
Contents 6-1

CHAPTER 6

Contents

Component Manager

Introduction to Components 6-3
About the Component Manager 6-4
Using the Component Manager 6-6

Opening Connections to Components 6-7
Opening a Connection to a Default Component 6-7
Finding a Specific Component 6-8
Opening a Connection to a Specific Component 6-9

Getting Information About a Component 6-10
Using a Component 6-11
Closing a Connection to a Component 6-12

Creating Components 6-13
The Structure of a Component 6-13
Handling Requests for Service 6-18

Responding to the Open Request 6-19
Responding to the Close Request 6-21
Responding to the Can Do Request 6-22
Responding to the Version Request 6-22
Responding to the Register Request 6-23
Responding to the Unregister Request 6-24
Responding to the Target Request 6-25
Responding to Component-Specific Requests 6-26
Reporting an Error Code 6-28

Defining a Component’s Interfaces 6-28
Managing Components 6-30

Registering a Component 6-30
Creating a Component Resource 6-32
Establishing and Managing Connections 6-34

Component Manager Reference 6-37
Data Structures for Applications 6-37

The Component Description Record 6-37

CHAPTER 6

6-2 Contents

Component Identifiers and Component Instances 6-40
Routines for Applications 6-41

Finding Components 6-42
Opening and Closing Components 6-44
Getting Information About Components 6-47
Retrieving Component Errors 6-51

Data Structures for Components 6-52
The Component Description Record 6-52
The Component Parameters Record 6-54

Routines for Components 6-56
Registering Components 6-57
Dispatching to Component Routines 6-63
Managing Component Connections 6-65
Setting Component Errors 6-69
Working With Component Reference Constants 6-70
Accessing a Component’s Resource File 6-71
Calling Other Components 6-73
Capturing Components 6-75
Targeting a Component Instance 6-77
Changing the Default Search Order 6-78

Application-Defined Routine 6-79
Resources 6-80

The Component Resource 6-80
Summary of the Component Manager 6-86

Pascal Summary 6-86
Constants 6-86
Data Types 6-87
Routines for Applications 6-89
Routines for Components 6-90
Application-Defined Routine 6-92

C Summary 6-92
Constants 6-92
Data Structures 6-93
Routines for Applications 6-95
Routines for Components 6-96
Application-Defined Routine 6-97

Assembly-Language Summary 6-98
Trap Macros 6-98

Result Codes 6-99

CHAPTER 6

Introduction to Components 6-3

Component Manager

This chapter describes how you can use the Component Manager to allow your
application to find and utilize various software objects (components) at run time. It also
discusses how you can create your own components and how you can use the
Component Manager to help manage your components. You should read this chapter if
you are developing an application that uses components or if you plan to develop your
own components.

The rest of this chapter

■ contains a general introduction to components and the features provided by the
Component Manager

■ discusses how to use the facilities of the Component Manager to call components

■ describes how to create a component

Several of the sections in this chapter are divided into two main topics: one describes
how applications can use components, and one describes how to create your own
components. If you are developing an application that uses components, you should
focus on the material that describes how to use existing components—you do not need
to read the material that describes how to create a component. If you are developing a
component, however, you should be familiar with all the information in this chapter.

For information on a specific component, see the documentation supplied with that
component. For example, for information on the components that Apple supplies with
QuickTime, see Inside Macintosh: QuickTime Components.

Introduction to Components

A component is a piece of code that provides a defined set of services to one or more
clients. Applications, system extensions, as well as other components can use the
services of a component. A component typically provides a specific type of service to its
clients. For example, a component might provide image compression or image
decompression capabilities; an application could call such a component, providing the
image to compress, and the component could perform the desired operation and return
the compressed image to the application.

Multiple components can provide the same type of service. For example, separate
components might exist that can compress an image by 20 percent, 40 percent, or 50
percent, with varying degrees of fidelity. All components of the same type must support
the same basic interface. This allows your application to use the same interface for any
given type of component and get the same type of service, yet allows your application to
obtain different levels of service.

The Component Manager provides access to components and manages them by, for
example, keeping track of the currently available components and routing requests to
the appropriate component.

CHAPTER 6

Component Manager

6-4 About the Component Manager

The Component Manager classifies components by three main criteria: the type of
service provided, the level of service provided, and the component manufacturer. The
Component Manager uses a component type to identify the type of service provided by
a component. Like resource types, a component type is a sequence of four characters. All
components of the same component type provide the same type of services and support
a common application interface. For example, all image compressor components have a
component type of 'imco' . Other types of components include video digitizers, timing
sources, movie controllers, and sequence capturers.

Note

Component types consisting of only lowercase characters are reserved
for definition by Apple. You can define component types using other
combinations of characters, but you must register any new component
types with Apple’s Component Registry Group (AppleLink
REGISTRY). ◆

The Component Manager allows components to identify variations on the basic interface
they must support by specifying a four-character component subtype. The value of the
component subtype is meaningful only in the context of a given component type. For
example, image compressor components use the component subtype to specify the
compression algorithm supported by the component.

All components of a given type-subtype combination must support a common
application interface. However, components that share a type-subtype specification may
support routines that are not part of the basic interface defined for their type. In this
manner, components can provide enhanced services to client applications while still
supporting the basic application interface.

Finally, the Component Manager allows components to have a four-character
manufacturer code that identifies the manufacturer of the component. You must register
your component with Apple’s Component Registry Group to receive a manufacturer
code for your component. The manufacturer code allows applications to further
distinguish between components of the same type-subtype.

About the Component Manager

The Component Manager provides services that allow applications to obtain run-time
location of and access to functional objects (in much the same way that the Resource
Manager allows applications that are running to access data objects dynamically).

The Component Manager creates an interface between components and clients, which
can be applications, other components, system extensions, and so on. Instead of
implementing support for a particular data format, protocol, or model of a device, you
can use a standard interface through which your application communicates with all
components of a given type. You can then use the Component Manager to locate and
communicate with components of that type. Those components, in turn, provide the
appropriate services to your client application.

CHAPTER 6

Component Manager

About the Component Manager 6-5

Given a particular component type, the Component Manager can locate and query all
components of that type. You can find out how many components of a specific type are
available and you can get further details about a component’s capabilities without
having to open it first. For each component, the Component Manager keeps track of
many characteristics, including its name, icon, and information string.

For example, components of type 'imdc' provide image decompression services. All
components of type 'imdc' share a common application interface, but each image
decompressor component may support a unique compression technique or take
advantage of a special hardware implementation. Individual components may support
additions to the defined application interface, as long as they support the common
routines. Any algorithm-dependent or implementation-dependent variations of the
general decompression interface can be implemented by each 'imdc' component as
extensions to the basic interface.

Figure 6-1 shows the relationship between an application, the Component Manager, and
several components. Applications and other clients use the Component Manager to
access components. In this figure, four components are available to the application: an
image decompression component (of type 'imdc'), two drawing components (of type
'draw'), and a clock component (of type 'clok'). Note that the two drawing
components have different subtypes: 'oval' and 'rect' . The drawing component
with subtype 'oval' draws ovals, and the drawing component with subtype 'rect'
draws rectangles.

Figure 6-1 The relationship between an application, the Component Manager, and
components

CHAPTER 6

Component Manager

6-6 Using the Component Manager

The Component Manager allows a single component to serve multiple client
applications at the same time. Each client application has a unique access path to the
component. These access paths are called component connections. You identify
a component connection by specifying a component instance. The Component Manager
provides this component instance to your application when you open a connection to a
component. The component maintains separate status information for each open
connection.

For example, multiple applications might each open a connection to an image
decompression component. The Component Manager routes each application request to
the component instance for that connection. Because a component can maintain separate
storage for each connection, application requests do not interfere with each other and
each application has full access to the services provided by the component.
(See Figure 6-2 on page 6-34 for an illustration of multiple aplications using the services
of the same component.)

Using the Component Manager

This section describes how you can use the Component Manager to

■ gain access to components

■ locate components and take advantage of their services

■ get information about a component

■ close a connection to a component

The Component Manager is available in System 7.1 or later and may be present in
System 7. To determine whether the Component Manager is available, call the Gestalt
function with the gestaltComponentMg r selector and check the value of the
response parameter.

CONST

gestaltComponentMgr = 'cpnt';

The Gestalt function returns in the response parameter a 32-bit value indicating the
version of the Component Manager that is installed. Version 3 and above supports
automatic version control, the unregister request, and icon families. You should test the
version number before using any of these features.

This section presents several examples demonstrating how to use components and the
Component Manager. All of these examples use the services of a drawing component—a
simple component that draws an object of a particular shape on the screen. Drawing
components have a component type of 'draw' . The component subtype value indicates
the type of object the component draws. For example, a drawing component that draws

CHAPTER 6

Component Manager

Using the Component Manager 6-7

an oval has a component subtype of 'oval' . For information on creating your own
components and for listings that show the code for a drawing component, see “Creating
Components” beginning on page 6-13.

Opening Connections to Components
When your application requires the services of a component, you typically perform these
steps:

■ open a connection to the desired component

■ use the services of the component

■ close the connection to the component

The following sections describe each of these steps in more detail.

Opening a Connection to a Default Component

Your application must use the Component Manager to gain access to a component. The
first step is to locate an appropriate component. You can locate the component yourself,
or you can allow the Component Manager to locate a suitable component for you. Your
application then opens a connection to that component. Once you have opened a
connection to a component, you can use the services provided by that component. When
you have finished using the component, you should close the connection.

If you are interested only in using a component of a particular type-subtype and you do
not need to specify any other characteristics of the component, use the
OpenDefaultComponent function and specify only the component type and subtype—
the Component Manager then selects a component for you and opens a connection to
that component. This is the easiest technique for opening a component connection. The
OpenDefaultComponent function searches its list of available components and
attempts to open a connection to a component with the specified type and subtype.
If more than one component of the specified type and subtype is available,
OpenDefaultComponent selects the first one in the list. If successful,
the OpenDefaultComponent function returns a component instance that identifies
your connection to the component. You can then use that connection to employ the
services of the selected component.

This code demonstrates the use of the OpenDefaultComponent function. The code
opens a connection to a component of type 'draw' and subtype 'oval' —a drawing
component that draws an oval.

VAR

aDrawOvalComp: ComponentInstance;

aDrawOvalComp : = OpenDefaultComponen t('draw', 'oval') ;

CHAPTER 6

Component Manager

6-8 Using the Component Manager

If it cannot find or open a component of the specified type-subtype, the
OpenDefaultComponent function returns a function result of NIL .

To open a connection to a component with a specific type-subtype-manufacturer code or
with other specified characteristics, first use the FindNextComponent function to find
the desired component, then open the component using the OpenComponent function.
These operations are described in the next two sections.

Finding a Specific Component

If you are interested in asserting greater control over the selection of a component, you
can use the Component Manager to find a component that provides a specified service.
For example, you can use the FindNextComponent function in a loop to retrieve
information about all the components that are registered on a given computer. Each time
you call this function, the Component Manager returns information about a single
component. You can obtain a count of all the components on a given computer by calling
the CountComponents function. Both of these functions allow you to specify search
criteria, for example, by component type and subtype, or by manufacturer. By using
these criteria to narrow your search, you can quickly and easily find a component that
meets your needs.

You specify the search criteria for the component using a component description record.
A component description record is defined by the ComponentDescription data type.
For more information on the fields of this record, see “The Component Description
Record” beginning on page 6-37.

TYPE

 ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: OSType; {manufacturer}

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {mask for flags}

END;

By default, the Component Manager considers all fields of the component description
record when performing a search. Your application can override the default behavior of
which fields the Component Manager considers for a search. Specify 0 in any field of the
component description record to prevent the Component Manager from considering the
information in that field when performing the search.

CHAPTER 6

Component Manager

Using the Component Manager 6-9

Listing 6-1 shows an application-defined procedure, MyFindVideoComponent , that fills
out a component description record to specify the search criteria for the desired
component. The MyFindVideoComponent procedure then uses the
FindNextComponent function to return the first component with the specified
characteristics—in this example, any component with the type
VideoDigitizerComponentType .

Listing 6-1 Finding a component

PROCEDURE MyFindVideoComponent(VA R videoC ompID: Component);

VAR

videoD esc: ComponentDescription;

BEGIN

{find a video digitizer component}

videoD esc.componentType : = Vi deoDigitizerComponentType ;

videoD esc.componentSubType := OSTyp e(0); {any subtype }

videoD esc.componentManufacturer := OSTyp e(0); {any manufacturer}

videoD esc.componentFlags := 0;

videoD esc.componentFlagsMask := 0;

videoC ompID := FindNextComponent(Component(0) , videoD esc);

END;

The FindNextComponent function requires two parameters: a value that indicates
which component to begin the search with and a component description record. You can
specify 0 in the first parameter to start the search at the beginning of the component list.
Alternatively, you can specify a component identifier obtained from a previous call to
FindNextComponent .

The FindNextComponent function returns a component identifier to your
application. The returned component identifier identifies a given component to the
Component Manager. You can use this identifier to retrieve more information about the
component or to open a connection to the component. The next two sections describe
these tasks.

Opening a Connection to a Specific Component

You can open a connection to a specific component by calling the OpenComponent
function (alternatively, you can use the OpenDefaultComponent function, as discussed
in “Opening a Connection to a Default Component” on page 6-7). Your application must
provide a component identifier to the OpenComponent function. You get a component
identifier from the FindNextComponent function, as described in the previous section.

CHAPTER 6

Component Manager

6-10 Using the Component Manager

The OpenComponent function returns a component instance that identifies your
connection to the component. Listing 6-2 shows how to use the OpenComponent
function to gain access to a specific component. The application-defined procedure
MyGetComponent uses the MyFindVideoComponent procedure (defined in
Listing 6-1) to find a video digitizer component and then opens the component.

Listing 6-2 Opening a specific component

PROCEDURE MyGetComponent

(VAR videoC ompInstance: ComponentInstance);

VAR

videoC ompID: Component;

BEGIN

{first find a video digitizer component}

MyFindVideoComponent (videoC ompID);

{now open it}

I F videoC ompID < > NIL T HEN

videoC ompInstance := OpenComponent (videoC ompID);

END;

Getting Information About a Component
You can use the GetComponentInfo function to retrieve information about a
component, including the component name, icon, and other information. Listing 6-3
shows an application-defined procedure that retrieves information about a video
digitizer component.

Listing 6-3 Getting information about a component

PROCEDURE MyGetCompInfo (compName, compInfo, compIcon: Handle ;

 VAR videoDesc: ComponentDescription) ;

VAR

videoC ompID: Component ;

myErr: OSErr;

BEGIN

{first find a video digitizer component}

MyFindVideoComponent (videoC ompID);

{now get information about it}

I F videoC ompID < > NIL T HEN

myErr : = GetComponentInfo (videoC ompID, videoD esc, compName ,

 compInfo, compIcon);

END;

CHAPTER 6

Component Manager

Using the Component Manager 6-11

You specify the component in the first parameter to GetComponentInfo . You specify
the component using either a component identifier (obtained from
FindNextComponent or RegisterComponent) or a component instance (obtained
from OpenDefaultComponent or OpenComponent).

The GetComponentInfo function returns information about the component in the
second through fifth parameters of the function. The GetComponentInfo function
returns information about the component (such as its type, subtype, and manufacturer)
in a component description record. The function also returns the component name, icon,
and other information through handles. You must allocate these handles before calling
GetComponentInfo . (Alternatively, you can specify NIL in the compName, compInfo ,
and compIcon parameters if you do not want the information returned.) The icon
returned in the compIcon parameter is a handle to a black-and-white icon. If a
component has an icon family, you can retrieve a handle to its icon suite using
GetComponentIconSuite .

Using a Component
Once you have established a connection to a component, you can use its services.

Each time you call a component routine, you must specify the component instance that
identifies your connection and provide any other parameters as required by the routine.

For example, Listing 6-4 illustrates the use of a drawing component. The
application-defined procedure establishes a connection to a drawing component, calls
the component’s DrawerSetup function to establish the rectangle in which to draw the
desired object, and then draws the object using the DrawerDraw function.

Listing 6-4 Using a drawing component

PROCEDURE MyDrawAnOval (VAR aDrawOvalComp: ComponentInstance);

VAR

r : Rect;

result: ComponentResult;

BEGIN

{open a connection to a drawing component}

aDrawOvalComp := OpenDefaultComponen t('draw', 'oval');

IF aDrawOvalComp < > NIL T HEN

BEGIN

SetRect(r, 40, 40, 80, 80) ;

{ set up rectangl e for oval}

result := DrawerSetu p(aDrawOvalComp, r) ;

IF resul t = noErr T HEN

result := DrawerDraw(aDrawOvalComp) ; {draw oval}

END;

END;

CHAPTER 6

Component Manager

6-12 Using the Component Manager

If you specify an invalid connection as a parameter to a component routine, the
Component Manager sets the function result of the component routine to
badComponentInstance .

Each component type supports a defined set of functions. You must refer to the
appropriate documentation for a description of the functions supported by a component.
You also need to refer to the component’s documentation for information on the
appropriate interface files that you must include to use the component (the interface files
for the drawing component are shown beginning on page 6-28). The components that
Apple provides with QuickTime are described in Inside Macintosh: QuickTime Components.
As an example, drawing components support the following functions:

FUNCTION DrawerSetu p(myInstance: ComponentInstance;

VAR r: Rect): ComponentResult;

FUNCTION DrawerClic k(myInstance: ComponentInstance;

p: Point): ComponentResult;

FUNCTION DrawerMov e (myInstance: ComponentInstance; x: Integer ;

y: Integer): ComponentResult;

FUNCTION DrawerDra w (myInstance: ComponentInstance)

: ComponentResult;

FUNCTION DrawerEras e(myInstance: ComponentInstance)

: ComponentResult;

Closing a Connection to a Component
When you finish using a component, you must close your connection to that component.
Use the CloseComponent function to close the connection. For example, this code calls
the application-defined procedure MyDrawAnOval (see Listing 6-4), which opens a
connection to a drawing component and uses that component to draw an oval. This code
closes the oval drawer component after it is finished using it.

