 4 boundaries or 2 corners}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Point); {lower-right corner of rectangle}

END;

Field descriptions

top The vertical coordinate of the upper-left point of the rectangle.
left The horizontal coordinate of the upper-left point of the rectangle.
bottom The vertical coordinate of the lower-right point of the rectangle.
right The horizontal coordinate of the lower-right point of the rectangle.
topLeft The upper-left corner of the rectangle.
botRight The lower-right corner of the rectangle.

Note that while the vertical coordinate appears first in this data structure, followed by
the horizontal coordinate, the parameters to all QuickDraw routines expect the
horizontal coordinate first and the vertical coordinate second.

See the chapter “QuickDraw Drawing” for descriptions of the QuickDraw routines you
can use for calculating and manipulating rectangles for drawing purposes.

Region

You can use a region, which is a data structure of type Region , to define an arbitrary
area or set of areas on the QuickDraw coordinate plane. For example, when scrolling
through a window, your application must initialize an update region and pass its handle
to the ScrollRect procedure (which is described on page 2-43).

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-29

The data structure for a region consists of two fixed-length fields followed by a
variable-length field.

TYPE RgnHandle = ^RgnPtr;

RgnPtr = ^Region;

Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if region is not rectangular}

END;

Field descriptions

rgnSize The region’s size in bytes.
rgnBBox The rectangle that bounds the region.

The maximum size of a region is 32 KB when using basic QuickDraw, 64 KB when using
Color QuickDraw. The simplest region is a rectangle. In this case, the rgnBBox field
defines the entire region, and there’s no optional region data. For rectangular regions (or
empty regions), the rgnSize field contains 10.

Region data is stored in a proprietary format.

See the chapter “QuickDraw Drawing” for descriptions of the QuickDraw routines you
can use for calculating and manipulating regions for drawing purposes.

BitMap

A bitmap, which is a data structure of type BitMap , defines a bit image in terms of the
QuickDraw coordinate plane. (A bit image is a collection of bits in memory that form a
grid; Figure 2-2 on page 2-9 illustrates a bit image.)

A bitmap has three parts: a pointer to a bit image, the row width of that image, and
a boundary rectangle that links the local coordinate system of a graphics port to
QuickDraw’s global coordinate system and defines the area of the bit image into
which QuickDraw can draw.

TYPE BitMap =

RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: Integer; {row width}

bounds: Rect; { boundary rectangle}

END;

CHAPTER 2

Basic QuickDraw

2-30 Basic QuickDraw Reference

Field descriptions

baseAddr A pointer to the beginning of the bit image.
rowByte s The offset in bytes from one row of the image to the next. The value

of the rowBytes field must be less than $4000.
bounds The bitmap’s boundary rectangle; by default, the entire main screen.

The width of the boundary rectangle determines how many bits of one row are logically
owned by the bitmap. (Figure 2-3 on page 2-10 illustrates a boundary rectangle.) This
width must not exceed the number of bits in each row of the bit image. The height of the
boundary rectangle determines how many rows of the image are logically owned by the
bitmap. The number of rows enclosed by the boundary rectangle must not exceed the
number of rows in the bit image.

The boundary rectangle defines the local coordinate system used by the port rectangle
for a graphics port (described next). The upper-left corner (which for a window is called
the window origin) of the port rectangle usually has a vertical coordinate of 0 and a
horizontal coordinate of 0, although you can use the SetOrigin procedure (described
on page 2-45) to change the coordinates of the window origin.

GrafPort

A basic graphics port, which is a data structure of type GrafPort , defines a complete
drawing environment that determines where and how black-and-white graphics
operations take place. (Using the basic eight-color system described in the chapter
“QuickDraw Drawing,” you can also use a basic graphics port to display eight
predefined colors.)

All graphics operations are performed in graphics ports. Before a basic graphics port
can be used, it must be allocated and initialized with the OpenPort procedure.
Normally, you don’t call OpenPort yourself. In most cases your application draws into
a window you’ve created with the GetNewWindow or NewWindow function (or, for color
windows, GetNewCWindow or NewCWindow), or it draws into an offscreen graphics
world created with the NewGWorld function. These Window Manager functions
(described in the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox
Essentials) and the NewGWorld function (described in the chapter “Offscreen Graphics
Worlds” in this book) call OpenPort to create a basic graphics port. See the description
of the OpenPor t procedure on page 2-38 for a table of initial graphics port values.

You can have many graphics ports open at once; each one has its own local coordinate
system, pen pattern, background pattern, pen size and location, font and font style, and
bitmap in which drawing takes place. Using the SetPort procedure (described on
page 2-42), you can instantly switch from one port to another.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-31

Several fields in the GrafPort record define your application’s drawing area: all
drawing in a graphics port occurs in the intersection of the graphics port’s boundary
rectangle and its port rectangle, and, within that intersection, all drawing is cropped to
the graphics port’s visible region and its clipping region.

TYPE GrafPtr = ^GrafPort;

GrafPort =

RECORD

device: Integer; {device-specific information}

portBits: BitMap; {bitmap}

portRect: Rect; {port rectangle }

visRgn: RgnHandle; {visible region }

clipRgn: RgnHandle; {clipping region }

bkPat: Pattern; {background pattern}

fillPat: Pattern; {fill pattern}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPat: Pattern; {pen pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text' s font s tyle}

txMode: Integer; {source m ode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {extra space}

fgColor: LongInt; {foreground color}

bkColor: LongInt; {background color}

colrBit: Integer; {color bit}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: QDProcsPtr ; {low-level drawing routines}

END;

WindowPtr = GrafPtr;

▲ WARNING

You can read the fields of a GrafPort record directly, but you should
not store values directly into them. Use the QuickDraw routines
described in this book to alter the fields of a graphics port. ▲

CHAPTER 2

Basic QuickDraw

2-32 Basic QuickDraw Reference

Field descriptions

device Device-specific information that’s used by the Font Manager to
achieve the best possible results when drawing text in the graphics
port. There may be physical differences in the same logical font for
different output devices, to ensure the highest-quality printing on
the device being used. For best results on the screen, the default
value of the device field is 0.

portBits The bitmap (described on page 2-29) that describes the boundary
rectangle for the graphics port and contains a pointer to the bit
image used by the graphics port.

portRect The port rectangle that defines a subset of the bitmap to be used for
drawing. All drawing done by the application occurs inside the port
rectangle. (In a window’s graphics port, the port rectangle is also
called the content region.) The port rectangle uses the local
coordinate system defined by the boundary rectangle in the
portBits field of the BitMap record. The upper-left corner (which
for a window is called the window origin) of the port rectangle
usually has a vertical coordinate of 0 and a horizontal coordinate of
0, although you can use the SetOrigin procedure (described on
page 2-45) to change the coordinates of the window origin. The port
rectangle usually falls within the boundary rectangle, but it’s not
required to do so.

