
Contents 5-1

CHAPTER 5

Contents

Icon Utilities

Introduction to the Icon Utilities 5-3
About the Icon Utilities 5-6
Using the Icon Utilities 5-7

Drawing Icons in an Icon Family 5-8
Drawing an Icon Directly From a Resource 5-10
Getting an Icon Suite and Drawing One of Its Icons 5-11
Drawing Specific Icons From an Icon Family 5-12
Manipulating Icons 5-13

Drawing Icons That Are Not Part of an Icon Family 5-13
Icon Utilities Reference 5-17

Data Structure 5-17
The Color Icon Record 5-17

Icon Utilities Routines 5-18
Drawing Icons From Resources 5-19
Getting Icons From Resources That Don’t Belong to an Icon
Family 5-28
Disposing of Icons 5-30
Creating an Icon Suite 5-30
Getting Icons From an Icon Suite 5-34
Drawing Icons From an Icon Suite 5-35
Performing Operations on Icons in an Icon Suite 5-38
Getting and Setting the Label for an Icon Suite 5-40
Getting Label Information 5-41
Disposing of Icon Suites 5-42
Converting an Icon Mask to a Region 5-43
Determining Whether a Point or Rectangle Is Within an Icon 5-46
Working With Icon Caches 5-53

Application-Defined Routines 5-57
Icon Action Functions 5-57
Icon Getter Functions 5-58

CHAPTER 5

5-2 Contents

Summary of the Icon Utilities 5-60
Pascal Summary 5-60

Constants 5-60
Data Types 5-62
Icon Utilities Routines 5-62
Application-Defined Routines 5-65

C Summary 5-65
Constants 5-65
Data Types 5-67
Icon Utilities Routines 5-68
Application-Defined Routines 5-71

Assembly-Language Summary 5-71
Data Structure 5-71
Trap Macros 5-72

Result Codes 5-73

CHAPTER 5

Introduction to the Icon Utilities 5-3

Icon Utilities

This chapter describes how your application can use the Icon Utilities to draw icons,
including small, large, black-and-white, and color icons. The Finder draws and manages
the icons that a user sees on the desktop, but if your application needs to display icons
within its windows, it can use Icon Utilities routines to draw them.

For information on how to create icons and associate them with your application and its
document, see the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials. For information on how to design icons, see the chapter “Icons” in Macintosh
Human Interface Guidelines.

This chapter begins with a brief overview of the various kinds of icons you can provide.
The rest of the chapter describes how you can draw each kind of icon.

Introduction to the Icon Utilities

An icon on a Macintosh screen is an image that graphically represents some object, such
as a file, a folder, or the Trash. On the desktop, the Finder displays icons representing
your application and the documents it creates. The Finder also allows users to
manipulate icons on the desktop and in folders.

If necessary, your application can also display icons in its menus, dialog boxes, or
windows. You define an icon for a menu item by providing the icon’s icon number in the
'MENU' resource that describes the menu item. If you define an icon for a menu item in
this manner, the Menu Manager automatically displays the icon whenever you display
the menu using the MenuSelect function.

You usually define icons in dialog boxes by defining an item of type Icon and providing
the resource ID of the icon in the item list ('DITL') resource that describes the dialog. If
you define an icon for a dialog item in this manner, the Dialog Manager automatically
displays the icon whenever you display the dialog box using Dialog Manager routines.

Both the Menu Manager and Dialog Manager allow you to display icons of resource type
'ICON' or 'cicn' . The Menu Manager also allows you to display icons of resource
type 'SICN' . To display other types of icons in your menu items, you can write your
own menu definition procedure and use the routines described in this chapter to draw
the icons. To display other types of icons in your dialog items, define items of type
userItem and use the routines in this chapter to draw your icons.

To display icons of any kind in your windows, use Icon Utilities routines. Icons in
windows can be useful for representing files and folders in certain applications, such as
archiving applications, groupware, and electronic mail applications. Other programs,
such as games, might allow users to move or manipulate icons in windows for a variety
of purposes.

CHAPTER 5

Icon Utilities

5-4 Introduction to the Icon Utilities

Whenever you design an icon, you should generally begin by creating a black-and-white
icon and then add color using the resource types that define color icons. Typically you
use a high-level tool such as the ResEdit application to design icons. Figure 5-1 shows
the ResEdit view of a black-and-white icon. When you are satisfied with the appearance
of your icons, you can use the DeRez decompiler to convert them into Rez input.

Figure 5-1 The ResEdit view of an icon

For more information about designing and creating icons, see Macintosh Human Interface
Guidelines and the chapter “Finder Interface” in Inside Macintosh: Macintosh Toolbox
Essentials.

To display an icon most effectively at different sizes and on display devices with
different bit depths, you should create an icon family for each icon you wish to use. An
icon family is the set of icons that represent a single object. An entire icon family consists
of large (32-by-32 pixel) and small (16-by-16 pixel) icons, each with a mask, and each
available in three different versions of color: black and white, 4 bits of color data per
pixel, and 8 bits of color data per pixel. Specifically, the following icons make up the icon
family for a single icon:

■ a large (32-by-32 pixel) black-and-white icon and mask—both of which you define in
an icon list ('ICN#') resource

■ a small (16-by-16 pixel) black-and-white icon and mask—both of which you define
in a small icon list ('ics#') resource

■ a large (32-by-32 pixel) color icon with 4 bits of color data per pixel—which you
define in a large 4-bit color icon ('icl4') resource

CHAPTER 5

Icon Utilities

Introduction to the Icon Utilities 5-5

■ a small (16-by-16 pixel) color icon with 4 bits of color data per pixel—which you
define in a small 4-bit color icon ('ics4') resource

■ a large (32-by-32 pixel) color icon with 8 bits of color data per pixel—which you
define in a large 8-bit color icon ('icl8') resource

■ a small (16-by-16 pixel) color icon with 8 bits of color data per pixel—which you
define in a small 8-bit color icon ('ics8') resource

An icon family can contain only one icon of each resource type listed.

Figure 5-2 shows the icon family for the icon that represents the SurfWriter application.
To see these icons in color, see Plate 3 in Inside Macintosh: Macintosh Toolbox Essentials.

Figure 5-2 An icon family

CHAPTER 5

Icon Utilities

5-6 About the Icon Utilities

Somewhat related to these resources are the icon ('ICON') resource and the color icon
('cicn') resource. You can use either to describe a 32-by-32 pixel icon within some
element of your application. As previously discussed, both the Menu Manager and
Dialog Manager allow you to display icons with the resource type 'ICON' or 'cicn' ,
and the Menu Manager also allows you to display icons of resource type 'SICN' . These
are the only kinds of icons you can use in menu items and dialog boxes if you want the
Menu Manager and Dialog Manager to display the icons automatically for you. If you
provide a color icon ('cicn') resource with the same resource ID as an icon ('ICON')
resource, the Menu Manager and the Dialog Manager display the color icon instead of
the black-and-white icon.

The icon ('ICON') resource contains a bitmap for a 32-by-32 pixel black-and-white icon.
Because it is always displayed on a white background, and never in the Finder, it doesn’t
need a mask.

The color icon ('cicn') resource has a special format that includes a pixel map, a
bitmap, and a mask. You can use it to define a color icon of any size without a mask or a
32-by-32 pixel color icon with a mask. You can also define the bit depth for a color icon
resource. For information about the format of a 'cicn' resource, see Inside Macintosh:
Imaging With QuickDraw.

Many of the icons in the System file are available in a small size; these icons are stored in
' SICN' resources. The icons in an 'SICN' resource are 12 by 16 pixels, even though
they are stored in the resource as 16-by-16 pixel bitmaps. An 'SICN' resource consists of
a list of 16-by-16 pixel bitmaps for black-and-white icons; by convention, the list includes
only two bitmaps, and the second bitmap is considered a mask. The Menu Manager lets
you use an 'SICN' resource as an icon in a menu item; however, you cannot use the
Dialog Manager to display an 'SICN' icon in a dialog box.

The Finder does not use or display any resources that you create of type 'ICON ' ,
'cicn' , or 'SICN' . To create an icon for display by the Finder, create one or more of the
icons in an icon family.

About the Icon Utilities

The Icon Utilities allow your application (and system software) to manipulate and draw
icons of any standard resource type in windows and if necessary in menus or dialog
boxes. You need to use these routines only if you wish to draw icons in your
application’s windows or to draw icons whose resource types are not recognized by the
Menu Manager and Dialog Manager in menus and dialog boxes.

To display an icon most effectively at a variety of sizes and bit depths, you should
provide an icon family. You can then draw the appropriate member of the family for a
given size and bit depth either by passing the family’s resource ID to an Icon Utilities
routine or by reading the family’s icon resources into memory as an icon suite and
passing the suite’s handle to Icon Utilities routines.

CHAPTER 5

Icon Utilities

Using the Icon Utilities 5-7

The next section, “Using the Icon Utilities,” begins by describing how to draw icons in
an icon family. After a brief overview of icon families, icon suites, icon caches, and
related Icon Utilities routines, it describes in detail how to

■ draw the most appropriate icon for a given destination rectangle and bit depth
directly from an icon family member’s resource

■ get an icon suite and draw the most appropriate icon from that suite for a given
destination rectangle and bit depth

■ draw specific icons from an icon family or suite

■ get a handle to an icon suite member’s icon data so you can manipulate it

■ draw icons that are not part of an icon family

You can use also Icon Utilities routines to

■ perform operations on icons in an icon suite

■ manipulate labels associated with specific icon suites

■ dispose of icon suites and color icon records

■ convert an icon mask to a region and perform hit-testing for an icon

■ create an icon cache by associating an icon suite with an icon getter function and a
pointer to data that you can use as a reference constant

For detailed descriptions of all Icon Utilities routines, including those used to perform
these tasks, see “Icon Utilities Reference” beginning on page 5-17.

In addition to the resource types described earlier in this chapter, some Icon Utilities
routines operate on icons of resource types 'icm#' , 'icm4' , and 'icm8 ' . These mini
icons are 12-by-16 pixel icons. Like the icons in an icon family, the three resource types
for mini icons identify the icon list, 4-bit color icons, and 8-bit color icons, respectively.

Using the Icon Utilities

This section explains how you can use routines in the Icon Utilities to draw icons in your
application’s windows (or dialog boxes and menu items if needed).

Most of the Icon Utilities routines are available only in System 7 and later. To
determine whether they are available, call the Gestalt function with the
gestaltIconUtilitie sAttr selector and check the value of the response
parameter. If the bit indicated by the constant gestaltIconUtilitiesPresent
is set, then the Icon Utilities are available.

CONST

gestaltIconUtilities Attr = 'icon' ; {Icon Utils attributes}

gestaltIconUtilitiesPresen t = 0 ; { check this bit in the }

{ response paramete r}

CHAPTER 5

Icon Utilities

5-8 Using the Icon Utilities

The GetIcon , PlotIcon , GetCIcon , PlotCIcon , and DisposeCIcon routines are
available in both System 6 and System 7.

Drawing Icons in an Icon Family
You can define different versions of an icon for specific sizes and bit depths as part of a
single icon family whose members share the same resource ID. If you define all your
application’s icons in icon families, you can use Icon Utilities routines to draw the icon
using the icon family member that is best suited for the destination rectangle and the
current bit depth of the display device. When your application uses Icon Utilities
routines like PlotIconSuite or PlotIconID to plot icons, it doesn’t have to
determine which icon in the icon family is best suited for a given destination rectangle
and bit depth; instead, the routines automatically display the appropriate icon.

You can also define individual icons of resource type 'ICON' , 'cicn' , or 'SICN' that
are not part of an icon family and use Icon Utilities routines to draw them when
necessary. For information about drawing these types of icons, see the section “Drawing
Icons That Are Not Part of an Icon Family” beginning on page 5-13.

You can use the Icon Utilities to draw icons using modes or transforms that alter the
icon’s appearance in standard ways that are analogous to Finder states for icons. For
example, the Finder draws a selected icon differently than it draws one that is not
selected; to do so, the Finder specifies the transform constant ttSelected when it calls
Icon Utilities routines to draw a selected icon. If you need to apply a particular transform
to an icon, some Icon Utilities routines allow you to apply transforms for both standard
Finder states and Finder label colors when you draw the icon.

Many of the Icon Utilities routines can also automatically align an icon within its
destination rectangle. For example, the generic document icon that appears in the Finder
is taller than it is wide. Some Icon Utilities routines allow you to draw such an icon
without any special alignment, align it at the left or right of the destination rectangle, or
use various other alignments.

Depending on the size of the rectangle, the Icon Utilities routines may stretch or shrink
the icon to fit. To draw icons without stretching them, these routines require that the
destination rectangle have the exact dimensions of a standard icon: that is, depending on
the icon resource type, 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels. If you use
destination rectangles of other sizes, these routines stretch or shrink the icons to fit the
rectangles.

An icon family is a collection of icons representing a single object. Each icon in the family
shares the same resource ID as other icons in the family but has its own resource type
identifying the icon data it contains. The simplest way to draw an icon from an icon
family is to pass the family’s resource ID to the PlotIconID function, which draws the
appropriate icon from the family for the specified destination rectangle and bit depth.
The next section, “Drawing an Icon Directly From a Resource,” describes how to use
PlotIconID .

CHAPTER 5

Icon Utilities

Using the Icon Utilities 5-9

Alternatively, you can first use the GetIconSuite function to read the resource data for
some or all icons in an icon family into memory. Given a resource ID and one or more
resource types, the GetIconSuite function reads in resource data for each icon with
the specified resource ID and resource types and collects handles to the resource data in
an icon suite. An icon suite typically consists of one or more handles to icon resources
from a single icon family that have been read into memory. The GetIconSuite function
returns a handle for the requested icon suite; you can pass this handle to
PlotIconSuite and other Icon Utilities routines. Like PlotIconID , PlotIconSuite
draws the appropriate icon from an icon suite for the specified destination rectangle and
bit depth. The section “Getting an Icon Suite and Drawing One of Its Icons” on page 5-11
describes how to use the GetIconSuite and PlotIconSuite routines.

