
Contents 4-1

CHAPTER 4

Contents

List Manager

Introduction to Lists 4-4
Appearance of Lists 4-4
Selection of List Items 4-9
Keyboard Navigation of Lists 4-15

Movement of a Selection With Arrow Keys 4-15
Extension of a Selection With Arrow Keys 4-16
Type Selection in a Text-Only List 4-20

Multiple Lists in a Window 4-20
About the List Manager 4-22
Using the List Manager 4-26

Creating a List 4-27
Adding Rows and Columns to a List 4-30
Responding to Events Affecting a List 4-32
Working With List Selections 4-34
Customizing Cell Highlighting 4-38
Manipulating List Cells 4-40
Searching a List for a Particular Item 4-43
Supporting Keyboard Navigation of Lists 4-45

Supporting Type Selection of List Items 4-45
Supporting Arrow-Key Navigation of Lists 4-48
Supporting the Anchor Algorithm for Extending Lists With Arrow
Keys 4-52

Outlining the Current List 4-53
Writing Your Own List Definition Procedure 4-58

Responding to the Initialization Message 4-60
Responding to the Draw Message 4-60
Responding to the Highlighting Message 4-62
Responding to the Close Message 4-62
Using the Pictures List Definition Procedure 4-63

CHAPTER 4

4-2 Contents

List Manager Reference 4-65
Data Structures 4-65

The Cell Record 4-65
The Data Handle 4-66
The List Record 4-66

List Manager Routines 4-70
Creating and Disposing of Lists 4-70
Adding and Deleting Columns and Rows To and From a List 4-73
Determining or Changing the Selection 4-77
Accessing and Manipulating Cell Data 4-79
Responding to Events Affecting Lists 4-84
Modifying a List’s Appearance 4-87
Searching a List for a Particular Item 4-90
Changing the Size of Cells and Lists 4-91
Getting Information About Cells 4-93

Application-Defined Routines 4-96
List Definition Procedures 4-96
Match Functions 4-99
Click-Loop Procedures 4-100

Summary of the List Manager 4-102
Pascal Summary 4-102

Constants 4-102
Data Types 4-102
List Manager Routines 4-103
Application-Defined Routines 4-105

C Summary 4-106
Constants 4-106
Data Types 4-106
List Manager Routines 4-107
Application-Defined Routines 4-109

Assembly-Language Summary 4-110
Data Structures 4-110
Trap Macros 4-111

CHAPTER 4

4-3

List Manager

This chapter describes how your application can use the List Manager to create scrollable
lists that allow the user to select one or more of a group of items. The List Manager lets
you create one-column lists or multicolumn lists. By default, it creates lists that contain
only unstyled text, but with extra effort, you can use the List Manager to create lists that
display items graphically.

Read the information in this chapter if you need to allow users to select one or more
items from a group of items. If you only need to allow the user to select one item from a
small group of items, a pop-up menu may be more appropriate than a list. If, however,
you would like the user to be able to select one of many items or to be able to select
multiple items, the List Manager provides a convenient and intuitive interface.

If the contents of a group of items might change, use a list rather than a pop-up menu.
Users generally expect the contents of pop-up menus to remain the same, whereas a list
provides instant visual feedback when its contents change, thus preventing user
confusion. For example, you might use the List Manager to create a list of appointments
and allow the user to add or remove appointments to or from the list.

Although the List Manager can handle small, simple lists effectively, it is not suitable for
displaying large amounts of data (such as that used by a spreadsheet application). The
List Manager cannot maintain lists that occupy more than 32 KB of memory, and
performance degrades sharply well before the 32 KB limit. Also, the List Manager
expects all cells to be equal in size. Thus, if you are writing a spreadsheet application,
you should use the Control Manager and your own internal data structures.
However, you should still read the sections of this chapter that concern selection of list
items so that your application can have a user interface consistent with the List
Manager’s.

To use this chapter, you should be familiar with the concepts of the Control Manager, the
Event Manager, and the Window Manager, and, if you plan to create a list in a modal or
modeless dialog box, with the Dialog Manager. For more information on these topics, see
Inside Macintosh: Macintosh Toolbox Essentials.

This chapter begins by describing lists and the user interface for them. The chapter then
discusses how you can

■ create lists

■ respond to events affecting lists

■ get information about a list

■ get or change the contents of list items

■ search through a list for a particular item

■ support keyboard navigation of lists

■ manage multiple lists within the same window or dialog box

■ write your own list definition procedure to handle nonstandard lists, such as lists of
pictures

CHAPTER 4

List Manager

4-4 Introduction to Lists

Introduction to Lists

You can use the List Manager to store and update elements of data within a list and to
display the list in a rectangle within a window. The List Manager provides routines that
allow you to create, manipulate, and display lists. It can also respond appropriately to a
mouse click within a list by, for example, scrolling a list when the user clicks in a scroll
bar. Thus, using the List Manager is easier than using the Control Manager and
QuickDraw to create a scrolling list of items.

Appearance of Lists
A list is a series of items displayed within a rectangle. Each item in a list is contained
within an invisible rectangular cell. All cells in a list created by the List Manager are the
same size, but cells may contain different types of data. Your application may allow the
user to select one or more items in a list by clicking them. When a user selects an item,
the List Manager highlights the cell containing the item.

Figure 4-1 illustrates a window that includes a list of six items.

Figure 4-1 A one-column, text-only list without a scroll bar

CHAPTER 4

List Manager

Introduction to Lists 4-5

The font used for a text-only list is determined by the font of the current graphics port.
Usually, you should create lists in the system font. Regardless of the font your
application uses, if a string is too long to fit in a list using the current font, the List
Manager uses condensed type in an effort to fit it. If the string is still too long, the
List Manager truncates the string displayed and appends an ellipsis to it. Both of these
techniques are illustrated in Figure 4-1. Both the strings “Deluxe sixteen-fruit
combination” and “Marshmallow chocolate ribbon” are condensed; the first of these is
also truncated.

Lists may contain a vertical scroll bar, a horizontal scroll bar, or both. By using scroll
bars, you can include more items in a list than can fit in the list’s rectangle, and the user
can scroll to view multiple items. If there is any chance that a list may contain more cells
than can fit within the list’s rectangle, you should include a scroll bar in the list.
Figure 4-2 illustrates a list that includes a vertical scroll bar.

Figure 4-2 A one-column, text-only list with a vertical scroll bar

CHAPTER 4

List Manager

4-6 Introduction to Lists

If a list includes a scroll bar but there are a small enough number of items in the list that
all the list’s items are visible, the List Manager automatically disables the scroll bar. For
example, Figure 4-3 shows such a list.

Figure 4-3 A list whose scroll bar has been disabled

When a window containing one or more lists becomes deactivated, your application
should call the List Manager to deactivate the lists as well. Figure 4-4 shows a
deactivated list.

Figure 4-4 A deactivated list

CHAPTER 4

List Manager

Introduction to Lists 4-7

Your application can create one-column lists of the type illustrated in Figure 4-2 through
Figure 4-4 using the List Manager. Your application can also create lists that contain two
or more columns. For example, the Network control panel allows the user to select
a network connection from a three-column list. In Figure 4-5, there are only two possible
network connections, so there are no items in the third column of the list.

Figure 4-5 A list containing multiple columns and graphical elements

Note that the list in Figure 4-5 contains graphical elements rather than just text. To create
a list with graphical elements, you must write a custom list definition procedure, because
the default list definition procedure supports only the display of text. A list definition
procedure is a code resource of type 'LDEF ' that defines the characteristics of a list. In
addition to using a list definition procedure to support graphical items in lists, you can
write one to customize the display of text in a list. For example, to use styled text in a list,
you would need to create a list definition procedure.

CHAPTER 4

List Manager

4-8 Introduction to Lists

You can also use a list definition procedure to create lists that contain cells which display
more than one type of information. For example, the Finder ’s “About This Macintosh”
modeless dialog box contains a list of applications that are currently in use. Each cell in
the list includes a small icon of the application, the name of the application, the amount
of memory in the application’s partition, and a graphical indication of how much of that
memory has been used, as illustrated in Figure 4-6.