visRgn The region of the graphics port that’s actually visible on the
screen—that is, the part of the window that’s not covered by other
windows. By default, the visible region is equivalent to the port
rectangle. The visible region has no effect on offscreen images.

clipRgn The graphics port’s clipping region, an arbitrary region that you can
use to limit drawing to any region within the port rectangle. The
default clipping region is set arbitrarily large; using the ClipRect
procedure (described on page 2-49), you have full control over its
setting. Unlike the visible region, the clipping region affects the
image even if it isn’t displayed on the screen.

bkPat The background bit pattern that’s used by procedures such as
ScrollRect (described on page 2-43) and EraseRect (described
in the chapter “QuickDraw Drawing”) for filling scrolled or erased
areas. Your application can use the BackPat procedure (described
in the chapter “QuickDraw Drawing”) to change the background
bit pattern. This pattern, like all other patterns drawn in the
graphics port, is always aligned with the port’s coordinate
system. The upper-left corner of the pattern is aligned with the
upper-left corner of the port rectangle, so that adjacent areas of the
same pattern blend into a continuous, coordinated pattern. Bit
patterns are described in the chapter “QuickDraw Drawing.”

fillPat The bit pattern that’s used when you use a procedure such as
FillRect to fill an area. Bit patterns are described in the chapter
“QuickDraw Drawing.”

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-33

pnLoc The point where QuickDraw will begin drawing the next line,
shape, or character. It can be anywhere on the coordinate plane;
there are no restrictions on the movement or placement of the pen.
The location of the graphics pen is a point in the graphics port’s
coordinate system, not a pixel in a bit image. The upper-left corner
of the pen is at the pen location; the graphics pen hangs below and
to the right of this point. You can use the Move, MoveTo, Line , and
LineTo procedures (described in the chapter “QuickDraw
Drawing”) to move the location of the graphics pen.

pnSize The vertical and horizontal dimensions of the graphics pen. By
default, the pen is 1 pixel high by 1 pixel wide; the height and width
can range from 0 by 0 to 32,767 by 32,767. If either the pen width or
the pen height is 0, the pen does not draw. Heights or widths of less
than 0 are undefined. You can use the PenSize procedure
(described in the chapter “QuickDraw Drawing”) to change the
value in this field.

pnMode The pattern mode—that is, a Boolean operation that determines the
how QuickDraw transfers the pen pattern to the bitmap during
drawing operations. When the graphics pen draws into a bitmap,
QuickDraw first determines what bits in the bit image are affected
and then finds their corresponding bits in the pen pattern.
QuickDraw then does a bit-by-bit comparison based on the pattern
mode, which specifies one of eight Boolean transfer operations to
perform. QuickDraw stores the resulting bit in its proper place in
the bit image. Pattern modes for a basic graphics port are described
in the chapter “QuickDraw Drawing.”

pnPat A bit pattern that’s used like the ink in the pen. As described in the
chapter “QuickDraw Drawing,” basic QuickDraw uses this pattern
when you use the Line and LineTo procedures to draw lines with
the pen, framing procedures such as FrameRect to draw shape
outlines with the pen, or painting procedures such as PaintRect
to paint shapes with the pen.

pnVis The graphics pen’s visibility—that is, whether it draws on the
screen. The graphics pen is described in detail in the chapter
“QuickDraw Drawing.”

txFont A font number that identifies the font to be used in the graphics
port. The font number 0 represents the system font. (A font is
defined as a collection of images that represent the individual
characters of the font. A font can consist of up to 255 distinct
characters, yet not all characters need to be defined in a single font.
In addition, each font contains a missing symbol to be drawn in
case of a request to draw a character that’s missing from the font.)
Fonts are described in detail in Inside Macintosh: Text.

txFace The font style of the text, with values from the set defined by the
Style data type, which includes such styles as bold, italic, and
shaded. You can apply stylistic variations either alone or in
combination. Font styles are described in detail in Inside Macintosh:
Text.

CHAPTER 2

Basic QuickDraw

2-34 Basic QuickDraw Reference

txMode One of three Boolean source modes that determines the way
characters are placed in the bit image. This mode functions much
like a pattern mode specified in the pnMode field: when drawing a
character, QuickDraw determines which bits in the bit image are
affected, does a bit-by-bit comparison based on the mode, and
stores the resulting bits into the bit image. Only three source
modes—srcOr , srcXor , and srcBic —should be used for
drawing text. See the chapter “QuickDraw Text” in Inside Macintosh:
Text for more information about QuickDraw’s text-handling
capabilities.

txSize The text size in pixels. The Font Manager uses this information to
provide the bitmaps for text drawing. (The Font Manager is
described in detail in the chapter “Font Manager” in Inside
Macintosh: Text.) The value in this field can be represented by
point size × device resolution / 72 dpi
where point is a typographical term meaning approximately
1/72 inch.

spExtra A fixed-point number equal to the average number of pixels by
which each space character should be widened to fill out the line.
The spExtra field is useful when a line of characters is to be
aligned with both the left and the right margins (sometimes called
full justification).

fgColo r The color of the “ink” that QuickDraw uses to draw with. By
default, this color is black. You can use the ForeColor procedure,
as described in the chapter “QuickDraw Drawing,” to specify any
color from the eight-color system to be the foreground color in a
basic graphics port. This color is recorded when drawing into a
QuickDraw picture (described in the chapter “Pictures” in this
book)—for example, drawing a line with a red foreground color
stores a red line in the picture—but this color cannot be stored in a
bitmap. When running in System 7, your application should use the
GetForeColor procedure (described in the chapter “Color
QuickDraw”) to determine the foreground color instead of checking
the value of this field.

bkColo r The color of the pixels in the bitmap into which QuickDraw draws.
By default, this color is white. You can use the BackColor
procedure, as described in the chapter “QuickDraw Drawing,” to
specify any color from the eight-color system to be the background
color in a basic graphics port. This color is recorded when drawing
into a QuickDraw picture, but this color cannot be stored in a
bitmap. When running in System 7, your application should use the
GetBackColor procedure (described in the chapter “Color
QuickDraw”) to determine the background color instead of
checking the value of this field.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-35

colrBi t The plane of the color picture to draw into when printing. As in the
preceding two fields, this color cannot be stored in a bitmap.

patStretch A value used during output to a printer to expand patterns if
necessary. Your application should not change this value.

picSav e The state of the picture definition. If no picture is open, this field
contains NIL ; otherwise it contains a handle to information related
to the picture definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the picture definition, and later restore it to the saved value
to resume defining the picture. Pictures are described in the chapter
“Pictures” in this book.

r gnSav e The state of the region definition. If no region is open, this field
contains NIL ; otherwise it contains a handle to information related
to the region definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the region definition, and later restore it to the saved value
to resume defining the region.

polySav e The state of the polygon definition. If no polygon is open, this field
contains NIL ; otherwise it contains a handle to information related
to the polygon definition. Your application shouldn’t be concerned
about exactly what information the handle leads to; you may,
however, save the current value of this field, set the field to NIL to
disable the polygon definition, and later restore it to the saved value
to resume defining the polygon.

grafProcs An optional pointer to a special data structure that your application
can store into if you want to customize QuickDraw drawing
routines or use QuickDraw in other advanced, highly specialized
ways. See the chapter “QuickDraw Drawing” for more information.