VAR

aDrawOvalComp: ComponentInstance;

result: OSErr;

MyDrawAnOval(aDrawOvalComp); {open component and draw an oval}

result := DrawerErase(aDrawOvalComp); {erase the oval}

result := C loseComponent(aDrawOvalComp) ; {close the component}

CHAPTER 6

Component Manager

Creating Components 6-13

Creating Components

This section describes how to create a component and how your component interacts
with the Component Manager. This section also describes many of the routines that the
Component Manager provides to help you manage your component. If you are
developing a component, you should read the material in this section.

If you are developing an application that uses components, you may find this material
interesting, but you do not need to be familiar with it. You should read the preceding
section, “Using the Component Manager,” and then use the “Component Manager
Reference” section as needed.

This section discusses how you can

■ structure your component

■ respond to requests from the Component Manager

■ define the functions that applications may call to request service from your component

■ manage your component with the help of the Component Manager

■ make your component available for use by applications

This section presents several examples demonstrating how to create components and
register them with the Component Manager. All of these examples are based on a
“drawing component”—a simple component that draws an object of a particular shape
on the screen. This section includes the code for a drawing component.

The Structure of a Component
Every component must have a single entry point that returns a value of type
ComponentResult (a long integer). Whenever the Component Manager receives a
request for your component, it calls your component’s entry point and passes
any parameters, along with information about the current connection, in a component
parameters record. The Component Manager also passes a handle to the global storage
(if any) associated with that instance of your component.

When your component receives a request, it should examine the parameters to
determine the nature of the request, perform the appropriate processing, set an error
code if necessary, and return an appropriate function result to the Component Manager.

CHAPTER 6

Component Manager

6-14 Creating Components

The component parameters record is defined by a data structure of type
ComponentParameters .

TYPE ComponentParameters =

PACKED RECORD

flags: Char; {reserved}

paramSize: Char; {size of parameters}

what: Integer; {reques t code}

params: ARRAY[0..0] OF LongInt; {actual parameters}

END;

The what field contains a value that specifies the type of request. Negative values are
reserved for definition by Apple. You can use values greater than or equal to 0 to define
other requests that are supported by your component. Follow these guidelines when
defining your request codes: request codes between 0 and 256 are reserved for definition
by components of a given type and a given type-subtype. Use request codes greater than
256 for requests that are unique to your component. For example, a certain component of
a certain type-subtype might support values 0 through 5 as requests that are supported
by all components of that type, values 128 through 140 as requests that are supported by
all components of that given type-subtype, and values 257 through 260 as requests
supported only by that component.

Table 6-1 shows the request codes defined by Apple and the actions your component
should take upon receiving them. Note that four of the request codes—open, close, can
do, and version—are required. Your component must respond to these four request
codes. These request codes are described in greater detail in “Handling Requests for
Service” beginning on page 6-18.

Table 6-1 Request codes

Request cod e
Action your component should
perform Require d

kComponentOpenSelect Open a connection Yes

kComponentCloseSelect Close an open connection Yes

kComponentCanDoSelect Determine whether your
component supports a particular
request

Yes

kComponentVersionSelect Return your component’s version
number

Yes

kComponentRegisterSelect Determine whether your
component can operate in the
current environment

No

CHAPTER 6

Component Manager

Creating Components 6-15

The example drawing component (shown in Listing 6-5 on page 6-16) supports the four
required request codes, and in addition supports the request codes that are required for
all components of the type 'draw' . All drawing components must support these request
codes:

CONST

kDrawerSetUpSelect = 0; {set up drawing region}

kDrawerDrawSelect = 1; {draw the object}

kDrawerEraseSelect = 2; {erase the object}

kDrawerClickSelect = 3; {determine if cursor is }

{ inside of the object}

kDrawerMoveSelect = 4; {move the object}

The params field of the component parameters record is an array that contains the
parameters specified by the application that called your component. You can directly
extract the parameters from this array, or you can use the CallComponentFunction or
CallComponentFunctionWithStorage function to extract the parameters from this
array and pass these parameters to a subroutine of your component (see page 6-63 and
page 6-64 for more information about these functions).

Listing 6-5 shows the structure of a drawing component—a simple component that
draws an object on the screen. The component subtype of a drawing component
indicates the type of object the component draws. This particular drawing component is
of the subtype 'oval' ; it draws oval objects.

Whenever an application calls your component, the Component Manager calls your
component’s main entry point (for example, the OvalDrawer function). This entry point
must be the first function in the component’s code segment.

As previously described, the Component Manager passes two parameters to your
component: a component parameters record and a parameter of type Handle .
The parameters specified by the calling application are contained in the component
parameters record. Your component can access the parameters directly from this record.
Alternatively, as shown in Listing 6-5, you can use Component Manager routines to
extract the parameters from this array and invoke a subroutine of your component. By
taking advantage of these routines, you can simplify the structure of your component
code.

kComponentTargetSelect Call another component whenever
it would call itself (as a result of
your component being used by
another component)

No

kComponentUnregisterSelect Perform any operations that are
necessary as a result of your
component being unregistered

No

Table 6-1 Request codes (continued)

Request cod e
Action your component should
perform Require d

CHAPTER 6

Component Manager

6-16 Creating Components

The OvalDrawer function first examines the value of the what field of the component
parameters record. The what field contains the request code. The OvalDrawer function
performs the action specified by the request code. The OvalDrawer function uses a
number of subroutines to carry out the desired action. It uses the Component Manager
routines CallComponentFunction and CallComponentFunctionWithStorage to
extract the parameters from the component parameters record and to call the specified
component’s subroutine with these parameters.

For example, when the drawing component receives the request code
kComponentOpenSelect , it calls the function CallComponentFunction . It passes
the component parameters record and a pointer to the component’s OvalOpen
subroutine as parameters to CallComponentFunction . This function extracts the
parameters and calls the OvalOpen function. The OvalOpen function allocates memory
for this instance of the component. Your component can allocate memory to hold global
data when it receives an open request. To do this, allocate the memory and then call the
SetComponentInstanceStorage function. This function associates the allocated
memory with the current instance of your component. The next time this instance of
your component is called, the Component Manager passes a handle to your previously
allocated memory in the storage parameter. For additional information on handling
the open request, see “Responding to the Open Request” on page 6-19.

When the drawing component receives the drawing setup request (indicated by the
kDrawerSetupSelect constant), it calls the Component Manager function
CallComponentFunctionWithStorage . Like CallComponentFunction , this
function extracts the parameters and calls the specified subroutine (OvalSetup) . The
CallComponentFunctionWithStorage function also passes as a parameter to the
subroutine a handle to the memory associated with this instance of the component. The
OvalSetup subroutine can use this memory as needed. For additional information on
handling the drawing setup request, see “Responding to Component-Specific Requests”
on page 6-26.

Listing 6-5 A drawing component for ovals

UNIT Ovals;

INTERFACE

{include a USES statement if required}

FUNCTION OvalDrawer (params: ComponentParameter s;

storage: Handle): ComponentResult;

IMPLEMENTATION

CONST

kOvalDrawerVersion = 0; {version number of this component}

kDrawerSetUpSelect = 0; {set up drawing region}

CHAPTER 6

Component Manager

Creating Components 6-17

kDrawerDrawSelect = 1; {draw the object}

kDrawerEraseSelect = 2; {erase the objec t}

kDrawerClickSelect = 3; {determine if cursor is }

{ inside of the object}

kDrawerMoveSelect = 4; {move the object}

TYPE

GlobalsRecord =

RECORD

bounds: Rect;

boundsRgn: RgnHandle ;

self: ComponentInstance;

END;

GlobalsPtr = ^GlobalsRecord;

GlobalsHandle = ^GlobalsPtr;

{any subroutines used by the component go here}

FUNCTION OvalDrawer (params: ComponentParameter s;

storage: Handle): ComponentResult;

BEGIN

{perform action corresponding to request code}

IF params.what < 0 THEN {handle the required request codes}

CASE (params.what) OF

kComponentOpenSelect:

OvalDrawer := CallComponentFunctio n(params ,

 C omponentRoutine(@OvalOpen));

kComponentCloseSelect:

OvalDrawer := CallComponentFunctionWithStorag e(storage, params,

 ComponentRoutine(@OvalClose));

kComponentCanDoSelect:

 OvalDrawer := CallComponentFunction(params,

 ComponentRoutin e(@OvalCanDo));

kComponentVersionSelect:

OvalDrawer := kOvalDrawerVersion;

OTHERWISE

OvalDrawer := badComponentSelector;

END {of CASE}

ELSE {handle component-specific request codes}

CASE (params.what) OF

kDrawerSetupSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalSetup));

CHAPTER 6

Component Manager

6-18 Creating Components

kDrawerDrawSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalDraw));

kDrawerEraseSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalErase));

kDrawerClickSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalClick));

kDrawerMoveSelect:

OvalDrawer := CallComponentFunctionWithStorage

(storage, params,

 ComponentRoutine(@OvalMoveTo));

 OTHERWISE

OvalDrawer := badComponentSelector;

END; {of CASE}

END; {of OvalDrawer}

END.

The next section describes how your component should respond to the required request
codes. Following sections provide more information on

■ defining your component’s interfaces

■ registering your component

■ how to store your component in a component resource file

Handling Requests for Service
Whenever an application requests services from your component, the Component
Manager calls your component and passes two parameters: the application’s parameters
in a component parameters record and a handle to the memory associated with the
current connection. The component parameters record also contains information
identifying the nature of the request.

There are two classes of requests: requests that are defined by the Component Manager
and requests that are defined by your component. The Component Manager defines
seven request codes: open, close, can do, version, register, unregister, and target. All
components must support open, close, can do, and version requests. The register,
unregister, and target requests are optional. Apple reserves all negative request codes for
definition by the Component Manager. You are free to assign request codes greater than
or equal to 0 to the functions supported by a component whose interface you have

CHAPTER 6

Component Manager

Creating Components 6-19

defined. (However, request codes between 0 and 256 are reserved for definition by
components of a given type and a given type-subtype. Request codes greater than 256
are available for requests that are unique to your component.)

You can refer to the standard request codes with these constants.

CONSTkComponentOpenSelect = -1 ; {open request}

kComponentCloseSelect = -2; {close request}

kComponentCanDoSelect = -3 ; {can do request}

kComponentVersionSelect = -4; {version request}

kComponentRegisterSelect = -5; {register request}

kComponentTargetSelect = -6; {target request}

kComponentUnregisterSelect = -7; {unregister request}

The following sections discuss what your component must do when it receives these
Component Manager requests.

Responding to the Open Request

The Component Manager issues an open request to your component whenever an
application or any other client tries to open a connection to your component by calling
the OpenComponent (or OpenDefaultComponent) function. The open request allows
your component to establish the environment to support the new connection. Your
component must support this request.

Your component should perform the necessary processing to establish the new
connection. At a minimum, you must allocate the memory for any global data for
the connection. Be sure to allocate this memory in the current heap zone, not in the
system heap. You should call the SetComponentInstanceStorage procedure to
inform the Component Manager that you have allocated memory. The Component
Manager stores a handle to the memory and provides that handle to your component as
a parameter in subsequent requests.

You may also want to open and read data from your component’s resource file—if you
do so, use the OpenComponentResFile function to open the file and be sure to close
the resource file before returning.

If your component uses the services of other components, open connections to them
when you receive the open request.

Once you have successfully set up the connection, set your component’s function result
to 0 and return to the Component Manager.

You can also refuse the connection. If you cannot successfully establish the environment
for a connection (for example, there is insufficient memory to support the connection, or
required hardware is unavailable), you can refuse the connection by setting the
component’s function result to a nonzero value. You can also use the open request as an
opportunity to restrict the number of connections your component can support.

If your application is registered globally, you should also set the A5 world for your
component in response to the open request. You can do this using the

CHAPTER 6

Component Manager

6-20 Creating Components

SetComponentInstanceA5 procedure. (See page 6-68 for information on this
procedure.)
The Component Manager sets these fields in the component parameters record that it
provides to your component on an open request:

Field descriptions

what The Component Manager sets this field to
kComponentOpenSelect .

params The first entry in this array contains the component instance that
identifies the new connection.

Listing 6-6 shows the subroutine that handles the open request for the drawing
component. Note that your component can directly access the parameters from
the component parameters record, or use subroutines and the
CallComponentFunction and CallComponentFunctionWithStorage functions
to extract the parameters for you (see Listing 6-5 on page 6-16). The code in this chapter
takes the second approach.

The OvalOpen function allocates memory to hold global data for this instance of the
component. It calls the SetComponentInstanceStorage function so that the
Component Manager can associate the allocated memory with this instance of
the component. The Component Manager passes a handle to this memory in subsequent
calls to this instance of the component.

Listing 6-6 Responding to an open request

FUNCTION OvalOpen (self: ComponentInstance): ComponentResult;

VAR

myGlobals: GlobalsHandle;

BEGIN

{allocate storage}

myGlobals :=

GlobalsHandle(NewHandleClear(sizeof(GlobalsRecord)));

IF myGlobals = NIL THEN

OvalOpen := MemError

ELSE

BEGIN

myGlobals^^.self := self;

myGlobals^^.boundsRgn := NewRgn;

SetComponentInstanceStorage(myGlobals^^. self ,

 H andle(myGlobals)) ;

{if your component is registered globally, set }

{ its A5 world before returning}

OvalOpen := noErr;

END;

END;

CHAPTER 6

Component Manager

Creating Components 6-21

Responding to the Close Request

The Component Manager issues a close request to your component when a client
application closes its connection to your component by calling the CloseComponent
function. Your component should dispose of the memory associated with the connection.
Your component must support this request. Your component should also close any files
or connections to other components that it no longer needs.

The Component Manager sets these fields in the component parameters record that it
provides to your component on a close request:

Field descriptions

what The Component Manager sets this field to
kComponentCloseSelect .

params The first entry in this array contains the component instance that
identifies the open connection.

Listing 6-7 shows the subroutine that handles the close request for the
drawing component (as defined in Listing 6-5 on page 6-16). The OvalClose
function closes the open connection. The drawing component uses the
CallComponentFunctionWithStorage function to call the OvalClose function (see
Listing 6-5). Because of this, in addition to the parameters specified in the component
parameters record, the Component Manager also passes to the OvalClose function a
handle to the memory associated with the component instance.

Listing 6-7 Responding to a close request

FUNCTION OvalClose (globals: GlobalsHandle;

 s elf: ComponentInstance): ComponentResult;

BEGIN

IF globals <> NIL THEN

BEGIN

DisposeRgn(globals^^.boundsRgn);

DisposeHandle(Handle(globals));

END;

OvalClose := noErr;

END;

IMPORTANT

When responding to a close request, you should always test the handle
passed to your component against NIL because it is possible for your
close request to be called with a NI L handle in the storage parameter.
For example, you can receive a NI L handle if your component returns a
nonzero function result in response to an open request. ▲

CHAPTER 6

Component Manager

6-22 Creating Components

Responding to the Can Do Request

The Component Manager issues a can do request to your component when an
application calls the ComponentFunctionImplemented function to determine
whether your component supports a given request code. Your component must support
this request.

Set your component’s function result to 1 if you support the request code; otherwise, set
your function result to 0.

The Component Manager sets these fields in the component parameters record that it
provides to your component on a can do request:

Field descriptions

what The Component Manager sets this field to
kComponentCanDoSelect .

params The first entry in this array contains the request code as an integer
value.

Listing 6-8 shows the subroutine that handles the can do request for the drawing
component (as defined in Listing 6-5 on page 6-16). The OvalCanDo function examines
the specified request code and compares it with the request codes that it supports. It
returns a function result of 1 if it supports the request code; otherwise, it returns 0.

Listing 6-8 Responding to the can do request

FUNCTION OvalCanDo (selector: Integer): ComponentResult;

BEGIN

IF ((selector >= kComponentVersionSelect) AND

(selector <= kDrawerMoveSelect)) THEN

OvalCanDo := 1 {valid request}

ELSE

OvalCanDo := 0; {invalid request}

END;

Responding to the Version Request

The Component Manager issues a version request to your component when an
application calls the GetComponentVersion function to retrieve your component’s
version number. Your component must support this request.

In response to a version request, your component should return its version number as its
function result. Use the high-order 16 bits to represent the major version and the
low-order 16 bits to represent the minor version. The major version should represent the
component specification level; the minor version should represent your
implementation’s version number.

CHAPTER 6

Component Manager

Creating Components 6-23

If the Component Manager supports automatic version control (a feature available
in version 3 and above of the manager), it automatically resolves conflicts between
different versions of the same component. For more information on this feature, see the
next section, “Responding to the Register Request.”

The Component Manager sets only the what field in the component parameters record
that it provides to your component on a version request:

Field description

what The Component Manager sets this field to
kComponentVersionSelect .

Listing 6-5 on page 6-16 shows how the drawing component handles the version request.
It simply returns its version number as its function result.

Responding to the Register Request

The Component Manager may issue a register request when your component is
registered. This request gives your component an opportunity to determine whether it
can operate in the current environment. For example, your component might use the
register request to verify that a specific piece of hardware is available on the computer.
This is an optional request—your component is not required to support it.

The Component Manager issues this request only if you have set the
cmpWantsRegisterMessage flag to 1 in the componentFlags field of your
component’s component description record (see “Data Structures for Components”
beginning on page 6-52 for more information about the component description record).