Figure 4-6 A list of items whose cells display more than one type of information

Note that the list in Figure 4-6 is not a multicolumn list. It is a one-column list, but each
cell of the list displays several types of information.

Your application specifies whether the List Manager should leave room for a size box,
although your application is responsible for drawing any grow icon; the List Manager
does not draw the grow icon automatically. Usually, size boxes are useful only for lists
that are on the bottom of the windows that contain them, like the list in Figure 4-6. In
this case, resizing the window changes the size of the list. Your application should
ensure that the user cannot shrink the size of the window so much that the list is no
longer visible.

In addition to requesting a vertical scroll bar, your application may request that the List
Manager use a horizontal scroll bar for your list. A second scroll bar is useful mainly if
your application allows the user to resize a window containing a list both horizontally
and vertically so that only a portion of the list is visible. A second scroll bar is also useful
to allow the user to scroll through a table of cells. Usually, however, if you are
implementing a spreadsheet-like application, you should not be using the List Manager.
Most multicolumn lists created by the List Manager, such as the one illustrated in
Figure 4-5, should not include two scroll bars.

CHAPTER 4

List Manager

Introduction to Lists 4-9

Selection of List Items
Sometimes, an application might create a list simply for the user to view. For example, a
desktop-publishing application might create a list of fonts used in a document. The user
should be able to scroll the list to examine all of the fonts, but the application can ensure
(by ignoring mouse clicks on list cells) that clicking cells of the list has no effect. More
often, however, applications create lists so that users can select items from them by
clicking the items’ cells.

Your application can allow the user to select items in a list by calling the LClick
function whenever a mouse-down event occurs. The LClick function handles all user
interaction, including highlighting of items, until the user releases the mouse button. The
LClick function also examines the state of the modifier keys (specifically the Shift and
Command keys) and changes the selection appropriately.

Figure 4-7 illustrates the Sound control panel, which allows users to select a system alert
sound from a list of available alert sounds.

Figure 4-7 A list with an item selected

When the user selects a cell (such as the “Indigo” system alert sound) by clicking the
item’s cell, the List Manager highlights the cell. In the list shown in Figure 4-7, the user
can also select a cell by clicking another cell and dragging the cursor to the desired cell
(such as the cell containing “Indigo”) before releasing the mouse button. This type of list
allows the user to select only one item, because there can be only one system alert sound.
While you can create a list that has this behavior, the List Manager by default allows the
user to select a range of cells or even several discontiguous ranges of cells by using the
Shift and Command keys.

CHAPTER 4

List Manager

4-10 Introduction to Lists

The user can use the Shift key to select a range of cells. By pressing the Shift key when
clicking a cell, the user can select all items in a given range. For example, in Figure 4-8
the user extends a selection of just one item to cover several items by pressing the Shift
key and clicking another item. The List Manager then highlights all cells ranging from
the already selected cell to the newly selected cell, thus making the entire range of cells
selected. In a one-column list, like that in Figure 4-8, the List Manager highlights a
rectangular range of cells in response to a Shift-click.

Figure 4-8 Selection of a range of items in a list

After pressing the mouse button while also pressing the Shift key (but before
releasing the mouse button), the user can extend or shrink the range of cells selected by
dragging the cursor. The user can even drag the cursor below the list to select a range
that includes items not initially visible. For example, Figure 4-9 illustrates the effect of
dragging after the initial selection of the range of cells illustrated in Figure 4-8.

CHAPTER 4

List Manager

Introduction to Lists 4-11

Figure 4-9 Effect of dragging after Shift-clicking

Virtually every application that supports Shift-clicking to extend list selections should
also support the selection of discontiguous ranges of list cells. The default behavior of
the List Manager is to allow a user to add a cell to the current selection by pressing the
Command key when clicking a cell. If a user Command-clicks a cell that is already
selected, the List Manager removes the cell from the selection.

To add or remove a range of cells from the current selection, a user can press the mouse
button while also pressing the Command key and then drag the cursor over other cells.
The List Manager determines whether to add or remove selections in a range of cells by
checking the status of the first cell clicked in. If that cell is initially selected, then
Command-dragging deselects all cells in the range over which the cursor passes. If that
cell is initially not selected, then Command-dragging selects all cells in the range over
which the cursor passes. Once the user changes a cell’s selection status by
Command-dragging over a cell, the selection status of the cell stays the same for the
duration of the drag even if the user moves the cursor back over the cell. In this way, the
use of the Command key differs from that of the Shift key.

CHAPTER 4

List Manager

4-12 Introduction to Lists

Figure 4-10 illustrates use of the Command key. This example shows a list created by an
application that allows a user to choose what vegetables to include in a salad to be
tossed by a device attached to the computer.

Figure 4-10 Selection of discontiguous items in a list

Initially, the user has selected “Celery” and “Corn.” By pressing the Command key and
the mouse button while the cursor is over the item “Spinach,” then dragging the cursor
downward to “Turnips” (which automatically scrolls into view), the user can select
additional items. Without the feature of Command-clicking to select discontiguous
ingredients, a user of this list would be able to select only alphabetical ranges
of ingredients for the salad.

CHAPTER 4

List Manager

Introduction to Lists 4-13

If a user Shift-clicks a cell after having created discontiguous selection ranges,
the discontiguity is lost. The List Manager selects all cells in the range of the first
selected cell and the newly selected cell, unless the newly selected cell precedes the
first selected cell, in which case the List Manager selects all cells in the range of the
newly selected cell and the last selected cell. Figure 4-11 illustrates how the selection
changes when a user Shift-clicks a cell that follows one range of selected cells but
precedes another. In this example, after selecting “Celery,” “Corn,” “Spinach,” and
“Tomatoes,” the user Shift-clicks the item labeled “Mushrooms.”

Figure 4-11 Effect of Shift-clicking in a list that contains discontiguous items

If a user presses both the Command and Shift keys when clicking a cell, then the
pressing of the Shift key is ignored and the List Manager behaves as if only the
Command key is pressed.

Your application can customize the algorithm the List Manager uses to manage the
selection of list items. (You can do this by setting one or more flags in the selFlags
field of the list record.) For example, your application can permit the user to select only
one element of a list at a time, in which case the Shift and Command keys are ignored.

CHAPTER 4

List Manager

4-14 Introduction to Lists

Some applications may wish to make the Shift key work in lists just like the Command
key. This is especially useful for applications geared toward novice users, who might not
think of using the Command key to select several discontiguous items in a list. If your
application uses a nonstandard behavior, then it should make this clear to the user. For
example, the Installer application includes a list that treats Shift-clicks like
Command-clicks, and it indicates to the user that Shift-clicking selects multiple items.
This is illustrated in Figure 4-12.

Figure 4-12 Notifying the user of nonstandard list behavior

The List Manager provides a number of other ways that your application can customize
the selection of items within a list. In particular, your application can

■ allow only one item to be selected at a time. (By default, the List Manager allows
multiple items to be selected.)

■ allow the user to select a range of items by clicking the first item and dragging to the
last item without necessarily pressing the Shift or Command key. Ordinarily, dragging
in this manner results in only the last item’s being selected.

■ disable discontiguous selections, while still allowing the user to select a range of items.

■ cause all previously selected cells to be deselected when the user Shift-clicks.

■ allow the user to deselect a range of cells by Shift-dragging. Ordinarily, Shift-dragging
causes cells to become selected even if the first cell clicked is already selected.

CHAPTER 4

List Manager

Introduction to Lists 4-15

■ disable the feature that allows the user to shrink a selection by Shift-clicking to select a
range of cells and then dragging the cursor to a position within that range. When this
feature is disabled, all cells in the cursor’s path during a Shift-drag become selected
even if the user drags the cursor back over the cell.