All QuickDraw operations refer to a graphics port by a pointer defined by the data type
GrafPtr . (For historical reasons, a graphics port is one of the few objects in the
Macintosh system software that’s referred to by a pointer rather than a handle.) All
Window Manager routines that accept a window pointer also accept a pointer to a
graphics port.

Your application should never need to directly change the fields of a GrafPort record.
If you find it absolutely necessary for your application to do so, immediately use the
PortChanged procedure to notify QuickDraw that your application has changed the
GrafPort record. The PortChanged procedure is described in the chapter “Color
QuickDraw” in this book.

CHAPTER 2

Basic QuickDraw

2-36 Basic QuickDraw Reference

Routines
This section describes the routines for initializing basic (as well as Color) QuickDraw,
opening and closing graphics ports, saving and restoring graphics ports, managing port
rectangles and clipping regions, and manipulating points in graphics ports.

Initializing QuickDraw

Use the InitGraf procedure to initialize QuickDraw at the beginning of your program,
before initializing any other Toolbox managers, such as the Menu Manager and Window
Manager.

InitGraf

Use the InitGraf procedure to initialize QuickDraw.

PROCEDURE InitGraf (globalPtr : P tr);

globalPtr A pointer to the global variable thePort , which from Pascal can be
passed as @thePort .

DESCRIPTION

Use the InitGraf procedure before initializing any other Toolbox managers, such
as the Menu Manager and Window Manager. The InitGraf procedure initializes
the global variables listed in Table 2-1 (as well as some private global variables
for QuickDraw’s own internal use). The InitGraf procedure also initializes Color
QuickDraw on computers with Color QuickDraw capabilities.

Table 2-1 QuickDraw global variables

Variable Type Initia l setting

thePort GrafPtr NIL

white Pattern All-white pattern

black Pattern All-black pattern

gray Pattern 50% gray pattern

ltGray Pattern 25% gray pattern

dkGray Pattern 75% gray pattern

arrow Cursor Standard arrow cursor

screenBits BitMap Entire main screen

randSeed LongInt 1

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-37

ASSEMBLY-LANGUAGE INFORMATION

The QuickDraw global variables are stored in reverse order, from high to low memory as
listed in Table 2-1, and require the number of bytes specified by the global constant
grafSize . Most development systems preallocate space for these global variables
immediately below the location pointed to by register A5. Since thePort is 4 bytes, you
would pass the globalPtr parameter as follows:

PEA -4(A5)

_InitGraf

The InitGraf procedure stores this pointer to thePort in the location pointed to
by A5.

This value is used as a base address when accessing the other QuickDraw global
variables, which are accessed using negative offsets (the offsets have the same names as
the Pascal global variables). For example:

MOVE.L (A5),A 0 ; point to first QuickDraw global

MOVE.L randSeed(A0),A1 ;get global variable randSee d

SPECIAL CONSIDERATIONS

The InitGraf procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Listing 2-1 on page 2-16 illustrates the use of InitGraf .

To initialize the cursor, call the InitCursor procedure, which is described in the
chapter “Cursor Utilities.”

Opening and Closing Basic Graphics Ports

All graphics operations are performed in graphics ports. Before a basic graphics port can
be used, it must be allocated and initialized with the OpenPort procedure. Normally,
your application does not call this procedure directly. Instead, your application creates a
basic graphics port by using the GetNewWindow or NewWindow function (described in
the chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials) or the
NewGWorld function (described in the chapter “Offscreen Graphics Worlds” in this
book). These functions call OpenPort , which in turn calls the InitPort procedure.

To dispose of a graphics port when you are finished using a window, you normally
use the DisposeWindow procedure (if you let the Window Manager allocate memory
for the window) or the CloseWindow procedure (if you allocated memory for the
window). You use the DisposeGWorld procedure to dispose of a graphics port when
you are finished with an offscreen graphics world. These routines automatically call the
ClosePort procedure. If you use the CloseWindow procedure, you also dispose of the

CHAPTER 2

Basic QuickDraw

2-38 Basic QuickDraw Reference

window record containing the graphics port by calling the Memory Manager procedure
DisposePtr .

OpenPort

The OpenPort procedure allocates space for and initializes a basic graphics port. The
Window Manager calls OpenPort for each black-and-white window it creates, and the
NewGWorld procedure calls OpenPort for every offscreen graphics world containing a
basic graphics port that it creates.

PROCEDURE OpenPort (port : G rafPtr);

port A pointer to a GrafPort record.

DESCRIPTION

The OpenPort procedure allocates space for visible and clipping regions for the
graphics port specified in the port parameter, initializes the fields of the port’s
GrafPort record as indicated in Table 2-2, and makes that graphics port the current
port (by calling SetPort). The Window Manager calls OpenPor t when you create a
black-and-white window; you normally won’t call it yourself. You can create the
graphics port pointer with the Memory Manager’s NewPtr procedure.

Table 2-2 Initial values of a basic graphics port

Variable Type Initial setting

device Integer 0 (the screen)

portBits BitMap screenBits (global variable for main screen)

portRect Rect screenBits.bounds

visRgn RgnHandle Handle to a rectangular region coincident with
screenBits.bounds

clipRgn RgnHandle Handle to the rectangular region
(–32768,–32768,32767,32767)

bkPat Pattern White

fillPat Pattern Black

pnLoc Point (0,0)

pnSize Point (1,1)

pnMode Integer patCopy pattern mode

pnPat Pattern Black

pnVis Integer 0 (visible)

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-39

SPECIAL CONSIDERATIONS

The OpenPort procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

The GrafPort record is described beginning on page 2-30. Listing 2-2 on page 2-17
illustrates how to use the Window Manager function GetNewWindow to create a basic
graphics port. The OpenCPort procedure (described in the chapter “Color QuickDraw”)
creates a color graphics port.

InitPort

You should never need to use the InitPort procedure. The OpenPort procedure calls
the InitPort procedure, which reinitializes the fields of a basic graphics port and
makes it the current port.