An icon suite can in turn contain handles to each of the six icon resources that an icon
family can contain, or it can contain handles to only a subset of the icon resources in an
icon family. However, for best results, an icon suite should always include a
black-and-white icon and icon mask for any icons you provide; that is, it should include
a resource of type 'ICN#' in addition to any other large icons you provide as well as a
resource of type 'ics#' in addition to any other small icons you provide. When you
create an icon suite from icon family resources, the associated resource file should
remain open while you use Icon Utilities routines.

Two types of handles exist in an icon suite: handles to icon data associated with a
resource and handles to icon data that isn’t associated with a resource. You typically use
GetIconSuit e to fill an icon suite with handles to icon resource data. You typically
use AddIconToSuite to add to an icon suite handles to icon data. When you use
AddIconToSuite , the handles that you add to the suite do not have to be associated
with a resource fork. For example, your application might get icon data from the desktop
database rather than reading it from a resource, or your application might read icon data
from a resource and then detach it. In either case, you can provide a handle to the icon
data and use AddIconToSuite to add the handle to the icon suite.

An icon cache is like an icon suite, except that an icon cache also contains a pointer to an
application-defined icon getter function and a pointer to data that is associated with the
icon suite. You can pass a handle to an icon cache to any of the Icon Utilities routines that
accept a handle to an icon suite. An icon cache typically does not contain handles to the
icon resources for all icon family members. Instead, if the icon cache does not contain an
entry for a specific type of icon in an icon family, the Icon Utilities routines call your
application’s icon getter function to retrieve the data for that icon type. The icon getter
function should return either a handle to the icon data or NIL to indicate that no icon
data exists for the specified icon type.

CHAPTER 5

Icon Utilities

5-10 Using the Icon Utilities

Drawing an Icon Directly From a Resource

To draw an icon from an icon family without first creating an icon suite, use the
PlotIconID function. Listing 5-1 shows an application-defined procedure that draws
an icon from an icon family. Given a resource ID, the PlotIconID function determines
which member of the icon family to draw and then draws the icon in the given rectangle
with the specified transform and alignment.

Listing 5-1 Drawing the icon from an icon family that is best suited to the user’s display

PROCEDURE MyDrawIconFromFamily (resID: Integer; destRect: Rect);

VAR

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone; {specify no special transforms}

{draw the icon, using the icon type best suited for the }

{ destination rect and current bit depth of th e display device}

myErr := PlotIco nID(destRect, align, transform , r esID);

END;

The PlotIconID function determines, from the size of the specified destination
rectangle and the current bit depth of the display device, which icon of a given size
from an icon family to draw. For example, if the coordinates of the destination rectangle
are (100,100,116,116) and the display device is set to 4-bit color, the PlotIconID
function draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32,
PlotIconID uses the 32-by-32 pixel icon with the appropriate bit depth for the display
device. If the destination rectangle is less than 32 by 32 pixels and greater than 16 pixels
wide or 12 pixels high, PlotIconID uses the 16-by-16 pixel icon with the appropriate
bit depth. If the destination rectangle’s height is less than or equal to 12 pixels or its
width is less than or equal to 16 pixels, PlotIconID uses the 12-by-16 pixel icon with
the appropriate bit depth. (Typically only the Finder and the Standard File Package use
12-by-16 pixel icons.)

Depending on the size of the rectangle, the PlotIconID function may stretch or shrink
the icon to fit. To draw icons without stretching them, PlotIconID requires that the
destination rectangle have the exact dimensions of a standard icon: that is, depending on
the icon resource type, 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels. If you use
destination rectangles of other sizes, PlotIconID stretches or shrinks the icons to fit the
rectangles.

CHAPTER 5

Icon Utilities

Using the Icon Utilities 5-11

Getting an Icon Suite and Drawing One of Its Icons

Listing 5-2 shows how you can use the GetIconSuite and PlotIconSuite functions
to get an icon suite and then draw the icon from the suite that is best suited to the
destination rectangle and the current bit depth of the display device.

Listing 5-2 Drawing the icon from an icon suite that is best suited to the display device

PROCEDURE MyDrawIconInSuite (resID: Integer; destRect: Rect ;

 V AR i conSuiteHdl : Handle);

VAR

i conType: IconSelectorValue;

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

iconType := svAllAvailable ; { get all icons in icon family}

myErr := GetIconSuite(iconSuiteHdl, resID, iconType);

IF iconSuiteHdl <> NIL THEN

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone; {specify no special transforms}

{draw the icon, using the icon type best suited for the }

{ destination rect & current bit depth o f display device}

myErr := PlotIconSuite(destRect, align, transform,

 iconSuiteHdl);

END;

END;

The application-defined procedure MyDrawIconInSuite shown in Listing 5-2 first uses
the GetIconSuite function, specifying the constant svAllAvailable in the third
parameter, to get all icons from the icon family with the specified resource ID and to
collect the handles to the data for each icon into an icon suite. (You can use other
constants in the third parameter of GetIconSuite to request only certain members of
an icon family for an icon suite.) The MyDrawIconInSuite procedure then draws an
icon from this suite using the PlotIconSuite function.

Like the PlotIcon ID function described in the previous section, the PlotIconSuite
function determines, from the size of the specified destination rectangle and the current
bit depth of the display device, which icon from the icon suite to draw.

You can also specify various transforms and alignments to PlotIconSuite . For
example, the code in Listing 5-2 specifies that PlotIconSuite should center the icon
within the destination rectangle.

CHAPTER 5

Icon Utilities

5-12 Using the Icon Utilities

Drawing Specific Icons From an Icon Family

In most cases you should use PlotIconID or PlotIconSuite to draw an icon from an
icon family, because these routines automatically select the best version of an icon to
display for a given destination rectangle and bit depth. The preceding sections,
“Drawing an Icon Directly From a Resource” and “Getting an Icon Suite and Drawing
One of Its Icons,” describe how to use these routines.

If you need to plot a specific icon from an icon family rather than using the Icon Utilities
to select a family member, you must first create an icon suite that contains only the icon
from the desired resource type and its corresponding mask. You can then use
PlotIconSuite to plot the icon. In this case PlotIconSuite still attempts to use the
best icon available for the given destination rectangle and bit depth; however, by
limiting the icon resources available in the icon suite, you can force PlotIconSuite to
plot either the black-and-white icon from the 'ICN#' resource or just one of the other
available resources. Listing 5-3 demonstrates how to do this.

Listing 5-3 Drawing a specific icon from an icon family or icon suite

PROCEDURE MyDrawThisIcon (destRect: Rect ; resID: Integer;

 VAR i conSuite Hdl : Handle);

VAR

align: IconAlignmentType;

transform: IconTransformType;

myErr: OSErr;

BEGIN

{ge t only the 'IC N#' and 'i cl4 ' i con s and collect them in an }

{ icon suite}

myErr := GetIco nSuite(icon Suite Hdl , resID,

 s vLarge1Bit + svLarge4Bit) ;

IF iconSuiteHdl <> NIL THEN

BEGIN

align := atAbsoluteCenter; {specify alignment (centered)}

transform := ttNone ; { specify no special transforms}

{draw the best icon from the suite referenced by the icon }

{ suite handle; since the suite contains only 'IC N#' and }

{ 'i cl4 ' icons , PlotIconSuite draws the best of the two }

myErr := PlotIco nSuite(destRect, align, transform ,

 i co nSuite Hdl);

END;

END;

The application-defined procedure MyDrawThisIcon passes the constants
svLarge1Bit and svLarge4Bit to GetIconSuite . In response, GetIconSuite
reads only the 'ICN#' and 'icl4' resources into memory, storing handles to the icon

CHAPTER 5

Icon Utilities

Using the Icon Utilities 5-13

resource data in the icon suite. MyDrawThisIcon then uses PlotIconSuite to plot the
best available icon from the suite.

If the bit depth of the display device is 1, the PlotIconSuite function in Listing 5-3
displays the black-and-white version of the icon from the 'ICN#' resource, regardless
of the size of the destination rectangle. If the bit depth of the display device is greater
than 1, PlotIconSuite draws the icon from the 'icl4' resource, regardless of the
size of the destination rectangle.

Manipulating Icons

You can use the GetIconFromSuite function to get a handle to the pixel data for a
specific icon from an icon suite. You can use the handle returned by the function
GetIconFromSuite to manipulate the icon data—for example, to alter its color or add
three-dimensional shading—but not to draw the icon with other Icon Utilities routines
such as PlotIconHandle .

Listing 5-4 provides an example of an application-defined procedure, MyGetIconData ,
that calls GetIconFromSuite and manipulates the icon data.

Listing 5-4 Manipulating icon data in memory

PROCEDURE MyGetIconData (iconType: ResType; iconSuite: Handl e;

 VAR i conHandle: Handl e);

VAR

myErr: OSErr;

BEGIN

{get the data for the icon with iconType from the suite }

myErr := GetIconFromSuite(iconHandle, iconSuite, iconType);

{ do whatever with the data }

myErr := MyManipulateIconData(iconHandle, iconTyp e) ;

END;

The Icon Utilities also include routines that allow you to perform an action on one or
more icons in an icon suite and to perform hit-testing on icons. For information about
these routines, see “Performing Operations on Icons in an Icon Suite” and “Determining
Whether a Point or Rectangle Is Within an Icon” beginning on page 5-38 and page 5-46,
respectively.

Drawing Icons That Are Not Part of an Icon Family
To draw icons of resource type 'ICON' or 'cicn' in menus and dialog boxes, you can
use the Menu Manager and Dialog Manager as described in Inside Macintosh: Macintosh
Toolbox Essentials. You can also use Menu Manager routines to draw resources of type
'SICN' .

CHAPTER 5

Icon Utilities

5-14 Using the Icon Utilities

To draw resources of resource type 'ICON' , 'cicn' , or 'SICN' in your application’s
windows, you can use these routines:

The routines in this list that end in Handle allow you to specify alignment and
transforms for the icons. You are responsible for disposing of the handle you pass to any
of these routines.

Note

Unlike PlotCIcon , PlotCIconHandle doesn’t honor the current
foreground and background colors. ◆

The listings that follow provide examples of how to draw each of the three icon resource
types that are not part of an icon family.

Listing 5-5 shows how to use PlotIcon to draw an icon of resource type 'ICON'
without specifying alignment or transforms. The application-defined procedure
MyPlotAnI CON uses GetIcon to get a handle to the data for the desired icon and then
passes the destination rectangle and the handle to PlotIcon .

Listing 5-5 Drawing an icon of resource type 'ICON '

PROCEDURE MyPlotAnICON (resID: Integer; destRect: Rect;

VAR myIcon: Handle);

BEGIN

myIcon := GetIcon(resID);

PlotIcon(destRect, myIcon);

END;

IMPORTANT

When you are finished using a handle obtained from GetIcon , use the
ReleaseResource procedure to release the memory occupied by the
icon resource data; for more information about ReleaseResource , see
the chapter “Resource Manager” in this book. ▲

Resource type Routine s

'ICON' PlotIconHandl e
PlotIcon

'cicn' PlotCIconHandle
PlotCIcon

'SICN' PlotSICNHandle

CHAPTER 5

Icon Utilities

Using the Icon Utilities 5-15

Listing 5-6 shows how to use PlotIconHandle to draw an icon of resource type
'ICON' with a specific alignment and transform. The application-defined procedure
MyPlotAnICONWithAlignAn dTransform uses GetIcon to get a handle to the data
for the desired icon and then passes the destination rectangle, alignment, transform, and
handle to PlotIconHandle .

Listing 5-6 Drawing an icon of resource type 'ICON' with a specific alignment and transform

PROCEDURE MyPlotAnICONWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType; VAR myIcon: Handle);

VAR

myErr: OSErr;

BEGIN

myIcon := GetIcon(resID);

myErr := PlotIconHandle(destRect, align, transform, myIcon);

END;

For the PlotIconHandle function in Listing 5-6 to draw the icon without
stretching it, the destination rectangle passed in the destRect parameter of
MyPlotAnICONWithAlignAndTransform must be exactly 32 by 32 pixels. If the
destination rectangle is not 32 by 32 pixels, PlotIconHandle expands or shrinks the
icon to fit.

Listing 5-7 shows how to use PlotCIcon to draw an icon of resource type 'cicn'
without specifying alignment or transform. The MyPlotAcic n procedure uses
Get CIcon to get a handle to the color icon record of the desired icon and then passes the
destination rectangle and handle to PlotCIcon .

Listing 5-7 Drawing an icon of resource type 'cicn '

PROCEDURE MyPlotAcicn (resID: Integer; destRect: Rect;

 VAR myCicnIcon: CIconHandle);

BEGIN

myCicnIcon := GetCIcon(resID);

PlotCIcon(destRect, myCicnIcon);

END;

CHAPTER 5

Icon Utilities

5-16 Using the Icon Utilities

Listing 5-8 shows how to use PlotCIconHandle to draw an icon of resource type
'cicn' with a specific alignment and transform. Listing 5-8 uses GetCIcon to get a
handle to the color icon record of the desired icon and then passes the destination
rectangle, alignment, transform, and handle to PlotCIconHandle .

Listing 5-8 Drawing an icon of resource type 'cicn' with a specific alignment and transform

PROCEDURE MyPlotAcicnWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType;

VAR myCicnIcon: CIconHandle);

VAR

myErr: OSErr;

BEGIN

myCicnIcon := GetCIcon(resID);

myErr := PlotCIconHandle(destRect, align, transform,

 myCicnIcon);

END;

Listing 5-9 shows how to use PlotSICNHandle to draw an icon of resource type
'SICN' with a specific alignment and transform. The application-defined procedure
MyPlotAnSICNWithAlignAndTransform uses GetResource to get a handle to the
data for the desired icon and then passes the destination rectangle, alignment, transform,
and handle to PlotSICNHandle .

Listing 5-9 Drawing an icon of resource type 'SICN' with a specific alignment and transform

PROCEDURE MyPlotAnSICNWithAlignAndTransform

 (resID: Integer; destRect: Rect;

align: IconAlignmentType;

transform: IconTransformType; VAR myIcon: Handle);

VAR

myErr: OSErr;

BEGIN

myIcon := GetResource('SICN', resID);

myErr := PlotSICNHandle(destRect, align, transform, myIcon);

END;

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-17

For the PlotSICNHandle function in Listing 5-9 to draw the icon without
stretching it, the destination rectangle passed in the destRect parameter of
MyPlotAnSICNWithAlignAndTransform must be exactly 16 by 16 pixels. If the
destination rectangle is not this size, PlotSICNHandle expands or shrinks the
icon to fit.