■ turn off the highlighting of selected cells that contain no data.

“Customizing Cell Highlighting” beginning on page 4-38 discusses the techniques that
your application can use to customize the selection of lists.

Keyboard Navigation of Lists
Although it is easy to use the mouse to select list items, some users prefer to use the
keyboard. Keyboard navigation and selection of list items is a particularly useful feature
for long lists. Your application should support keyboard navigation of lists in two ways.
First, your application should support the use of the arrow keys to move or extend a
selection. Second, if your application uses text-only lists (or lists whose items can be
identified by text strings), your application should allow the user to select an item
simply by typing the text associated with it.

The List Manager does not provide any routines to automatically handle
keyboard navigation of lists, but your application can provide code to manage keyboard
navigation of lists. “Supporting Keyboard Navigation of Lists” beginning on page 4-45
shows code that handles keyboard navigation.

Movement of a Selection With Arrow Keys

When a user presses an arrow key and is not pressing the Shift or Command key, the
user is attempting to move the selection one cell. For example, your application should
respond to the pressing of the Up Arrow key by selecting the cell that is one cell above
the first selected cell and deselecting any other selected cells. If the first selected cell is
already in the first row, then your application should respond simply by deselecting all
cells other than that first selected cell. Your application should respond to the pressing of
the Left Arrow key by moving the selection one cell to the left. Your application should
respond to the pressing of the Down Arrow key or the Right Arrow key by selecting the
cell that is one cell below or to the right of the last selected cell and deselecting
any other selected cells. If the last selected cell is already in the last row, then
your application should respond simply by deselecting all cells other than that last
selected cell.

CHAPTER 4

List Manager

4-16 Introduction to Lists

When a user presses an arrow key while pressing the Command key, your application
should move the first (or last) selected cell as far as it can move in the appropriate
direction. For example, Command–Left Arrow indicates that the first selected cell should
be moved as far left as possible (and all other cells should be deselected). Figure 4-13
illustrates how an application responds to the pressing of the Command–Up Arrow keys.

Figure 4-13 Response to pressing the Command–Up Arrow keys

Extension of a Selection With Arrow Keys

A user may press the Shift key when pressing an arrow key to extend the current
selection. There are two different algorithms that your application can use to respond to
a Shift–arrow key combination.

The first potential response is the extend algorithm, in which your application simply
finds the first (or last) selected cell, and then selects another cell in the direction of the
arrow key. For example, if the user presses Shift–Right Arrow, your application should
find the last selected cell and highlight the cell one column to the right of it, unless that
cell is already highlighted. If the user presses Command–Shift–Up Arrow, your
application should select the cell in the first row that was in the same column as the first
selected cell and select all cells in between.

Figure 4-14 shows the effect of the extend algorithm when the user selects items using
the Shift key and arrow keys. In this example, after selecting two discontiguous
ranges, the user then presses Shift–Right Arrow, extending the last selected cell by one
cell to the right. The user then presses Shift–Left Arrow, extending the selection one cell
to the left of the first selected cell.

CHAPTER 4

List Manager

Introduction to Lists 4-17

Figure 4-14 Response to user making a discontiguous selection, then pressing Shift–Right
Arrow followed by Shift–Left Arrow using the extend algorithm

CHAPTER 4

List Manager

4-18 Introduction to Lists

While the extend algorithm is intuitive and works well for simple lists, a more
powerful algorithm for managing extensions of selections with the arrow keys is the
anchor algorithm. This algorithm is far more difficult to implement than the extend
algorithm, but allows the user more power than the extend algorithm to extend a list in
whatever way is desired, and it works more intuitively both for lists that are likely to
contain many discontiguous items and for multicolumn lists.

The anchor algorithm works by moving the user’s selection relative to an anchor
cell. The application should determine which cell to make the anchor cell by examining
the last cell in the rectangular range of cells last selected by the user. If the user has
pressed either the Right Arrow or Down Arrow key, the anchor cell should be the first
cell in this range; otherwise, it should be the last cell. The application then finds the cell
that is on the other end of the rectangular range of cells last selected by the user. It then
attempts to move this cell in the direction specified by the arrow key, and it highlights all
cells in the rectangle whose corners are the anchor cell and the moving cell. Figure 4-15
illustrates this process.

CHAPTER 4

List Manager

Introduction to Lists 4-19

Figure 4-15 Response to Shift–Right Arrow using the anchor algorithm

The top window of Figure 4-15 shows two rectangular ranges of selected cells. Suppose
the application determines that the range of cells last selected by the user is the range
containing “D Octave 2” and “D Octave 3.” Because the user pressed Shift–Right Arrow,
the application designates the first cell in this range to be the anchor cell. It then extends
each row of the rectangular range one cell to the right, as shown in the bottom window
of Figure 4-15.

CHAPTER 4

List Manager

4-20 Introduction to Lists

The application must remember the anchor cell in case the user clicks another
Shift–arrow key combination before making any other changes to the list. If this occurs,
the application should keep the same anchor cell. Thus in Figure 4-15, if, after pressing
Shift–Right Arrow, the user presses Shift–Left Arrow, then the application keeps the
same anchor cell (ordinarily, if the Shift–Left Arrow keys are pressed, the last cell in the
range becomes the anchor cell). The rectangular range of cells previously extended one
cell to the right thus reverts to its original state. Therefore, if your application supports
the anchor algorithm, the user can use Shift–arrow key combinations to extend a
rectangular range of cells in any direction around an anchor cell that is determined by
the first arrow key pressed.

Type Selection in a Text-Only List

In a text-only list, when the user types the name of an item in a list, your application
should respond by scrolling to that item and selecting it. This behavior (allowing a user
to type the name of an item in a list to select it) is known as type selection. Rather than
requiring the user to type the entire name of a list item, however, your application
should continually attempt to determine the best match in the list for the user’s typing.

In particular, every time the user types a character, your application should add it to a
string that keeps track of the characters the user has typed in searching the list. Your
application should attempt to find an exact match for this string, or if no exact match
exists, your application should select the first item that alphabetically follows the text
indicated by the string.

Sometimes the user may start to type the name of one list item and then type the name of
another. Your application should support this by automatically resetting the internal
string used to keep track of the user’s typing after a given amount of time has elapsed
without the user’s pressing a key. To compute the amount of time after which your
application should reset the string, you can use a formula (provided later in this chapter)
that depends on the value the user sets for the autokey threshhold in the Keyboard
control panel. For users who specify a long delay until keys repeat, your application
should use a long time span before it resets the internal string it uses to keep track of the
user’s typing.

Multiple Lists in a Window
In a window with multiple lists that support keyboard navigation, you need to show
which list is the target of keyboard input. To help the user in such a window, your
application should draw a 2-pixel-wide outline around the current list, that is, the list
that would be affected by typing. The box should surround the entire list, including any
scroll bars, and there should be 1 pixel of white space between the outline and the list’s
border. Figure 4-16 illustrates a window containing more than one list.

CHAPTER 4

List Manager

Introduction to Lists 4-21

Figure 4-16 An outlined list in a window with more than one list

In Figure 4-16, the second list is outlined. Thus, the user knows that using the keyboard
affects this list only. Your application should allow the user to press the Tab key to move
the outline to the next list in a window. In a window with more than two lists, your
application should allow the user to press Shift-Tab to move the outline to the previous
list in a window.

Ordinarily, your application should not outline a list that is the only list in its window.
However, if there is an editable text item in a dialog box containing a list, or if keyboard
input could have some other effect, then your application should outline a list when the
user can navigate it with the keyboard. The user should be able to use the Tab key to
switch between a list and an editable text item; however, there is no need to outline the
editable text item, since the insertion point indicates to the user that using the keyboard
results in any text being inserted there.

When a window containing multiple lists is deactivated, your application should
remove the outline from the current list and not replace it until the window is activated.

CHAPTER 4

List Manager

4-22 About the List Manager

About the List Manager

The List Manager uses a list record to keep track of information about a list. In most
cases your application can get or set the information in a list record using List Manager
routines. When necessary, your application can examine fields of the list record directly.