PROCEDURE InitPort (port: GrafPtr) ;

port A pointer to a GrafPort record.

txFont Integer 0 (system font)

txFace Style Plain

txMode Integer srcOr source mode

txSize Integer 0 (system font size)

spExtra Fixed 0

fgColor LongInt blackColor

bkColor LongInt whiteColor

colrBit Integer 0

patStretch Integer 0

picSave Handle NIL

rgnSave Handle NIL

polySave Handle NIL

grafProcs QDProcsPtr NIL

Table 2-2 Initial values of a basic graphics port (continued)

Variable Type Initial setting

CHAPTER 2

Basic QuickDraw

2-40 Basic QuickDraw Reference

DESCRIPTION

The InitPort procedure reinitializes the fields of a GrafPort record that was opened
with the OpenPort procedure, and makes it the current graphics port. The InitPort
procedure sets the values of the port’s fields to those listed in the OpenPort procedure
description. The InitPort procedure does not allocate space for the visible or clipping
regions.

SEE ALSO

The InitC Port procedure (described in the chapter “Color QuickDraw”) initializes a
color graphics port.

ClosePort

The ClosePort procedure closes a basic graphics port. The Window Manager calls this
procedure when you close or dispose of a window, and the DisposeGWorld procedure
calls it when you dispose of an offscreen graphics world containing a basic graphics port.

PROCEDURE ClosePort (port : G rafPtr) ;

port A pointer to a GrafPort record.

DESCRIPTION

The ClosePort procedure releases the memory occupied by the given graphics port’s
visRgn and clipRgn fields. When you’re completely through with a basic graphics
port, you can use this procedure and then dispose of the graphics port with the Memory
Manager procedure DisposePtr (if it was allocated with NewPtr). When you call
the DisposeWindow procedure to close or dispose of a window, it calls ClosePort and
DisposePtr for you. When you use the CloseWindow procedure, it calls ClosePort ,
but you must call DisposePtr .

SPECIAL CONSIDERATIONS

If ClosePort isn’t called before a basic graphics port is disposed of, the memory used
by the visible region and the clipping region will be unrecoverable.

The ClosePort procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-41

SEE ALSO

The CloseCPort procedure (described in the chapter “Color QuickDraw”) closes a
color graphics port. The DisposeGWorld procedure is described in the chapter
“Offscreen Graphics Worlds” in this book. The DisposeWindow and CloseWindow
procedures are described in the chapter “Window Manager” in Inside Macintosh:
Macintosh Toolbox Essentials. The DisposePtr procedure is described in the chapter
“Memory Manager” in Inside Macintosh: Memory.

Saving and Restoring Graphics Ports

If your application draws into more than one graphics port (basic or color), you can use
the SetPort procedure to set the graphics port into which you want to draw. At times
you may need to preserve the current graphics port. You can do this by using the
GetPort procedure to save the current graphics port (basic or color), using SetPort to
set the graphics port you want to draw in, and then using SetPort again when you
need to restore the previous graphics port.

Note

When your application runs in Color QuickDraw or uses offscreen
graphics worlds, it should use the GetGWorld procedure instead
of GetPort , and it should use the SetGWorld procedure instead of
SetPort . These procedures save and restore the current graphics port
for basic and color graphics ports as well as offscreen graphics worlds.
See the chapter “Offscreen Graphics Worlds” for more information. ◆

GetPort

To save the current graphics port (basic or color), you can use the GetPort procedure.

PROCEDURE GetPort (VAR port: GrafPtr);

port A pointer to a GrafPor t record. If the current graphics port is a color
graphics port, GetPort coerces its CGrafPort record into a GrafPort
record.

DESCRIPTION

The GetPort procedure returns a pointer to the current graphics port in the port
parameter. The current graphics port is also available through the global variable
thePort , but you may prefer to use GetPort for better readability of your code. For
example, your program could include GetPort(savePort) before setting a new
graphics port, followed by SetPort(savePort) to restore the previous port.

CHAPTER 2

Basic QuickDraw

2-42 Basic QuickDraw Reference

SEE ALSO

Listing 2-3 on page 2-18 illustrates how to use GetPort to save the graphics port for the
active window and SetPort to make an inactive window the current graphics port;
then how to use SetPort again to restore the active window as the current graphics
port. The basic graphics port is described on page 2-30. The SetPort procedure is
described next.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it
should use the GetGWorld procedure instead of GetPort . The GetGWorld procedure
saves the current graphics port for basic and color graphics ports as well as offscreen
graphics worlds. See the chapter “Offscreen Graphics Worlds” for more information.

SetPort

To change the current graphics port (basic or color), you can use the SetPort procedure.

PROCEDURE SetP ort (port: GrafPtr);

port A pointer to a GrafPor t record. Typically, you pass a pointer to a
GrafPort record that you previously saved with the GetPort
procedure (described in the previous section).

DESCRIPTION

The SetPort procedure sets the current graphics port (pointed to by the global variable
thePort) to be that specified by the port parameter. All QuickDraw drawing routines
affect the bitmap of, and use the local coordinate system of, the current graphics port.
Each graphics port has its own graphics pen and text characteristics, which remain
unchanged when the graphics port isn’t selected as the current graphics port.

SEE ALSO

Listing 2-3 on page 2-18 illustrates how to use GetPort to save the graphics port for the
active window and SetPort to make an inactive window the current graphics port;
then how to use SetPort again to restore the active window as the current graphics
port. The basic graphics port is described on page 2-30. The GetPort procedure is
described on page 2-41.

When your application runs in Color QuickDraw or uses offscreen graphics worlds, it
should use the SetGWorld procedure instead of SetPort . The SetGWorld procedure
restores the current graphics port for basic and color graphics ports as well as offscreen
graphics worlds. See the chapter “Offscreen Graphics Worlds” for more information.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-43

Managing Bitmaps, Port Rectangles, and Clipping Regions

You can use the ScrollRect , SetOrigin , GetClip , SetClip , and ClipRect
procedures to assist you when scrolling and drawing into a window. The
ScrollRect procedure scrolls the pixels of a specified portion of a basic graphics port’s
bitmap (or a color graphics port’s pixel map). The SetOrigin procedure lets you shift
the coordinate plane of the current graphics port (basic or color). The ClipRect ,
GetClip , and SetClip procedures let you create, save, and set clipping regions in a
graphics port (basic or color).

You can convert bitmaps (or, for color graphics ports, pixel maps) to regions using the
BitMapToRegion function.

The PortSize and MovePortTo procedures are normally called only by Window
Manager routines that manipulate the port rectangle of a window. These routines are
described here for completeness.

You can use the SetPortBits procedure to set the bitmap for the current graphics port.
This procedure was created for initial versions of QuickDraw to allow you to perform
drawing and calculations on a buffer other than the screen. However, instead of using
SetPortBits , you should use the offscreen graphics capabilities described in the
chapter “Offscreen Graphics Worlds” in this book.

ScrollRect

To scroll the pixels of a specified portion of a basic graphics port’s bitmap (or a color
graphics port’s pixel map), use the ScrollRect procedure.