Icon Utilities Reference

The sections that follow describe the data structure and routines provided by the Icon
Utilities.

The first section, “Data Structure,” describes the color icon record. “Icon Utilities
Routines” beginning on page 5-18 describes the routines for drawing and manipulating
icons. “Application-Defined Routines” beginning on page 5-57 describes the syntax of
the icon action and icon getter functions that your application can provide for use by
Icon Utilities routines.

Data Structure
This section describes the color icon record. Note that you use the color icon record only
for icons of resource type 'cicn' ; you do not need to use the color icon record for any
of the color icons in an icon family.

The Color Icon Record

The GetCIcon function reads in a color icon resource—that is, an icon resource of type
'cicn ' —and returns a handle to a color icon record. A color icon record is defined by
the CIcon data type.

TYPE

CIcon =

RECORD

iconPMap: PixMap; {the icon ' s pixel map}

iconMask: BitMap; {the icon ' s mask}

iconBMap: BitMap; {the icon ' s bitmap}

iconData: Handle; {handle to the icon ' s data}

iconMaskData: {the data for the icon ' s mask}

ARRAY[0..0] OF Integer;

END;

CIconPtr = ^CIcon; {pointer to color icon record}

CIconHandle = ^CIconPtr; {handle to color icon record}

CHAPTER 5

Icon Utilities

5-18 Icon Utilities Reference

Field descriptions

iconPMap The pixel map describing the icon. Note that this is a pixel map
record, not a handle to a pixel map record.

iconMas k A bitmap of the icon’s mask.
iconBMap A bitmap of the icon.
iconData A handle to the icon’s pixel image.
iconMaskData An array containing the icon’s mask data followed by the icon’s

bitmap data. This is used only when the icon is stored as a resource.

Your application can load a color icon resource into memory using the GetCIco n
function. All color icon resources should be marked purgeable. To draw a color icon, you
can use the PlotCIcon or PlotCIconHandl e function. When your application has
finished using a color icon, it can dispose of the color icon record by calling the
DisposeCIcon function.

You can use icons of resource type 'cicn' in menus the same way that you use
resources of type 'ICON ' . If a menu item specifies an icon number, the menu definition
procedure first tries to load in a 'cicn' resource with the specified resource ID. If it
doesn’t find one, the menu definition procedure tries to load in an 'ICON' resource with
the same ID. The Dialog Manager also uses a 'cicn' resource instead of an 'ICON'
resource if it finds one with the same resource ID. For more information, see Inside
Macintosh: Macintosh Toolbox Essentials.

For information about the format of a color icon resource, see Inside Macintosh: Imaging
With QuickDraw.

Icon Utilities Routines
This section describes the Icon Utilities routines. You can use these routines to draw
icons in windows and, if necessary, in menus and dialog boxes. You can also use Icon
Utilities routines to perform operations on icons in an icon suite, get and set labels
associated with specific icon suites, dispose of icon suites and color icon records, convert
an icon mask to a region, perform hit-testing, and create and manipulate icon caches.
Note that you can pass a handle to an icon cache to any of the Icon Utilities routines that
accept a handle to an icon suite.

Most of the Icon Utilities routines are available only in System 7 and later. To
determine whether they are available, call the Gestalt function with the
gestaltIconUtilitiesAttr selector and check the value of the response
parameter. If the bit indicated by the constant gestaltIconUtilitiesPresent is set,
then the Icon Utilities are available. The GetIcon , PlotIcon , GetCIcon , PlotCIcon ,
and DisposeCIcon routines are available in both System 6 and System 7.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-19

Note
The Icon Utilities routines do not place any restrictions on whether icon
resources are purgeable or nonpurgeable; however, in general, you
should specify your icon resources as purgeable. ◆

This section first describes the routines you can use to draw icons from an icon family
and then describes the routines that work with icon suites and icon caches.

IMPORTANT

All of the Icon Utilities routines may move or purge memory blocks in
the application heap or for some other reason should not be called from
within an interrupt. Your application should not call Icon Utilities
routines at interrupt time. ▲

Assembly-Language Note

You can invoke Icon Utilities routines by using the trap
_IconDispatch with the appropriate routine selector. The routine
selectors are listed in “Assembly-Language Summary” beginning on
page 5-71. ◆

Drawing Icons From Resources

The routines described in this section allow you to plot an icon directly from a resource
without first creating an icon suite.

To draw an icon from an icon family (that is, those resources of type 'ICN#' , 'ics#' ,
'icl4' , 'icl8' , 'ics4' , or 'ics8' that share the same resource ID), use the
PlotIconID function. This function gets the icon’s data from its resource and also
allows you to specify transforms and alignment. The PlotIconID function also
determines, from the destination rectangle in which the icon is to be drawn and the
current bit depth of the display device, which resource type to get from the icon family.

To draw an icon obtained with the aid of an icon getter function, use the
PlotIconMethod function. For information about icon getter functions, see “Icon
Getter Functions” beginning on page 5-58.

To plot an icon of resource types 'ICON ' and ' cicn' from an icon handle previously
obtained from the GetIcon or GetCIcon function, use the PlotIconHandle and
PlotCIconHandl e functions, respectively. These functions allow you to specify
transforms and alignment.

You can also plot an icon of resource types 'ICON ' and ' cicn' using the PlotIcon
and PlotCIcon procedures, respectively. However, neither of these procedures allow
you to specify transforms and alignment.

To plot an icon of resource type 'SICN' , use the PlotSICNHandle function. This
function allows you to specify transforms and alignment.

CHAPTER 5

Icon Utilities

5-20 Icon Utilities Reference

PlotIconID

You can use the PlotIconID function to draw the icon described by an icon family.
From the icon family, PlotIconID selects the most appropriate icon resource for the
current bit depth of the display device and the rectangle in which the icon is to be drawn.

FUNCTION PlotIcon ID (theRect: Rect; align: IconAlignmentType;

transform: IconTransformType;

theResID: Integer): OSErr;

theRect The rectangle, specified in local coordinates of the current graphics port,
in which to draw the icon. The PlotIconID function determines, from
the size of the specified destination rectangle and the current bit depth
of the display device, which icon of a given size to draw from an icon
family.

align A value that specifies how PlotIconID should align the icon within the
rectangle. For example, you can specify that PlotIconID center the icon
within the rectangle or align it at one side or the other. See the description
that follows for a list of constants you can use in this parameter.

transform A value that specifies how PlotIconID should modify the appearance
of the icon. See the description that follows for a list of constants you can
use in this parameter.

theResID The resource ID of the icon to draw. The icon resource must be of resource
type 'ICN#' , 'ics#' , 'icl4' , 'icl8' , 'ics4' , or 'ics8' .

DESCRIPTION

The PlotIcon ID function plots a single icon from the icon family specified by
theResID . You cannot determine which icon from the family it will draw; PlotIcon ID
bases this decision on the size of the specified destination rectangle and the current bit
depth of the display device. For example, if the destination rectangle has the coordinates
(100,100,116,116) and the display device is set to 4-bit color, the PlotIcon ID function
draws the icon of type 'ics4' if that icon is available in the icon family.

If the width or height of a destination rectangle is greater than or equal to 32,
PlotIcon ID uses the 32-by-32 pixel icon with the appropriate bit depth for the display
device. If the destination rectangle is less than 32 by 32 pixels and greater than 16 pixels
wide or 12 pixels high, PlotIcon ID uses the 16-by-16 pixel icon with the appropriate
bit depth. If the destination rectangle’s height is less than or equal to 12 pixels or its
width is less than or equal to 16 pixels, PlotIcon ID uses the 12-by-16 pixel icon with
the appropriate bit depth. (Typically only the Finder and Standard File Package use
12-by-16 pixel icons.)

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-21

You can use these constants in the align parameter to specify the alignment of the icon
within the rectangle specified by the theRect parameter:

CONST

atNone = $0; {no special alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4; {centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft);

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

The destination rectangle passed in the the Rect parameter of PlotIcon ID must be
exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for PlotIcon ID to draw the
icon without stretching it. If the destination rectangle is not one of these standard sizes,
PlotIconID expands or shrinks the icon to fit. After stretching or shrinking the icon,
the PlotIcon ID function aligns the icon according to the value specified in the align
parameter, moving the icon so that the edges of its mask align with the specified side or
direction.

You can pass constants in the transform parameter to specify how you want the icon
modified, if at all, when plotted by PlotIcon ID . If you don’t want to specify any
transform constants, specify ttNone in the transform parameter.

CONST ttNone = $0;

You can use these constants in the transform parameter to transform the icon in a
manner analogous to certain Finder states for icons:

CONST

ttDisabled = $1;

ttOffline = $2;

ttOpen = $3;

ttSelected = $4000;

ttSelectedDisabled = (ttSelected + ttDisabled);

ttSelectedOffline = (ttSelected + ttOffline);

ttSelectedOpen = (ttSelected + ttOpen);

CHAPTER 5

Icon Utilities

5-22 Icon Utilities Reference

You can use another group of constants to color the icon using the Finder label colors. To
determine the appropriate label for a file’s icon, you can check bits 1–3 of the fdFlags
field in the file’s file information record. These bits contain a number from 0 to 7
indicating the label setting (0 indicates no label). Simply add the corresponding constant
from this list to the transform parameter when you call PlotIcon ID :

CONST

ttLabel1 = $0100;

ttLabel2 = $0200;

ttLabel3 = $0300;

ttLabel4 = $0400;

ttLabel5 = $0500;

ttLabel6 = $0600;

ttLabel7 = $0700;

RESULT CODES

SEE ALSO

For an example of the use of the PlotIconID function, see Listing 5-1 on page 5-10.

To restrict the icons from an icon family that are available for use by the Icon Utilities,
see “Drawing Specific Icons From an Icon Family” on page 5-12.

For information about the file information record, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

PlotIconMethod

You can use the PlotIconMethod function to plot an icon obtained with the aid of an
icon getter function for a specified destination rectangle and alignment.

FUNCTION PlotIconMethod (theRect: Rect ; a lign: IconAlignmentType ;

 t ransform: IconTransformType ;

 t heMethod: IconGetter ;

 yourDataPtr: UNIV Ptr): OSErr ;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how to align the icon within the rectangle specified
by theRect . See the description of PlotIconID on page 5-20 for a list of
constants you can use in this parameter.

noErr 0 No error
resNotFound –192 Resource not found
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-23

transform A value that specifies how PlotIcon Method should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The PlotIconMethod function uses your icon getter function to obtain the icon to
draw. Then PlotIconMethod draws this icon in the specified destination rectangle,
with the specified transform and alignment.

PlotIconMethod passes to your icon getter function the type of the icon to draw and
the value specified in the yourDataPtr parameter. The PlotIconMethod function
examines the current bit depth of the display devices and calls your icon getter function
once for each display device that intersects the rectangle specified in the parameter
theRect . Your icon getter function should return a handle to the requested icon’s data.
Your icon getter function can get the icon data using whatever method is appropriate to
your application. For example, your application might maintain its own cache of icons or
use its icon getter function to get an icon from the desktop database.

RESULT CODES

SEE ALSO

For more information about icon getter functions, see page 5-58.

PlotIcon

You can use the PlotIcon procedure to plot an icon of resource type 'ICON' . You must
have previously obtained a handle to the icon using GetIcon (or GetResource or
other Resource Manager routines).

PROCEDURE PlotIcon (theRect: Rect; theIcon: Handle);

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

theIcon A handle to the icon to draw.

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

5-24 Icon Utilities Reference

DESCRIPTION

The PlotIcon procedure draws the icon specified by the given handle. Unlike
PlotIconHandle , PlotIcon does not allow you to specify any transforms or
alignment. The PlotIcon procedure uses the QuickDraw procedure CopyBit s with
the srcCopy transfer mode.

If the destination rectangle is not 32 by 32 pixels, PlotIcon stretches or shrinks the icon
to fit.

To plot an icon of resource type 'ICON' with a specified transform and alignment, use
PlotIconHandl e (described next).

SEE ALSO

For an example of the use of the PlotIcon procedure, see Listing 5-5 on page 5-14. For
information on GetIcon , see page 5-28. For information on the QuickDraw procedure
CopyBits , see Inside Macintosh: Imaging With QuickDraw.

PlotIconHandle

You can use the PlotIconHandle function to plot an icon of resource type 'ICON' or
'ICN#' . You must have previously obtained a handle to the icon using GetIcon (or
GetResource or other Resource Manager routines).

FUNCTION PlotIcon Handle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theIcon: Handle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotIcon Handle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how PlotIcon Handle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theIcon A handle to the icon to draw.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-25

DESCRIPTION

The PlotIcon Handle function draws the icon specified by the theIcon parameter
with the transform and alignment specified by the transform and align parameters.

IMPORTANT

To plot an icon from an icon suite, you should normally use
PlotIconSuite . The PlotIconHandle function may not draw the
icon correctly if you pass it the handle returned in the theIconData
parameter of GetIconFromSuite . ▲

RESULT CODES

SEE ALSO

For an example of the use of the PlotIconHandle function, see Listing 5-6 on
page 5-15. For information on GetIcon , see page 5-28.

PlotCIcon

You can plot a color icon of resource type 'cicn' using the PlotCIcon procedure. You
must have previously obtained a handle to the icon using GetCIcon (or GetResource
or other Resource Manager routines).

PROCEDURE PlotCIcon (theRect: Rect; theIcon: CIconHandle);

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

theIcon A handle to the color icon record of the color icon to draw.

DESCRIPTION

The PlotCIcon procedure draws the color icon specified by the given handle. The
iconMas k field of the color icon record determines which pixels in the iconPMap field
are drawn and which are not. Only pixels with 1s in corresponding positions in the
iconMask field are drawn. If the screen depth is 1 or 2 bits per pixel, PlotCIcon uses
the iconBMap field instead of the i conPMap field (unless the rowBytes field of
IconBMa p contains 0, indicating that there is no bitmap for the icon).