Each cell in a list can be described by a data structure of type Cell :

TYPE Cell = Point;

The Cell data type has the same structure as the Point data type; however, the fields
(horizontal and vertical coordinates) of a cell record have different meaning. The
horizontal coordinate of a cell specifies its column number, and the vertical coordinate of
a cell specifies the cell’s row number. Note, however, that the first cell in a list is defined
to be cell (0,0). So a cell with coordinates (3,4) is in the fourth column and fifth row. Thus
you can visually identify a cell’s coordinates using the formula (column–1, row–1).
Figure 4-17 illustrates a list in which each cell item’s text is set to the coordinates of
the cell.

Figure 4-17 Coordinates of cells

A list record is defined by the ListRect data type.

TYPE ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

CHAPTER 4

List Manager

About the List Manager 4-23

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle ;

userHandle: Handle; {for application use}

dataBounds: Rect ; { boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer ; { used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec ; {pointer to a list record}

ListHandle = ^ListPtr; {handle to a list record}

The only fields of a list record that you need to be familiar with are the rView , port ,
cellSize , visible , and dataBounds fields.

The rView field specifies the rectangle in which the list’s visible rectangle is located, in
local coordinates of the graphics port specified by the port field. Note that the list’s
visible rectangle does not include the area needed for the list’s scroll bars. The width of a
vertical scroll bar (which equals the height of a horizontal scroll bar) is 15 pixels.

The cellSize field specifies the size in pixels of each cell in the list. Usually, you let the
List Manager automatically calculate the dimensions of a cell. It determines the default
vertical size of a cell by adding the ascent, descent, and leading of the port’s font. (This is
16 pixels for 12-point Chicago, for example.) For best results, you should make the
height of your application’s list equal to a multiple of this height. The List Manager
determines the default horizontal size of a cell by dividing the width of the list’s visible
rectangle by the number of columns in the list.

The visible field specifies which cells in a list are visible within the area specified by
the rView field. The List Manager sets the left and top fields of visible to the
coordinates of the first visible cell; however, the List Manager sets the right and
bottom fields so that each is 1 greater than the horizontal and vertical coordinates of the
last visible cell. For example, if a list contains 4 columns and 10 rows but only the first 2
columns and the first 5 rows are visible (that is, the last visible cell has coordinates (1,4)),
the List Manager sets the visible field to (0,0,2,5).

The List Manager sets the visible field using this method so that you can test whether
a cell is visible within a list by calling QuickDraw’s PtInRect function with a given cell
and the contents of this field. Also, this allows your application to compute the number
of visible rows, for example, by subtracting the top field of visible from bottom .

CHAPTER 4

List Manager

4-24 About the List Manager

The dataBounds field (located near the end of the list record) specifies the total cell
dimensions of the list, including cells that are not visible. It works much like the
visible field; that is, its right and botto m fields are each 1 greater than the
horizontal and vertical coordinates of the last cell in the list. For example, if a list
contains 4 columns and 10 rows (that is, the last cell in the list has coordinates (3,9)), the
List Manager sets the dataBounds field to (0,0,4,10).

Your application seldom needs to access the remaining fields of the list record, although
they are described here for your quick reference.

The indent field indicates the location, relative to the top-left corner of a cell, at which
drawing should begin. For example, the default list definition procedure sets the vertical
coordinate of this field to near the bottom of the cell, so that characters drawn with
QuickDraw’s DrawText procedure appear in the cell.

The vScroll and hScroll fields are handles to the vertical and horizontal scroll bars
associated with a list. You can determine which scroll bars a list contains by checking
whether these fields are NIL .

The lActive field is TRUE if a list is active or FALSE if it is inactive. You should not
change the value in this field directly, but should use the LActivate procedure to
activate or inactivate a list.

The selFlags field specifies the algorithm that the List Manager uses to select cells in
response to a click in a list. This field is described in more detail in “Customizing Cell
Highlighting” on page 4-38.

The listFlags field indicates whether automatic vertical and horizontal scrolling is
enabled. If automatic scrolling is enabled, then a list scrolls when the user clicks a cell
but then drags the cursor out of the rectangle specified by the rView field. For example,
if a user drags the cursor below this field, the list scrolls downward. By default, the List
Manager enables vertical automatic scrolling if your list has a vertical scroll bar; it
enables horizontal scrolling if your list has a horizontal scroll bar. Your application can
disable or enable automatic scrolling by using the following bit values:

CONST lDoVAutoScroll = 2; {allows vertical aut os crolling}

lDoHAutoScroll = 1; {allows horizontal aut os crolling}

The clikTime and clikLoc fields indicate the time at which the user last clicked the
mouse and the local coordinates of the click. The lastClick field (located later in the
list record) indicates the cell coordinates of the last click. You can access the value in the
lastClick field via the LLastClick function. If your application depends on the
accuracy of the values in these fields, and if your application treats keyboard selection of
list items identically to mouse selection of list items, then it should update the values of
these fields after highlighting a cell in response to a keyboard event. (In particular, this is
necessary if your application implements the anchor algorithm for extending cell
selections with the arrow keys.)

CHAPTER 4

List Manager

About the List Manager 4-25

The mouseLoc field indicates the current location of the cursor in local coordinates
(v, h). Ordinarily, you should use the Event Manager’s GetMouse procedure to obtain
this information, but this field may be more convenient to access from within a click-loop
procedure (explained next).

The lClikLoop field usually contains NIL , but your application may place a pointer to
a custom click-loop procedure in this field. A click-loop procedure manages the
selection of list items and the scrolling of a list in response to a mouse click in the visible
rectangle of a list. It is unlikely that your application will need to define its own
click-loop procedures, because the List Manager’s LClick function provides a
default click-loop procedure that uses a robust algorithm to respond to mouse clicks.
Your application needs to use a custom click-loop procedure only if it needs to perform
some special processing while the user drags the cursor after clicking in a list. For more
information on click-loop procedures, see “Click-Loop Procedures” on page 4-100.

The refCon and userHandle fields are for your application’s use. You might, for
example, use the refCon field to store the value of the A5 register, or to keep track of
whether a list should be outlined. Typically, an application uses the userHandle field to
store a handle to some additional storage associated with a list, but you can use the field
in any way that is convenient for your application.

The listDefProc field contains a handle to the code used by the list definition
procedure.

The cells field contains a handle to data that stores the list contents. The handle is
declared like this:

TYPE DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^Dat aPtr;

Because of the way the cells field is defined, no list can contain more than 32,000 bytes
of data. The List Manager slows down considerably when a list approaches this size, and
the List Manager may fail if you attempt to store more data than this in a list.

The List Manager uses the cellArray field to store offsets to data in the relocatable
block specified by the cells field.

Your application will never need to access the lReserved and maxIndex fields.

▲ WARNING

Your application should not change the cells field directly or access
the information in the cellArray field directly. The List Manager
provides routines that you can use to manipulate the information in a
list. ▲

CHAPTER 4

List Manager

4-26 Using the List Manager

Using the List Manager

This section explains how you can take advantage of the List Manager ’s features and
how you can customize lists that your application creates by providing support for
features not built into the List Manager. In particular, this section explains how you can

■ use the LNew function and the LDispose procedure to create a list within a rectangle
in a window and then dispose of that list

■ add rows and columns to a list by using the LAddColumn and LAddRow functions
along with the LSetCell procedure; delete them by using the LDelColumn and
LDelRow procedures; and temporarily disable drawing of a list while adding multiple
columns or rows by using the LSetDrawingMode procedure

■ call the LClick function to let the List Manager automatically respond to mouse
clicks in a list by scrolling the list and changing the selection as appropriate; and call
the LUpdate and LActivate procedures to respond to update and activate events

■ use the LGetSelect function and the LSetSelect procedure to get information
about which cells are selected or to change the selection; and use the LAutoScroll
and LScroll procedures to scroll to a particular cell

■ customize the algorithm that the List Manager uses to highlight cells in response to a
mouse click by modifying the selFlags field of the list record

■ manipulate list items by using the LAddToCell , LClrCell ,
LGetCellDataLocation , and LGetCell procedures

■ search through a list for a particular item by using the LSearch function and writing
a custom match function

■ respond to arrow-key and other key-down events to change or extend the selection

■ manage multiple lists within the same window or dialog box by drawing an outline
around the list that would be affected by keyboard input using the refCon field of
the list record to link the lists

■ write your own list definition procedure

CHAPTER 4

List Manager

Using the List Manager 4-27

Creating a List
To create a list, you can use the LNew function. Listing 4-1 shows a typical use of the
LNew function to create a vertically scrolling list in a rectangular space in a window.