PROCEDURE ScrollRect (r: Rect; dh ,d v: Integer;

 updateRgn: RgnHandle);

r The rectangle defining the area to be scrolled.

dh The horizontal distance to be scrolled.

dv The vertical distance to be scrolled.

updateRgn A handle to the region of the window that needs to be updated.

DESCRIPTION

The ScrollRect procedure shifts pixels that are inside the specified rectangle of the
current graphics port. No other pixels or the bits they represent are affected. The pixels
are shifted a distance of dh horizontally and dv vertically. The positive directions are to
the right and down. The pixels that are shifted out of the specified rectangle are not
displayed, and the bits they represent are not saved. It is up to your application to save
this data.

CHAPTER 2

Basic QuickDraw

2-44 Basic QuickDraw Reference

The empty area created by the scrolling is filled with the graphics port’s background
pattern, and the update region is changed to this filled area, as shown in Figure 2-8.

Figure 2-8 Scrolling the image in a rectangle by using the ScrollRect procedure

The ScrollRect procedure doesn’t change the local coordinate system of the graphics
port; it simply moves the rectangle specified in the r parameter to different coordinates.
Notice that ScrollRect doesn’t move the graphics pen or the clipping region.
However, because the document has moved, they’re in different positions relative to the
document.

By creating an update region for the window, ScrollRect forces an update event. After
using ScrollRect , your application should use its own window-updating code to
draw into the update region of the window.

SPECIAL CONSIDERATIONS

The ScrollRect procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

SEE ALSO

“Scrolling the Pixels in the Port Rectangle” beginning on page 2-20 provides a general
discussion of the use of ScrollRect , and Listing 2-5 on page 2-22 illustrates how to use
ScrollRect to scroll through a document in a window.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-45

SetOrigin

To change the coordinates of the window origin of the port rectangle of the current
graphics port (basic or color), use the SetOrigin procedure.

PROCEDURE SetOrigin (h,v : I nteger);

h The horizontal coordinate of the upper-left corner of the port rectangle.

v The vertical coordinate of the upper-left corner of the port rectangle.

DESCRIPTION

The SetOrigin procedure changes the coordinates of the upper-left corner of the
current graphics port’s port rectangle to the values supplied by the h and v parameters.
All other points in the current graphics port’s local coordinate system are calculated
from this point. All subsequent drawing and calculation routines use the new coordinate
system.

The SetOrigin procedure does not affect the screen; it does, however, affect where
subsequent drawing inside the graphics port appears. The SetOrigin procedure does
not offset the coordinates of the clipping region or the graphics pen, which therefore
change position on the screen (unlike the boundary rectangle, port rectangle, and visible
region, which don’t change position onscreen).

Because SetOrigin does not move the window’s clipping region, use the
GetClip procedure to store your clipping region immediately after your first call
to SetOrigin —if you use clipping regions in your windows. Before calling your own
window-drawing routine, use the ClipRect procedure to define a new clipping
region—to avoid drawing over your scroll bars, for example. After calling your own
window-drawing routine, use the SetClip procedure to restore the original clipping
region. You can then call SetOrigin again to restore the window origin to a horizontal
coordinate of 0 and a vertical coordinate of 0 with your original clipping region intact.

All other routines in the Macintosh Toolbox and Operating System preserve the local
coordinate system of the current graphics port. The SetOrigin procedure is useful for
readjusting the coordinate system after a scrolling operation.

Note
The Window Manager and Control Manager always assume the
window’s upper-left point has a horizontal coordinate of 0 and a vertical
coordinate of 0 when they draw in a window. Therefore, if you use
SetOrigin to change the window origin, be sure to use SetOrigin
again to return the window origin to a horizontal coordinate of 0 and a
vertical coordinate of 0 before using any Window Manager or Control
Manager routines. ◆

CHAPTER 2

Basic QuickDraw

2-46 Basic QuickDraw Reference

SEE ALSO

“Scrolling the Pixels in the Port Rectangle” beginning on page 2-20 provides a general
discussion of the use of SetOrigin , and Listing 2-5 on page 2-22 illustrates how to use
SetOrigin when scrolling through a document in a window.

PortSize

The PortSize procedure is normally called only by the Window Manager; it
changes the size of the port rectangle of the current graphics port (basic or color).

PROCEDURE PortSize (width,height: Integer);

width The width of the reset port rectangle.

height The height of the reset port rectangle.

DESCRIPTION

The PortSize procedure changes the size of the current graphics port’s port
rectangle. The upper-left corner of the port rectangle remains at its same location; the
width and height of the port rectangle are set to the given width and height . In other
words, PortSize moves the lower-right corner of the port rectangle to a position
relative to the upper-left corner.

The PortSize procedure doesn’t change the clipping or visible region of the graphics
port, nor does it affect the local coordinate system of the graphics port; it changes only
the width and height of the port rectangle. Remember that all drawing occurs only in the
intersection of the boundary rectangle and the port rectangle, after being cropped to the
visible region and the clipping region.

MovePortTo

The MovePortTo procedure is normally called only by the Window Manager; it
changes the position of the port rectangle of the current graphics port (basic or color).

PROCEDURE MovePortTo (leftGlobal,topGlobal: Integer);

leftGloba l
The horizontal distance to move the port rectangle.

topGlobal The vertical distance to move the port rectangle.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-47

DESCRIPTION

The MovePortTo procedure changes the position of the current graphics port’s port
rectangle: the leftGlobal and topGlobal parameters set the distance between the
upper-left corner of the boundary rectangle and the upper-left corner of the new port
rectangle.

This does not affect the screen; it merely changes the location at which subsequent
drawing inside the graphics port appears. Like the PortSize procedure, MovePortTo
doesn’t change the clipping or visible region, nor does it affect the local coordinate
system of the graphics port.

GetClip

To save the clipping region of the current graphics port (basic or color), use the GetClip
procedure.

PROCEDURE GetClip (rgn: RgnHandle);

rgn A handle to the region to be clipped to match the clipping region of the
current graphics port.

DESCRIPTION

The GetClip procedure changes the region specified in the rgn parameter to one that’s
equivalent to the clipping region of the current graphics port. The GetClip procedure
doesn’t change the region handle.

You can use the GetClip and SetClip procedures to preserve the current clipping
region: use GetClip to save the current port’s clipping region, and use SetClip to
restore it. If, for example, you want to draw a half-circle on the screen, you can set the
clipping region to half of the square that would enclose the whole circle, and then draw
the whole circle. Only the half within the clipping region is actually drawn in the
graphics port.

SPECIAL CONSIDERATIONS

The GetClip procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

CHAPTER 2

Basic QuickDraw

2-48 Basic QuickDraw Reference

SetClip

To change the clipping region of the current graphics port (basic or color) to a region you
specify, use the SetClip procedure.