Your component should not normally allocate memory in response to the register
request. The register request is provided so that your application can determine whether
it should be registered and made available to any clients. Once a client attempts to
connect to your component, your component receives an open request, at which time it
can allocate any required memory. Because your component might not be opened during
a particular session, following this guideline allows other applications to make use of
memory that isn’t currently needed by your component.

If you want the Component Manager to provide automatic version control (a feature
available in version 3 and above of the manager), your component can specify the
componentDoAutoVersion flag in the optional extension to the component resource.
If you specify this flag, the Component Manager registers your component only if there
is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after
yours, the Component Manager automatically unregisters your component. You can use
this automatic version control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that are installed.

Set your function result to TRUE to indicate that you do not want your component to be
registered; otherwise, set the function result to FALSE.

CHAPTER 6

Component Manager

6-24 Creating Components

The Component Manager sets only the what field in the component parameters record
that it provides to your component on a register request:

Field description

what The Component Manager sets this field to
kComponentRegisterSelect .

If you request that your component receive a register request, the Component Manager
actually sends your component a series of three requests: an open request, then the
register request, followed by a close request.

For more information about the process the Component Manager uses to register
components, see “Registering a Component” on page 6-30.

Responding to the Unregister Request

The unregister request is supported only in version 3 and above of the Component
Manager. If your component specifies the componentWantsUnregister flag in the
componentRegisterFlags field of the optional extension to the component resource,
the Component Manager may issue an unregister request when your component is
unregistered. This request gives your component an opportunity to perform any
clean-up operations, such as resetting the hardware. This is an optional request—your
component is not required to support it.

Return any error information as your component’s function result.

The Component Manager sets only the what field in the component parameters record
that it provides to your component on an unregister request:

Field description

what The Component Manager sets this field to
kComponentUnregisterSelect .

If you have specified that your component should not receive a register request, then
your component does not receive an unregister request if it has not been opened.
However, if a client opens and closes your component, and then later the Component
Manager unregisters your component, the Component Manager does send your
component an unregister request (in a series of three requests: open, unregister, close).

If you have specified that your component should receive a register request, when your
component is registered the Component Manager sends your component a series of
three requests: an open request, then the register request, followed by a close request. In
this situation, even if your component is not opened by a client, the Component
Manager sends your component an unregister request when it unregisters your
component.

CHAPTER 6

Component Manager

Creating Components 6-25

For more information about the componentWantsUnregister flag, see “Resources”
beginning on page 6-80.

Responding to the Target Request

The Component Manager issues a target request to inform an instance of your
component that it has been targeted by another component. The component that targets
another component instance may also choose to first capture the component, but it is not
necessary to do so. Thus, a component can choose to

■ capture a component and target an instance of it

■ capture a component without targeting any instance of it

■ target a component instance without capturing the component

To first capture another component, the capturing component calls the
CaptureComponent function. When a component is captured, the Component
Manager removes it from the list of available components. This makes the captured
component available only to the capturing component and to any clients currently
connected to it. Typically, a component captures another component when it wants to
override one or more functions of the other component.

After calling the CaptureComponent function, the capturing component can choose to
target a particular instance of the component. However, a component can capture
another component without targeting it.

A component uses the ComponentSetTarget function to send a target request to a
specific component instance. After receiving a target request, whenever the targeted
component instance would call itself (that is, call any of its defined functions), instead it
should always call the component that targeted it.

For example, a component called NewMath might first capture a component called
OldMath. NewMath does this by using FindNextComponent to get a component
identifier for OldMath. NewMath then calls CaptureComponent to remove OldMath
from the list of available components. At this point, no other clients can access OldMath,
except for those clients previously connected to it.

NewMath might then call ComponentSetTarget to target a particular component
instance of OldMath. The ComponentSetTarget function sends a target request to the
specified component instance. When OldMath receives a target request, it saves the
component instance of the component that targeted it. When OldMath receives a request,
it processes it as usual. However, whenever OldMath calls one of its defined functions:
in its defined API, it calls NewMath instead. (Suppose OldMath provides request codes
for these functions: DoMultiply , DoAdd, DoDivide , and DoSubtract . If OldMath’s
DoMultiply function calls its own DoAdd function, then OldMath calls NewMath to
perform the addition.)

The target request is an optional request—your component is not required to support it.

CHAPTER 6

Component Manager

6-26 Creating Components

The Component Manager sets these fields in the component parameters record that it
provides to your component on a target request:

Field descriptions

what The Component Manager sets this field to
kComponentTargetSelect .

params The first entry in this array contains the component instance that
identifies the component issuing the target request.

Responding to Component-Specific Requests

When your component receives a component-specific request, it should handle the
request as appropriate. For example, the drawing component responds to five
component-specific requests: setup, draw, erase, click, and move to. See Listing 6-5 on
page 6-16 for the code that defines the drawing component’s entry point. The drawing
component uses CallComponentFunctionWithStorage to extract the parameters
and call the appropriate subroutine.

Listing 6-9 shows the drawing component’s OvalSetup function. This function sets up
the data structures that must be in place before drawing the oval.

Listing 6-9 Responding to the setup request

FUNCTION OvalSetup (globals: GlobalsHandle;

 boundsRect: Rect): ComponentResult;

VAR

i gnoreErr: ComponentResult;

BEGIN

globals^^.bounds := boundsRect;

OpenRgn;

ignoreErr := OvalDraw(globals);

CloseRgn(globals^^.boundsRgn);

OvalSetup := noErr;

END;

Listing 6-10 shows the drawing component’s OvalDraw function. This function draws
an oval in the previously allocated region.

CHAPTER 6

Component Manager

Creating Components 6-27

Listing 6-10 Responding to the draw request

FUNCTION OvalDraw (globals: GlobalsHandle): ComponentResult;

BEGIN

FrameOval(globals^^.bounds);

OvalDraw := noErr;

END;

Listing 6-11 shows the drawing component’s OvalErase function. This function erases
an oval.

Listing 6-11 Responding to the erase request

FUNCTION OvalErase (globals: GlobalsHandle): ComponentResult;

BEGIN

EraseOval(globals^^.bounds);

OvalErase := noErr;

END;

Listing 6-12 shows the drawing component’s OvalClick function. This function
determines whether the given point is within the oval. If so, the function returns 1;
otherwise, it returns 0. Because the OvalClick function returns information other than
error information as its function result, OvalClick sets any error information using
SetComponentInstanceError .

Listing 6-12 Responding to the click request

FUNCTION OvalClick (globals: GlobalsHandle; p: Point)

 : ComponentResult;

BEGIN

I F P tInRg n(p, globals^^.boundsRg n) THEN

OvalClick := 1

ELSE

OvalClick := 0 ;

SetComponentInstanceError(globals^^.self, noErr);

END;

CHAPTER 6

Component Manager

6-28 Creating Components

Listing 6-13 shows the drawing component’s OvalMoveTo function. This function
moves the oval’s coordinates to the specified location. Note that this function does not
erase or draw the oval; the calling application is responsible for issuing the appropriate
requests. For example, the calling application can issue requests to draw, erase, move to,
and draw—to draw the oval in one location, then erase the oval, move it to a new
location, and finally draw the oval in its new location.

Listing 6-13 Responding to the move to request

FUNCTION OvalMoveTo (globals: GlobalsHandle; x, y: Integer)

: ComponentResult;

VAR

r: Rect;

BEGIN

r := globals^^.bounds;

x := x - (r.right + r.left) DIV 2;

y := y - (r.bottom + r.top) DIV 2;

OffsetRect(globals^^.bounds, x, y);

OffsetRgn(globals^^.boundsRgn, x, y);

OvalMoveTo := noErr;

END;

Reporting an Error Code

The Component Manager maintains error state information for all currently active
connections. In general, your component returns error information in its function result;
a nonzero function result indicates an error occurred, and a function result of 0 indicates
the request was successful. However, some requests require that your component return
other information as its function result. In these cases, your component can use the
SetComponentInstanceError procedure to report its latest error state to the
Component Manager. You can also use this procedure at any time during your
component’s execution to report an error.

Defining a Component’s Interfaces
You define the interfaces supported by your component by declaring a set of functions
for use by applications. These function declarations specify the parameters that must be
provided for each request. The following code illustrates the general form of these
function declarations, using the setup request defined for the sample drawing
component as an example:

FUNCTION DrawerSetup (myInstance: ComponentInstance;

 VAR r: Rect): ComponentResult;

CHAPTER 6

Component Manager

Creating Components 6-29

This example declares a function that supports the setup request. The first parameter to
any component function must be a parameter that accepts a component instance. The
Component Manager uses this value to correctly route the request. The calling
application must supply a valid component instance when it calls your component. The
second and following parameters are those required by your component function. For
example, the DrawerSetup function takes one additional parameter, a rectangle. Finally,
all component functions must return a function result of type ComponentResult (a
long integer).

These function declarations must also include inline code. This code identifies the
request code assigned to the function, specifies the number of bytes of parameter data
accepted by the function, and executes a trap to the Component Manager. To continue
with the Pascal example used earlier, the inline code for the DrawerSetup function is

INLINE $2F3C, $0004, $0000, $7000, $A82A;

The first element of this code, $2F3C, is the opcode for a move instruction that loads the
contents of the next two elements onto the stack. The Component Manager uses these
values when it invokes your component.

The second element, $0004 , defines an integer value that specifies the number of bytes
of parameter data required by the function, not including the component instance
parameter. In this case, the size of a pointer to the rectangle is specified: 4 bytes.

Note

Note that Pascal calling conventions require that Boolean and 1-byte
parameters are passed as 16-bit integer values. ◆

The third element, $0000 , specifies the request code for this function as an integer value.
Each function supported by your component must have a unique request code. Your
component uses this request code to identify the application’s request. You may define
only request code values greater than or equal to 0; negative values are reserved for
definition by the Component Manager. Recall from the oval drawing component that the
request code for the setup request, kDrawerSetUpSelect , has a value of 0.

The fourth element, $7000 , is the opcode for an instruction that sets the D0 register to 0,
which tells the Component Manager to call your component rather than to field the
request itself.

The fifth element, $A82A, is the opcode for an instruction that executes a trap to the
Component Manager.

If you are declaring functions for use by Pascal-language applications, your declarations
should take the following form:

FUNCTION DrawerSetup (myInstance: ComponentInstance;

 VAR r: Rect): ComponentResult;

INLINE $2F3C, $0004, $0000, $7000, $A82A;

CHAPTER 6

Component Manager

6-30 Creating Components

If you are declaring functions for use by C-language applications, your declarations can
take the following form:

pascal ComponentResult DrawerSetup

(ComponentInstance myInstance, Rect *r) =

{0x2F3C,0x4,0x0,0x7000,0xA82A};

Alternatively, you can define the following statement to replace the inline code:

#define ComponentCall (callNum, paramSize)

 {0x2F3C,paramSize,callNum,0x7000,0xA82A}

Using this statement results in the following declaration format:

pascal ComponentResult DrawerSetup

(ComponentInstance myInstance, Rect *r) =

 ComponentCall (kDrawerSetUpSelect, 4);

When a client application calls your function, the system executes the inline code, which
invokes the Component Manager. The Component Manager then formats a component
parameters record, locates the storage for the current connection, and invokes your
component. The Component Manager provides the component parameters record and a
handle to the storage of the current connection to your component as function
parameters.

Managing Components
This section discusses the Component Manager routines that help you manage your
component. It describes how to register your component and how to allow applications
to connect to your component.

Registering a Component

Applications must use the services of the Component Manager to find components that
meet their needs. Before an application can find a component, however, that component
must be registered with the Component Manager. When you register your component,
the Component Manager adds the component to its list of available components.

There are two mechanisms for registering a component with the Component Manager.
First, during startup processing, the Component Manager searches the Extensions folder
(and all of the folders within the Extensions folder) for files of type 'thng' . If the file
contains all the information needed for registration (see “Creating a Component
Resource” on page 6-32 for more information on creating a component file),
the Component Manager automatically registers the component stored in the file.
Components registered in this manner are registered globally; that is, the component is
made available to all applications and other clients.

CHAPTER 6

Component Manager

Creating Components 6-31

Second, your application (or another application) can register your component. When
you register your component in this manner, you can specify whether the component
should be made available to all applications (global registration) or only to your
application (local registration). Your application can register a component that is in
memory or that is stored in a resource. You use the RegisterComponent function to
register a component that is in memory. You use the RegisterComponentResource
function to register a component that is stored in a component resource. See “The
Component Resource” on page 6-80 for a description of the format and content of
component resources. The code in Listing 6-14 demonstrates how an application can use
the RegisterComponent function to register a component that is in memory.

Listing 6-14 Registering a component

VAR

cd: ComponentDescription;

draw: Component;

WITH cd D O

BEGIN {initialize the component description record }

componentType := 'draw' ;

componentSubtype := 'oval' ;

componentManufacturer := 'appl' ;

componentFlags := 0 ;

componentFlagsMask := 0 ;

END;

{register the component}

draw := RegisterComponen t(cd, ComponentRoutine(@OvalDrawer) ,

 0 , NIL, NIL, NIL) ;

The code in Listing 6-14 specifies six parameters to the RegisterComponent
function. The first three are a component description record, a pointer to the
component’s entry point, and a value of 0 to indicate that this component should be
made available only to this application. A component that is registered locally is visible
only within the A5 world of the registering program. The last three parameters are
specified as NIL to indicate that the component doesn’t have a name, an information
string, or an icon. See page 6-57 for more information on the RegisterComponent
function.

When a component is registered and the cmpWantsRegisterMessage bit is not set in
the componentFlags field of the component description record, the Component
Manager adds the component to its list of registered components. Whenever a client
requests access to or information about a component (for example, by using
OpenDefaultComponent , FindNextComponent , or GetComponentInfo), the
Component Manager searches its list of registered components.

CHAPTER 6

Component Manager

6-32 Creating Components

If a component’s cmpWantsRegisterMessage bit is set, the Component Manager does
not automatically add your component to its list of registered components. Instead, it
sends your component a series of three requests: open, register, and close. If your
component returns a nonzero value as its function result in response to the register
request, your component is not added to the Component Manager’s list of registered
components. Thus, clients are not able to connect to or get information about
your component. You might choose to set the cmpWantsRegisterMessage bit if, for
example, your application requires specific hardware.

Alternatively, you can let your component be automatically registered. Your component
can then check for any specific hardware requirements upon receiving an open request.
This lets clients attempt to connect to your component and also lets them get information
about your component. However, in most cases, if your component requires specific
hardware to operate, you should set the cmpWantsRegisterMessage bit and respond
to the register request appropriately.

If your component controls a hardware resource, you should register your component
once for each hardware resource that is available (rather than registering once and
allowing multiple instances of your component). This allows clients to easily determine
how many hardware resources are available by using the FindNextComponent
function. If you register a component multiple times, be sure that you specify a unique
name for each registration.

If the feature is available, you can request that the Component Manager provide
automatic version control for your component (this feature is available only in version 3
and above of the manager). To request automatic version control, specify the
componentDoAutoVersion flag in the optional extension to the component resource.
If you specify this flag, the Component Manager registers your component only if there
is no later version available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is registered after
yours, the Component Manager automatically unregisters your component. You can use
this automatic version control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that are installed.

Creating a Component Resource

You can create a component resource (a resource of type 'thng') in a component file. A
component file is a file whose resource fork contains a component resource and other
required resources for the component. If you store your component in a component file,
either you can allow applications to use the RegisterComponentResource function
to register your component as needed, or you can automatically register your component
at startup by storing your component file in the Extensions folder.

CHAPTER 6

Component Manager

Creating Components 6-33

A component file consists of

■ a component description record that specifies the characteristics of your component
(its type, subtype, manufacturer, and control flags)

■ the resource type and resource ID of your component’s code resource

■ the resource type and resource ID of your component’s name string

■ the resource type and resource ID of your component’s information string

■ the resource type and resource ID of your component’s icon

■ optional information about the component (its version number, additional flags, and
resource ID of the component’s icon family)

■ the actual resources for your component’s code, name, information string, and icon

Listing 6-15 shows, in Rez format, a component resource that defines an oval drawing
component. This drawing component does not specify optional information (see
Figure 6-5 on page 6-85 for the contents of the optional extension to the component
resource). For compatibility with early versions of the Component Manager,
component resources should be locked.

Listing 6-15 Rez input for a component resource

resource 'thng' (128, locked) {

'draw', /*component type*/

 'oval', /*component subtype*/

'appl', /*component manufacturer*/

$00000000, /*component flags: 0*/

$00000000, /*reserved (component flags mask): 0*/

'CODE', /*component code resource type*/

128, /*component code resource ID*/

'STR ', /*component name resource type*/

128, /*component name resource ID*/

'STR ', /*component info resource type*/

129, /*component info resource ID*/

'ICON', /*component icon resource type*/

128 /*component icon resource ID*/

/*optional information (if any) goes here*/

};

The component resource, and the resources that define the component’s code, name,
information string, and icon, must be in the same file. A component file must have the
file type 'thng' and reside in the Extensions folder in order to be automatically
registered by the Component Manager at startup.

CHAPTER 6

Component Manager

6-34 Creating Components

Establishing and Managing Connections

Your component may support one or more connections at a time. In addition, a single
application may have open connections with two or more different components at the
same time. In fact, a single application can use more than one connection to a single
component. Figure 6-2 shows two applications and two components: the first
application, SurfPaint, uses two connections to component A; the second application,
SurfWriter, uses one connection to component A and one to component B.

Figure 6-2 Supporting multiple component connections

A component can allocate separate storage for each open connection. A component can
also set the A5 world for a specific component instance and can maintain separate error
information for each instance. A component can also use a reference constant value to
maintain global data for the component.