Listing 4-1 Creating a list with a vertical scroll bar

FUNCTION MyCreateVerticallyScrollingList

(myWindow: WindowPtr; myRect: Rect;

 columnsInList: Integer;

 myLDEF: Integer): ListHandle;

CONST

kDoDraw = TRUE; {always draw list after change s}

kNoGrow = FALSE; {do n't leave room for size box}

kIncludeScrollBar = TRUE; {leave room for scroll bar}

kScrollBarWidth = 15; {width of vertical scroll bar}

VAR

myDataBounds: Rect; {initial dimensions of the list}

myCellSize: Point; {size of each cell in list}

BEGIN

{specify dimensions of the list}

{start with a list that contains no rows}

SetRect(myDataBounds, 0, 0, columnsInList, 0);

{let the List Manager calculate the size of a cell}

SetPt(myCellSize, 0, 0);

{adjust the rectangle to leave room for the scroll bar}

myRect.right := myRect.right - kScrollBarWidth;

{create the list}

MyCreateVerticallyScrollingList :=

LNew(myRect, myDataBounds, myCellSize, myLDEF, myWindow,

 kDoDraw, kNoGrow, NOT kIncludeScrollBar,

 kIncludeScrollBar);

END;

The LNew function called in the last line of Listing 4-1 takes a number of parameters that
let you specify the characteristics of the list you wish to create.

CHAPTER 4

List Manager

4-28 Using the List Manager

The first parameter to LNew sets the rectangle for the list’s visible rectangle, specified in
local coordinates of the window specified in the fifth parameter to LNew. Because this
rectangular area does not include room for scroll bars, the
MyCreateVerticallyScrollingList function adjusts the right of this rectangle to
leave enough room.

The second parameter to LNew specifies the data bounds of the list. By setting the
to pLe f t field of this rectangle to (0,0), you can use the botRi ght field to specify the
number of columns and rows you want in the list. The
MyCreateVerticallyScrollingList function initially creates a list of no rows.
While your application is free to preallocate rows when creating a list, it is often easier to
only preallocate columns and then add rows after creating the list, as described in the
next section.

The third parameter is the size of a cell. By setting this parameter to (0,0), you let the List
Manager compute the size automatically. The algorithm the List Manager uses to
compute this size is given in the discussion of the cellSize field of the list record in
“About the List Manager” beginning on page 4-22.

To specify that you wish to use the default list definition procedure, pass 0 as the fourth
parameter to LNew. To use a custom list definition procedure, pass the resource ID of the
list definition procedure. Note that the code for the appropriate list definition procedure
is loaded into your application’s heap; the code for the default list definition procedure is
about 150 bytes in size.

In the sixth parameter to LNew, your application can specify whether the List Manager
should initially enable the automatic drawing mode. When this mode is enabled, the List
Manager always redraws the list after changes. Usually, your application should set this
parameter to TRUE. This does not preclude your application from temporarily disabling
the automatic drawing mode.

The last three parameters to LNew specify whether the List Manager should leave room
for a size box, whether it should include a horizontal scroll bar, and whether it should
include a vertical scroll bar. Note that while the List Manager draws scroll bars
automatically, it does not draw the grow icon in the size box. Usually, your application
can draw the grow icon by calling the Window Manager’s DrawGrowIcon procedure.

The LNew function creates a list according your specifications and returns a handle to the
list’s list record. Your application uses the returned handle to refer to the list when using
other List Manager routines.

CHAPTER 4

List Manager

Using the List Manager 4-29

Lists are often used in dialog boxes. Because the Control Manager does not define a
control for lists, you must define a list in a dialog item list as a user item. Listing 4-2
shows an application-defined procedure that creates a one-column, text-only list in a
dialog box.

Listing 4-2 Installing a list in a dialog box

FUNCTION MyCreateTextListInDialog (myDialog: DialogPtr ;

 myItemNumber: Integer)

 : ListHandle;

CONST

kTextLDEF = 0; {resourc e ID o f default LDEF}

VAR

myUserItemRect: Rect; {enclosure of user item}

myUserItemType: Integer; {for GetDialogIte m}

myUserItemHdl: Handle; {for GetDialogIte m}

BEGIN

GetDialogItem(myDialog, myItemNumber, myUserItemType,

myUserItemHdl, myUserItemRect);

MyCreateTextListInDialog :=

MyCreateVerticallyScrollingList(myDialog, myUserItemRect,

 1, kTextLDEF);

END;

The MyCreateTextListInDialog function defined in Listing 4-2 calls the
MyCreateVerticallyScrollingList function defined in Listing 4-1, after finding
the rectangle in which to install the new list by using the Dialog Manager’s
GetDialogItem procedure. For more information on the Dialog Manager, see Inside
Macintosh: Macintosh Toolbox Essentials.

CHAPTER 4

List Manager

4-30 Using the List Manager

The List Manager does not automatically draw a 1-pixel border around a list. Listing 4-3
shows an application-defined procedure that draws a border around a list.

Listing 4-3 Drawing a border around a list

PROCEDURE MyDrawListBorder (myList: ListHandle);

VAR

myBorder: Rect; {box for list}

myPenState: PenState; {current status of pen}

BEGIN

myBorder := myList^^.rView; {get view rectangle}

GetPenState(myPenState); {store pen state}

PenSize(1, 1); {set pen to 1 pixel}

InsetRect(myBorder, -1, -1); {adjust rectangle for framing}

FrameRect(myBorder); {draw border}

SetPenState(myPenState); {restore old pen state}

END;

The MyDrawListBorder procedure defined in Listing 4-3 uses standard QuickDraw
routines to save the state of the pen, set the pen size to 1 pixel, draw the border, and
restore the pen state.

When you are finished using a list, you should dispose of it using the LDispose
procedure, passing a handle to the list as the only parameter. The LDispose procedure
disposes of the list record, as well as the data associated with the list; however, it does
not dispose of any application-specific data that you might have stored in a relocatable
block specified by the userHandle field of the list record. Thus, if you use this field to
store a handle to a relocatable block, you should dispose of the relocatable block before
calling LDispose .

Adding Rows and Columns to a List
Your application can choose to preallocate the cells it needs when it creates a list. For
example, an application might preallocate the columns it needs, and then add rows to
the list one by one. Other applications might create a list and add both rows and
columns to it later. Regardless of the technique your application uses to create its cells, it
can set the data in a cell by using the LSetCell procedure.

You specify the data, the length of the data, the location of the cell whose data you wish
to set, and a handle to the list containing the cell, as parameters to the LSetCell
procedure. Listing 4-4 demonstrates an application-defined procedure that adds rows to
a one-column list based on the contents of a string list resource. The
MyAddItemsFromStringList procedure adds each row to the list using the LAddRow
function, then sets the data of the cell in the first (and only) column of the newly added
row using the LSetCell procedure.