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

5-26 Icon Utilities Reference

When PlotCIcon draws the icon, it uses the bounds field of i conPMap as the source
rectangle of the image. If the destination rectangle is not the same size as the icon or its
mask, PlotCIcon stretches or shrinks the icon to fit. The icon’s pixels are remapped to
the current depth and color table, if necessary. The bounds fields of i conPMap,
iconBMap , and iconMask are expected to be equal in size.

Unlike PlotIconHandle , PlotCIcon does not allow you to specify any transforms or
alignment. The PlotCIcon procedure uses the QuickDraw procedure CopyMask and
doesn’t send any of its drawing commands through QuickDraw bottleneck routines.
Therefore, calls to PlotCIcon are not recorded as pictures.

RESULT CODE

SEE ALSO

For a description of the color icon record, see “The Color Icon Record” on page 5-17. For
information on GetCIcon , see page 5-29. For information on the QuickDraw procedure
CopyMask , see Inside Macintosh: Imaging With QuickDraw.

For an example of the use of the PlotCIcon procedure, see Listing 5-7 on page 5-15.

PlotCIconHandle

You can use the PlotCIconHandle function to plot an icon of resource type
'cicn' . You must have previously obtained a handle to the icon using GetCIcon (or
GetResource or other Resource Manager routines).

FUNCTION PlotCIcon Handle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theCIcon: CIconHandle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotCIcon Handle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how Plot CIcon Handle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theCIcon A handle to the color icon record of the icon to draw.

noErr 0 No error

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-27

DESCRIPTION

The PlotCIcon Handle function draws the specified color icon with the transform and
alignment specified by the transform and align parameters. Unlike PlotCIcon ,
PlotCIconHandle doesn’t honor the current foreground and background colors.

RESULT CODES

SEE ALSO

For an example of the use of PlotCIcon Handle , see Listing 5-8 on page 5-16. For
information on GetCIcon , see page 5-29. For a description of the color icon record, see
page 5-17.

PlotSICNHandle

You can use the PlotSICNHandle function to plot a small icon of resource type 'SICN '
with a specified transform and alignment. You must have previously obtained a handle
to the icon using GetResourc e (or other Resource Manager routines).

FUNCTION PlotSICN Handle (theRect: Rect; align: IconAlignmentType;

 transform: IconTransformType;

 theSICN: Handle): OSErr;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port.

align A value that specifies how PlotSICNHandle should align the icon
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

transform A value that specifies how PlotSICNHandle should modify the
appearance of the icon. See the description of PlotIconID beginning on
page 5-20 for a list of constants you can use in this parameter.

theSICN A handle to the icon to draw.

DESCRIPTION

The PlotSICNHandle function draws the specified small icon with the transform and
alignment specified by the transform and align parameters. Only 'SICN' resources
with a single member—or with two members, the second of which is a mask for the
first—plot correctly.

noErr 0 No error
paramErr –50 Error in parameter list

CHAPTER 5

Icon Utilities

5-28 Icon Utilities Reference

RESULT CODES

SEE ALSO

For an example of the use of the PlotSICNHandle function, see Listing 5-9 on
page 5-16.

Getting Icons From Resources That Don’t Belong to an Icon Family

You can get a handle to an 'ICON' or 'cicn' resource using the GetIcon and
GetCIcon functions. You can then draw these icons using the routines PlotIcon ,
PlotCIcon , PlotIconHandle , or PlotCIconHandle (see “Drawing Icons From
Resources” beginning on page 5-19).

To get a handle to an icon suite for a given icon family, use the routines described in
“Creating an Icon Suite” beginning on page 5-30.

GetIcon

You can use the GetIcon function to get a handle to an icon resource of type 'ICON' .

FUNCTION GetIcon (iconID: Integer): Handle;

iconID The resource ID for an icon of resource type 'ICON' .

DESCRIPTION

The GetIcon function reads in the 'ICON' resource with the specified resource ID and
returns a handle to it. The GetIcon function searches the current resource chain for the
resource. If GetIcon finds the resource, it reads the resource and returns a handle to the
icon as its function result. If GetIcon can’t find the resource, it returns NIL as its
function result.

To draw an icon obtained from GetIcon in a specified rectangle, you can use either
PlotIcon or PlotIconHandle . Unlike PlotIcon , PlotIconHandle allows you to
specify transforms and alignments.

When you are finished using a handle obtained from GetIcon , use the
ReleaseResource procedure to release the memory occupied by the icon resource data.

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-29

RESULT CODES

SEE ALSO

For a description of the PlotIcon procedure and PlotIconHandle function, see
page 5-23 and page 5-24, respectively. For information about ReleaseResource , see
the chapter “Resource Manager” in this book.

GetCIcon

You can use GetCIcon to get a handle to a color icon of resource type 'cicn ' .

FUNCTION GetCIcon (iconID: Integer): CIconHandle;

iconID The resource ID for an icon of resource type 'cicn' .

DESCRIPTION

The GetCIcon function reads in the 'cicn' resource with the specified resource ID and
returns a handle to it. The GetCIcon function searches the current resource chain for the
resource. If GetCIcon finds the resource, it reads the resource, creates a color icon record
for the icon, and initializes the fields of the record according to the information
contained in the 'cicn' resource. GetCIcon returns a handle to the color icon record as
its function result. If GetCIcon can’t find the resource, it returns NIL as its function
result.

To draw an icon obtained from GetCIcon in a specified rectangle, you can use either the
PlotCIcon or PlotCIconHandl e routine. Unlike Plot CIcon , PlotCIconHandle
allows you to specify transforms and alignments.

When you are finished with a handle obtained from GetCIcon , use the DisposeCIcon
procedure to release the memory occupied by the color icon record.

RESULT CODES

SEE ALSO

For information about the color icon record, see “The Color Icon Record” on
page 5-17. For information about the format of the 'cicn' resource, see Inside
Macintosh: Imaging With QuickDraw.
For descriptions of the PlotCIcon procedure and PlotCIconHandle function, see
page 5-25 and page 5-26, respectively. The DisposeCIcon procedure is described next.

noErr 0 No error
resNotFound –192 Resource not found

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 5

Icon Utilities

5-30 Icon Utilities Reference

Disposing of Icons

When you are finished with a handle obtained from GetCIcon , use the DisposeCIcon
procedure to release the memory occupied by the color icon record.

When you are finished using a handle obtained from GetIcon or GetResource , use
the ReleaseResource procedure to release the memory occupied by the icon resource
data; for more information about GetResource and ReleaseResource , see the
chapter “Resource Manager” in this book.

To dispose of icons in an icon suite, use the DisposeIconSuit e function described on
page 5-42.

DisposeCIcon

You can use the DisposeCIcon procedure to release the memory occupied by an icon
color record obtained from the GetCIcon function. The DisposeCIcon procedure is
also available as the DisposCIcon procedure.

PROCEDURE DisposeCIcon (theIcon: CIconHandle);

theIcon A handle to the color icon record to dispose of.

DESCRIPTION

The DisposeCIcon procedure disposes of any structure allocated by GetCIcon .

Creating an Icon Suite

You typically create an icon suite by reading all resources from a specific icon family into
memory and storing handles to the icon resource data in a new icon suite. You can do
this using the GetIconSuite function. Alternatively, you can create an empty icon suite
using the NewIconSuite function and then add icons to it one at a time using the
AddIconToSuite function.

Although you typically create an icon suite using GetIconSuite (which fills the suite
with handles to icon resource data), you can also create an icon suite and then add
handles to icon data. The handles that you add to the suite do not have to be associated
with a resource fork. For example, your application might get icon data from the desktop
database rather than reading it from a resource, or your application might read icon data
from a resource and then detach it. In either case, you can provide a handle to the icon
data and use AddIconToSuite to add the handle to the icon suite. You need to release
the memory occupied by the icon suite when you’re finished using it. The
DisposeIconSuite function releases this memory but does not release the memory
of any resource handles. You can request DisposeIconSuite to release the memory of
any other handles to icon data in the suite.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-31

Note
When you create an icon suite from icon family resources, the associated
resource file should remain open while you use Icon Utilities routines. ◆

GetIconSuite

You can use the GetIconSuite function to create an icon suite in memory that contains
handles to a specified icon family’s resources and to return a handle to the icon suite.

FUNCTION GetIconSuite (VAR theIconSuite: Handle;

 theResID: Integer;

 selector: IconSelectorValue): OSErr;

theIconSuite
GetIconSuite allocates the memory for and returns, in this parameter,
a handle to an icon suite for the requested icon family. To release the
memory occupied by an icon suite, you must use the
DisposeIconSuite function.

theResID The resource ID of the icons in the icon family to be read into memory.

selector A value that indicates which icons from the icon family to include in the
icon suite. See the description that follows for a list of constants you can
use in this parameter.

DESCRIPTION

The GetIconSuite function returns a handle to a suite of icons for the icon family
whose resource ID is specified in the theResID parameter. Use one or more of these
constants in the selector parameter to specify which members of the family to include
in the icon suite:

CONST

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200; {'ics4' resource}

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

CHAPTER 5

Icon Utilities

5-32 Icon Utilities Reference

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData = $FFFFFFFF; {all resources of given ID}

These constants are additive; that is, you can add several constants to include the
corresponding family members in the icon suite.

When you create an icon suite using GetIconSuite , it sets the default label for the
suite to none. To set a new default label for an icon suite, use the SetSuiteLabel
function.

If you call SetResLoad with the load parameter set to FALSE before you call
GetIconSuite , the suite is filled with unloaded resource handles.

To perform operations on one or more icons in an icon suite, use the ForEachIconDo
function.

To draw the icon described by the icon suite using the icon family member that is most
suitable for the current bit depth of the display device, use the PlotIconSuite
function.

RESULT CODES

SEE ALSO

For examples of the use of the GetIconSuite function, see Listing 5-2 and Listing 5-3
on page 5-11 and page 5-12, respectively.

For a description of the PlotIconSuite and ForEachIconDo functions, see page 5-35
and page 5-38, respectively. For information on the DisposeIconSuite function, see
page 5-42.

NewIconSuite

You can use the NewIconSuite function to get a handle to an empty icon suite.
Then you can use AddIconToSuite to add handles to icon data.

FUNCTION NewIconSuite (VAR theIconSuite: Handle): OSErr;

theIconSuite
NewIconSuite allocates the memory for a new icon suite and returns, in
this parameter, a handle to an empty icon suite.

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-33

DESCRIPTION

The NewIconSuite function returns a handle to an empty icon suite in the parameter
theIconSuite . When you create an icon suite using NewIconSuite , it sets the default
label for the suite to none. To set a new default label for an icon suite, use the
SetSuiteLabel function. NewIconSuite allocates the memory for the icon suite
handle. To release the memory occupied by an icon suite, you must use the
DisposeIconSuite function.

RESULT CODES

SEE ALSO

For information on the DisposeIconSuite function, see page 5-42.

AddIconToSuite

You can use the AddIconToSuite function to add icons to an icon suite. This function
is most often used to read icons into an empty icon suite created with NewIconSuite .

FUNCTION AddIconToSuite (theIconData: Handle; theSuite: Handle;

 theType: ResType): OSErr;

theIconData
A handle to the data for the new icon to be added to the icon suite. You
can obtain a handle to icon data using various routines, such as GetIcon
or GetResource .

theSuite A handle to the icon suite to which to add the icon.

theType The resource type of the new icon. The resource type should be that of an
icon family member.

DESCRIPTION

The AddIconToSuite function adds the handle to the icon data to the specified icon
suite at the location reserved for icon data of type theType . If the icon suite already
includes a handle to icon data for that type, AddIconToSuite replaces the handle to the
old data without disposing of it. In this case you may want to call GetIconFromSuite
(described next) first to obtain the old handle so that you can dispose of it.

RESULT CODES

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

noErr 0 No error
paramErr –50 No such type in icon family

CHAPTER 5

Icon Utilities

5-34 Icon Utilities Reference

Getting Icons From an Icon Suite

The GetIconFromSuite function returns a handle to the specified icon in an icon suite.

GetIconFromSuite

You can use the GetIconFromSuite function to get an icon from an icon suite.

FUNCTION GetIconFromSuite (VAR theIconData: Handle;

theSuite: Handle;

theType: ResType): OSErr;

theIconData
GetIconFromSuite returns a handle to the data for the requested icon
in this parameter. If an icon of the specified type does not exist in the
given icon suite, GetIconFromSuite returns NIL in this parameter.

theSuite A handle to the icon suite from which to get the icon.

theType The resource type of the desired icon.

DESCRIPTION

The GetIconFromSuite function returns a handle to the data for the icon of type
theType in the icon suite specified by theSuite . If you intend to dispose of the handle,
pass a NIL handle to the AddIconToSuite function to delete the corresponding entry
in the suite.

You can use the handle returned by GetIconFromSuite to manipulate the icon data,
for example, to alter its color or add three-dimensional shading. However, you should
not use the returned handle to draw the icon with other Icon Utilities routines.

IMPORTANT

To plot an icon from an icon suite, you should normally use
PlotIconSuite . The PlotIconHandle function may not draw the
icon correctly if you pass it the handle returned in the theIconData
parameter of GetIconFromSuite . ▲

RESULT CODES

noErr 0 No error
paramErr –50 Requested type not present in suite

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-35

SEE ALSO

For an example of the use of the GetIconFromSuite function, see Listing 5-4 on
page 5-13.

For a description of the AddIconToSuit e function, see page 5-33. The
PlotIconSuite function is described next.

Drawing Icons From an Icon Suite

To draw an icon from an icon suite using the icon that that is most appropriate for a
specified rectangle and the current bit depth of the display device, use the
PlotIconSuite function.

To draw an icon from a resource, use the routines described in “Drawing Icons From
Resources” beginning on page 5-19. For example, to draw an icon from an icon family,
use the PlotIconID function.

PlotIconSuite

You can use the PlotIconSuite function to draw the icon described by an icon suite
using the most appropriate icon in the suite for the current bit depth of the display
device and the rectangle in which the icon is to be drawn.