When an application requests that the Component Manager open a connection to your
component, the Component Manager issues an open request to your component. At this
time, your component should allocate any memory it needs in order to maintain a
connection for the requesting application. Be sure to allocate this memory in the current
heap zone rather than in the system heap. As described in “Responding to the Open
Request” on page 6-19, you can use the SetComponentInstanceStorage procedure
to associate the allocated memory with the component instance. Whenever the
application requests services from your component, the Component Manager supplies

CHAPTER 6

Component Manager

Creating Components 6-35

you with the handle to this memory. You can also use the open request as an opportunity
to restrict the number of connections your component can support.

To allocate global data for your component, you can maintain a reference constant for
use by your component. The Component Manager provides two routines,
SetComponentRefcon and GetComponentRefcon , that allow you to work with your
component’s reference constant. Note that your component has one reference constant,
regardless of the number of connections maintained by your component.

If your component uses its reference constant and is registered globally, be aware that in
certain situations the Component Manager may clone your component. This situation
occurs only when the Component Manager opens a component that is registered
globally and there’s no available space in the system heap. In this case, the Component
Manager clones your component, creating a new registration of the component in the
caller’s heap, and returns to the caller the component identifier of the cloned component,
not the component identifier of the original registration. The reference constant of the
original component is not preserved in the cloned component. Thus you need to take
extra steps to set the reference constant of the cloned component to the same value as
that of the original component.

To determine whether your component has been cloned, you can examine your
component’s A5 world using the GetComponentInstanceA5 function. If the returned
value of the A5 world is nonzero, your component is cloned (only components registered
globally can be cloned; if your component is registered locally it has a valid, nonzero A5
world and you don’t need to check whether it’s been cloned). If you determine that your
component is cloned, you can retrieve the original reference constant by using the
FindNextComponent function to iterate through all registrations of your component.
You should compare the component identifier of the cloned component with the
component identifier returned by FindNextComponent . Once you find a component
with the same component description but a different component identifier, you’ve found
the original component. You can then use GetComponentRefcon to get the reference
constant of the original component and then use SetComponentRefcon to set the
reference constant of the cloned component appropriately. This technique works if a
component registers itself only once or registers itself multiple times but with a unique
name for each registration. This technique does not work if a component registers itself
multiple times using the same name.

When responding to a request from an application, your component can invoke the
services of other components. The Component Manager provides two techniques for
calling other components. First, your component can call another component using the
standard mechanisms also used by applications. The Component Manager then passes
the requests to the appropriate component, and your component receives the results of
those requests.

Second, your component can redirect a request to another component. For example, you
might want to create two similar components that provide different levels of service to
applications. Rather than completely implementing both components, you could design
one to rely on the capabilities of the other. Use the DelegateComponentCall function
to pass a request on to another component.

CHAPTER 6

Component Manager

6-36 Creating Components

Listing 6-16 shows an example of delegating a request to another component. The
component in this example is a drawing component that draws rectangles. The
RectangleDrawer component handles open, close, and setup requests. It delegates all
other requests to another component. When the RectangleDrawer component receives
an open request, it opens the component to which it will later delegate requests, and
stores in its allocated storage the delegated component’s component instance. It then
specifies this value when it calls the DelegateComponentCall function.

Listing 6-16 Delegating a request to another component

FUNCTION RectangleDrawer(params: ComponentParameters;

 storage: Handle): ComponentResult;

VAR

theRtn: ComponentRoutine;

safe: Boolean;

BEGIN

safe := FALSE;

CASE (params.what) OF

kComponentOpenSelect:

theRtn := ComponentRoutine(@RectangleO pen);

kComponentCloseSelect:

theRtn := ComponentRoutine(@RectangleC lose);

kDrawerSetupSelect:

theRtn := ComponentRoutine(@RectangleSetup);

OTHERWISE

BEGIN

safe := TRUE;

IF (storage <> NIL) THEN

RectangleDrawer :=

DelegateComponentCal l

(params ,

 C omponentInstance (St orage Hdl(storage)^^.delegateInstance))

ELSE

RectangleDrawer := badComponentSelector;

END;

END; {of CASE}

IF NOT safe THEN

RectangleDrawer :=

CallComponentFunctionWithStorage(storage, params, theRtn);

END;

CHAPTER 6

Component Manager

Component Manager Reference 6-37

Component Manager Reference

This section provides information about the data structures, routines, and resources
defined by the Component Manager. This section is divided into the following topics:

■ “Data Structures for Applications” describes the data structures used by applications.

■ “Routines for Applications” discusses the Component Manager routines that are
available to applications that use components.

■ “Data Structures for Components” describes the data structures used by components.

■ “Routines for Components” describes the Component Manager routines that are used
by components.

■ “Application-Defined Routine” describes how to define a component function and
supply the appropriate registration information.

■ “Resources” describes the format and content of component resources.

Assembly- Language Note

You can invoke Component Manager routines by using the trap
_ComponentDispatch with the appropriate routine selector. The
routine selectors are listed in “Assembly-Language Summary”
beginning on page 6-98. ◆

Data Structures for Applications
This section describes the format and content of the data structures used by applications
that use components.

Your application can use the component description record to find components that
provide specific services or meet other selection criteria.

The Component Description Record

The component description record identifies the characteristics of a component,
including the type of services offered by the component and its manufacturer.

Applications and components use component description records in different ways.
An application that uses components specifies the selection criteria for finding a
component in a component description record. A component uses the component
description record to specify its registration information and capabilities. If you are
developing a component, see page 6-52 for information on how a component uses the
component description record.

The ComponentDescription data type defines the component description record.

CHAPTER 6

Component Manager

6-38 Component Manager Reference

TYPE ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: {manufacturer}

OSType;

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {mask for control }

{ flags}

END;

Field descriptions

componentType
A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of 'draw' .
Your application can use this field to search for components of a
given type. You specify the component type in the
componentType field of the component description record you
supply to the FindNextComponent or CountComponents
routine. A value of 0 operates as a wildcard.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component type. For example, the subtype of
drawing components indicates the type of object the component
draws. Drawing components that draw ovals have a subtype
of 'oval' .
Your application can use the componentSubType field to
perform a more specific lookup operation than is possible using
only the componentType field. For example, you may want your
application to use only components of a certain
component type ('draw') that also have a specific entry
in the componentSubType field ('oval'). By specifying
particular values for both fields in the component description
record that you supply to the FindNextComponent or
CountComponents routine, your application retrieves information
about only those components that meet both of these search criteria.
A value of 0 operates as a wildcard.

CHAPTER 6

Component Manager

Component Manager Reference 6-39

componentManufacturer
A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value
of 'appl' .
Your application can use this field to find components from a
certain manufacturer. Specify the appropriate manufacturer code in
the componentManufacturer field of the component description
record you supply to the FindNextComponent or
CountComponents routine. A value of 0 operates as a wildcard.

componentFlags
A 32-bit field that provides additional information about a
particular component.
The high-order 8 bits are defined by the Component Manager. You
should usually set these bits to 0.
The low-order 24 bits are specific to each component type. These
flags can be used to indicate the presence of features or capabilities
in a given component.
Your application can use these flags to further narrow the
search criteria applied by the FindNextComponent or
CountComponents routine. If you use the componentFlags field
in a component search, you use the componentFlagsMask field to
indicate which flags are to be considered in the search.

componentFlagsMask
A 32-bit field that indicates which flags in the componentFlags
field are relevant to a particular component search operation.
For each flag in the componentFlags field that is to be considered
as a search criterion by the FindNextComponent or
CountComponents routine, your application should set the
corresponding bit in the componentFlagsMask field to 1. The
Component Manager considers only these flags during the search.
You specify the desired flag value (either 0 or 1) in the
componentFlags field.
For example, to look for a component with a specific control flag
that is set to 0, set the appropriate bit in the ComponentFlags field
to 0 and the same bit in the ComponentFlagsMask field to 1. To
look for a component with a specific control flag that is set to 1,
set the bit in the ComponentFlags field to 1 and the same bit in
the ComponentFlagsMask field to 1. To ignore a flag, set the bit
in the ComponentFlagsMask field to 0.

CHAPTER 6

Component Manager

6-40 Component Manager Reference

Figure 6-3 shows how the various fields interact during a search. In
the case depicted in the figure, the componentFlagsMask field of
a component description record supplied to a search routine
specifies that only the low-order four flags of the componentFlags
field are to be examined during the search. The componentFlags
fields in the component description records of components A and B
have a number of flags set. However, in this example the mask
specifies that the Component Manager examine only the low-order
4 bits, and therefore only component A meets the search criteria.

Figure 6-3 Interaction between the componentFlags and componentFlagsMask fields

Component Identifiers and Component Instances

In general, when using Component Manager routines, your application must specify the
particular component using either a component identifier or component instance.
The Component Manager identifies each component by a component identifier. The
Component Manager identifies each instance of a component by a component instance.
Thus, when your application searches for a component with a particular type and
subtype using the FindNextComponent function, FindNextComponent returns a
component identifier that identifies the component. Similarly, your application specifies
a component identifier to the GetComponentInfo function to obtain information
about a component.

When you open a connection to a component, the OpenDefaultComponent and
OpenComponent functions return a component instance. The returned component
instance identifies that specific instance of the component. If you open the same
component again, the Component Manager returns a different component instance. So a

CHAPTER 6

Component Manager

Component Manager Reference 6-41

component has a single component identifier and can have multiple component
instances. To use a component function, your application specifies a component instance.

Although conceptually component identifiers and component instances
serve different purposes, Component Manager routines (with the exception of
DelegateComponentCall) allow you to use component identifiers and component
instances interchangeably. If you do this, you must always coerce the data type
appropriately.

A component identifier is defined by the data type Component :

TYPE

{ component identifier }

Component = ^ComponentRecord ;

ComponentRecord =

RECORD

data : ARRAY[0..0] OF LongInt ;

END;

A component instance is defined by the data type ComponentInstance :

TYPE

{ component instance }

ComponentInstance = ^ComponentInstanceRecord ;

ComponentInstanceRecord =

RECORD

data : ARRAY[0..0] OF LongInt ;

END;

Routines for Applications
This section discusses the Component Manager routines that are used by applications.
If you are developing an application that uses components, you should read this
section. If you are developing an application that registers components, you should also
read “Registering Components” beginning on page 6-57.

If you are developing a component, you should read this section and “Routines for
Components” beginning on page 6-56.

This section describes the routines that allow your application to

■ search for components

■ gain access to and release components

■ get detailed information about specific components

■ get component error information

CHAPTER 6

Component Manager

6-42 Component Manager Reference

Note
Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the DelegateComponentCall function). If you do this, you
must always coerce the data type appropriately. ◆

Finding Components

The Component Manager provides routines that allow your application to search for
components. Your application specifies the search criteria in a component description
record. (See “Data Structures for Applications” beginning on page 6-37 for information
about the component description record.) Based on the values you specify in fields of the
component description record, the Component Manager attempts to find components
that meet the needs of your application.

You can use the CountComponents function to determine the number of components
that match a component description. Use the FindNextComponent function to find an
individual component that matches a description.

You can use the GetComponentListModSeed function to determine whether the list of
registered components has changed.

FindNextComponent

The FindNextComponent function returns the component identifier for the next
registered component that meets the selection criteria specified by your application. You
specify the selection criteria in a component description record.

Your application can use the component identifier returned by this function to get more
information about the component or to open the component.

FUNCTION FindNextComponent (aComponent: Component;

 looking: ComponentDescription)

 : Component;

aComponent
The starting point for the search. Set this field to 0 to to start the search at
the beginning of the component list. If you are continuing a search, you
can specify a component identifier previously returned by the
FindNextComponent function. The function then searches the
remaining components.

looking A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, all
components meet the search criteria. In this case, your application can

CHAPTER 6

Component Manager

Component Manager Reference 6-43

retrieve information about all of the components that are registered in the
system by repeatedly calling FindNextComponen t and
GetComponentInfo until the search is complete. Similarly, if you set all
fields to 0 except for the componentManufacturer field, the
Component Manager searches all registered components for a component
supplied by the manufacturer you specify. Note that the
FindNextComponent function does not modify the contents of the
component description record you supply. To retrieve detailed
information about a component, you need to use the
GetComponentInfo function to get the component description record
for each returned component.

DESCRIPTION

The FindNextComponent function returns the component identifier of a component
that meets the search criteria. FindNextComponent returns a function result of 0 when
there are no more matching components.

SEE ALSO

Use the GetComponentInfo function, described on page 6-48, to retrieve more
information about a component. To open a component, use the
OpenDefaultComponent or OpenComponent function, described on page 6-45 and
page 6-46, respectively. See page 6-37 for information on the component description
record.

See Listing 6-1 on page 6-9 for an example of searching for a specific component.

CountComponents

Your application can use the CountComponents function to determine the number of
registered components that meet your selection criteria. You specify the selection criteria
in a component description record. The CountComponents function returns the
number of components that meet those search criteria.

FUNCTION CountComponents (looking: ComponentDescription): LongInt;

looking A component description record. Your application specifies the criteria for
the component search in the fields of this record.

The Component Manager ignores fields in the component description
record that are set to 0. For example, if you set all the fields to 0, the
Component Manager returns the number of components registered in the
system. Similarly, if you set all fields to 0 except for the
componentManufacturer field, the Component Manager returns the
number of registered components supplied by the manufacturer you
specify.

CHAPTER 6

Component Manager

6-44 Component Manager Reference

DESCRIPTION

The CountComponents function returns a long integer containing the number of
components that meet the specified search criteria.

SEE ALSO

See page 6-37 for information on the component description record.

GetComponentListModSeed

The GetComponentListModSeed function allows you to determine if the list of
registered components has changed. This function returns the value of the component
registration seed number. By comparing this value to values previously returned by the
this function, you can determine whether the list has changed. Your application may
use this information to rebuild its internal component lists or to trigger other activity
that is necessary whenever new components are available.

FUNCTION GetComponentListModSeed: LongInt;

DESCRIPTION

The GetComponentListModSeed function returns a long integer containing the
component registration seed number. Each time the Component Manager registers or
unregisters a component it generates a new, unique seed number.

Opening and Closing Components

The OpenDefaultComponent , OpenComponent , and CloseComponent functions
allow your application to gain access to and release components. Your application must
open a component before it can use the services provided by that component. Similarly,
your application must close the component when it is finished using the component.

You can use the OpenDefaultComponent function to open a component of a specified
component type and subtype. You do not have to supply a component description
record or call the FindNextComponent function to use this function.

You use the OpenComponent function to gain access to a specified component. To use
this function, your application must have previously obtained a component identifier for
the desired component by using the FindNextComponent function. (If your application
registers a component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.)

Once you are finished using a component, use the CloseComponent function to release
the component.

CHAPTER 6

Component Manager

Component Manager Reference 6-45

OpenDefaultComponent

The OpenDefaultComponent function allows your application to gain access to the
services provided by a component. Your application must open a component before it
can call any component functions. You specify the component type and subtype values
of the component to open. The Component Manager searches for a component that
meets those criteria. If you want to exert more control over the selection process, you can
use the FindNextComponent and OpenComponent functions.

FUNCTION OpenDefaultComponent (componentType: OSType;

 componentSubType: OSType)

 : ComponentInstance;

componentType
A four-character code that identifies the type of component. All
components of a particular type support a common set of interface
routines. Your application uses this field to search for components of a
given type.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional features
or provide interfaces that extend beyond the standard routines for a
given component type. For example, the subtype of an image compressor
component indicates the compression algorithm employed by the
compressor.

Your application can use the componentSubType field to perform a
more specific lookup operation than is possible using only the
componentType field. For example, you may want your application to
use only components of a certain component type ('draw') that also
have a specific subtype ('oval'). Set this parameter to 0 to select a
component with any subtype value.

DESCRIPTION

The OpenDefaultComponent function searches its list of registered components for a
component that meets the search criteria. If it finds a component that matches the search
criteria, OpenDefaultComponent opens a connection to the component and returns a
component instance. The returned component instance identifies your application’s
connection to the component. You must supply this component instance whenever you
call the functions provided by the component. When you close the component, you must
also supply this component instance to the CloseComponent function.

If more than one component in the list of registered components meets the search
criteria, OpenDefaultComponent opens the first one that it finds in its list.

If it cannot open the specfied component, the OpenDefaultComponent function
returns a function result of NIL .

CHAPTER 6

Component Manager

6-46 Component Manager Reference

SEE ALSO

For an example that opens a component using the OpenDefaultComponent function,
see “Opening a Connection to a Default Component” beginning on page 6-7.

OpenComponent

The OpenComponent function allows your application to gain access to the services
provided by a component. Your application must open a component before it can call
any component functions. You specify the component with a component identifier that
your application previously obtained from the FindNextComponent function.

Alternatively, you can use the OpenDefaultComponent function, as previously
described, to open a component without calling the FindNextComponent function.

Note that your application may maintain several connections to a single component, or it
may have connections to several components at the same time.

FUNCTION OpenComponent (aComponent: Component): ComponentInstance;

aComponent
A component identifier that specifies the component to open. Your
application obtains this identifier from the FindNextComponent
function. If your application registers a component, it can also obtain a
component identifier from the RegisterComponent or
RegisterComponentResource function.

DESCRIPTION

The OpenComponent function returns a component instance. The returned component
instance identifies your application’s connection to the component. You must supply this
component instance whenever you call the functions provided by the component. When
you close the component, you must also supply this component instance to the
CloseComponent function.

If it cannot open the specfied component, the OpenComponent function returns a
function result of NIL .