PROCEDURE SetClip (rgn: RgnHandle);

rgn A handle to the region to be set as the current port’s clipping region.

DESCRIPTION

The SetClip procedure changes the clipping region of the current graphics port to
the region specified in the rgn parameter. The SetClip procedure doesn’t change the
region handle, but instead affects the clipping region itself. Since SetClip copies the
specified region into the current graphics port’s clipping region, any subsequent changes
you make to the region specified in the r gn parameter do not affect the clipping region
of the graphics port.

The initial clipping region of a graphics port is an arbitrarily large rectangle. You can
set the clipping region to any arbitrary region, to aid you in drawing inside the graphics
port—for example, to avoid drawing over scroll bars when drawing into a window, you
could define a clipping region that excludes the scroll bars.

You can use the GetClip and SetClip procedures to preserve the current clipping
region: use GetClip to save the current port’s clipping region, and use SetClip to
restore it.

All other system software routines preserve the current clipping region.

SPECIAL CONSIDERATIONS

The SetClip procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Figure 2-4 on page 2-12 illustrates a clipping region that has been set to exclude the scroll
bars of a window.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-49

ClipRect

To change the clipping region of the current graphics port (basic or color), use the
ClipRect procedure.

PROCEDURE ClipRect (r: rect);

r A rectangle to define the boundary of the new clipping region for the
current graphics port.

DESCRIPTION

The ClipRect procedure changes the clipping region of the current graphics port to a
region that’s equivalent to the rectangle specified in the r parameter. ClipRect doesn’t
change the region handle, but it affects the clipping region itself. Since ClipRect makes
a copy of the given rectangle, any subsequent changes you make to that rectangle do not
affect the clipping region of the port.

SPECIAL CONSIDERATIONS

The ClipRect procedure may move or purge memory blocks in the application heap.
Your application should not call this procedure at interrupt time.

SEE ALSO

Figure 2-4 on page 2-12 illustrates a clipping region that has been set to exclude the scroll
bars of a window.

BitMapToRegion

You can use the BitMapToRegion function to convert a bitmap or pixel map to a region.

FUNCTION BitMapToRegion (region: RgnHandle; bMap: BitMap): OSErr;

region A handle to a region to hold the converted BitMap or PixMap record.

bMap A BitMap or PixMap record.

CHAPTER 2

Basic QuickDraw

2-50 Basic QuickDraw Reference

DESCRIPTION

The BitMapToRegion function converts a given BitMap or PixMap record to a region.
You would generally use this region later for drawing operations. The region
parameter must be a valid region handle created with the NewRgn function (described in
the chapter “QuickDraw Drawing”). The old region contents are lost.

The bMap parameter may be either a BitMap or PixMap record. If you pass a PixMap
record, its pixel depth must be 1.

RESULT CODES

SetPortBits

Although you should never need to do so, you can set the bitmap for the current basic
graphics port by using the SetPortBits procedure.

PROCEDURE SetPortBits (bm: BitMap);

bm A BitMap record.

DESCRIPTION

The SetPortBits procedure sets the portBits field of the current graphics port to
any previously defined bitmap. Be sure to prepare all fields of the BitMap record before
you call SetPortBits .

SPECIAL CONSIDERATIONS

The SetPortBits procedure, created in early versions of QuickDraw, allows you to
perform all normal drawing and calculations on a buffer other than the screen—for
example, copying a small offscreen image onto the screen with the CopyBits procedure.
However, instead of using SetPortBits , you should use the more powerful offscreen
graphics capabilities described in the chapter “Offscreen Graphics Worlds.”

pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-51

Manipulating Points in Graphics Ports

Each graphics port (basic or color) has its own local coordinate system. Some Toolbox
routines return or expect points that are expressed in the global coordinate system, while
others use local coordinates. For example, when the Event Manager function
WaitNextEvent reports an event, it gives the cursor location (also called the mouse
location) in global coordinates; but when you call the Control Manager function
FindControl to find out whether the user clicked a control in one of your windows,
you pass the cursor location in local coordinates. You can use the GlobalToLocal
procedure to convert global coordinates to local coordinates, and you can use the
LocalToGlobal procedure for the reverse.

You can also use the SetPt procedure to create a point, the EqualPt function to
compare two points, and the AddPt procedure, SubPt procedure, and DeltaPoint
function to shift points. To determine whether the pixel associated with a point is black
or white, use the GetPixel function.

GlobalToLocal

To convert the coordinates of a point from global coordinates to the local coordinates of
the current graphics port (basic or color), use the GlobalToLocal procedure.

PROCEDURE GlobalToLocal (VAR pt : P oint);

pt The point whose global coordinates are to be converted to local
coordinates.

DESCRIPTION

The GlobalToLocal procedure takes a point expressed in global coordinates
(where the upper-left corner of the main screen has coordinates [0,0]) and converts it
into the local coordinates of the current graphics port.

SEE ALSO

Listing 2-4 on page 2-19 illustrates how to use GlobalToLocal to convert a point in an
event reported by the Event Manager function WaitNextEvent to local coordinates as
required by the Control Manager function FindControl .

CHAPTER 2

Basic QuickDraw

2-52 Basic QuickDraw Reference

LocalToGlobal

To convert a point’s coordinates from the local coordinates of the current graphics port
(basic or color) to global coordinates, use the LocalToGlobal procedure.

PROCEDURE LocalToGlobal (VAR pt: Point);

pt The point whose local coordinates are to be converted to global
coordinates.

DESCRIPTION

The LocalToGlobal procedure converts the given point from the current graphics
port’s local coordinate system into the global coordinate system (where the upper-left
corner of the main screen has coordinates [0,0]). This global point can then be compared
to other global points, or it can be changed into the local coordinates of another graphics
port.

Because a rectangle is defined by two points, you can convert a rectangle into global
coordinates with two calls to LocalToGloba l . In conjunction with LocalToGlobal ,
you can use the OffsetRect , OffsetRgn , or OffsetPoly procedures (which are
described in the chapter “QuickDraw Drawing”) to convert a rectangle, region, or
polygon into global coordinates.

AddPt

To add the coordinates of two points, use the AddPt procedure.

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);

srcP t A point, the coordinates of which are to be added to the point in the
dstPt parameter.

dstP t On input: a point, the coordinates of which are to be added to the point in
the srcPt parameter. Upon completion: the result of adding the
coordinates of the points in the srcPt and dstPt parameters.

DESCRIPTION

The AddPt procedure adds the coordinates of the point specified in the srcPt
parameter to the coordinates of the point specified in the dstPt parameter, and returns
the result in the dstPt parameter.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-53

SubPt

To subtract the coordinates of one point from another, you can use the SubPt procedure.

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);

srcP t A point, the coordinates of which are to be subtracted from those
specified in the dstPt parameter.

dstP t On input: a point, from whose coordinates are to be subtracted those
specified in the srcPt parameter. Upon completion: the result of
subtracting the coordinates of the points in the srcPt parameter from the
coordinates of the points in the dstPt parameter.