FUNCTION PlotIconSuite (theRect: Rect;

align: IconAlignmentType;

transform: IconTransformType;

theIconSuite: Handle): OSErr;

theRect The rectangle in which to draw the icon. The PlotIconSuite function
uses the size of the specified destination rectangle and the current bit
depth of the display device to determine which icon from an icon suite to
draw.

align A value that specifies how PlotIconSuite should align the icon within
the rectangle. For example, you can specify that PlotIconSuite
center the icon within the rectangle or align it at one side or the other. See
the description that follows for a list of constants you can use in this
parameter.

transform A value that specifies how PlotIconSuite should modify the
appearance of the icon. See the description that follows for a list of
constants you can use in this parameter.

theIconSuite
A handle to the icon suite from which PlotIconSuite gets the icon to
draw. You can get a handle to an icon suite using the GetIconSuite or
NewIconSuite function.

CHAPTER 5

Icon Utilities

5-36 Icon Utilities Reference

DESCRIPTION

The PlotIconSuite function plots a single icon from an icon suite in the current
graphics port. You cannot determine which icon from a given suite it will draw;
PlotIconSuit e bases this decision on the size of the specified destination rectangle
and the current bit depth of the display device. For example, if the destination rectangle
has the coordinates (100,100,116,116) and the display device is set to 4-bit color, the
PlotIconSuite function draws the icon of type 'ics4' if that icon is available in the
icon suite.

If the width or height of a destination rectangle is greater than or equal to 32 pixels,
PlotIconSuite uses the 32-by-32 pixel icon with the appropriate bit depth for the
display device. If the destination rectangle is less than 32 by 32 pixels and greater than 16
pixels wide or 12 pixels high, PlotIconSuite uses the 16-by-16 pixel icon with the
appropriate bit depth. If the destination rectangle’s height is less than or equal
to 12 pixels or its width is less than or equal to 16 pixels, PlotIconSuite uses the
12-by-16 pixel icon with the appropriate bit depth. (Typically, only the Finder and
Standard File Package use 12-by-16 pixel icons.)

You can use these constants in the align parameter to specify the alignment of the icon
within the rectangle specified by the parameter theRect :

CONST

atNone = $0; {no special alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4; {centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft);

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

The destination rectangle passed in the theRect parameter of PlotIcon Suite must
be exactly 32 by 32 pixels, 16 by 16 pixels, or 12 by 16 pixels for PlotIcon Suite to
draw the icon without stretching it. If the destination rectangle is not one of these
standard sizes, PlotIcon Suite expands or shrinks the icon to fit. After stretching or
shrinking the icon, the PlotIcon Suite function aligns the icon according to the value
specified in the align parameter, moving the icon so that the edges of its mask align
with the specified side or direction.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-37

You can pass constants in the transform parameter to specify how you want the icon
modified, if at all, when plotted by PlotIconSuite . If you don’t want to specify any
transform constants, specify ttNone in the tran sform parameter.

CONST ttNon e = $ 0;

You can use these constants in the tran sform parameter to transform the icon in a
manner analogous to certain Finder states for icons:

CONST

ttDisable d = $ 1;

ttOfflin e = $ 2;

ttOpe n = $ 3;

ttSelecte d = $ 4000;

ttSelectedDisable d = (ttSelected + ttDisabled);

ttSelectedOfflin e = (ttSelected + ttOffline);

ttSelectedOpe n = (ttSelected + ttOpen);

You can use another group of constants to color the icons using the Finder label colors.
To determine the appropriate label for a file’s icon, you can check bits 1–3 of the
fdFlags field in the file’s file information record. These bits contain a number from 0 to
7 indicating the label setting (0 indicates no label). Simply add the corresponding
constant from this list to the transform parameter when you call PlotIconSuite :

CONST

ttLabel 1 = $ 0100 ;

t tLabel 2 = $ 0200 ;

t tLabel 3 = $ 0300 ;

t tLabel 4 = $ 0400 ;

t tLabel 5 = $ 0500 ;

t tLabel 6 = $ 0600 ;

t tLabel 7 = $ 0700 ;

If you don’t specify a label constant in the transform parameter, PlotIconSuite
displays the icon using the default label for that icon suite. When you create an icon suite
using GetIconSuite or NewIconSuite , these functions set the default label for the
suite to none. To set a new default label for an icon suite, use the SetSuiteLabel
function.

RESULT CODES

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

5-38 Icon Utilities Reference

SEE ALSO

For examples of the use of the PlotIconSuite function, see Listing 5-2 and Listing 5-3,
starting on page 5-11.

For information on the SetSuiteLabel function, see page 5-40. See the chapter “Finder
Interface” in Inside Macintosh: Macintosh Toolbox Essentials for more information about the
file information record.

Performing Operations on Icons in an Icon Suite

You can perform an action on one or more icons in an icon suite using the
ForEachIconDo function.

ForEachIconDo

You can use the ForEachIconDo function to perform an action on one or more icons in
an icon suite.

FUNCTION ForEachIconDo (theSuite: Handle;

selector: IconSelectorValue ;

action: IconAction;

yourDataPtr: Ptr): OSErr;

theSuite A handle to an icon suite.

selector A long integer whose bits determine which icons in the suite to perform
the operation on. See the description that follows for a list of constants
you can use in this parameter.

action A pointer to your icon action function.

yourDataPtr
A pointer to data that is passed to your icon action function.

DESCRIPTION

The ForEachIconDo function uses the icon action function identified by the action
parameter to perform an action on the specified icons in the icon suite. You can use these
constants in the selector parameter to specify the icons on which to perform the
action:

CONST

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200; {'ics4' resource}

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-39

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableData = $FFFFFFFF; {all resources of given ID}

These constants are additive; that is, you can add several constants to include the
corresponding family members in the icon suite.

You can use the yourDataPtr parameter to pass a pointer to data or other information
required by your icon action function. Typically, you use this parameter to specify which
action your icon action function should perform.

ForEachIconDo calls your icon action function once for each type of icon specified in
the selector parameter. ForEachIconDo passes to your icon action function a handle
to the icon to perform the action on. Your icon action function should perform any action
as indicated by the yourDataPtr parameter and return a result code. ForEachIconDo
returns the result code returned by your icon action function. If your icon action
function returns a nonzero function result, ForEachIconDo immediately returns to the
application.

RESULT CODE

SEE ALSO

See “Icon Action Functions” beginning on page 5-57 for more information about icon
action functions.

noErr 0 No error

CHAPTER 5

Icon Utilities

5-40 Icon Utilities Reference

Getting and Setting the Label for an Icon Suite

The GetSuiteLabel and SetSuiteLabel functions allow you to get and set the
default label associated with an icon suite.

GetSuiteLabel

You can use the GetSuiteLabel function to get the default label setting associated with
an icon suite.

FUNCTION GetSuiteLabel (theSuite: Handle): Integer;

theSuite A handle to an icon suite.

DESCRIPTION

The GetSuiteLabel function returns, as its function result, the default label setting
associated with the specified icon suite. The default label setting is an integer from 1 to 7
that specifies which of the label colors shown in the Finder’s Label menu is applied to
icons of that suite when your application displays them. GetSuiteLabel returns 0 if
the suite doesn’t have a label.

You can override the default label setting for a suite by specifying a label in the
transform parameter of the PlotIconSuite function.

SEE ALSO

To get information about the color and string for a specific label, you can use the
GetLabe l function, which is described on page 5-41.

SetSuiteLabel

You can use the SetSuiteLabel function to specify the default label associated with an
icon suite.

FUNCTION SetSuiteLabel (theSuite: Handle;

t heLabel: Integer) : OSErr ;

theSuite A handle to an icon suite.

theLabel An integer from 1 to 7 that specifies a label for the icon suite, or 0 to set
the icon suite’s label to none.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-41

DESCRIPTION

The SetSuiteLabel function sets the label associated with the specified icon suite. The
default label setting helps to determine which of the label colors shown in the Finder’s
Label menu is applied to icons of that suite when your application displays them.

You can override the default label setting for a suite by specifying a label in the
transform parameter of the PlotIconSuite function. For example, suppose the color
currently set for the third label displayed in the Finder’s Label menu is red, and the color
for the fourth label is green. If you set the default label for a suite using
SetSuiteLabel(theSuite,3), then draw an icon from the same suite using
PlotIconSuite and specifying ttNone in the transform parameter, the label color
red is applied to the icon. However, if you specify ttLabel4 in the transform
parameter of the PlotIconSuite function, the label color green is applied to the icon.

RESULT CODES

SEE ALSO

For a description of the PlotIconSuite function, see page 5-35.

Getting Label Information

If you wish to display an icon in your application with the label color and label string
associated with a specific label in the Finder, you can use the GetLabel function to get
the current label information for that label.

GetLabel

You can use the GetLabel function to get the color and string used for a given label in
the Label menu of the Finder and in the Labels control panel.

FUNCTION GetLabel (labelNumber: Integer; VAR labelColor: RGBColor;

 V AR labelString: Str255): OSErr ;

labelNumber
An integer from 1 to 7 indicating which label’s information is requested.

labelColor
GetLabel returns, in this parameter, the color of the specified label.

labelString
GetLabel returns, in this parameter, the string associated with the
specified label.

noErr 0 No error
paramErr –50 The th eLabel parameter is greater than 7

CHAPTER 5

Icon Utilities

5-42 Icon Utilities Reference

DESCRIPTION

The GetLabel function returns the color and string used for a specified label in the
Label menu of the Finder and in the Labels control panel.

RESULT CODES

SEE ALSO

For information on the RGBColor record, see Inside Macintosh: Imaging With QuickDraw.

Disposing of Icon Suites

When you are finished with an icon suite, you can release the memory it occupies by
calling the DisposeIconSuit e function.

DisposeIconSuite

You can use the DisposeIconSuite function to release the memory occupied by an
icon suite.

FUNCTION DisposeIconSuite (theIconSuite: Handle ;

disposeData: Boolean) : OSErr;

theIconSuite
A handle to the icon suite to be disposed of.

disposeData
A Boolean value indicating whether or not to dispose of handles in the
icon suite that are not associated with a resource fork.

DESCRIPTION

The DisposeIconSuite function releases the memory occupied by the specified icon
suite. However, DisposeIconSuite does not release the memory of any icons
explicitly associated with an open resource fork, that is, any handles to icon resource
data that your application added to the suite using GetIconSuite or
AddIconToSuite . For handles to icon data that your application added to the icon
suite using AddIconToSuite (for example, if your application read in an icon resource,
detached it, then added the handle to the suite), you can request that AddIconToSuite
release the memory associated with the handles.

noErr 0 No error
paramErr –50 The labelNumber parameter is greater than 7

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-43

Set disposeData to TRUE to automatically release icon data that is associated with the
specified icon suite but not explicitly associated with a resource fork. If you set
disposeData to FALSE, DisposeIconSuite does not dispose of any icon data that is
associated with the specified icon suite.

RESULT CODES

SEE ALSO

For more information on icon suites, see “Creating an Icon Suite” beginning on page 5-30.

Converting an Icon Mask to a Region

The I conSuiteTo Rgn, I conIDTo Rgn, and IconMethodToRgn functions create a
region from an icon’s mask. IconSuiteToRgn and IconIDToRgn operate on an icon
identified by a handle to a suite and an icon ID, respectively. The I conMethodTo Rgn
function performs this operation on the icon mask that it obtains with the aid of
your icon getter function. Once you have a region that describes the icon mask for a
given icon, you can use it to perform accurate hit-testing and outline dragging of the
icon in your application.

IconSuiteToRgn

You can use the IconSuiteToRgn function to convert, to a region, the icon mask in an
icon suite. You specify a rectangle as one of the parameters to this function.
IconSuiteToRgn determines, from the size of the specified rectangle, which mask from
the icon suite to convert. Once it has determined which icon mask to convert,
IconSuiteToRgn uses the specified rectangle as the bounding box of the region.

FUNCTION IconSuiteToRgn (theRgn: RgnHandle; iconRect: Rect;

 align: IconAlignmentType;

 t heIconSuite: Handle): OSErr ;

theRgn IconSuiteToRgn returns a handle to the requested region in this
parameter. You must allocate memory for the region handle before calling
IconSuiteToRgn .

iconRect The rectangle in which the icon is to be drawn, specified in local
coordinates of the current graphics port. IconSuiteToRgn uses this
rectangle as the bounding box of the region. I conSuiteToRg n
determines, from the size of the rectangle specified in this parameter,
which icon mask to use from the icon suite.

noErr 0 No error
memWZErr –111 Attempt to operate on a free block

CHAPTER 5

Icon Utilities

5-44 Icon Utilities Reference

align A value that specifies how IconSuiteToRgn should align the region
within the rectangle. See the description of PlotIcon Suite on page 5-35
for a list of constants you can use in this parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The IconSuiteToRgn function modifies the region referred to by the handle in the
theRgn parameter. The returned region corresponds to the icon’s mask (the mask
defined by either an 'ICN#' or 'ics#' entry in an icon suite, according to the rectangle
and alignment specified in the iconRect and align parameters).

RESULT CODES

IconIDToRgn

You can use the IconIDToRgn function to convert, to a region, the icon mask in an icon
family. You specify a rectangle as one of the parameters to this function. IconIDToRgn
determines, from the size of the specified rectangle, which mask from the icon family to
convert. Once it has determined which icon mask to convert, IconIDToRgn uses the
specified rectangle as the bounding box of the region.

FUNCTION IconIDToRgn (theRgn: RgnHandle; iconRect: Rect;

 align: IconAlignmentType;

 i conID: Integer) : OSErr;

theRgn IconIDToRgn returns a handle to the requested region in this parameter.
You must allocate memory for the region handle before calling
IconIDToRgn .

iconRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. IconIDToRgn uses this rectangle as the
bounding box of the region. I conIDToRgn determines, from the size of
the rectangle specified in this parameter, which icon mask to use from the
icon family specified by iconI D.

align A value that specifies how IconIDToRgn should align the mask within
the rectangle. See the description of PlotIconID on page 5-20 for a list of
constants you can use in this parameter.

iconID The resource ID of the icon for which to create a region.

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-45

DESCRIPTION

The IconIDToRgn function modifies the region referred to by the handle in the theRgn
parameter. The returned region corresponds to the icon’s mask (the mask defined by
either an 'ICN#' or 'ics#' resource in an icon family, according to the rectangle and
alignment specified in the iconRect and align parameters).