SEE ALSO

For examples of opening a specific component by using the FindNextComponent and
OpenComponent functions, see Listing 6-1 on page 6-9 and Listing 6-2 on page 6-10,
respectively. For a description of the FindNextComponent function, see page 6-42.

CHAPTER 6

Component Manager

Component Manager Reference 6-47

CloseComponent

The CloseComponent function terminates your application’s access to the services
provided by a component. Your application specifies the connection to be closed with the
component instance returned by the OpenComponent or OpenDefaultComponent
function.

FUNCTION CloseComponent

(aComponentInstance: ComponentInstance): OSErr;

aComponentInstance
A component instance that specifies the connection to close. Your
application obtains the component instance from the OpenComponent
function or the OpenDefaultComponent function.

DESCRIPTION

The CloseComponent function closes only a single connection. If your application has
several connections to a single component, you must call the CloseComponent function
once for each connection.

RESULT CODES

SEE ALSO

For a description of the OpenDefaultComponent and OpenComponent functions, see
page 6-45 and page 6-46, respectively.

Getting Information About Components

Your application can get the registration information for any component using the
GetComponentInfo function. You can use the GetComponentIconSuite function to
get a handle to the component’s icon suite, if any.

In addition, for components to which your application already has a connection, your
application can obtain the component’s version number and also determine whether the
component supports a particular request by using the GetComponentVersion and
ComponentFunctionImplemented functions.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

CHAPTER 6

Component Manager

6-48 Component Manager Reference

GetComponentInfo

The GetComponentInfo function returns all of the registration information for a
component. Your application specifies the component with a component identifier
returned by the FindNextComponent function. The GetComponentInfo function
returns information about the component in a component description record. The
GetComponentInfo function also returns the component’s name, information string,
and icon. (To get a handle to the component’s icon suite, if it provides one, use the
GetComponentIconSuite function.)

A component provides this registration information when it is registered with the
Component Manager.

FUNCTION GetComponentInfo (aComponent: Component;

VAR cd: ComponentDescription;

componentName: Handle;

componentInfo: Handle;

componentIcon: Handle): OSErr;

aComponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
FindNextComponent function. If your application registers a
component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.

You may supply a component instance rather than a component identifier
to this function. (If you do so, you must coerce the data type
appropriately.) Your application can obtain a component instance from
the OpenComponent function or the OpenDefaultComponent function.

cd A component description record. The GetComponentInfo function
returns information about the specified component in a component
description record.

componentName
An existing handle that is to receive the component’s name. If the
component does not have a name, the GetComponentInfo function
returns an empty handle. Set this field to NIL if you do not want to
receive the component’s name.

componentInfo
An existing handle that is to receive the component’s information string.
If the component does not have an information string, the
GetComponentInfo function returns an empty handle. Set this field to
NIL if you do not want to receive the component’s information string.

componentIcon
An existing handle that is to receive the component’s icon. If the
component does not have an icon, the GetComponentInfo function
returns an empty handle. Set this field to NIL if you do not want to
receive the component’s icon.

CHAPTER 6

Component Manager

Component Manager Reference 6-49

DESCRIPTION

The GetComponentInfo function returns information about the specified component
in the cd , componentName , componentInfo , and componentIcon parameters.

RESULT CODES

SEE ALSO

For information on the component description record, see page 6-37. For information on
the FindNextComponent function, see page 6-42. For information on registering
components, see “Registering Components” beginning on page 6-57.

For an example of the use of the GetComponentInfo function, see Listing 6-3 on
page 6-10.

GetComponentIconSuite

The GetComponentIconSuite function returns a handle to the component’s icon suite
(if it provides one).

FUNCTION GetComponentIconSuite (aComponent: Component;

 VAR iconSuite: Handle): OSErr;

aComponent
A component identifier that specifies the component for the operation.
Your application obtains a component identifier from the
FindNextComponent function. If your application registers a
component, it can also obtain a component identifier from the
RegisterComponent or RegisterComponentResource function.

iconSuite GetComponentIconSuite returns, in this parameter, a handle to the
component’s icon suite, if any. If the component has not provided an icon
suite, GetComponentIconSuite returns NIL in this parameter.

DESCRIPTION

The GetComponentIconSuite function returns a handle to the component’s icon
suite. A component provides to the Component Manager the resource ID of its icon
family in the optional extensions to the component resource. Your application is
responsible for disposing of the returned icon suite handle.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

CHAPTER 6

Component Manager

6-50 Component Manager Reference

SPECIAL CONSIDERATIONS

The GetComponentIconSuite function is available only in version 3 of the
Component Manager.

RESULT CODES

SEE ALSO

For information about icon suites and icon families, see the chapter “Icon Utilities” in
this book.

GetComponentVersion

The GetComponentVersion function returns a component’s version number.

FUNCTION GetComponentVersion (ci : ComponentInstance): LongInt;

c i The component instance from which you want to retrieve version
information. Your application obtains the component instance from the
OpenDefaultComponent or OpenComponent function.

DESCRIPTION

The GetComponentVersion function returns a long integer containing the version
number of the component you specify. The high-order 16 bits represent the major
version, and the low-order 16 bits represent the minor version. The major version
specifies the component specification level; the minor version specifies a particular
implementation’s version number.

ComponentFunctionImplemented

The ComponentFunctionImplemented function allows you to determine whether a
component supports a specified request. Your application can use this function to
determine a component’s capabilities.

FUNCTION ComponentFunctionImplemented (ci : ComponentInstance;

 ftnNumber: Integer)

: LongInt;

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

CHAPTER 6

Component Manager

Component Manager Reference 6-51

ci A component instance that specifies the connection for this operation.
Your application obtains the component instance from the
OpenDefaultComponent or OpenComponent function.

ftnNumbe r A request code value. See Inside Macintosh: QuickTime Components for
information about the request codes supported by the components
supplied by Apple with QuickTime. For other components, see the
documentation supplied with the component for request code values.

DESCRIPTION

The ComponentFunctionImplemented function returns a long integer indicating
whether the component supports the specified request. You can interpret this long
integer as if it were a Boolean value. If the returned value is TRUE, the component
supports the specified request. If the returned value is FALSE, the component does
not support the request.

Retrieving Component Errors

The Component Manager provides a routine that allows your application to retrieve the
last error code that was generated by a component instance. Some component routines
return error information as their function result. Other component routines set an error
code that your application can retrieve using the GetComponentInstanceError
function. Refer to the documentation supplied with the component for information on
how that particular component handles errors.

GetComponentInstanceError

The GetComponentInstanceError function returns the last error generated by a
specific connection to a component.

FUNCTION GetComponentInstanceError

(aComponentInstance: ComponentInstance): OSErr;

aComponentInstance
A component instance that specifies the connection from which you want
error information. Your application obtains the component instance from
the OpenDefaultComponent or OpenComponent function.

DESCRIPTION

Once you have retrieved an error code, the Component Manager clears the error code for
the connection. If you want to retain that error value, you should save it in your
application’s local storage.

CHAPTER 6

Component Manager

6-52 Component Manager Reference

RESULT CODES

Data Structures for Components
This section describes the format and content of the data structures used by components.

Components, and applications that register components, use the component description
record to identify a component. A component resource incorporates the information in a
component description record and also includes other information. If you are developing
a component or an application that registers components, you must be familiar with
both the component description record and component resource; see “Resources”
beginning on page 6-80 for a description of the component resource.

The Component Manager passes information about a request to your component in a
component parameters record.

The Component Description Record

The component description record identifies the characteristics of a component,
including the type of services offered by the component and the manufacturer of the
component.

Components use component description records to identify themselves to
the Component Manager. If your component is stored in a component resource, the
information in the component description record must be part of that resource (see the
description of the component resource, on page 6-80). If you have developed an
application that registers your component, that application must supply a component
description record to the RegisterComponent function (see “Registering
Components” on page 6-57 for information about registering components).

The ComponentDescription data type defines the component description record.
Note that the valid values of fields in the component description record are determined
by the component type specification. For example, all image compressor components
must use the componentSubType field to specify the compression algorithm used by
the compressor.

TYPE ComponentDescription =

RECORD

componentType: OSType; {type}

componentSubType: OSType; {subtype}

componentManufacturer: {manufacturer}

OSType;

componentFlags: LongInt; {control flags}

componentFlagsMask: LongInt; {reserved}

END;

noErr 0 No error
invalidComponentID –3000 No component with this component identifier

CHAPTER 6

Component Manager

Component Manager Reference 6-53

Field descriptions

componentType
A four-character code that identifies the type of component. All
components of a particular type must support a common set of
interface routines. For example, drawing components all have a
component type of 'draw' .
Your component must support all of the standard routines for the
component type specified by this field. Type codes with all
lowercase characters are reserved for definition by Apple. See Inside
Macintosh: QuickTime Components for information about the
QuickTime components supplied by Apple. You can define your
own component type code as long as you register it with Apple’s
Component Registry Group.

componentSubType
A four-character code that identifies the subtype of the component.
Different subtypes of a component type may support additional
features or provide interfaces that extend beyond the standard
routines for a given component. For example, the subtype of a
drawing component indicates the type of object the component
draws. Drawing components that draw ovals have a subtype of
'oval' .
Your component may use this field to indicate more specific
information about the capabilities of the component. There are no
restrictions on the content you assign to this field. If no additional
information is appropriate for your component type, you may set
the componentSubType field to 0.

componentManufacturer
A four-character code that identifies the manufacturer of the
component. This field allows for further differentiation between
individual components. For example, components made by a
specific manufacturer may support an extended feature set.
Components provided by Apple use a manufacturer value of
'appl' .
Your component uses this field to indicate the manufacturer of the
component. You obtain your manufacturer code, which can be the
same as your application signature, from Apple’s Component
Registry Group.

componentFlags
A 32-bit field that provides additional information about a
particular component.
The high-order 8 bits are reserved for definition by the Component
Manager and provide information about the component. The
following bits are currently defined:

CONST

 cmpWantsRegisterMessage = $80000000;

 cmpFastDispatch = $40000000;

CHAPTER 6

Component Manager

6-54 Component Manager Reference

The setting of the cmpWantsRegisterMessage bit determines
whether the Component Manager calls this component during
registration. Set this bit to 1 if your component should be called
when it is registered; otherwise, set this bit to 0. If you want to
automatically dispatch requests to your component to the
appropriate routine that handles the request (rather than your
component calling CallComponentFunction or
CallComponentFunctionWithStorage), set the
cmpFastDispatch bit. If you set this bit, you must write your
component’s entry point in assembly language. If you set this
bit, the Component Manager calls your component’s entry point
with the call’s parameters, the handle to that instance’s storage, and
the caller’s return address already on the stack. The Component
Manager passes the request code in register D0 and passes the stack
location of the instance’s storage in register A0. Your component can
then use the request code in register D0 to directly dispatch the
request itself (for example, by using this value as an index into a
table of function addresses). Be sure to note that the standard
request codes have negative values. Also note that the function
parameter that the caller uses to specify the component instance
instead contains a handle to the instance’s storage. When the
component function completes, control returns to the calling
application.
For more information about component registration and
initialization, see “Responding to the Register Request” on
page 6-23.
The low-order 24 bits are specific to each component type. You can
use these flags to indicate any special capabilities or features of your
component. Your component may use all 24 bits, as appropriate to
its component type. You must set all unused bits to 0.

componentFlagsMask
Reserved. (However, note that applications can use this field when
performing search operations, as described on page 6-39.)
Your component must set the componentFlagsMask field in its
component description record to 0.

The Component Parameters Record

The Component Manager uses the component parameters record to pass information to
your component about a request from an application. The information in this record
completely defines the request. Your component services the request as appropriate.

CHAPTER 6

Component Manager

Component Manager Reference 6-55

The ComponentParameters data type defines the component parameters record.

ComponentParameters =

PACKED RECORD

flags: Char; {reserved}

paramSize: Char; {size of parameters}

what: Integer; {reques t code}

params: ARRAY[0..0] OF LongInt; {actual parameters}

END;

Field descriptions

flags Reserved for use by Apple.
paramSize Specifies the number of bytes of parameter data for this request. The

actual parameters are stored in the params field.
what Specifies the type of request. Component designers define the

meaning of positive values and assign them to requests that are
supported by components of a given type. Negative values are
reserved for definition by Apple. Apple has defined these request
codes:

CONST

kComponentOpenS elect = -1; {required}

kComponent Close Select = -2; {required}

kComponentCanDoSelect = -3; {required}

kComponentVersionSelect = -4; {required}

kComponentRegisterSelect = -5; {optional}

kComponentT argetSelect = -6; {optional }

kComponentUnregisterSelect = -7; {optional}

params An array that contains the parameters specified by the
application that called your component.
You can use the CallComponentFunction or
CallComponentFunctionWithStorage routine to convert this
array into a Pascal-style invocation of a subroutine in your
component.

For information on how your component responds to requests, see “Handling Requests
for Service” beginning on page 6-18.

CHAPTER 6

Component Manager

6-56 Component Manager Reference

Routines for Components
This section describes the Component Manager routines that are used by components. It
also discusses routines a component or application can use to register a component. This
section first describes the routines for registering components then describes the routines
that allow your component to

■ extract the parameters from a component parameters record and invoke a subroutine
of your component with these parameters

■ manage open connections

■ associate storage with a specific connection

■ pass error information to the Component Manager for later use by the calling
application

■ store and retrieve your component’s reference constant

■ open and close its resource file

■ call other components

■ capture other components

■ target a component instance

Note that version 3 and above of the Component Manager supports automatic version
control, the unregister request, and icon families. You should test the version number
before using any of these features. You can use the Gestalt function with the
gestaltComponentMgr selector to do this. When you specify this selector, Gestalt
returns in the response parameter a 32-bit value indicating the version of the
Component Manager that is installed.

If you are developing an application that uses components but does not register them,
you do not have to read this material, though it may be interesting to you. For a
discussion of the Component Manager routines that support applications that use
components, see “Routines for Applications” beginning on page 6-41.

If you are developing an application that registers components, you should read the next
section, “Registering Components.” You may also find the other topics in this section
interesting.

If you are developing a component, you should read this entire section. For more
information about creating components, see “Creating Components” beginning on
page 6-13.

Several of the routines discussed in this section use the component parameters record.
For a complete description of that structure, see “Data Structures for Components”
beginning on page 6-52. For information on the distinction between component
identifiers and component instances, see page 6-40.

CHAPTER 6

Component Manager

Component Manager Reference 6-57

Note
Any of the routines discussed in this section that require a component
identifier also accept a component instance. Similarly, you can supply a
component identifier to any routine that requires a component instance
(except for the DelegateComponentCall function). If you do this, you
must always coerce the data type appropriately. For more information,
see “Component Identifiers and Component Instances” on page 6-40. ◆

Registering Components

Before a component can be used by an application, the component must be registered
with the Component Manager. The Component Manager automatically registers
component resources stored in files with file types of 'thng' that are stored in the
Extensions folder (for information about the content of component resources, see
“Resources” beginning on page 6-80).

Alternatively, you can use either the RegisterComponent function or the
RegisterComponentResource function to register components. Both applications
and components can use these routines to register components.

Furthermore, you can use the RegisterComponentResourceFile function to register
all components specified in a given resource file.

Once you have registered your component, applications can find the component and
retrieve information about it using the Component Manager routines described earlier in
this chapter in “Routines for Applications” beginning on page 6-41.

Finally, you can use the UnregisterComponent function to remove a component from
the registration list.

Note

When an application quits, the Component Manager automatically
closes any component connections to that application. In addition, if the
application has registered components that reside in its heap space, the
Component Manager automatically unregisters those components. ◆

RegisterComponent

The RegisterComponent function makes a component available for use by
applications (or other clients). Once the Component Manager has registered a
component, applications can find and open the component using the standard
Component Manager routines. To register a component, you provide information
identifying the component and its capabilities. The Component Manager returns a
component identifier that uniquely identifies the component to the system.

CHAPTER 6

Component Manager

6-58 Component Manager Reference

Components you register with the RegisterComponent function must be in memory
when you call this function. If you want to register a component that is stored in the
resource fork of a file, use the RegisterComponentResource function. Use the
RegisterComponentResourceFile function to register all components in the
resource fork of a file.

Note that a component residing in your application heap remains registered until your
application unregisters it or quits. A component residing in the system heap and
registered by your application remains registered until your application unregisters it or
until the computer is shut down.

FUNCTION RegisterComponent (cd : ComponentDescription;

 componentEntryPoint: ComponentRoutine;

 global: Integer;

 c omponentName: Handle ;

 componentInfo: Handle;

 componentIcon: Handle): Component;

cd A component description record that describes the component to be
registered. You must correctly fill in the fields of this record before calling
the RegisterComponent function. When applications search for
components using the FindNextComponent function, the Component
Manager compares the attributes you specify here with those specified by
the application. If the attributes match, the Component Manager returns
the component identifier to the application.

componentEntryPoint
The address of the main entry point of the component you are
registering. The routine referred to by this parameter receives all requests
for the component.

global A set of flags that control the scope of component registration. You can
use these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponent returns 0 in this situation). If you
do not specify this flag, the component is registered even if
a component with identical characteristics to the one being
registered already exists.

CHAPTER 6

Component Manager

Component Manager Reference 6-59

registerCompAfter = 4;
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

componentName
A handle to the component’s name. Set this parameter to NIL if you do
not want to assign a name to the component.

componentInfo
A handle to the component’s information string. Set this parameter to
NIL if you do not want to assign an information string to the component.

componentIcon
A handle to the component’s icon (a 32-by-32 pixel black-and-white icon).
Set this parameter to NIL if you do not want to supply an icon for this
component. Note that this icon is not used by the Finder; you supply an
icon only so that other components or applications can display your
component’s icon if needed.