DESCRIPTION

The SubPt procedure subtracts the coordinates of the point specified in the srcPt
parameter from the coordinates of the point specified in the dstPt parameter, and
returns the result in the dstPt parameter.

To get the results of coordinate subtraction returned as a function result, you can instead
use the DeltaPoint function. Note, however, that the parameters in these two routines
are reversed.

DeltaPoint

To subtract the coordinates of one point from another, you can use the DeltaPoint
function.

FUNCTION DeltaPoint (ptA: Point; ptB : Point) : LongInt;

ptA A point, from whose coordinates are to be subtracted those specified in
the ptB parameter.

ptB A point, the coordinates of which are to be subtracted from those
specified in the ptA parameter.

DESCRIPTION

The DeltaPoint function subtracts the coordinates of the point specified in the ptB
parameter from the coordinates of the point specified in the ptA parameter, and returns
the result as its function result.

To get the results of coordinate subtraction, you can instead use the SubPt procedure.
Note, however, that the parameters in these two routines are reversed.

CHAPTER 2

Basic QuickDraw

2-54 Basic QuickDraw Reference

SetPt

To assign two coordinates to a point, use the SetPt procedure.

PROCEDURE SetPt (VAR pt: Point; h,v: Integer);

pt The point to be given new coordinates.

h The horizontal value of the new coordinates.

v The vertical value of the new coordinates.

DESCRIPTION

The SetPt procedure assigns the horizontal coordinate specified in the h parameter
and the vertical coordinate specified in the v parameter to the point returned in the pt
parameter.

EqualPt

To determine whether the coordinates of two given points are equal, use the EqualP t
function.

FUNCTION EqualPt (pt1,pt2 : P oin t): B oolean;

pt1,pt2 The two points to be compared.

DESCRIPTION

The EqualP t function compares the points specified in the pt1 and pt2 parameters
and returns TRUE if their coordinates are equal or FALSE if they are not.

GetPixel

To determine whether the pixel associated with a point is black or white, use the
GetPixel function.

FUNCTION GetPixel (h,v: Integer): Boolean;

h The horizontal coordinate of the point for the pixel to be tested.

v The vertical coordinate of the point for the pixel to be tested.

CHAPTER 2

Basic QuickDraw

Basic QuickDraw Reference 2-55

DESCRIPTION

The GetPixel function examines the pixel at the point specified by the h and v
parameters and returns TRUE if the pixel is black or FALSE if it is white .

The selected pixel is immediately below and to the right of the point whose coordinates
you supply in the h and v parameters, in the local coordinates of the current graphics
port. There’s no guarantee that the specified pixel actually belongs to the current
graphics port, however; it may have been drawn in a graphics port overlapping the
current one. To see if the point indeed belongs to the current graphics port, you could
use the PtInRgn function (described in the chapter “QuickDraw Drawing” in this book)
to test whether the point is in the current graphics port’s visible region, as shown here.

PtInRgn(pt, thePort^.visRgn);

CHAPTER 2

Basic QuickDraw

2-56 Summary of Basic QuickDraw

Summary of Basic QuickDraw

Pascal Summary

Data Types

TYPE Point =

RECORD CASE Integer OF

0: (v: Integer; {vertical coordinate}

 h: Integer); {horizontal coordinate}

1: (vh: ARRAY[VHSelect] OF Integer) ;

END;

Rect =

RECORD CASE Integer OF {cases: 4 boundaries or 2 corners}

0: (top: Integer; {upper boundary of rectangle}

 left: Integer; {left boundary of rectangle}

 bottom: Integer; {lower boundary of rectangle}

 right: Integer); {right boundary of rectangle}

1: (topLeft: Point; {upper-left corner of rectangle}

 botRight: Point); {lower-right corner of rectangle}

END;

RgnHandl e = ^RgnPtr;

RgnPtr = ^Region;

Region =

RECORD

rgnSize: Integer; {size in bytes}

rgnBBox: Rect; {enclosing rectangle}

{more data if not rectangular}

END;

BitMap =

RECORD

baseAddr: Ptr; {pointer to bit image}

rowBytes: Integer; {row width}

bounds: Rect ; {boundary rectangle}

END;

CHAPTER 2

Basic QuickDraw

Summary of Basic QuickDraw 2-57

GrafPtr = ^GrafPort;

WindowPtr = GrafPtr;

GrafPort = {basic graphics port}

RECORD

device: Integer; {device-specific information}

portBits: BitMap; {bitmap}

portRect: Rect; {port rectangle}

visRgn: RgnHandle; {visible region}

clipRgn: RgnHandle; {clipping region}

bkPat: Pattern; {background pattern}

fillPat: Pattern; {fill pattern}

pnLoc: Point; {pen location}

pnSize: Point; {pen size}

pnMode: Integer; {pattern mode}

pnPat: Pattern; {pen pattern}

pnVis: Integer; {pen visibility}

txFont: Integer; {font number for text}

txFace: Style; {text' s font s tyle}

txMode: Integer; {source mode for text}

txSize: Integer; {font size for text}

spExtra: Fixed; {extra space}

fgColor: LongInt; {foreground color}

bkColor: LongInt; {background color}

colrBit: Integer; {color bit}

patStretch: Integer; {used internally}

picSave: Handle; {picture being saved, used internally}

rgnSave: Handle; {region being saved, used internally}

polySave: Handle; {polygon being saved, used internally}

grafProcs: QDProcsPtr ; {low-level drawing routines}

END;

Routines

Initializing QuickDraw

PROCEDURE InitGraf (globalPtr : P tr);

Opening and Closing Basic Graphics Ports

PROCEDURE OpenPort (port: GrafPtr);

PROCEDURE InitPort (port: GrafPtr);

PROCEDURE ClosePort (port: GrafPtr);

CHAPTER 2

Basic QuickDraw

2-58 Summary of Basic QuickDraw

Saving and Restoring Graphics Ports

PROCEDURE GetPort (VAR port: GrafPtr);

PROCEDURE SetPort (port: GrafPtr);

Managing Bitmaps, Port Rectangles, and Clipping Regions

PROCEDURE ScrollRect (r: Rect; dh,dv: Integer; updateRgn: RgnHandle);

PROCEDURE SetOrigin (h,v : I nteger);

PROCEDURE PortSize (width,height: Integer);

PROCEDURE MovePortTo (leftGlobal,topGlobal: Integer);

PROCEDURE GetClip (rgn: RgnHandle);

PROCEDURE SetClip (rgn: RgnHandle);

PROCEDURE ClipRect (r: Rect);

FUNCTION BitMapToRegion (region: RgnHandle; bMap: BitMap): OSErr;

PROCEDURE SetPortBits (bm: BitMap);