RESULT CODES

IconMethodToRgn

You can use the IconMethodToRgn function to convert, to a region, the mask for an
icon that IconMethodToRgn obtains with the aid of your icon getter function.

FUNCTION IconMethodToRgn (theRgn: RgnHandle ; i conRect: Rect ;

 a lign: IconAlignmentType ;

 t heMethod: IconGetter ;

 y ourDataPtr: Ptr): OSErr ;

theRgn IconMethodToRgn returns a handle to the requested region in this
parameter. You must allocate memory for the region handle before calling
IconMethodToRgn .

iconRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. The IconMethodToRgn function obtains the
data for the icon mask from your icon getter function and then converts
the icon mask to a region. IconMethodToRgn uses the rectangle
specified in this parameter as the bounding box of the region.

align A value that specifies how IconMethodToRgn should align the region
within the rectangle. See the description of PlotIconID on page 5-20 for
a list of constants you can use in this parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The IconMethodToRgn function modifies the region referred to by the handle in the
theRgn parameter. The region corresponds to the icon’s mask (as returned by your icon
getter function, and according to the rectangle and alignment specified in the iconRect
and align parameters).

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

5-46 Icon Utilities Reference

IconMethodToRgn passes to your icon getter function the type of the icon to get and
the value specified in the yourDataPtr parameter. The IconMethodToRgn function
examines the size of the rectangle and requests the appropriate icon from your icon
getter function—an icon of icon type 'ICN#' or 'ics#' . Your icon getter function
should return a handle to the data of the requested icon type. The IconMethodToRgn
function extracts the mask from the icon data that your icon getter function returns. If
your icon getter function returns data that does not correspond to an icon of type
'ICN#' or type 'ics#' , IconMethodToRgn attempts to generate a mask from the
returned data.

Your icon getter function can get the data for the icon and its mask using whatever
method is appropriate to your application. For example, your application might
maintain its own cache of icons (and pass a pointer to it in the yourDataPtr parameter)
or use its icon getter function to get an icon from the desktop database.

RESULT CODES

Determining Whether a Point or Rectangle Is Within an Icon

You can use several Icon Utilities routines to perform hit-testing for points or rectangles
against a specified icon. You specify a destination rectangle and alignment of the icon
within the rectangle as parameters to these functions. The functions use this information
to determine whether a specified point or rectangle is within the icon as it appears in the
destination rectangle.

The PtInIconSuite and PtInIconID functions hit-test a specified point against the
appropriate icon mask from an icon suite or icon family. The PtInIconMethod function
hit-tests a specified point against an icon mask obtained with the aid of your icon getter
function.

The RectInIconSuite and RectInIconID functions hit-test a specified rectangle
against the appropriate icon mask from an icon suite or icon family. The
RectInIconMethod function hit-tests a specified rectangle against an icon mask
obtained with the aid of your icon getter function.

noErr 0 No error
noMaskFoundErr –1000 No mask found

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-47

PtInIconSuite

You can use the PtInIconSuite function to determine whether a specified point is
within an icon. (A point is considered to be within an icon if the point is within the icon’s
mask.) For example, you might use this function to determine whether a user clicked an
icon in a window of your application. You specify as parameters to PtInIconSuite the
same rectangle and alignment that you last used to draw the icon. PtInIconSuite uses
the size of this rectangle to determine which icon mask from the icon suite to use for the
operation. The PtInIconSuite function uses the location of this rectangle (along with
the alignment) to determine whether a specified point is within the icon.

FUNCTION PtInIconSuite (testPt: Point; iconRect: Rect;

align: IconAlignmentType;

t heIconSuite: Handle): Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates
of the current graphics port. PtInIconSuite determines, from the
size of the rectangle specified in this parameter, which icon mask from the
icon suite specified by theIconSuite to test the point against.
PtInIconSuite then uses the location of this rectangle (and the location
of the icon in the rectangle) to determine whether the specified point is
within the icon.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIcon Suite on page 5-35 for a list of constants you can use in this
parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The PtInIconSuite function hit-tests the point specified by testPt against the
appropriate icon mask from the specified icon suite. PtInIconSuite determines which
icon mask to use ('ICN#' or 'ics#') according to the rectangle specified in iconRect .
The parameters iconRect and align should be the same as when the icon was last
drawn. The PtInIconSuite function returns TRUE if the point is in the icon mask and
FALSE if it is not.

CHAPTER 5

Icon Utilities

5-48 Icon Utilities Reference

PtInIconID

You can use the PtInIconID function to determine whether a specified point is within
an icon. (A point is considered to be within an icon if the point is within the icon’s mask.)
For example, you might use this function to determine whether a user clicked an icon in
a window of your application. You specify as parameters to PtInIconID the same
rectangle and alignment that you last used to draw the icon. PtInIconID uses the size
of this rectangle to determine which icon mask from the icon family to use for the
operation. The PtInIconID function uses the location of this rectangle (along with the
alignment) to determine whether a specified point is within the icon.

FUNCTION PtInIconID (testPt: Point ; i conRect: Rect ;

al ign: IconAlignmentType ;

i conID: Integer) : Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. PtInIconID determines, from the size of the
rectangle specified in this parameter, which icon mask from the icon
family specified by iconID to test the point against. PtInIconID then
uses the location of this rectangle (and the alignment of the icon in the
rectangle) to determine whether the specified point is within the icon.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

iconID A resource ID for an icon family.

DESCRIPTION

The PtInIconID function hit-tests the point specified by testPt against the
appropriate icon mask from the icon family identified by iconID , using the destination
rectangle and alignment specified by iconRect and align . The parameters iconRect
and align should be the same as when the icon was last drawn. The PtInIconID
function returns TRUE if the point is in the icon mask and FALSE if it is not.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-49

PtInIconMethod

You can use the PtInIconMethod function to determine whether a specified point is
within an icon. (A point is considered to be within an icon if the point is within the icon’s
mask.) The PtInIconMethod function obtains the icon to test against with the aid of
your icon getter function.

FUNCTION PtInIconMethod (testPt: Point ; i conRect: Rect ;

 align: IconAlignmentType ;

 t heMethod: IconGetter ;

 yourDataPtr: Ptr): Boolean;

testPt The point to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

theMethod A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The PtInIconMethod function hit-tests the point specified by testPt against an icon
obtained with the aid of an icon getter function, using the destination rectangle and
alignment specified by iconRec t and align . The parameters iconRect and align
should be the same as when the icon was last drawn. The PtInIconMethod function
returns TRUE if the point is in the icon mask and FALSE if it is not.

PtInIconMethod passes to your icon getter function the type of icon your function
should retrieve (either 'ICN#' or 'ics#') and also passes the value specified in the
yourDataPtr parameter. The PtInIconMethod function examines the size of the
specified rectangle and requests the appropriate icon from your icon getter function.
Your icon getter function should return a handle to the requested icon’s data. The
PtInIconMethod function extracts the mask from the icon data that your icon getter
function returns. If your icon getter function returns data that does not correspond to an
icon of type 'ICN#' or type 'ics#' , PtInIconMethod attempts to generate a mask
from the returned data.

CHAPTER 5

Icon Utilities

5-50 Icon Utilities Reference

Your icon getter function can get the icon’s data using whatever method is appropriate
to your application. For example, your application might maintain its own cache of icons
(and pass a pointer to it in the yourDataPtr parameter) or use its icon getter function
to get an icon from the desktop database.

SEE ALSO

For more information about icon getter functions, see page 5-58.

RectInIconSuite

You can use the RectInIconSuite function to hit-test a rectangle against the
appropriate icon mask from an icon suite for a specified destination rectangle and
alignment.

FUNCTION RectInIconSuite (testRect: Rect ; i conRect: Rect ;

 a lign: IconAlignmentType ;

 t heIconSuite: Handle): Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. Like PtIn Icon Suite , RectInIconSuite
determines, from the size of the rectangle specified in this parameter,
which icon mask from the icon suite specified by theIconSuite to test
the testRect parameter against.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIcon Suite on page 5-35 for a list of constants you can use in this
parameter.

theIconSuite
A handle to an icon suite.

DESCRIPTION

The RectInIconSuite function hit-tests the rectangle specified by testRect
against the appropriate icon mask from the icon suite as it appears in the iconRect
rectangle. The parameters iconRect and align should be the same as when the icon
was last drawn. The RectInIconSuite function returns TRUE if the rectangle
intersects the icon mask and FALSE if it doesn’t.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-51

For example, if the coordinates of the iconRect parameter are (100,100,116,116) and the
icon cache contains entries for each icon family member, RectInIconSuite
uses the icon mask defined by the 'ics#' entry. The function aligns this mask
(according to the align parameter) within the iconRect rectangle. The function then
intersects the rectangle specified by testRect with the icon mask in the iconRect
rectangle. Continuing with this example, if the icon mask is left-aligned so that its
rightmost pixel appears at coordinates (112,112) and the coordinates of testRect are
(114,114,130,130), then RectInIconSuite returns FALSE.

RectInIconID

You can use the RectInIconID function to hit-test a rectangle against the appropriate
icon mask from an icon family for a specified destination rectangle and alignment.

FUNCTION RectInIconID (testRect: Rect ; i conRect: Rect ;

 align: IconAlignmentType ;

 i conID: Integer) : Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port. Like PtIn IconID , RectInIconID
determines, from the size of the rectangle specified in this parameter,
which icon mask from the icon family to test the testRect parameter
against.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

iconID A resource ID for an icon family.

DESCRIPTION

The RectInIconID function hit-tests the rectangle specified by testRect against the
appropriate icon mask from the icon family as it appears in the iconRect rectangle. The
parameters iconRect and align should be the same as when the icon was last drawn.
The RectInIconID function returns TRUE if the rectangle intersects the icon mask and
FALSE if it doesn’t.

CHAPTER 5

Icon Utilities

5-52 Icon Utilities Reference

RectInIconMethod

You can use the RectInIconMethod function to hit-test a rectangle against an icon
obtained by your icon getter function for a specified destination rectangle and alignment.

FUNCTION RectInIconMethod (testRect: Rect ; i conRect: Rect ;

align: IconAlignmentType ;

t heMethod: IconGetter ;

yourDataPtr: Ptr): Boolean;

testRect The rectangle to be tested, specified in local coordinates of the current
graphics port.

iconRect The rectangle in which the icon appears, specified in local coordinates of
the current graphics port.

align A value that specifies how the icon against which to hit-test is aligned
within the rectangle specified by iconRect . See the description of
PlotIconID on page 5-20 for a list of constants you can use in this
parameter.

theMetho d A pointer to an icon getter function.

yourDataPtr
A pointer to data that is passed to your icon getter function.

DESCRIPTION

The RectInIconMethod function hit-tests the rectangle specified by testRect against
an icon mask obtained with the aid of an icon getter function and as the icon appears in
the destination rectangle. The parameters iconRect and align should be the same as
when the icon was last drawn. The function returns TRUE if the rectangle intersects the
icon mask and FALSE if it doesn’t.

RectInIconMethod passes to your icon getter function the type of the icon your
function should retrieve and the value specified in the yourDataPtr parameter. The
RectInIconMethod function examines the size of the rectangle and requests the
appropriate icon from your icon getter function—an icon of icon type 'ICN#' or
'ics#' . Your icon getter function should return a handle to the data of the requested
icon type. The RectInIconMethod function extracts the mask from the icon data that
your icon getter function returns. If your icon getter function returns data that does not
correspond to an icon of type 'ICN#' or type 'ics#' , RectInIconMethod attempts to
generate a mask from the returned data.

Your icon getter function can get the data for the icon and its mask using whatever
method is appropriate to your application. For example, your application might
maintain its own cache of icons (and pass a pointer to it in the yourDataPtr parameter)
or use its icon getter function to get an icon from the desktop database.

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-53

SEE ALSO

For more information about icon getter functions, see page 5-58.

Working With Icon Caches

All the Icon Utilities routines that accept a handle to an icon suite also accept a handle to
an icon cache. An icon cache is like an icon suite except that it also contains a pointer
to an application-defined icon getter function and a pointer to data that can be used as a
reference constant. An icon cache typically does not contain handles to the icon resources
for all icon family members. Instead, if the icon cache does not contain an entry for a
specific type of icon in an icon family, the Icon Utilities routines call your application’s
icon getter function to retrieve the data for that icon type.

You can use the routines described in this section to create and manipulate icon caches.
To create an empty icon cache, you can use the MakeIconCache function, much as you
use the NewIconSuite function to create an empty icon suite. Before drawing an icon in
an icon cache, you can use the LoadIconCache function to load icon data for a specified
destination rectangle, bit depth of the display device, and alignment.

To get and set the data associated with an icon cache or the icon getter function used
with an icon cache, you can use the GetIconCacheData , SetIconCacheData ,
GetIconCacheProc , and SetIconCacheProc functions.

MakeIconCache

You can use the MakeIconCache function to get a handle to an empty icon cache, to
which you can add icon data using the Load Icon Cache function.

FUNCTION MakeIconCache (VAR theHandle: Handle ;

makeIcon: IconGetter ;

yourDataPtr: UNIV Ptr): OSErr ;

theHandle MakeIconCache allocates memory for a new icon cache and returns a
handle to the new icon cache in this parameter.

makeIcon A pointer to an icon getter function to associate with the icon cache.

yourDataPtr
A pointer to the data to associate with the icon cache.

DESCRIPTION

MakeIconCach e returns a handle to an empty icon cache in the parameter theHandle .
The MakeIconCache function associates the icon getter function and the value specified
in the parameters makeIcon and yourDataPt r with the new icon cache.

CHAPTER 5

Icon Utilities

5-54 Icon Utilities Reference

RESULT CODES

LoadIconCache

You can use the LoadIconCache function to load into an icon cache a handle to the
appropriate icon data for a specified destination rectangle and the current bit depth, for
drawing later with a specified alignment and transform.

FUNCTION LoadIconCache (theRect: Rect ; a lign: IconAlignmentType ;

t ransform: IconTransformType ;

t heIconCache: Handle): OSErr ;

theRect The rectangle in which to draw the icon, specified in local coordinates of
the current graphics port. LoadIconCache uses the rectangle specified in
this parameter and the bit depth of the display device to determine which
icon type to load into the cache.

align A value that specifies how to align the icon within the rectangle. See the
description of PlotIconSuite on page 5-35 for a list of constants you
can use in this parameter.

transform A value that specifies how to modify the appearance of the icon. See the
description of PlotIconSuite beginning on page 5-35 for a list of
constants you can use in this parameter.

theIconCache
A handle to the icon cache into which to load the icon data.