DESCRIPTION

The RegisterComponent function registers the specified component, recording the
information specified in the cd , componentName , componentInfo , and
componentIcon parameters. The function returns the component identifier assigned to
the component by the Component Manager. If it cannot register the component, the
RegisterComponent function returns a function result of NIL .

SEE ALSO

For a complete description of the component description record, see “Data Structures for
Components” beginning on page 6-52.

RegisterComponentResource

The RegisterComponentResource function makes a component available for use by
applications (or other clients). Once the Component Manager has registered a
component, applications can find and open the component using the standard
Component Manager routines. You provide information identifying the component and
specifying its capabilities. The Component Manager returns a component identifier that
uniquely identifies the component to the system.

Components you register with the RegisterComponentResource function must be
stored in a resource file as a component resource (see “The Component Resource”
beginning on page 6-80 for a description of the format and content of component
resources). If you want to register a component that is in memory, use the
RegisterComponent function.

CHAPTER 6

Component Manager

6-60 Component Manager Reference

The RegisterComponentResource function does not actually load the code specified
by the component resource into memory. Rather, the Component Manager loads the
component code the first time an application opens the component. If the code is not in
the same file as the component resource or if the Component Manager cannot find the
file, the open request fails.

Note that a component registered locally by your application remains registered until
your application unregisters it or quits. A component registered globally by your
application remains registered until your application unregisters it or until the computer
is shut down.

FUNCTION RegisterComponentResource (cr : ComponentResourceHandle;

global: Integer): Component;

cr A handle to a component resource that describes the component to be
registered. The component resource contains all the information required
to register the component.

global A set of flags that controls the scope of component registration. You can
use these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that this component should be
made available to other applications and clients as well as
the one performing the registration. If you do not specify
this flag, the component is available for use only by the
registering application or component (that is, the
component is local to the A5 world of the registering
program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponentResource returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.

registerCompAfter = 4;
Specify this flag to indicate that this component should be
registered after all other components with the same
component type. Usually components are registered before
others with identical descriptions; specifying this flag
overrides that behavior.

DESCRIPTION

The RegisterComponentResource function returns the component
identifier assigned to the component by the Component Manager. If the
RegisterComponentResource function could not register the component, it
returns a function result of NIL .

CHAPTER 6

Component Manager

Component Manager Reference 6-61

SEE ALSO

For a description of the format and content of component resources, see “Resources”
beginning on page 6-80.

RegisterComponentResourceFile

The RegisterComponentResourceFile function registers all component resources
in the given resource file according to the flags specified in the global parameter.

FUNCTION RegisterComponentResourceFile (resRefNum: integer ;

 global: integer): L ongInt;

resRefNu m The reference number of the resource file containing the components to
register.

global A set of flags that control the scope of the registration of the components
in the resource file specified in the resRefNum parameter. You can use
these flags to specify a value for the global parameter:

registerCmpGlobal = 1;
Specify this flag to indicate that each component in the
resource file should be made available to other applications
and clients as well as the one performing the registration. If
you do not specify this flag, each component is available
for use only by the registering application or component
(that is, the component is local to the A5 world of the
registering program).

registerCmpNoDuplicates = 2;
Specify this flag to indicate that if a component with
identical characteristics to the one being registered already
exists, then the new one should not be registered
(RegisterComponentResourceFile returns 0 in this
situation). If you do not specify this flag, the component is
registered even if a component with identical
characteristics to the one being registered already exists.

registerCompAfter = 4;
Specify this flag to indicate that as
RegisterComponentResourceFile registers a
component, it should register the component after all
other components with the same component type. Usually
components are registered before others with identical
descriptions; specifying this flag overrides that behavior.

DESCRIPTION

The RegisterComponentResourceFile function registers components in a resource
file. If the RegisterComponentResourceFile function successfully registers all
components in the specified resource file, RegisterComponentResourceFile returns

CHAPTER 6

Component Manager

6-62 Component Manager Reference

a function result that indicates the number of components registered. If the
RegisterComponentResourceFile function could not register one or more of the
components in the resource file or if the specified file reference number is invalid, it
returns a negative function result.

SEE ALSO

For a description of the format and content of component resources, see “Resources”
beginning on page 6-80.

UnregisterComponent

The UnregisterComponent function removes a component from the Component
Manager’s registration list. Most components are registered at startup and remain
registered until the computer is shut down. However, you may want to provide some
services temporarily. In that case you dispose of the component that provides the
temporary service by using this function.

FUNCTION UnregisterComponent (aComponent: Component): OSErr;

aComponent
A component identifier that specifies the component to be removed.
Applications that register components may obtain this identifier from the
RegisterComponent or RegisterComponentResource functions.

DESCRIPTION

The UnregisterComponent function removes the component with the specified
component identifier from the list of available components. The component to be
removed from the registration list must not be in use by any applications or components.
If there are open connections to the component, the UnregisterComponent function
returns a negative result code.

RESULT CODES

SEE ALSO

If you provide a component that supports the unregister request, see “Responding to the
Register Request” on page 6-23 for more information.

noErr 0 No error
invalidComponentID –3000 No component with this component identifier
validInstancesExist –3001 This component has open connections

CHAPTER 6

Component Manager

Component Manager Reference 6-63

Dispatching to Component Routines

This section discusses routines that simplify the process of calling subroutines within
your component.

When an application requests service from your component, your component receives
a component parameters record containing the information for that request. That
component parameters record contains the parameters that the application provided
when it called your component. Your component can use this record to access the
parameters directly. Alternatively, you can use the routines described in this section to
extract those parameters and pass them to a subroutine of your component. By taking
advantage of these routines, you can simplify the structure of your component code. For
more information about the interface between the Component Manager and your
component, see “Creating Components” beginning on page 6-13.

Use the CallComponentFunction function to call a component subroutine
without providing it access to global data for that connection. Use the
CallComponentFunctionWithStorage function to call a component subroutine and
to pass it a handle to the memory that stores the global data for that connection.

CallComponentFunction

The CallComponentFunction function invokes a specified function of your
component with the parameters originally provided by the application that called
your component. You pass these parameters by specifying the same component
parameters record passed to your component’s main entry point.

FUNCTION CallComponentFunction (params: ComponentParameters;

 func: ComponentFunction): LongInt;

param s The component parameters record that your component received from
the Component Manager.

fun c The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the func parameter as a Pascal
function with the parameters that were originally provided by the
application. The routine referred to by this parameter must return a
function result of type ComponentResult (a long integer) indicating the
success or failure of the operation.

DESCRIPTION

CallComponentFunctio n returns the value that is returned by the routine referred to
by the func parameter. Your component should use this value to set the current error for
this connection.

CHAPTER 6

Component Manager

6-64 Component Manager Reference

SPECIAL CONSIDERATIONS

If your component subroutine does not need global data, your component should use
CallComponentFunction . If your component subroutine requires memory in which
to store global data for the component, your component must use
CallComponentFunctionWithStorage , which is described next.

SEE ALSO

For an example that uses CallComponentFunction , see Listing 6-5 on page 6-16. You
can use the SetComponentInstanceError procedure, described on page 6-69, to set
the current error.

CallComponentFunctionWithStorage

The CallComponentFunctionWithStorage function invokes a specified function
of your component with the parameters originally provided by the application that
called your component. You pass these parameters by specifying the same component
parameters record that was received by your component’s main entry point. The
CallComponentFunctionWithStorage function also provides a handle to the
memory associated with the current connection.

FUNCTION CallComponentFunctionWithStorage

(storage: Handle ; pa rams: ComponentParameters ;

 func : Co mponentFunction): LongInt;

storag e A handle to the memory associated with the current connection. The
Component Manager provides this handle to your component along with
the request.

param s The component parameters record that your component received from
the Component Manager.

fun c The address of the function that is to handle the request. The Component
Manager calls the routine referred to by the func parameter as a Pascal
function with the parameters that were originally provided by the
application. These parameters are preceded by a handle to the memory
associated with the current connection. The routine referred to by the
func parameter must return a function result of type ComponentResult
(a long integer) indicating the success or failure of the operation.

DESCRIPTION

The CallComponentFunctionWithStorage function returns the value that is
returned by the function referred to by the func parameter. Your component should use
this value to set the current error for this connection.

CHAPTER 6

Component Manager

Component Manager Reference 6-65

SPECIAL CONSIDERATIONS

CallComponentFunctionWithStorag e takes as a parameter a handle to the memory
associated with the connection, so subroutines of a component that don’t need global
data should use the CallComponentFunction routine described in the previous
section instead.

If your component subroutine requires a handle to the memory associated with the
connection, you must use CallComponentFunctionWithStorage . You allocate the
memory for a given connection each time your component is opened. You inform the
Component Manager that a connection has memory associated with it by calling the
SetComponentInstanceStorage procedure.

SEE ALSO

For an example that uses CallComponentFunctionWithStorage ,
see Listing 6-5 on page 6-16. Use the SetComponentInstanceError procedure,
described on page 6-69, to set the current error for a connection. A description of the
SetComponentInstanceStorage procedure is given next.

Managing Component Connections

The Component Manager provides a number of routines that help your component
manage the connections it maintains with its client applications and components.

Use the SetComponentInstanceStorage procedure to inform the Component
Manager of the memory your component is using to maintain global data for a
connection. Whenever the client application issues a request to the connection, the
Component Manager provides to your component the handle to the allocated memory
for that connection along with the parameters for the request. You can also use the
GetComponentInstanceStorage function to retrieve a handle to the storage for a
connection.

Use the CountComponentInstances function to count all the connections that are
currently maintained by your component. This routine is similar to the
CountComponents routine that the Component Manager provides to client
applications and components.

Use the SetComponentInstanceA5 procedure to set the A5 world for a connection.
Once you set the A5 world for a connection, the Component Manager automatically
switches the contents of the A5 register when your component receives a request for that
connection. When your component returns to the Component Manager,
the Component Manager restores the A5 register. Your component can use the
GetComponentInstanceA5 function to retrieve the A5 world for a connection.

CHAPTER 6

Component Manager

6-66 Component Manager Reference

SetComponentInstanceStorage

When an application or component opens a connection to your component, the
Component Manager sends your component an open request. In response to this open
request, your component should set up an environment to service the connection.
Typically, your component should allocate some memory for the connection. Your
component can then use that memory to maintain state information appropriate to the
connection.

The SetComponentInstanceStorage procedure allows your component to pass a
handle to this memory to the Component Manager. The Component Manager then
provides this handle to your component each time the client application requests service
from this connection.

PROCEDURE SetComponentInstanceStorage

(aComponentInstance: ComponentInstance; theStorage: Handle);

aComponentInstance
The connection to associate with the allocated memory. The Component
Manager provides a component instance to your component when the
connection is opened.

theStorag e
A handle to the memory that your component has allocated for the
connection. Your component must allocate this memory in the current
heap. The Component Manager saves this handle and provides it to your
component, along with other parameters, in subsequent requests to this
connection.

DESCRIPTION

The SetComponentInstanceStorage procedure associates the handle
passed in the parameter theStorage with the connection specified by the
aComponentInstance parameter. Your component should dispose of any allocated
memory for the connection only in response to the close request.

SPECIAL CONSIDERATIONS

Note that whenever an open request fails, the Component Manager
always issues the close request. Furthermore, the value stored with
SetComponentInstanceStorage is always passed to the close request, so
it must be valid or NIL . If the open request tries to dispose of its allocated memory
before returning, it should call SetComponentInstanceStorage again with a NIL
handle to keep the Component Manager from passing an invalid handle to the close
request.

CHAPTER 6

Component Manager

Component Manager Reference 6-67

SEE ALSO

For an example that allocates memory in response to an open request, see Listing 6-6 on
page 6-20.

GetComponentInstanceStorage

The GetComponentInstanceStorage function allows your component
to retrieve a handle to the memory associated with a connection. Your
component tells the Component Manager about this memory by calling the
SetComponentInstanceStorage procedure. Typically, your component does not
need to use this function, because the Component Manager provides this handle to your
component each time the client application requests service from this connection.

FUNCTION GetComponentInstanceStorage

(aComponentInstance: ComponentInstance): Handle;

aComponentInstance
The connection for which to retrieve the associated memory. The
Component Manager provides a component instance to your component
when the connection is opened.

DESCRIPTION

The GetComponentInstanceStorage function returns a handle to the memory
associated with the specified connection.

CountComponentInstances

The CountComponentInstances function allows you to determine the number of
open connections being managed by a specified component. This function can be useful
if you want to restrict the number of connections for your component or if your
component needs to perform special processing based on the number of open
connections.

FUNCTION CountComponentInstances (aComponent: Component): LongInt;

aComponent
The component for which you want a count of open connections. You can
use the component instance that your component received in its open
request to identify your component.

CHAPTER 6

Component Manager

6-68 Component Manager Reference

DESCRIPTION

The CountComponentInstances function returns the number of open connections for
the specified component.

SetComponentInstanceA5

The SetComponentInstanceA5 procedure allows your component to set the A5 world
for a connection.

PROCEDURE SetComponentInstanceA5

(aComponentInstance: ComponentInstance; theA5: LongInt);

aComponentInstance
The connection for which to set the A5 world. The Component Manager
provides a component instance to your component when the connection
is opened.

theA 5 The value of the A5 register for the connection. The Component Manager
sets the A5 register to this value automatically, and it restores the previous
A5 value when your component returns to the Component Manager.

DESCRIPTION

The SetComponentInstanceA5 procedure sets the A5 world for the specified
component instance. Once you set the A5 world for a connection, the Component
Manager automatically switches the contents of the A5 register when your component
receives a request over that connection. When your component returns to the
Component Manager, the Component Manager restores your client’s A5 value.

If your component has been registered globally and you have not set an A5 value, the A5
register is set to 0. In this case you should set the A5 world of your component instance
to your client’s A5 value by using SetComponentInstanceA5 .

In general, your component uses this procedure only if it is registered globally; in this
case, it typically calls SetComponentInstanceA5 when processing the open request
for a new connection.

GetComponentInstanceA5

You can use the GetComponentInstanceA5 function to retrieve the value of the A5
register for a specified connection. Your component sets the A5 register by calling the
SetComponentInstanceA5 function, as previously described. The Component
Manager then sets the A5 register for your component each time the client requests

CHAPTER 6

Component Manager

Component Manager Reference 6-69

service on this connection. If your component has been registered globally and you have
not set an A5 value, the A5 register is set to 0. In this case you should use your client’s A5
value.

FUNCTION GetComponentInstanceA5

(aComponentInstance: ComponentInstance): LongInt;

aComponentInstance
The connection for which to retrieve the A5 value. The Component
Manager provides a component instance to your component when the
connection is opened.

DESCRIPTION

The GetComponentInstanceA5 function returns the value of the A5 register for the
connection.

Setting Component Errors

The Component Manager maintains error state information for all currently active
components. In general, your component returns error information in its function result;
a nonzero function result indicates an error occurred, and a function result of 0 indicates
the request was successful. However, some requests require that your component return
other information as its function result. In these cases, your component can use the
SetComponentInstanceError procedure to report its latest error state to the
Component Manager. You can also use this procedure at any time during your
component’s execution to report an error

SetComponentInstanceError

Although your component usually returns error information as its function result, your
component can choose to use the SetComponentInstanceError procedure to pass
error information to the Component Manager. The Component Manager uses this error
information to set the current error value for the appropriate connection. Applications
can then retrieve this error information by calling the GetComponentInstanceError
function. The documentation for your component should specify how the component
indicates errors.

PROCEDURE SetComponentInstanceError

(aComponentInstance: ComponentInstance; theErro r: OSErr) ;

CHAPTER 6

Component Manager

6-70 Component Manager Reference

aComponentInstance
A component instance that specifes the connection for which to set the
error. The Component Manager provides a component instance to your
component when the connection is opened. The Component Manager
also provides a component instance to your component as the first
parameter in the params field of the parameters record.

theErro r The new value for the current error. The Component Manager uses this
value to set the current error for the connection specified by the
aComponentInstance parameter.

DESCRIPTION

The SetComponentInstanceError procedure sets the error associated with the
specified component instance to the value specified by the parameter theError .

SEE ALSO

For a description of the GetComponentInstanceError function, see page 6-51.

Working With Component Reference Constants

The Component Manager provides routines that manage access to the reference
constants that are associated with components. There is one reference constant for
each component, regardless of the number of connections to that component. When your
component is registered, the Component Manager sets this reference constant to 0.

The reference constant is a 4-byte value that your component can use in any way you
decide. For example, you might use the reference constant to store the address of a data
structure that is shared by all connections maintained by your component. You should
allocate shared structures in the system heap. Your component should deallocate the
structure when its last connection is closed or when it is unregistered.

Use the SetComponentRefcon procedure to set the value of the reference constant for
your component. Use the GetComponentRefcon function to retrieve the value of the
reference constant.

SetComponentRefcon

You can use the SetComponentRefcon procedure to set the reference constant for your
component.

PROCEDURE SetComponentRefcon (aComponent: Component;

theRefcon: LongInt);

CHAPTER 6

Component Manager

Component Manager Reference 6-71

aComponent
A component identifier that specifies the component whose reference
constant you wish to set.

theRefCo n The reference constant value that you want to set for your component.

DESCRIPTION

The SetComponentRefcon procedure sets the value of the reference constant for your
component. Your component can later retrieve the reference constant using the
GetComponentRefcon function, described next.

GetComponentRefcon

The GetComponentRefcon function retrieves the value of the reference constant for
your component.

FUNCTION GetComponentRefcon (aComponent: Component): LongInt;

aComponent
A component identifier that specifies the component whose reference
constant you wish to get.

DESCRIPTION

The GetComponentRefcon function returns a long integer containing the reference
constant for the specified component.