Manipulating Points in Graphics Ports

PROCEDURE GlobalToLocal (VAR pt: Point);

PROCEDURE LocalToGlobal (VAR pt: Point);

PROCEDURE AddPt (srcPt: Point; VAR dstPt: Point);

PROCEDURE SubPt (srcPt: Point; VAR dstPt: Point);

FUNCTION DeltaPoint (ptA: Point; ptB: Point): LongInt;

PROCEDURE SetPt (VAR pt: Point; h,v: Integer) ;

FUNCTION EqualPt (pt1,pt2 : P oint): B oolean ;

FUNCTION GetPixel (h,v: Integer): Boolean;

C Summary

Data Types

struct Point {

short v; /* vertical coordinate */

short h; /* horizontal coordinate */

};

CHAPTER 2

Basic QuickDraw

Summary of Basic QuickDraw 2-59

struct Rect {

short top; /* upper boundary of rectangle */

short left; /* left boundary of rectangle */

short bottom; /* lower boundary of rectangle */

short right; /* right boundary of rectangle */

};

struct Region {

shor t r gnSize; /* size in bytes */

Rect r gnBBox; /* enclosing rectangle */

/* more data if not rectangular */

};

typedef struct Region Region;

typedef Region *RgnPtr, **RgnHandle;

struct BitMap {

Pt r baseAddr; /* pointer to bit image */

shor t r owBytes; /* row width */

Rect bounds; /* boundary rectangle */

};

struct GrafPort { /* basic graphics port */

shor t device ; /* d evice-specific informatio n */

BitMa p portBits ; /* b itma p */

Rect portRect ; /* p ort rectangl e */

RgnHandl e visRgn ; /* v isible regio n */

RgnHandl e clipRgn ; /* c lipping regio n */

Patter n bkPat ; /* b ackground patter n */

Patter n f illPat ; /* f ill patter n */

Poin t pnLoc ; /* p en locatio n */

Poin t pnSize ; /* p en siz e */

shor t pnMode; /* pattern mode */

Patter n pnPat ; /* p en patter n */

shor t pnVis ; /* p en visibilit y */

shor t t xFont ; /* f ont number for tex t */

Styl e t xFace ; /* t ext' s font s tyl e */

cha r f iller;

shor t t xMode; /* source mod e for text */

shor t t xSize ; /* f ont size for tex t */

Fixe d spExtra ; /* e xtra spac e */

lon g f gColor ; /* f oreground colo r */

lon g bkColor ; /* b ackground colo r */

shor t colrBit ; /* c olor bi t */

CHAPTER 2

Basic QuickDraw

2-60 Summary of Basic QuickDraw

shor t patStretch ; /* u sed internall y */

Handl e picSave ; /* p icture being saved, used internall y */

Handl e r gnSave ; /* r egion being saved, used internall y */

Handl e polySave ; /* p olygon being saved, used internall y */

QDProcsPt r grafProcs ; /* l ow-level drawing routine s */

};

typedef struct GrafPort GrafPort;

typedef GrafPort *GrafPtr;

typedef GrafPtr WindowPtr;

Functions

Initializing QuickDraw

pascal void InitGraf (void *globalPtr) ;

Opening and Closing Basic Graphics Ports

pascal void OpenPort (GrafPtr port);

pascal void InitPort (GrafPtr port);

pascal void ClosePort (GrafPtr port);

Saving and Restoring Graphics Ports

pascal void GetPort (GrafPtr *port);

pascal void SetPort (GrafPtr port);

Managing Bitmaps, Port Rectangles, and Clipping Regions

pascal void ScrollRect (const Rect *r, short dh, short dv,
RgnHandle updateRgn);

pascal void SetOrigin (short h, short v);

pascal void PortSize (short width, short height);

pascal void MovePortTo (short leftGlobal, short topGlobal);

pascal void GetClip (RgnHandle rgn);

pascal void SetClip (RgnHandle rgn);

pascal void ClipRect (const Rect *r);

pascal OSErr BitMapToRegion (RgnHandle region, const BitMap *bMap);

pascal void SetPortBits (const BitMap *bm) ;

CHAPTER 2

Basic QuickDraw

Summary of Basic QuickDraw 2-61

Manipulating Points in Graphics Ports

pascal void GlobalToLocal (Point *pt);

pascal void LocalToGlobal (Point *pt);

pascal void AddPt (Point src, Point *dst);

pascal void SubPt (Point src, Point *dst);

pascal long DeltaPoint (Point ptA, Point ptB);

pascal void SetPt (Point *pt, short h, short v);

pascal Boolean EqualPt (Point pt1, Point pt2) ;

pascal Boolean GetPixel (short h, short v);

Assembly-Language Summary

Data Structures

Point Data Structure

Rectangle Data Structure

Region Data Structure

Bitmap Data Structure

0 v word vertical coordinate
2 h word horizontal coordinate

0 topLeft long upper-left corner of rectangle
4 botRight long lower-right corner of rectangle
0 top word upper boundary of rectangle
2 left word left boundary of rectangle
4 bottom word lower boundary of rectangle
6 right word right boundary of rectangle

0 rgnSize word size in bytes
2 rgnBBox 8 bytes enclosing rectangle

10 rgnData array region data

0 baseAddr long pointer to bit image
4 rowBytes word row width
6 bounds 8 bytes boundary rectangle

CHAPTER 2

Basic QuickDraw

2-62 Summary of Basic QuickDraw

GrafPort Data Structure

Global Variables

Result Codes

0 device word device-specific information
2 portBits 14 bytes bitmap

16 portBounds 8 bytes boundary rectangle
24 portRect 8 bytes port rectangle
32 visRgn long visible region
36 clipRgn long clipping region
40 bkPat 8 bytes background pattern
48 fillPat 8 bytes fill pattern
56 pnLoc long pen location
60 pnSize long pen size
64 pnMode word pattern mode
66 pnPat 8 bytes pen pattern
74 pnVis word pen visibility
76 txFont word font number for text
78 txFace word text’s font style
80 txMode word source mode for text
82 txSize word font size for text
84 spExtra long extra space
88 fgColor long foreground color
92 bkColor long background color
96 colrBit word color bit
98 patStretch word used internally

100 picSave long picture being saved, used internally
104 rgnSave long region being saved, used internally
108 polySave long polygon being saved, used internally
112 grafProcs long low-level drawing routines

arrow The standard arrow cursor.
black An all-black pattern.
dkGray A 75% gray pattern.
gray A 50% gray pattern.
ltGray A 25% gray pattern.
randSeed Where the random sequence begins.
screenBits The main screen.
thePort The current graphics port.
white An all-white pattern.

pixmapTooDeepErr –148 Pixel map is deeper than 1 bit per pixel
rgnTooBigErr –500 Bitmap would convert to a region greater than 64 KB