DESCRIPTION

You can load icon data into an icon cache with the LoadIconCache function for
drawing at a later time. For example, this can be useful if you suspect that the icon may
be drawn at a time not convenient for loading resource data (for instance, when the
resource fork isn’t in the current resource chain). The LoadIconCache function uses the
same criteria as PlotIconSuite to select the icon to load.

LoadIconCache uses the icon getter function associated with the icon cache to get the
appropriate icon. The icon getter function returns a handle to the requested icon data,
and LoadIconCache adds the returned handle to the entry for that icon in the icon
cache.

noErr 0 No error
memFullErr –108 Not enough memory in heap zone

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-55

After calling LoadIconCache , you can pass the same parameters to PlotIconSuite
to plot the icon data. Note that if you specify an alignment when you call
LoadIconCache , then call PlotIconSuite and specify no alignment,
PlotIconSuite draws the icon using the alignment that you originally specified to
LoadIconCache .

RESULT CODES

SEE ALSO

For a description of the PlotIconSuite function, see page 5-35.

GetIconCacheData

You can use the GetIconCacheData function to get the data associated with an icon
cache.

FUNCTION GetIconCacheData (theCache: Handle ;

VAR theData: Ptr): OSErr ;

theCache A handle to the icon cache whose data is desired.

theData GetIconCacheData returns, in this parameter, a pointer to the data
associated with the icon cache.

DESCRIPTION

The GetIconCacheData function returns, in the parameter theData , a pointer to the
data associated with the specified icon cache. You associate data with an icon cache
when you first create the cache using MakeIconCache . You can also set this data using
SetIconCacheData .

RESULT CODES

noErr 0 No error
noMaskFoundErr –1000 No mask found

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

CHAPTER 5

Icon Utilities

5-56 Icon Utilities Reference

SetIconCacheData

You can use the SetIconCacheData function to set the data associated with an icon
cache.

FUNCTION SetIconCacheData (theCache: Handle; theData: Ptr): OSErr;

theCache A handle to the icon cache whose data is to be set.

theData A pointer to the data to set.

DESCRIPTION

The SetIconCacheData function sets the data associated with the specified icon cache
to the data identified by theData parameter.

RESULT CODES

GetIconCacheProc

You can use the GetIconCacheProc function to get the icon getter function associated
with an icon cache.

FUNCTION GetIconCacheProc (theCache: Handle;

VAR theProc: IconGetter): OSErr;

theCache A handle to the icon cache whose icon getter function is desired.

theProc GetIconCacheProc returns a pointer to the requested icon getter
function in this parameter.

DESCRIPTION

The GetIconCacheProc function returns, in the parameter theProc , a pointer to the
icon getter function currently associated with the specified icon cache.

RESULT CODES

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-57

SetIconCacheProc

You can use the Set IconCacheProc function to set the icon getter function associated
with an icon cache.

FUNCTION SetIconCacheProc (theCache: Handle;

theProc: IconGetter): OSErr;

theCache A handle to the icon cache whose icon getter function is to be set.

theProc A pointer to the icon getter function to set.

DESCRIPTION

The SetIconCacheProc function sets the icon getter function for the specified icon
cache to the icon getter function specified by the parameter theProc .

RESULT CODES

Application-Defined Routines
Your application can provide two functions for use by Icon Utilities routines. If you want
to use the ForEachIconDo function to perform operations on icons, you must provide
an icon action function. If you use icon caches or use any of the routines that end in
Method , you must provide at least one icon getter function.

Icon Action Functions

You can perform operations on every icon in an icon suite by providing a pointer to an
icon action function as a parameter to the ForEachIconDo function. The
ForEachIconDo function calls your icon action function for specified icon resource
types.

noErr 0 No error
paramErr –50 The parameter theCache must be a handle to an icon cache

CHAPTER 5

Icon Utilities

5-58 Icon Utilities Reference

MyIconAction

The actio n parameter of ForEachIconDo must point to a function that uses this
syntax:

FUNCTION MyIconAction (theType: ResType; VAR theIcon: Handle;

 yourDataPtr: Ptr): OSErr;

theType The resource type of the icon.

theIcon A handle to the icon on which to perform the operation.

yourDataPtr
A pointer to data as specified in the yourDataPtr parameter of
the ForEachIconDo function. When your application calls
ForEachIconDo , it typically provides in the yourDataPtr parameter a
value that identifies the action your function should perform.

DESCRIPTION

The ForEachIconDo function uses your icon action function to perform actions on
specified icons in an icon suite. Your icon action function should return a result code
indicating whether it sucessfully performed the action on the icon.

RESULT CODE

SEE ALSO

For a description of the ForEachIconDo function, see page 5-38.

Icon Getter Functions

If you use icon caches, you must provide at least one icon getter function. You provide a
pointer to an icon getter function as a parameter to the MakeIconCache function.
Subsequent calls to Icon Utilities routines that use icon types not present in the icon
cache use the icon getter function associated with the icon cache to return a handle to the
icon data.

You can also specify an icon getter function as a parameter to Icon Utilities routines that
end in Method . Like Icon Utilities routines that work with icon caches, the icon getter
function that you provide as a parameter to PlotIconMethod should return a handle to
the requested icon’s data. Note that the icon getter function that you provide as a
parameter to IconMethodToRgn , PtInIconMethod , and RectInIconMethod should
also return a handle to the requested icon; these three functions then extract the icon
mask from the icon data your icon getter function returns.

noErr 0 No error

CHAPTER 5

Icon Utilities

Icon Utilities Reference 5-59

MyIconGetter

Here is the syntax of an icon getter function:

FUNCTION MyIconGetter (theType: ResType;

 y ourDataPtr: Ptr): Handle;

theType The resource type of the icon.

yourDataPtr
If your icon getter was called by an icon cache routine, this parameter
contains a pointer to the data associated with the icon cache. Otherwise,
this parameter contains the value your application specified in the
yourDataPtr parameter. For icon caches, you initially set this value
when you first create a cache using MakeIconCache . You can change this
value using SetIconCacheData . The icon getter function can use this
data as needed.

DESCRIPTION

An icon getter function should return as its function result a handle to the requested
icon’s data.

The MakeIconCache function takes a pointer to an icon getter function for use with a
new icon cache. To get and set an existing icon cache’s icon getter function, use the
GetIconCacheProc and SetIconCacheProc functions. You can also specify an icon
getter function for use by the PlotIconMethod , I conMethodTo Rgn,
PtInIconMethod , and RectInIconMethod functions.

SEE ALSO

For descriptions of the MakeIconCache , GetIconCacheProc , and
SetIconCacheProc functions, see “Working With Icon Caches” beginning on
page 5-53.

For information on the PlotIconMethod function, see page 5-22. For a description of
the IconMethodTo Rgn function, see “Converting an Icon Mask to a Region” beginning
on page 5-43.

For descriptions of the PtInIconMethod and RectInIconMethod functions, see
“Determining Whether a Point or Rectangle Is Within an Icon” beginning on page 5-46.

CHAPTER 5

Icon Utilities

5-60 Summary of the Icon Utilities

Summary of the Icon Utilities

Pascal Summary

Constants

CONST

gestaltIconUtilitiesAttr = 'icon'; {Icon Utilities attributes}

gestaltIconUtilitiesPresent = 0; {check this bit in the }

 { response parameter}

{ types for icon families}

l arge1BitMas k = 'ICN#' ; {icon list resource for large icons}

l arge4BitData = 'icl4' ; {large 4-bit color icon resource}

l arge8BitDat a = 'icl8' ; {large 8-bit color icon resource}

small1BitMask = 'ics#' ; {icon list resource for small icons}

small4BitData = 'ics4' ; {small 4-bit color icon resource}

small8BitData = 'ics8' ; {small 8-bit color icon resource}

mini1BitMask = 'icm#' ; {icon list resource for mini icons}

mini4BitData = 'icm4' ; {4-bit color mini i co n}

mini8BitData = 'icm8' ; { 8- bit color mini icon resource }

{I conAlignmentType values }

atNone = $ 0; {n o alignment}

atVerticalCenter = $1; {centered vertically}

atTop = $2; {top aligned}

atBottom = $3; {bottom aligned}

atHorizontalCenter = $4 ; { centered horizontally}

atLeft = $8; {left aligned}

atRight = $C; {right aligned}

atAbsoluteCenter = (atVerticalCenter + atHorizontalCenter);

atCenterTop = (atTop + atHorizontalCenter);

atCenterBottom = (atBottom + atHorizontalCenter);

atCenterLeft = (atVerticalCenter + atLeft);

atTopLeft = (atTop + atLeft);

atBottomLeft = (atBottom + atLeft) ;

atCenterRight = (atVerticalCenter + atRight);

atTopRight = (atTop + atRight);

atBottomRight = (atBottom + atRight);

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-61

{I conTransformType value s}

t tNone = $0;

t tDisabled = $1;

t tOffline = $2;

t tOpe n = $3;

t tLabel1 = $0100 ;

t tLabel2 = $0200 ;

t tLabel3 = $0300 ;

t tLabel4 = $0400 ;

t tLabel5 = $0500 ;

t tLabel6 = $0600 ;

t tLabel7 = $0700 ;

t tSelected = $4000 ;

t tSelectedDisabled = (ttSelected + ttDisabled) ;

t tSelectedOffline = (ttSelected + ttOffline) ;

t tSelectedOpen = (ttSelected + ttOpen) ;

{I conSelectorValue mask s}

svLarge1Bit = $00000001; {'ICN#' resource}

svLarge4Bit = $00000002; {'icl4' resource}

svLarge8Bit = $00000004; {'icl8' resource}

svSmall1Bit = $00000100; {'ics#' resource}

svSmall4Bit = $00000200 ; { 'ics4' resource}

svSmall8Bit = $00000400; {'ics8' resource}

svMini1Bit = $00010000; {'icm#' resource}

svMini4Bit = $00020000; {'icm4' resource}

svMini8Bit = $00040000; {'icm8' resource}

svAllLargeData = $000000FF; {'ICN#', 'icl4', and 'icl8' }

 { resources}

svAllSmallData = $0000FF00; {'ics#', 'ics4', and 'ics8' }

 { resources}

svAllMiniData = $00FF0000; {'icm#', 'icm4', and 'icm8' }

 { resources}

svAll1BitData = (svLarge1Bit + svSmall1Bit + svMini1Bit);

svAll4BitData = (svLarge4Bit + svSmall4Bit + svMini4Bit);

svAll8BitData = (svLarge8Bit + svSmall8Bit + svMini8Bit);

svAllAvailableD ata = $FFFFFFFF; {all resources of given ID}

CHAPTER 5

Icon Utilities

5-62 Summary of the Icon Utilities

Data Types

TYPE

CIcon =

RECORD

iconPMap: PixMap; {the icon ' s pixel map}

iconMask: BitMap; {the icon ' s mask}

iconBMap: BitMap; {the icon ' s bitmap}

iconData: Handle; {handle to the icon ' s data}

iconMaskData: {the data for the icon ' s mask}

ARRAY[0..0] OF Integer;

END;

CIconPtr = ^CIcon; {pointer to color icon record}

CIconHandle = ^CIconPtr ; { handle to color icon record }

IconSelectorValue = LongInt; {icon selector type}

IconAlignmentType = Integer; {icon alignment type}

IconTransformType = Integer; {icon transform type }

IconAction = ProcPtr; {pointer to action function}

IconGetter = ProcPtr; {pointer to icon getter function }

Icon Utilities Routines

Drawing Icons From Resources

FUNCTION PlotIcon ID (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theResID: Integer): OSErr;

FUNCTION PlotIconMethod (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theMethod: IconGetter;
yourDataPtr: UNIV Ptr): OSErr;

PROCEDURE PlotIcon (theRect: Rect; theIcon: Handle);

FUNCTION PlotIcon Handle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theIcon: Handle): OSErr;

PROCEDURE PlotCIcon (theRect: Rect; theIcon: CIconHandle);

FUNCTION PlotCIcon Handle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theCIcon: CIconHandle): OSErr;

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-63

FUNCTION PlotSICN Handle (theRect: Rect; align: IconAlignmentType;
transform: IconTransformType;
theSICN: Handle): OSErr;

Getting Icons From Resources That Don’t Belong to an Icon Family

FUNCTION GetIcon (iconID: Integer): Handle;

FUNCTION GetCIcon (iconID: Integer): CIconHandle;

Disposing of Icons

PROCEDURE DisposeCIcon (theIcon: CIconHandle);

Creating an Icon Suite

FUNCTION GetIconSuite (VAR theIconSuite: Handle ; t heResID: Integer;
selector: IconSelectorValue): OSErr ;

FUNCTION NewIconSuite (VAR theIconSuite: Handle): OSErr ;

FUNCTION AddIconToSuite (theIconData: Handle; theSuite: Handle;
t heType: ResType): OSErr;

Getting Icons From an Icon Suite

FUNCTION GetIconFromSuite (VAR theIconData: Handle ; t heSuite: Handle;
t heType: ResType): OSErr;

Drawing Icons From an Icon Suite

FUNCTION PlotIconSuite (theRect: Rect ; a lign: IconAlignmentType ;
t ransform: IconTransformType;
t heIconSuite: Handle): OSErr;

Performing Operations on Icons in an Icon Suite

FUNCTION ForEachIconDo (theSuite: Handle ; s elector: IconSelectorValue;
action: IconAction ; y ourDataPtr: Ptr): OSErr;

Getting and Setting the Label for an Icon Suite

FUNCTION GetSuiteLabel (theSuite: Handle): Integer;

FUNCTION SetSuiteLabel (theSuite: Handle; theLabel : Integer) : OSErr;

Getting Label Information

FUNCTION GetLabel (labelNumber : Integer; VAR labelColor: RGBColor;
VAR labelString: Str255): OSErr;