CHAPTER 4

List Manager

Using the List Manager 4-31

Listing 4-4 Adding items from a string list to a one-column, text-only list

PROCEDURE MyAddItemsFromStringList (myList: ListHandle;

stringListID: Integer);

VAR

index: Integer; {index within string list}

rowNum: Integer; {row number to add string to}

myString: Str255; {string to add}

aCell: Cell; {cell to store string in}

BEGIN

{compute new row number}

rowNum := myList^^.dataBounds.bottom;

index := 1; {start with first string}

REPEAT

GetIndString(myString, stringListID, index);

IF myString <> '' THEN

BEGIN {add new row for string}

{specify #rows to add, row number of first new row}

rowNum := LAddRow(1, rowNum, myList);

{prepare to set cell dat a--specify }

{ t he cell's column number, row number}

SetPt(aCell, 0, rowNum);

{set cell data to string}

LSetCell(@myString[1], Length(myString), aCell,

myList);

END;

rowNum := rowNum + 1;

index := index + 1;

UNTIL myString = '';

END;

The MyAddItemsFromStringList procedure defined in Listing 4-4 adds strings from
a string list resource to the end of a list. It keeps track of the index of the string in the
string list with the index variable, and it tracks the number of the new row to add in the
rowNum variable.

The MyAddItemsFromStringList procedure adds a new row by calling the LAddRow
function. The first parameter to LAddRow specifies the number of rows to add, and the
second parameter specifies the row number of the first new row. LAddRow returns the
row number of the first row added, which differs from the second parameter only if that
parameter specifies a row number that is out of range.

After creating a new row, MyAddItemsFromStringList sets the cell in the first
column of the added row to the text contained within the string. Note that the procedure
does not copy the length byte of the string.

CHAPTER 4

List Manager

4-32 Using the List Manager

To add columns to a list, your application can use the LAddColumn function, which
works just like LAddRow.

To delete a row or column from a list, your application can call the LDelRow procedure
or the LDelColumn procedure. The first parameter of each of these procedures is
the number of rows (or columns) to delete, and the second parameter is the row or
column number of the first to be deleted. For example, this code deletes the first row
of a list:

LDelRow(1, 0, myList); {#rows to delete, starting row number}

When making many changes to a list, your application should temporarily disable the
automatic drawing mode (unless the list is in a window that is not yet visible). To do so,
call the LSetDrawingMode procedure to turn off the automatic drawing mode, make
the changes to the list, turn the automatic drawing mode back on, and redraw the list (by
invalidating a rectangle containing the list and its scroll bars and later calling the
LUpdate procedure when your application receives an update event). You might do
these steps as follows:

LSetDrawingMode (FALSE, myList);

{...(make changes to the list)...}

LSetDrawingMode (TRUE, myList);

InvalRect(myList^^.rView);

IF (myList^^.vScroll <> NIL) THEN

InvalRect(myList^^.vScroll^^.contrlRect);

IF (myList^^.hScroll <> NIL) THEN

InvalRect(myList^^.hScroll^^.contrlRect);

Responding to Events Affecting a List
Your application must respond to several different types of events involving a list by
calling appropriate List Manager routines. If a mouse-down event occurs in a list, your
application should call the LClick function. If your application receives an update
event, and some part of the list is within the update region, then it should call the
LUpdate procedure. If a window containing a list is activated or deactivated, your
application should activate or deactivate the list by calling the LActivate procedure.
Finally, if a key-down event occurs, your application may need to call its own internal
procedures to scroll the list or select items as necessary. This section explains how to
handle mouse-down, update, and activate events; for information on handling
key-down events, see “Supporting Keyboard Navigation of Lists” on page 4-45.

CHAPTER 4

List Manager

Using the List Manager 4-33

The LClick function automatically responds to a mouse-down event by handling user
interaction until the user releases the mouse button. The List Manager performs any
scrolling as necessary and changes the selection as appropriate. After handling the event,
the LClick function returns TRUE if the click was a double click. Listing 4-5 shows an
application-defined procedure that uses the LClick function to handle mouse-down
events in a list.

Listing 4-5 Responding to a mouse-down event in a list

PROCEDURE MyHandleMouseDownInList (theEvent: EventRecord;

 t heList: ListHandle);

BEGIN

SetPort(theList^^.port);

GlobalToLocal(theEvent.where);

IF LClick(theEvent.where, theEvent.modifiers, theList) THEN

MyDoubleClick(theList);

END;

In response to a double click, your application should simulate the selection of the
default button if there is one. If your dialog box does not contain a default button, then
your application can respond to a double click with some other appropriate behavior.

Listing 4-6 illustrates an application-defined procedure that responds to an update event
affecting a list.

Listing 4-6 Responding to an update event in a list

PROCEDURE MyUpdateList (theList: ListHandle);

BEGIN

SetPort(theList^^.port); {set up the drawing environment}

{update list and scroll bars}

LUpdate(theList^^.port^.visRgn, theList);

MyDrawListBorder(theList); {draw border around list}

END;

CHAPTER 4

List Manager

4-34 Using the List Manager

Your list update procedure might also do some other drawing appropriate to a
particular list. For example, if your application supports multiple lists in a window, then
your list-updating procedure should redraw an outline around the current list in
response to an update event. For more information on outlining the current list, see
“Outlining the Current List” on page 4-53.

Note that the call to the LUpdate procedure must be bracketed by calls to the
Window Manager’s BeginUpdate and EndUpdate procedures. See the
chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials for more
information.

In response to an activate event, your application should call LActivate for each list in
the window. For example, this code deactivates a list:

LActivate (FALSE, myList);

To activate a list, pass TRUE as the first parameter to LActivate .

Working With List Selections
The List Manager provides routines that make it easy to determine what the selection
is or to change the selection, whether your list allows just one item to be selected at a
time or allows many items to be selected. The List Manager also provides a routine that
allows you to automatically scroll the first selected cell to the upper-left corner of the
list’s visible rectangle. In addition, you can write your own routine to scroll a list just
enough so that a particular cell is visible.

Your application can use the LGetSelect function to determine whether a given cell is
selected or to find the next selected cell. Your application can use the LSetSelect
procedure to select or deselect a given cell.

Listing 4-7 shows an application-defined procedure that finds the first cell in a selection.

Listing 4-7 Finding the first selected cell in a list

FUNCTION MyGetFirstSelectedCell (theList: ListHandle ;

VAR theCell: Cell): Boolean;

BEGIN

SetPt(theCell, 0, 0);

MyGetFirstSelectedCell := LGetSelect(TRUE, theCell, theList);

END;

CHAPTER 4

List Manager

Using the List Manager 4-35

The first parameter (TRUE) passed to the LGetSelect function indicates that
LGetSelect should search the list (beginning with the cell specified in the second
parameter) for the first selected cell. If you pass TRUE as the first parameter,
LGetSelect sets the cell specified in the second parameter to the coordinates of the first
selected cell that it finds, or it returns FALSE if no cells including or after the cell
specified by the second parameter are selected. If you pass FALSE as the first parameter
to LGetSelect , then the function returns TRUE only if the cell specified in the second
parameter is selected. The MyGetFirstSelectedCell function defined in Listing 4-7
thus returns TRUE only if at least one cell is selected, in which case the second parameter
to the function is set to the coordinates of that cell.

Finding the last selected cell in a list is slightly more complex. Listing 4-8 illustrates how
this might be done.

Listing 4-8 Finding the last selected cell in a list

PROCEDURE MyGetLastSelectedCell (theList: ListHandle;

VAR theCell: Cell);

VAR

aCell: Cell;

moreCellsInList: Boolean;

BEGIN

IF MyGetFirstSelectedCell(theList, aCell) THEN

REPEAT

theCell := aCell;

moreCellsInList := LNextCell(TRUE, TRUE, aCell, theList);

UNTIL NOT LGetSelect(TRUE, aCell, theList);

END;

The MyGetLastSelectedCell procedure goes from one selected cell to the next until
there are no more selected cells. It calls the LNextCell function to move from one cell to
the next cell in the list. If it did not do this, then the procedure would loop infinitely,
since LGetSelect would repeatedly return TRUE for the first selected cell. The first two
parameters to LNextCell indicate whether the function should return the next cell in
the current row, the next cell in the current column, or, if both are set to TRUE, the next
cell regardless of location.