Accessing a Component’s Resource File

If you store your component in a component resource and register your
component using the RegisterComponentResource function or
RegisterComponentResourceFile function, or if the Component Manager
automatically registers your component, the Component Manager allows your
component to gain access to its resource file. You can store read-only data for
your component in its resource file. For example, the resource file may contain the color
icon for the component, static data needed to initialize private storage, or any other data
that may be useful to the component. Note that there is only one resource file associated
with a component.

If you store your component in a component resource but register the component with
the RegisterComponen t function, rather than with the
RegisterComponentResource or RegisterComponentResourceFile function,
your component cannot access its resource file with the routines described in this section.

CHAPTER 6

Component Manager

6-72 Component Manager Reference

The routines described in this section allow your component to gain access to its
resource file. These routines provide read-only access to the data in the resource file. If
your component opens its resource file, it must close the file before returning to the
calling application.

Use the OpenComponentResFile function to open your component’s resource file. Use
the CloseComponentResFile function to close the resource file before returning to the
calling application.

OpenComponentResFile

The OpenComponentResFile function allows your component to gain access to its
resource file. This function opens the resource file with read permission and returns a
reference number that your component can use to read data from the file. The
Component Manager adds the resource file to the current resource chain. Your
component must close the resource file with the CloseComponentResFile function
before returning to the calling application.

Your component can use FSpOpenResFile or equivalent Resource Manager routines to
open other resource files, but you must use OpenComponentResFile to open your
component’s resource file.

FUNCTION OpenComponentResFile (aComponent: Component): Integer;

aComponent
A component identifier that specifies the component whose resource file
you wish to open. Applications that register components may obtain this
identifier from the RegisterComponentResource function.

DESCRIPTION

The OpenComponentResFile function returns a reference number for the appropriate
resource file. This function returns 0 or a negative number if the specified component
does not have an associated resource file or if the Component Manager cannot open the
resource file.

Note that when working with resources, your component should always first save the
current resource file, perform any resource operations, then restore the current resource
file to its previous value before returning.

CHAPTER 6

Component Manager

Component Manager Reference 6-73

CloseComponentResFile

This function closes the resource file that your component opened previously with the
OpenComponentResFile function.

FUNCTION CloseComponentResFile (refnum: Integer): OSErr;

refnu m The reference number that identifies the resource file to be closed. Your
component obtains this value from the OpenComponentResFile
function.

DESCRIPTION

The CloseComponentResFile function closes the specified resource file. Your
component must close any open resource files before returning to the calling application.

RESULT CODES

Calling Other Components

The Component Manager provides two techniques that allow a component to call other
components. First, your component may invoke the services of another component using
the standard mechanisms also used by applications. The Component Manager then
passes the requests to the appropriate component, and your component receives the
results of those requests.

Second, your component may supplement its capabilities by using the services of
another component to directly satisfy application requests. The Component Manager
provides the DelegateComponentCall function, which allows your component to
pass a request to a specified component. For example, you might want to create two
similar components that provide different levels of service to applications. Rather than
completely implementing both components, you could design one to rely on the
capabilities of the other. In this manner, you have to implement only that portion of the
more capable component that provides additional services.

noErr 0 No error
resFNotFound –193 Resource file not found

CHAPTER 6

Component Manager

6-74 Component Manager Reference

DelegateComponentCall

The DelegateComponentCall function provides an efficient mechanism for passing
on requests to a specified component. Your component must open a connection to the
component to which the requests are to be passed. Your component must close that
connection when it has finished using the services of the other component.

Note
The DelegateComponentCall function does not accept a component
identifier in place of a component instance. In addition, your component
should never use the DelegateComponentCall function with open or
close requests from the Component Manager—always use the
OpenComponent and CloseComponent functions to manage
connections with other components. ◆

FUNCTION DelegateComponentCall

(originalParams: ComponentParameters;

 ci : ComponentInstance): LongInt;

originalParams
The component parameters record provided to your component by the
Component Manager.

ci The component instance that is to process the request. The Component
Manager provides a component instance to your component when it
opens a connection to another component with the OpenComponent or
OpenDefaultComponent function. You must specify a component
instance; this function does not accept a component identifier.

DESCRIPTION

The DelegateComponentCall function calls the component instance specified by the
ci parameter, and passes it the specified component parameters record.
DelegateComponentCall returns a long integer containing the component result
returned by the specified component.

SEE ALSO

See “The Component Parameters Record” on page 6-54 for a description of the
component parameters record. See page 6-45, page 6-46, and page 6-47, respectively, for
information on the OpenDefaultComponent , OpenComponent , and
CloseComponent functions.

See Listing 6-16 on page 6-36 for an example of the use of the
DelegateComponentCall function.

CHAPTER 6

Component Manager

Component Manager Reference 6-75

Capturing Components

The Component Manager allows your component to capture another component. When
a component is captured, the Component Manager removes the captured component
from its list of available components. The FindNextComponent function does not
return information about captured components. Also, other applications or clients
cannot open or access captured components unless they have previously received a
component identifier or component instance for the captured component. The routines
described in this section allow your component to capture and uncapture other
components.

Typically, your component captures another component when you want to override all
or some of the features provided by a component or to provide new features. For
example, a component called NewMath might capture a component called OldMath.
Suppose the NewMath component provides a new function, DoExponent . Whenever
NewMath gets an exponent request, it can handle the request itself. For all other
requests, NewMath might call the OldMath component to perform the request.

After capturing a component, your component might choose to target a particular
instance of the captured component. For information on targeting a component instance,
see “Responding to the Target Request” beginning on page 6-25 and “Targeting a
Component Instance” on page 6-77.

Use the CaptureComponent function to capture a component. Use the
UncaptureComponent function to restore a previously captured component to the
search list.

CaptureComponent

The CaptureComponent function allows your component to capture another
component. In response to this function, the Component Manager removes the
specified component from the search list of components. As a result, applications cannot
retrieve information about the captured component or gain access to it. Current clients of
the captured component are not affected by this function.

FUNCTION CaptureComponent (capturedComponent: Component;

capturingComponent: Component)

: Component;

capturedComponent
The component identifier of the component to be captured. Your
component can obtain this identifier from the FindNextComponent
function or from the component registration routines.

capturingComponent
The component identifier of your component. Note that you can use the
component instance (appropriately coerced) that your component
received in its open request in this parameter.

CHAPTER 6

Component Manager

6-76 Component Manager Reference

DESCRIPTION

The CaptureComponent function removes the specified component from the search
list of components and returns a new component identifier. Your component can use this
new identifier to refer to the captured component. For example, your component
can open the captured component by providing this identifier to the
OpenComponent function. Your component must provide this identifier to the
UncaptureComponent function to specify the component to be restored to the
search list.

If the component specified by the capturedComponent parameter is already captured,
the CaptureComponent function returns a component identifier set to NIL .

SEE ALSO

See “Responding to the Target Request” on page 6-25 and “Targeting a Component
Instance” on page 6-77 for information about target requests. For information related to
the Component Manager’s use of its list of available components, see page 6-42 for
details on the FindNextComponent function and page 6-45 for details on the
OpenDefaultComponent function. See “Registering Components” beginning on
page 6-57 for details of the component registration routines.

UncaptureComponent

The UncaptureComponent function allows your component to uncapture a previously
captured component.

FUNCTION UncaptureComponent (aComponent: Component): OSErr;

aComponent
The component identifier of the component to be uncaptured. Your
component obtains this identifier from the CaptureComponent function.

DESCRIPTION

The UncaptureComponent function restores the specified component to the search list
of components. Applications can then access the component and retrieve information
about the component using Component Manager routines.

RESULT CODES

noErr 0 No error
invalidComponentID –3000 No component has this component identifier
componentNotCaptured –3002 This component has not been captured

CHAPTER 6

Component Manager

Component Manager Reference 6-77

Targeting a Component Instance

Your component can target a component instance without capturing the component
or your component can first capture the component and then target a specific instance of
the component. For information on capturing components, see “Capturing Components”
beginning on page 6-75. To target a component instance, use the ComponentSetTarget
function.

ComponentSetTarget

You can use the ComponentSetTarget function to call a component’s target request
routine (that is, the routine that handles the kComponentTargetSelect request code).
The target request informs a component that it has been targeted by another component.

You should not target a component instance if the component does not support the
target request. Before calling this function, you should issue a can do request to the
component instance you want to target to verify that the component supports the target
request. If the component supports it, use the ComponentSetTarget function to send a
target request to the component instance you wish to target. After receiving a target
request, the targeted component instance should call the component instance that
targeted it whenever the targeted component instance would normally call one of its
defined functions.

FUNCTION ComponentSetTarget (ci: ComponentInstance;

 target: ComponentInstance): LongInt;

c i The component instance to which to send a target request (the component
that has been targeted).

target The component instance of the component issuing the target request.

DESCRIPTION

The ComponentSetTarget function returns a function result of
badComponentSelector if the targeted component does not support the target
request. Otherwise, the ComponentSetTarget function returns as its function result
the value that the targeted component instance returned in response to the target request.

SEE ALSO

For details on how to handle the target request, see “Responding to the Target Request”
on page 6-25.

CHAPTER 6

Component Manager

6-78 Component Manager Reference

Changing the Default Search Order

You can use the SetDefaultComponent function to change the order in which the list
of registered components is searched.

SetDefaultComponent

The SetDefaultComponent function allows your component to change the search
order for registered components. You specify a component that is to be placed at the
front of the search chain, along with control information that governs the reordering
operation. The order of the search chain influences which component the Component
Manager selects in response to an application’s use of the OpenDefaultComponent
and FindNextComponent functions.

FUNCTION SetDefaultComponent (aComponent: Component;

flags: Integer): OSErr;

aComponent
A component identifier that specifies the component for this operation.

flags A value specifying the control information governing the operation. The
value of this parameter controls which component description fields the
Component Manager examines during the reorder operation. Set the
appropriate flags to 1 to define the fields that are examined during the
reorder operation. The following flags are defined:

defaultComponentIdentical
The Component Manager places the specified component
in front of all other components that have the same
component description.

defaultComponentAnyFlags
The Component Manager ignores the value of the
componentFlags field during the reorder operation.

defaultComponentAnyManufacturer
The Component Manager ignores the value of the
componentManufacturer field during the reorder
operation.

defaultComponentAnySubType
The Component Manager ignores the value of the
componentSubType field during the reorder operation.

CHAPTER 6

Component Manager

Component Manager Reference 6-79

DESCRIPTION

The SetDefaultComponent function changes the search order of registered
components by moving the specified component to the front of the search chain,
according to the value specified in the flags parameter.

SPECIAL CONSIDERATIONS

Note that the SetDefaultComponent function changes the search order for all
applications. As a result, you should use this function carefully.

RESULT CODES

Application-Defined Routine
To provide a component, you define a component function and supply the appropriate
registration information. You store your component function in a code resource and
typically store your component’s registration information as resources in a component
file. For additional information on this process, see “Creating Components” beginning
on page 6-13.

MyComponent

Here’s how to declare a component function named MyComponent :

FUNCTION MyComponent (params: ComponentParameters;

 storage: Handle): ComponentResult;

params A component parameters record. The what field of the component
parameters record indicates the action your component should perform.
The parameters that the client invoked your function with are contained
in the params field of the component parameters record. Your component
can use the CallComponentFunction or
CallComponentFunctionWithStorage routine to extract the
parameters from this record.

storage A handle to any memory that your component has associated with the
connection. Typically, upon receiving an open request, your component
allocates memory and uses the SetComponentInstanceStorage
function to associate the allocated memory with the component
connection.

noErr 0 No error
invalidComponentID –3000 No component has this component identifier

CHAPTER 6

Component Manager

6-80 Component Manager Reference

DESCRIPTION

When your component receives a request, it should perform the action specified in the
what field of the component parameters record. Your component should return a value
of type ComponentResult (a long integer). If your component does not return error
information as its function result, it should indicate errors using the
SetComponentInstanceError procedure.

SEE ALSO

For information on the component parameters record, see page 6-54. For information on
writing a component, see “Creating Components” beginning on page 6-13.

Resources
This section describes the resource you use to define your component. If you are
developing a component, you should be familiar with the format and content of a
component resource.

The Component Resource

A component resource (a resource of type 'thng') stores all of the information about a
component in a single file. The component resource contains all the information needed
to register a code resource as a component. Information in the component resource tells
the Component Manager where to find the code for the component.

If you are developing an application that uses components, you do not need to know
about component resources.

If you are developing a component or an application that registers components, you
should be familiar with component resources. The Component Manager automatically
registers any components that are stored in component files in the Extensions folder. The
file type for component files must be set to 'thng' . If you store your component in a
component file in the Extensions folder, you do not need to create an application to
register the component.

The Component Manager provides routines that register components. The
RegisterComponent function registers components that are not stored in resource
files. The RegisterComponentResource and RegisterComponentResourceFile
functions register components that are stored as component resources in a component
file. If you are developing an application that registers components, you should use the
routine that is appropriate to the storage format of the component. For more information
about how your application can register components, see “Registering Components”
beginning on page 6-57.

CHAPTER 6

Component Manager

Component Manager Reference 6-81

This section describes the component resource, which must be provided by all
components stored in a component file. Applications that register a component using the
RegisterComponent function must also provide the same information as that
contained in a component resource.

IMPORTANT

For compatibility with early versions of the Component Manager, a
component resource must be locked. ▲

The ComponentResource data type defines the structure of a component resource.
(You can also optionally append to the end of this structure the information defined by
the ComponentResourceExtension data type, as shown in Figure 6-5 on page 6-85.)

ComponentResource =

RECORD

cd: {registration information}

ComponentDescription ;

component: ResourceSpec; {code resource }

componentName: ResourceSpec; {name string resource }

componentInfo: ResourceSpec; {info string resource }

componentIcon: ResourceSpec; {icon resource }

END;

Field descriptions

cd A component description record that specifies the characteristics of
the component. For a complete description of this record, see
page 6-52.

component A resource specification record that specifies the type and ID of the
component code resource. The resType field of the resource
specification record may contain any value. The component’s main
entry point must be at offset 0 in the resource.

componentName A resource specification record that specifies the resource type and
ID for the name of the component. This is a Pascal string. Typically,
the component name is stored in a resource of type 'STR ' .

componentInfo A resource specification record that specifies the resource type and
ID for the information string that describes the component. This is a
Pascal string. Typically, the information string is stored in a resource
of type 'STR ' . You might use the information stored in this
resource in a Get Info dialog box.

componentIcon A resource specification record that specifies the resource type and
ID for the icon for a component. Component icons are stored as
32-by-32 bit maps. Typically, the icon is stored in a resource of type
'ICON' . Note that this icon is not used by the Finder; you supply
an icon only so that other components or applications can display
your component’s icon in a dialog box if needed.

CHAPTER 6

Component Manager

6-82 Component Manager Reference

A resource specification record, defined by the data type ResourceSpec , describes the
resource type and resource ID of the component’s code, name, information string, or
icon. The resources specified by the resource specification records must reside in the
same resource file as the component resource itself.

ResourceSpec =

RECORD

resType: OSType; {resource type}

resId: Integer; {resource ID}

END;

You can optionally include in your component resource the information defined by the
ComponentResourceExtension data type:

ComponentResourceExtension =

RECORD

componentVersion: LongInt; {version of component}

componentRegisterFlags: LongInt; {additional flags}

componentIconFamily: Integer; {resource ID of icon }

{ family}

END;

Field descriptions

componentVersion
The version number of the component. If you specify the
componentDoAutoVersion flag in componentRegisterFlags ,
the Component Manager must obtain the version number of your
component when your component is registered. Either you can
provide a version number in your component’s resource, or you can
specify a value of 0 for its version number. If you specify 0, the
Component Manager sends your component a version request to
get the version number of your component.

componentRegisterFlags
A set of flags containing additional registration information. You
can use these constants as flags:

CONST

componentDoAutoVersion = 1;

componentWantsUnregister = 2;

componentAutoVersionIncludeFlags = 4;

CHAPTER 6

Component Manager

Component Manager Reference 6-83

Specify the componentDoAutoVersion flag if you want the
Component Manager to resolve conflicts between different versions
of the same component. If you specify this flag, the Component
Manager registers your component only if there is no later version
available. If an older version is already registered, the Component
Manager unregisters it. If a newer version of the same component is
registered after yours, the Component Manager automatically
unregisters your component. You can use this automatic version
control feature to make sure that the most recent version of your
component is registered, regardless of the number of versions that
are installed.
Specify the componentWantsUnregister flag if you want your
component to receive an unregister request when it is unregistered.
Specify the flag componentAutoVersionIncludeFlags if you
want the Component Manager to include the componentFlags
field of the component description record when it searches for
identical components in the process of performing automatic
version control for your component. If you do not specify this flag,
the Component Manager searches only the componentType ,
componentSubType , and componentManufacturer fields.
When the Component Manager performs automatic version control
for your component, it searches for components with identical
values in the componentType , componentSubType , and
componentManufacturer fields (and optionally, in
the componentFlags field). If it finds a matching component, it
compares version numbers and registers the most recent version of
the component. Note that the setting of the
componentAutoVersionIncludeFlags flag affects automatic
version control only and does not affect the search operations
performed by FindNextComponent and CountComponents .

componentIconFamily
The resource ID of an icon family. You can provide an icon family in
addition to the icon provided in the componentIcon field. Note
that members of this icon family are not used by the Finder; you
supply an icon family only so that other components or applications
can display your component’s icon in a dialog box if needed.

CHAPTER 6

Component Manager

6-84 Component Manager Reference

You store a component resource, along with other resources for the component, in the
resource fork of a component file. Figure 6-4 shows the structure of a component file.