CHAPTER 5

Icon Utilities

5-64 Summary of the Icon Utilities

Disposing of Icon Suites

FUNCTION DisposeIconSuite (theIconSuite: Handle ;
disposeData: Boolean) : OSErr ;

Converting an Icon Mask to a Region

FUNCTION IconSuiteToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType;
t heIconSuite: Handle): OSErr ;

FUNCTION IconIDToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType;
i conID : Integer) : OSErr;

FUNCTION IconMethodToRgn (theRgn: RgnHandle; iconRect: Rect;
align: IconAlignmentType ;
t heMethod: IconGetter;
yourDataPtr: Ptr): OSErr;

Determining Whether a Point or Rectangle Is Within an Icon

FUNCTION PtInIconSuite (testPt: Point; iconRect: Rect;
align: IconAlignmentType;
t heIconSuite: Handle): Boolean;

FUNCTION PtInIconID (testPt: Point; iconRect: Rect;
align: IconAlignmentType;
i conID : Integer): Boolean;

FUNCTION PtInIconMethod (testPt: Point; iconRect: Rect;
align: IconAlignmentType ;
t heMethod: IconGetter;
yourDataPtr: Ptr) : Boolean;

FUNCTION RectInIconSuite (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
t heIconSuite: Handle) : Boolean;

FUNCTION RectInIconID (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
i conID : Integer): Boolean;

FUNCTION RectInIconMethod (testRect: Rect; iconRect: Rect;
align: IconAlignmentType;
t heMethod: IconGetter;
yourDataPtr: Ptr) : Boolean;

Working With Icon Caches

FUNCTION MakeIconCache (VAR theHandle: Handle;
makeIcon: IconGetter;
yourDataPtr: UNIV Ptr): OSErr ;

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-65

FUNCTION LoadIconCache (theRect: Rect; align: IconAlignmentType;
t ransform: IconTransformType;
t heIconCache: Handle): OSErr;

FUNCTION GetIconCacheData (theCache: Handle ; V AR theData: Ptr): OSErr;

FUNCTION SetIconCacheData (theCache: Handle; theData: Ptr): OSErr;

FUNCTION GetIconCacheProc (theCache: Handle ;
VAR theProc: IconGetter): OSErr;

FUNCTION SetIconCacheProc (theCache: Handle ; t heProc: IconGetter): OSErr;

Application-Defined Routines

Icon Action Functions

FUNCTION MyIconAction (theType: ResType; VAR theIcon: Handle;
yourDataPtr: Ptr): OSErr;

Icon Getter Functions

FUNCTION MyIconGetter (theType: ResType ; y ourDataPtr: Ptr): Handle ;

C Summary

Constants

enum {

#define gestaltIconUtilitiesAttr 'icon' /*Icon Utilities attributes* /

gestaltIconUtilitiesPresent = 0 / *check this bit in the */

/* response parameter*/

};

/*types for icon families*/

#define large1BitMask 'ICN#' /*icon list resource for large icons * /

#define large4BitData 'icl4' /*large 4-bit color icon resource*/

#define large8BitData 'icl8' /*large 8-bit color icon resource*/

#define small1BitMask 'ics#' /*icon list resource for small icons * /

#define small4BitData 'ics4 ' / *small 4-bit color icon resource*/

#define small8BitData 'ics8' /*small 8-bit color icon resource*/

#define mini1BitMask 'icm#' /*icon list resource for mini icons*/

#define mini4BitData 'icm4' /* mini 4-bit color icon resource*/

#define mini8BitData 'icm8' /*mini 4-bit color icon resource*/

CHAPTER 5

Icon Utilities

5-66 Summary of the Icon Utilities

enum { /*IconAlignmentType values */

atNone = 0x0, /*no alignment*/

atVerticalCenter = 0x1, /*centered vertically*/

atTop = 0x2, /*top aligned*/

atBottom = 0x3 , / *bottom aligned*/

atHorizontalCenter = 0x4 , / *centered horizontally*/

atAbsoluteCenter = (atVerticalCenter | atHorizontalCenter),

atCenterTop = (atTop | atHorizontalCenter),

atCenterBottom = (atBottom | atHorizontalCenter),

atLeft = 0x8 , / *left aligned*/

atCenterLeft = (atVerticalCenter | atLeft),

atTopLeft = (atTop | atLeft),

atBottomLeft = (atBottom | atLeft),

atRight = 0xC , / *right aligned*/

atCenterRight = (atVerticalCenter | atRight),

atTopRight = (atTop | atRight),

atBottomRight = (atBottom | atRight),

};

enum { /*IconTransformType values*/

ttNone = 0x0,

ttDisabled = 0x1,

ttOffline = 0x2,

ttOpen = 0x3,

ttLabel1 = 0x0100,

ttLabel2 = 0x0200,

ttLabel3 = 0x0300,

ttLabel4 = 0x0400,

ttLabel5 = 0x0500,

ttLabel6 = 0x0600,

ttLabel7 = 0x0700,

ttSelected = 0x4000,

ttSelectedDisabled = (ttSelected | ttDisabled),

ttSelectedOffline = (ttSelected | ttOffline),

ttSelectedOpen = (ttSelected | ttOpen),

};

enum { /*IconSelectorValue masks*/

svLarge1Bit = 0x00000001, /*'ICN#' resource*/

svLarge4Bit = 0x00000002, /*'icl4' resource*/

svLarge8Bit = 0x00000004, /*'icl8' resource*/

svSmall1Bit = 0x00000100, /*'ics#' resource*/

svSmall4Bit = 0x00 000200 , / *'ics4' resource*/

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-67

svSmall8Bit = 0x00000400, /*'ics8' resource*/

svMini1Bit = 0x00010000, /*'icm#' resource*/

svMini4Bit = 0x00020000, /*'icm4' resource*/

svMini8Bit = 0x00040000, /*'icm8' resource*/

svAllLargeData = 0x000000FF, /*'ICN#', 'icl4', and 'icl8' * /

 / * resources* /

svAllSmallData = 0x0000FF00, /*'ics#', 'ics4', and 'ics8' */

 /* resources*/

svAllMiniData = 0x00FF0000, /*'icm#', 'icm4', and 'icm8' */

 /* resources*/

svAll1BitData = (svLarge1Bit | svSmall1Bit | svMini1Bit),

svAll4BitData = (svLarge4Bit | svSmall4Bit | svMini4Bit),

svAll8BitData = (svLarge8Bit | svSmall8Bit | svMini8Bit) ,

svAllAvailableD ata = (long) 0xFFFFFFFF /*all resources of given ID*/

};

Data Types

struct CIcon {

PixMap iconPMap ; /* the icon ' s pixel map */

BitMap iconMask; /* the icon ' s mask */

BitMap iconBMap ; /* the icon ' s bitmap */

Handle iconData; /* handle to the icon ' s data */

short iconMaskData: /* the data for the icon ' s mask */

};

typedef struct CIcon CIcon ;

typedef Cicon *CIconPtr, **CIconHandle; /* ptr, handle to color icon record */

typedef unsigned long IconSelectorValue ; /* icon selector type */

typedef short IconAlignmentType ; /* icon alignment type */

t ypedef short IconTransformType ; /*icon transform type*/

/* pointer to action function */

typedef pascal OSErr (*IconAction ProcPtr)(ResType theType , Handle *theIcon,

 void *yourDataPtr) ;

typedef IconActionProcPtr IconAction;

/* pointer to icon getter function */

typedef pascal Handle (*IconGetter ProcPtr)(ResType theType,

 v oid *yourDataPtr) ;

typedef IconGetterProcPtr IconGetter;

CHAPTER 5

Icon Utilities

5-68 Summary of the Icon Utilities

Icon Utilities Routines

Drawing Icons From Resources

pascal OSErr PlotIcon ID (const Rect *theRect, IconAlignmentType align,
IconTransformType transform, short theResID);

pascal OSErr PlotIconMethod
(const Rect *theRect, IconAlignmentType align,

IconTransformType transform,
IconGetterProcPtr theMethod,
void *yourDataPtr);

pascal void PlotIcon (const Rect *theRect, Handle theIcon);

pascal OSErr PlotIcon Handle
(const Rect *theRect, IconAlignmentType align,

IconTransformType transform, Handle theIcon);

pascal OSErr PlotCIcon (const Rect *theRect, CIconHandle theIcon);

pascal OSErr PlotCIcon Handle
(const Rect *theRect, IconAlignmentType align,

IconTransformType transform,
CIconHandle theCIcon);

pascal OSErr PlotSICN Handle
(const Rect *theRect, IconAlignmentType align,

IconTransformType transform, Handle theSICN);

Getting Icons From Resources That Don’t Belong to an Icon Family

pascal Handle GetIcon (short iconID);

pascal CIconHandle GetCIcon
(short iconID);

Disposing of Icons

pascal OSErr DisposeCIcon (CIconHandle theIcon);

Creating an Icon Suite

pascal OSErr GetIconSuite (Handle *theIconSuite, short theResID,
IconSelectorValue selector);

pascal OSErr NewIconSuite (Handle *theIconSuite);

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-69

pascal OSErr AddIconToSuite
(Handle theIconData, Handle theSuite,

ResType theType);

Getting Icons From an Icon Suite

pascal OSErr GetIconFromSuite
(Handle *theIconData, Handle theSuite,

ResType theType);

Drawing Icons From an Icon Suite

pascal OSErr PlotIconSuite (const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
Handle theIconSuite);

Performing Operations on Icons in an Icon Suite

pascal OSErr ForEachIconDo (Handle theSuite, IconSelectorValue selector,
IconAction ProcPtr action, void *yourDataPtr);

Getting and Setting the Label for an Icon Suite

pascal short GetSuiteLabel (Handle theSuite);

pascal OSErr SetSuiteLabel (Handle theSuite, short theLabel);

Getting Label Information

pascal OSErr GetLabel (short labelNumber, RGBColor *labelColor,
Str255 labelString);

Disposing of Icon Suites

pascal OSErr DisposeIconSuite
(Handle theIconSuite, Boolean disposeData);

Converting an Icon Mask to a Region

pascal OSErr IconSuiteToRgn
(RgnHandle theRgn, const Rect *iconRect,

IconAlignmentType align, Handle theIconSuite);

pascal OSErr IconIDToRgn (RgnHandle theRgn, const Rect *iconRect,
IconAlignmentType align, short iconID);

CHAPTER 5

Icon Utilities

5-70 Summary of the Icon Utilities

pascal OSErr IconMethodToRgn
(RgnHandle theRgn, const Rect *iconRect,

IconAlignmentType align,
IconGetterProcPtr theMethod,
void *yourDataPtr);

Determining Whether a Point or Rectangle Is Within an Icon

pascal Boolean PtInIconSuite
(Point testPt, const Rect *iconRect,

IconAlignmentType align, Handle theIconSuite);

pascal Boolean PtInIconID (Point testPt, const Rect *iconRect,
IconAlignmentType align, short iconID);

pascal Boolean PtInIconMethod
(Point testPt, const Rect *iconRect,

IconAlignmentType align ,
I conGetter ProcPtr theMethod,
void *yourDataPtr);

pascal Boolean RectInIconSuite
(const Rect *testRect, const Rect *iconRect,

IconAlignmentType align , H andle theIconSuite);

pascal Boolean RectInIconID
(const Rect *testRect, const Rect *iconRect,

IconAlignmentType align, short iconID);

pascal Boolean RectInIconMethod
(const Rect *testRect, const Rect *iconRect,

IconAlignmentType align,
IconGetterProcPtr theMethod,
void *yourDataPtr);

Working With Icon Caches

pascal OSErr MakeIconCache (Handle *theHandle, IconGetter ProcPtr makeIcon,
void *yourDataPtr) ;

pascal OSErr LoadIconCache (const Rect *theRect, IconAlignmentType align,
IconTransformType transform,
Handle theIconCache);

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-71

pascal OSErr GetIconCacheData
(Handle theCach e, void **t heDat a);

pascal OSErr SetIconCacheData
(Handle theCach e, void *t heDat a);

pascal OSErr GetIconCacheProc
(Handle theCach e, IconGetter *t hePr oc);

pascal OSErr SetIconCacheProc
(Handle theCach e, IconGetter t hePro c);

Application-Defined Routines

Icon Action Functions

pascal OSErr MyIconAction (ResType theType, Handle *theIcon,
void *yourDataPtr);

Icon Getter Functions

pascal Handle MyIconGetter (ResType theTyp e, void * yourDataPt r);

Assembly-Language Summary

Data Structure

Color Icon Data Structure

0 iconPMap 60 bytes icon’s pixel map
50 iconMask 14 bytes icon’s mask
64 iconBMap 14 bytes icon’s bitmap
78 iconData 4 bytes handle to icon’s data
82 iconMaskData variable data for icon’s mask

CHAPTER 5

Icon Utilities

5-72 Summary of the Icon Utilities

Trap Macros

Trap Macros Requiring Routine Selectors

_IconDispatch

Selector Routine

$0702 NewIconSuite

$1702 GetSuiteLabel

$0203 DisposeIconSuite

$1603 SetSuiteLabel

$1904 GetIconCacheData

$1A04 SetIconCacheData

$1B04 GetIconCacheProc

$1C04 SetIconCacheProc

$0005 PlotIconID

$0105 GetIconSuite

$0B05 GetLabel

$0306 PlotIconSuite

$0406 MakeIconCache

$0606 LoadIconCache

$0806 AddIconToSuite

$0906 GetIconFromSuite

$0D06 PtInIconID

$1006 RectInIconID

$1306 IconIDToRgn

$1D06 PlotIconHandle

$1E06 PlotSICNHandle

$1F06 PlotCIconHandle

$0E07 PtInIconSuite

$1107 RectInIconSuite

$1407 IconSuiteToRgn

$0A08 ForEachIconDo

$0508 PlotIconMethod

$0F09 PtInIconMethod

$1209 RectInIconMethod

$1509 IconMethodToRgn

CHAPTER 5

Icon Utilities

Summary of the Icon Utilities 5-73

Result Codes
noErr 0 No error
paramErr –50 Error in parameter list
memFullErr –108 Not enough memory in heap zone
memWZErr –111 Attempt to operate on a free block
resNotFound –192 Resource not found
noMaskFoundErr –1000 Cannot find or create mask for the icon family