CHAPTER 4

List Manager

4-36 Using the List Manager

Your application can use the LSetSelect procedure to set or deselect a cell by passing
TRUE or FALSE, respectively, as the first parameter to the routine. Listing 4-9 illustrates a
useful procedure that uses LSetSelect and LGetSelect to select a single cell in a list
while deselecting all other cells.

Listing 4-9 Selecting a cell and deselecting other cells

PROCEDURE MySelectOneCell (theList: ListHandle; theCell: Cell);

VAR

nextSelectedCell: Cell;

moreCellsInList: Boolean;

BEGIN

IF MyGetFirstSelectedCell(theList, nextSelectedCell) THEN

WHILE LGetSelect(TRUE, nextSelectedCell, theList) DO

BEGIN {move to next selected cell...}

IF (nextSelectedCell.h <> theCell.h) OR

(nextSelectedCell.v <> theCell.v) THEN

{...and remove cell from selection}

LSetSelect(FALSE, nextSelectedCell, theList)

ELSE

moreCellsInList :=

{move to next cell}

LNextCell(TRUE, TRUE, nextSelectedCell, theList);

END;

LSetSelect(TRUE, theCell, theList);

END;

The MySelectOneCell procedure defined in Listing 4-9 deselects each selected cell,
except that if it encounters the cell that is ultimately to be selected, then it does not
deselect that cell. This prevents an annoying flickering that would otherwise occur if you
were to call MySelectOneCell to select a cell already selected.

The List Manager provides the LAutoScroll procedure to enable your application to
scroll the first selected cell to the upper-left corner of the list’s visible rectangle—for
example:

LAutoScroll(myList) ;

CHAPTER 4

List Manager

Using the List Manager 4-37

Sometimes, you might want your application to scroll a list just enough so that a certain
cell (such as a cell the user has just selected using the keyboard) is visible. For example,
this is how the Standard File Package responds if the user presses the Down Arrow key
when the currently selected item is on the bottom of the list’s visible rectangle. You can
mimic this effect by calling the LScroll procedure, which requires that your application
indicate how many columns and rows to scroll. Negative numbers indicate scrolling up
or to the left. Positive numbers indicate scrolling down or to the right. Listing 4-10
illustrates the use of the LScroll procedure.

Listing 4-10 Scrolling so that a particular cell is visible

PROCEDURE MyMakeCellVisible (theList: ListHandle; theCell: Cell);

VAR

visibleRect: Rect; {rectangle enclosing visible cells}

dCols, dRows: Integer; {number of rows to scroll}

BEGIN

visibleRect := theList^^.visible;

IF NOT PtInRect(theCell, visibleRect) THEN

BEGIN {cell is not already visible}

WITH theCell, visibleRect DO

BEGIN

IF h > right - 1 THEN

dCols := h - right + 1 {move to left}

ELSE IF h < left THEN

dCols := h - left; {move to right}

IF v > bottom - 1 THEN

dRows := v - bottom + 1 {move up}

ELSE IF v < top THEN

dRows := v - top; {move down}

END;

LScroll(dCols, dRows, theList);

END;

END;

The MyMakeCellVisible procedure defined in Listing 4-10 simply computes the
number of cells between the last visible row and column and the selected cell. Note that
the last visible column for a list is equal to theList^^.visible.right – 1 , and the
last visible row is theList^^.visible.bottom – 1 .

CHAPTER 4

List Manager

4-38 Using the List Manager

Customizing Cell Highlighting
You can change the selFlags field of the list record to modify the algorithm the List
Manager uses to select cells in response to a mouse click. “Selection of List Items”
beginning on page 4-9 explains the different customizations you can make. Figure 4-18
illustrates the bits in the selFlags field.

Figure 4-18 Selection flags

The List Manager defines constants for each flag:

CONST

lOnlyOne = -128; {allow only 1 item to be selected at once}

lExtendDrag = 64; {enable selection of multiple items }

{ by dragging without Shift}

lNoDisjoint = 32; {prevent discontiguous selections }

{ using Command key}

lNoExtend = 16; {deselect all items before }

{ responding to Shift-click}

lNoRect = 8; {select all items in cursor's path }

{ during Shift-drag}

lUseSense = 4; {allow user to use Shift key to }

{ deselect one or more items}

lNoNi lHi lite = 2; {disable highlighting of empty cells}

CHAPTER 4

List Manager

Using the List Manager 4-39

When you create a list, the List Manager clears all bits in the selFlags fields. To change
any of these defaults, set the appropriate bits in the selFlags field. For example, this
code sets the selFlags field so that only one selection is allowed in a list:

myList^^.selFlags := lOnlyOne;

Many of the constants are often used additively. For example, your application might
allow the user to select a new range of cells simply by dragging over them, as shown in
the following code:

myList^^.selFlags := lExtendDrag + lNoDisjoint + lNoExtend

+ lNoRect + lUseSense;

The lExtendDrag constant allows users to select a range of items simply by dragging
the cursor. Ordinarily, if the user clicks one cell and drags the cursor to another,
only the last cell remains set.

The lNoDisjoint constant ensures that only one range of cells can be selected.

The lNoExtend constant disables the List Manager feature that responds to a Shift-click
by selecting all cells in the range of the newly clicked cell and the first (or last) selected
cell. Instead, the List Manager simply deselects all cells in the range if this bit is set.

To allow the user to select a number of cells simply by moving the cursor over them, you
can set the bit corresponding to the lNoRect constant. This prevents the deselection of
cells should the user drag the cursor first in one direction and then the other.

You can set the bit corresponding to the lUseSense constant so that if a user Shift-clicks
a selected cell, the cell is deselected. Ordinarily, Shift-clicking a selected cell has no
effect.

You might also wish to make the Shift key work just like the Command key in your
application. You can accomplish that with the following code:

myList^^.selFlags := lNoRect + lNoExtend + lUseSense;

The lNoNilHilite constant is somewhat different from the others, in that it affects the
display of a list, not the way that the List Manager selects items in response to a click. If
the bit corresponding to this constant is set, then the List Manager does not select or
highlight cells that do not contain any data.

CHAPTER 4

List Manager

4-40 Using the List Manager

Manipulating List Cells
In addition to the LSetCell procedure, the List Manager provides four procedures,
LAddToCell , LClrCell , LGetCellDataLocation , and LGetCell , that allow you to
manipulate cell item data. You can use the LAddToCell procedure to append data to list
items and the LClrCell procedure to remove all data from a list item. The
LGetCellDataLocation procedure indicates the location of the beginning of a cell’s
data within the cells field of the list record as well as the length of that data, and the
LGetCell procedure copies a cell’s data to a buffer that your application specifies.

Listing 4-11 illustrates the use of LClrCell to clear the data from all cells in a list.

Listing 4-11 Clearing all cell data

PROCEDURE MyClearAllCellData (myList: ListHandle);

VAR

aCell: Cell;

BEGIN

SetPt(aCell, 0, 0);

REPEAT

LClrCell(aCell, myList);

UNTIL NOT LNextCell(TRUE, TRUE, aCell, myList);

END;

Because LClrCell simply does nothing if passed a cell not in the list, the
MyClearAllCellData procedure defined in Listing 4-11 will not crash when
attempting to clear the first cell even if there are no cells in the list.

Listing 4-12 uses the LGetCell procedure to return the data of a specific cell.

CHAPTER 4

List Manager

Using the List Manager 4-41

Listing 4-12 Getting a copy of the data of a cell

PROCEDURE MyGetCellData (d ataPtr: Ptr; VAR dataLen: Integer;

 aCell: Cell; myList: ListHandle);

BEGIN

LGetCell(dataPtr, dataLen, aCell, myList);

END;

The LGetCell procedure copies cell data to memory beginning at the location specified
by dataPtr . It copies only the number of bytes specified by the value passed in the
dataLen parameter; it returns in that parameter the number of bytes actually copied.