Figure 6-4 Format of a component file

You can also store other resources for your component in your component file. For
example, you should include 'FREF' , 'BNDL' , and icon family resources so that the
Finder can associate the icon identifying your component with your component file.
When designing the icon for your component file, you should follow the same
guidelines as those for system extension icons. See Macintosh Human Interface Guidelines
for information on designing an icon. See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for information on the 'FREF' and 'BNDL'
resources.

Figure 6-5 shows the structure of a component resource.

CHAPTER 6

Component Manager

Component Manager Reference 6-85

Figure 6-5 Structure of a compiled component ('thng') resource

CHAPTER 6

Component Manager

6-86 Summary of the Component Manager

Summary of the Component Manager

Pascal Summary

Constants

CONST

gestaltComponentMgr = 'cpnt';

kComponentOpenSelect = -1; {o pen request}

kComponentCloseSelect = -2; {c lose request}

kComponentCanDoSelect = -3; {can do request}

kComponentVersionSelect = -4; {version request}

kComponentRegisterSelect = -5; {register request}

kComponentTargetSelect = -6; {target request}

kComponentUnregisterSelect = -7; {unregister request}

{wi ldcard values for searche s}

kAnyComponentTyp e = 0; {any type}

kAnyComponentSubTyp e = 0; {any subtype}

kAnyComponentManufacturer = 0; {any manufacturer}

kAnyComponentFlagsMas k = 0; {any flags}

{component description flag }

cmpWantsRegisterMessage = $80000000; {send register request}

{flags for optional extension to component resource}

componentDoAutoVersion = 1; {provide version control}

componentWantsUnregister = 2; {send unregister request}

componentAutoVersionIncludeFlags = 4; {include flags in search}

{flags for S etDefaultComponen t function}

defaultComponentIdentica l = 0;

defaultComponentAnyFlag s = 1;

defaultComponentAnyManufactur er = 2 ;

defaultComponentAnySubTyp e = 4;

defaultComponentAnyFlagsAnyManufacturer

= defaultComponentAnyFlags +

 defaultComponentAnyManufacturer;

CHAPTER 6

Component Manager

Summary of the Component Manager 6-87

defaultComponentAnyFlagsAnyManufacturerAnySubType

= defaultComponentAnyFlags

+ defaultComponentAnyManufacturer

+ defaultComponentAnySubType ;

{flags for the global parameter of RegisterComponentResourceFile function}

registerCmpGlobal = 1; {other apps can communicate with component}

registerCmpNoDuplicates = 2; { don ' t register if d uplicate component }

{ e xists}

registerCompAfter = 4; {component registered after all others of }

{ same type }

Data Types

TYPE

ComponentDescription =

RECORD

componentType : OSType; {type}

componentSubType : OSType; {subtype}

componentManufacturer : OSType; {manufacturer}

componentFlags : LongInt; {control flags}

componentFlagsMask : LongInt; {mas k for control flags }

{ (reserved when }

{ registering a component)}

END;

ResourceSpec =

RECORD

resTy pe: OSType; {resource type}

resID: I nteger; {resourc e ID}

END;

ComponentResourcePtr = ^ComponentResource;

ComponentResourceHandle = ^ComponentResourcePtr;

ComponentResource = {component resource}

RECORD

cd: ComponentDescription; {registratio n information}

component : ResourceSpec; { code resour ce}

componentName: ResourceSpec; {name string resource}

componentInfo : ResourceSpec; {info string resource}

componentIcon : ResourceSpec; {icon resource}

END;

CHAPTER 6

Component Manager

6-88 Summary of the Component Manager

ComponentResourceExtension = {optional extension to resource}

RECORD

componentVersion: LongInt; {version of component}

componentRegisterFlags: LongInt; {additional flags}

componentIconFamily: Integer; {resource ID of icon }

{ family}

END;

{c omponent parameters record }

ComponentParameters =

PACKED RECORD

flags : Char ; {reserved}

paramSize : Char ; { size in bytes of actual }

{ parameters passed to }

{ this routine}

what: Integer; {reques t code- }

{ negative fo r requests }

{ defined by Component Mgr}

params: ARRAY[0..0] OF LongInt ; {actual parameters for }

{ the indicated routine}

END;

{component identifier}

Component = ^ComponentRecord;

ComponentRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

{component instance}

ComponentInstance = ^ComponentInstanceRecord;

ComponentInstanceRecord =

RECORD

data: ARRAY[0..0] OF LongInt;

END;

ComponentResul t = LongInt;

ComponentRoutin e = ProcPtr;

ComponentFunctio n = ProcPtr;

CHAPTER 6

Component Manager

Summary of the Component Manager 6-89

Routines for Applications

Finding Components

FUNCTION FindNextComponent (aComponent: Component;
looking: ComponentDescription): Component;

FUNCTION CountComponents (looking: ComponentDescription): LongInt ;

FUNCTION GetComponentListModSeed: LongInt;

Opening and Closing Components

FUNCTION OpenDefaultComponent
(componentType: OSType;

componentSubType: OSType): ComponentInstance;

FUNCTION OpenComponent (aComponent: Component): ComponentInstance;

FUNCTION CloseComponent (aComponentInstance: ComponentInstance): OSErr;

Getting Information About Components

FUNCTION GetComponentInfo (aComponent: Component;
VAR c d: ComponentDescription;
componentName: Handle; componentInfo: Handle;
componentIcon: Handle): OSErr ;

FUNCTION GetComponentIconSuite
(aComponent: Component;

VAR iconSuite: Handle): OSErr;

FUNCTION GetComponentVersion
(ci : ComponentInstance): LongInt;

FUNCTION ComponentFunctionImplemented
(ci : ComponentInstance; ftnNumber: Integer)

: LongInt;

Retrieving Component Errors

FUNCTION GetComponentInstanceError
(aComponentInstance: ComponentInstance): OSErr;

CHAPTER 6

Component Manager

6-90 Summary of the Component Manager

Routines for Components

Registering Components

FUNCTION RegisterComponent (cd : ComponentDescription;
componentEntryPoint: ComponentRoutine;
global: Integer; componentName: Handle;
componentInfo: Handle;
componentIcon: Handle): Component;

FUNCTION RegisterComponentResource
(cr : ComponentResourceHandle;

global: Integer): Component ;

FUNCTION RegisterComponentResourceFile
(resRefNum: integer; global: integer); LongInt;

FUNCTION UnregisterComponent
(aComponent: Compo nent): OSErr;

Dispatching to Component Routines

FUNCTION CallComponentFunction
(params: ComponentParameters;

func: ComponentFunction): LongInt;

FUNCTION CallComponentFunctionWithStorage
(storage: Handle;

params: ComponentParameters;
func: ComponentFunction): LongInt ;

Managing Component Connections

PROCEDURE SetComponentInstanceStorage
(aComponentInstance: ComponentInstance;

theStorage: Handle);

FUNCTION GetComponentInstanceStorage
(aComponentInstance: ComponentInstance): Handle;

FUNCTION CountComponentInstances
(aComponent: Component): LongInt;

PROCEDURE SetComponentInstanceA5
(aComponentInstance: ComponentInstance;

theA5: LongInt);

FUNCTION GetComponentInstanceA5
(aComponentInstance: ComponentInstance)

: LongInt;

CHAPTER 6

Component Manager

Summary of the Component Manager 6-91

Setting Component Errors

PROCEDURE SetComponentInstanceError
(aComponentInstance: ComponentInstance;

theError: OSErr);

Working With Component Reference Constants

PROCEDURE SetComponentRefcon
(aComponent: Component; theRefcon: LongInt);

FUNCTION GetComponentRefcon
(aComponent: Component): LongInt;

Accessing a Component’s Resource File

FUNCTION OpenComponentResFile
(aComponent: Component): Integer;

FUNCTION CloseComponentResFile
(refnum: Integer): OSErr;

Calling Other Components

FUNCTION DelegateComponentCall
(originalParams: ComponentParameters;

ci : ComponentInstance): LongInt;

Capturing Components

FUNCTION CaptureComponent (capturedComponent: Component;
capturingComponent: Component): Component;

FUNCTION UncaptureComponent
(aComponent: Component): OSErr;

Targeting a Component Instance

FUNCTION ComponentSetTarget (ci: ComponentInstance;
target: ComponentInstance): LongInt;

Changing the Default Search Order

FUNCTION SetDefaultComponent
(aComponent: Component; flags: Integer): OSErr;

CHAPTER 6

Component Manager

6-92 Summary of the Component Manager

Application-Defined Routine

FUNCTION MyComponent (params: ComponentParameters;
storage: Handle): ComponentResult;

C Summary

Constants

#defin e g estaltComponentMgr 'cpnt ' / *Gestalt selector* /

/ *required component routines*/

#define k ComponentOpenSelec t -1 / *open request*/

#define kComponentCloseSelec t -2 / *close request*/

#define kComponentCanDoSelec t -3 / *can do request*/

#define kComponentVersionSelec t -4 / *version request*/

#define kComponentRegisterSelec t -5 / *register request*/

#define kComponentTargetSelec t -6 / *target request*/

#define kComponentUnregisterSelec t -7 / *unregister request* /

/ *wildcard values for searches*/

#define kAnyComponentTyp e 0 /*any type*/

#define kAnyComponentSubTyp e 0 /*any subtype*/

#define kAnyComponentManufacture r 0 /*any manufacturer*/

#define kAnyComponentFlagsMas k 0 /*any flags*/

/*component description flags*/

enum {

cmpWantsRegisterMessage = 1L<<31 /*send register request*/

};

/*flags for optional extension to component resource*/

enum {

componentDoAutoVersio n = 1, / *provide version control*/

componentWantsUnregister = 2, / *send unregister request*/

componentAutoVersionIncludeFlags = 4 / *include flags in search*/

};

enum { /*flags for SetDefaultComponent function*/

defaultComponentIdentical = 0,

defaultComponentAnyFlags = 1,

defaultComponentAnyManufacturer = 2,

CHAPTER 6

Component Manager

Summary of the Component Manager 6-93

defaultComponentAnySubType = 4 ,

};

#define defaultComponentAnyFlagsAnyManufacturer

(defaultComponentAnyFlags+defaultComponentAnyManufacturer)

#define defaultComponentAnyFlagsAnyManufacturerAnySubType

(defaultComponentAnyFlags+defaultComponentAnyManufacturer

 +defaultComponentAnySubType)

enum {

/*f lags for the global parameter of RegisterComponentResourceFile functio n*/

registerCmpGlobal = 1, / *o ther apps can communicate with */

/* c omponent* /

registerCmpNoDuplicates = 2, / *d uplicate component exist s* /

registerCompAfter = 4 / *c omponent registered after all others */

/* of same typ e*/

};

Data Structures

struc t ComponentDescription {

OSType componentType ; / *type* /

OSType componentSubType ; / *subtype* /

OSType componentManufacturer ; / *manufacturer* /

unsigned long componentFlags ; /*control flags*/

unsigned long componentFlagsMask ; / *mask fo r control flags * /

/ * (reserved when registering * /

/ * a component)* /

};

typedef struct ComponentDescription ComponentDescription;

struc t ResourceSpec {

OSType ResType; /*resource type* /

short ResID; /*resource ID*/

};

typedef struct ResourceSpec ResourceSpec;

CHAPTER 6

Component Manager

6-94 Summary of the Component Manager

struct ComponentResource {

ComponentDescription cd; /*registration information*/

ResourceSpec component; /*code resource*/

ResourceSpec componentName; /*name string resource*/

ResourceSpec componentInfo; /*info string resource*/

ResourceSpec componentIcon; /*icon resource*/

};

typedef struct ComponentResource ComponentResource;

typedef ComponentResource *ComponentResourcePtr, **ComponentResourceHandle;

/*optional extension to component resource*/

struct ComponentResourceExtension {

long componentVersion; /*version number*/

long componentRegisterFlags; /*additional flags*/

short componentIcon Family ; /*resource ID of icon family*/

};

typedef struct ComponentResourceExtension ComponentResourceExtension;

/ *s tructure received by componen t* /

struc t ComponentParameters {

unsigned char flags; / *reserved* /

unsigned char paramSize; / *s ize in bytes of actual parameters passed */

/* t o thi s routine* /

short what ; / *reques t code, negative fo r requests */

/* defined by Component Mgr* /

long params [1] ; / *a ctual parameters for the indicated */

/* r outin e* /

};

typedef struct ComponentParameters ComponentParameters ;

/*component identifier*/

typedef struct privateComponentRecord *Component;

/*component instance*/

typedef struct privateComponentInstanceRecord *ComponentInstance;

t ypedef long ComponentResult ;

t ypedef pascal ComponentResult (*ComponentRoutine)

(ComponentParameters *cp , Handle componentStorag e);

t ypedef pascal ComponentResult (*ComponentFunction)() ;

#define ComponentCallNow(callNumber, paramSize) \

{0x2F3C, paramSize, callNumber, 0x7000, 0xA82A}

CHAPTER 6

Component Manager

Summary of the Component Manager 6-95

Routines for Applications

Finding Components

pascal Component FindNextComponen t
(Component aComponent,

ComponentDescription *looking);

pascal long CountComponents
(ComponentDescription *looking);

pascal long GetComponentListModSee d
(void);

Opening and Closing Components

pascal ComponentInstance OpenDefaultComponen t
(OSType componentType,

OSType componentSubType);

pascal ComponentInstance OpenComponen t
(Component aComponent);

pascal OSErr CloseComponent
(ComponentInstance aComponentInstance);

Getting Information About Components

pascal OSErr GetComponentInfo
(Component aComponent,

ComponentDescription *cd,
Handle componentName, Handle componentInfo,
Handle componentIcon);

pascal OSErr GetComponentIconSuite
(Component aComponent,

Handle *iconSuite);

pascal long GetComponentVersion
(ComponentInstance ci);

pascal long ComponentFunctionImplemente d
(ComponentInstance ci, short ftnNumber);

Retrieving Component Errors

pascal OSErr GetComponentInstanceError
(ComponentInstance aComponentInstance);

CHAPTER 6

Component Manager

6-96 Summary of the Component Manager

Routines for Components

Registering Components

pascal Component RegisterComponen t
(ComponentDescription *cd,

ComponentRoutine componentEntryPoint,
short global, Handle componentName,
Handle componentInfo, Handle componentIcon);

pascal Component RegisterComponentResourc e
(ComponentResourceHandle cr, short global);

pascal long RegisterComponentResourceFil e
(short resRefNum, short global);

pascal OSErr UnregisterComponent
(Component aComponent);

Dispatching to Component Routines

pascal long CallComponentFunction
(ComponentParameters *params,

ComponentFunction func);

pascal long CallComponentFunctionWithStorag e
(Handle storage, ComponentParameters *params,

ComponentFunction func);

Managing Component Connections

pascal void SetComponentInstanceStorage
(ComponentInstance aComponentInstance,

Handle theStorage);

pascal Handle GetComponentInstanceStorage
(ComponentInstance aComponentInstance);

pascal long CountComponentInstance s
(Component aComponent);

pascal void SetComponentInstanceA5
(ComponentInstance aComponentInstance,

long theA5);

pascal long GetComponentInstanceA5
(ComponentInstance aComponentInstance);

Setting Component Errors

pascal void SetComponentInstanceErro r
(ComponentInstance aComponentInstance,

OSErr theError);

CHAPTER 6

Component Manager

Summary of the Component Manager 6-97

Working With Component Reference Constants

pascal void SetComponentRefcon
(Component aComponent, long theRefcon);

pascal long GetComponentRefcon
(Component aComponent);

Accessing a Component’s Resource File

pascal short OpenComponentResFile
(Component aComponent);

pascal OSErr CloseComponentResFile
(short refnum);

Calling Other Components

pascal long DelegateComponentCal l
(ComponentParameters *originalParams,

ComponentInstance ci);

Capturing Components

pascal Component CaptureComponent
(Component capturedComponent,

Component capturingComponent);

pascal OSErr UncaptureComponent
(Component aComponent);

Targeting a Component Instance

pascal long ComponentSetTarget
(ComponentInstance ci,

ComponentInstance target);

Changing the Default Search Order

pascal OSErr SetDefaultComponent
(Component aComponent, short flags);

Application-Defined Routine

pascal ComponentResult MyComponent
(ComponentParameters* params,

Handle storage);

CHAPTER 6

Component Manager

6-98 Summary of the Component Manager

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_ComponentDispatch

Selector Routine

$7001 RegisterComponent

$7002 UnregisterComponent

$7003 CountComponents

$7004 FindNextComponent

$7005 GetComponentInfo

$7006 GetComponentListModSeed

$7007 OpenComponent

$7008 CloseComponent

$700A GetComponentInstanceError

$700B SetComponentInstanceError

$700C GetComponentInstanceStorage

$700D SetComponentInstanceStorage

$700E GetComponentInstanceA5

$700F SetComponentInstanceA5

$7010 GetComponentRef con

$7011 SetComponentRef con

$7012 RegisterComponentResource

$7013 CountComponentInstances

$7014 RegisterComponentResourceFile

$7015 OpenComponentResFile

$7018 CloseComponentResFile

$701C CaptureComponent

$701D UncaptureComponent

$701E SetDefaultComponent

$7021 OpenDefaultComponent

$7024 DelegateComponentCall

$70FF CallComponentFunction

$70FF CallComponentFunctionWithStorage

CHAPTER 6

Component Manager

Summary of the Component Manager 6-99

Result Codes
noErr 0 No error
resFNotFound –193 Resource file not found
invalidComponentID –3000 No component has this component identifier
validInstancesExist –3001 This component has open connections
componentNotCaptured –3002 This component has not been captured
badComponentInstance $800008001 Invalid component passed to Component Manager
badComponentSelector $800008002 Component does not support the specified request code