Because the LGetCell procedure duplicates existing bytes of memory, if your
application needs to access a cell’s data but does not need to manipulate the data, then it
should use the LGetCellDataLocation procedure to access cell data directly.
Listing 4-13 uses the LGetCellDataLocation procedure to get a cell’s data.

Listing 4-13 Directly accessing a cell’s data

PROCEDURE MyGetDirectAccessToCellData

(VAR offse t: Integer; VAR l en: Integer;

 aCell: Cell; myList: ListHandle);

BEGIN

LGetCellDataLocation(offset, len, aCell, myList);

END;

The LGetCellDataLocation procedure simply returns in the offset and len
parameters the offset and length of the appropriate cell’s data within the cells field of
the list record.

Listing 4-14 shows an application-defined procedure that uses
LGetCellDataLocation in conjunction with the LSetCell procedure
and the LAddRow function to add a new string to a one-column, alphabetical text-only
list. To compare two strings, the procedure uses the Text Utilities CompareText
function, which requires that data be specified by a pointer and length, thus making
LGetCellDataLocation perfect for this purpose. For more information on the
CompareText function, see Inside Macintosh: Text.

CHAPTER 4

List Manager

4-42 Using the List Manager

Listing 4-14 Adding an item to a one-column, alphabetical text list

PROCEDURE MyAddItemAlphabetically (myList: ListHandle; myString: Str255);

VAR

found: Boolean; {flag variable}

myRows: Integer; {number of rows in list}

currentRow: Integer; {row being examined}

cellDataOffset, cellDataLength: Integer; {data being compared to string}

aCell: Cell; {cell coordinates}

BEGIN

found := FALSE; {initialize flag variable}

WITH myList^^.dataBounds DO

myRows := bottom - top; {compute number of rows}

currentRow := -1; {start before first row}

WHILE NOT found DO

BEGIN {try to insert before next row}

currentRow := currentRow + 1; {move to next row}

IF currentRow = myRows THEN {past the end of the list?}

found := TRUE {insert string at this row}

ELSE

BEGIN

SetPt(aCell, 0, currentRow); {prepare to check cell data}

{find location of data}

LGetCellDataLocation(cellDataOffset, cellDataLength, aCell, myList);

HLockHi(Handle(myList^^.cells)); {lock list data in memory}

IF CompareText(@myString[1], {skip length byte of string}

Ptr(ORD4(myList^^.cells^) + cellDataOffset),

Length(myString), cellDataLength, gitl2Hdl) = -1 THEN

found := TRUE; {new string should precede }

{ this row's string}

HUnlock(Handle(myList^^.cells)); {unlock list data}

END;

END;

{add new row for string}

currentRow := LAddRow(1, currentRow, myList);

SetPt(aCell, 0, currentRow); {prepare to set cell data}

{set data}

LSetCell(@myString[1], Length(myString), aCell, myList);

END;

The MyAddItemAlphabetically procedure defined in Listing 4-14 simply compares a
string to the text in each row of a list, until the string follows the row text alphabetically
or until there are no more rows, that is, the row number (which is 0-based) is equal to the
number of rows, in which case the string is appended to the end of the list.

CHAPTER 4

List Manager

Using the List Manager 4-43

Searching a List for a Particular Item
Sometimes, your application might need to search through a list for a particular item.
For example, your application might need to search a list of pictures to see which cell
contains a certain picture, or your application might wish to search for an item that
matches a certain string. You can use the LSearch function and specify your own match
function to make this possible.

The LSearch function returns TRUE if it is able to find the specified data in a cell greater
than or equal to the specified cell. If it does find the data, it also returns the coordinates
of the cell that contains the data.

In addition to specifying the cell to search, your application also specifies a pointer to a
match function, the data to search for, and the length of the data, as parameters to the
LSearch function.

If your application specifies NIL for the match function, the LSearch function searches
the list for the first cell whose data matches the specified data. In particular, the
LSearch function calls the Text Utilities IUMagIDString function to compare each
cell’s data with the specified data until IUMagIDString returns 0. Because
IUMagIDString compares strings for equality without regard for secondary ordering,
using this default match function is useful only for text-only lists. For more information
on IUMagIDString , see Inside Macintosh: Text.

Your application can use a different match function from IUMagIDString as long as it
is defined just like IUMagIDString . For example, your application could use the
IUMagString function so that secondary ordering is taken into consideration. To do so,
your application might use the following code:

found := LSearch(myData, myLength, @IUMagString, myCell, myList);

You can also write your own match function. Listing 4-15 shows an example match
function.

Listing 4-15 A match function

FUNCTION MySearchPartialMatch

(cellDataPtr, searchDataPtr: Ptr;

 cellDataLen, searchDataLen: Integer): Integer;

BEGIN

IF (cellDataLen > 0) AND (cellDataLen >= searchDataLen) THEN

MySearchPartialMatch :=

IUMagIDString(cellDataPtr, searchDataPtr,

 searchDataLen, searchDataLen)

ELSE

MySearchPartialMatch := 1;

END;

CHAPTER 4

List Manager

4-44 Using the List Manager

Your match function should return 0 if it finds a match and 1 otherwise. The match
function defined in Listing 4-15 works just like the default match function but allows the
cell data to be longer than the data being searched for. For example, a search for the text
“rose” would match a cell containing the text “Rosebud”.

Listing 4-16 defines a more complex but potentially more useful match function for
text-only lists.

Listing 4-16 Searching a list for a cell containing certain text or the next cell alphabetically

FUNCTION MyMatchNextAlphabetically

(cellDataPtr, searchDataPtr: Ptr;

 cellDataLen, searchDataLen: Integer): Integer;

BEGIN

MyMatchNextAlphabetically := 1; {set default return value}

IF (cellDataLen > 0) THEN

BEGIN

IF IUMagIDString(cellDataPtr, searchDataPtr,

searchDataLen, searchDataLen) = 0 THEN

MyMatchNextAlphabetically := 0 {strings are equal}

ELSE IF IUMagString(cellDataPtr, searchDataPtr,

cellDataLen, searchDataLen) = 1 THE N

MyMatchNextAlphabetically := 0 ; {search data is after }

{ cell data}

END;

END;

Using the LSearch function with the MyMatchNextAlphabetically function
defined in Listing 4-16 results in the finding of the cell that is alphabetically greater than
or equal to the search text. For example, if you use the LSearch function with this match
function to search a list of the 50 states (not including the District of Columbia) for the
text “Washington, D.C.”, then the LSearch function returns the coordinates of the cell
containing the text “West Virginia”.

Note

The MyMatchNextAlphabetically function defined in Listing 4-16
works only for lists that are alphabetically arranged. ◆

CHAPTER 4

List Manager

Using the List Manager 4-45

Supporting Keyboard Navigation of Lists
This section discusses how your application can support keyboard navigation of lists. In
particular, this section first shows how your application can respond to the user’s typing
to select an item in a text-only list. Second, this section shows how your application can
respond to the user’s pressing of the arrow keys.

Supporting Type Selection of List Items

To support type selection of list items, your application must keep a record of the
characters the user has typed, the time when the user last typed a character, and which
list the last typed character affected. For example, the SurfWriter application defines the
following four variables to keep track of this information:

VAR

gListNavigateString: {current string being searched}

Str255 ;

gTSThresh: Integer; {ticks before type selection resets}

gLastKeyTime: LongInt; {time in ticks of last click time}

gLastListHit: ListHandle; {last list type selection affected}

The gListNavigateString variable stores the current status of the type selection. For
example, if the user types 'h' and then 'e' and then 'l' and then 'l' and then 'o' ,
this string should be 'hello' .

The gTSThresh variable stores the number of ticks after which type selection resets. For
example, if the user has typed 'hello' but then waits more than this amount of time
before typing 'g' , the SurfWriter application sets gListNavigateString to 'g' , not
to 'hellog' . The value of gTSThresh is dependent on the value the user sets for
“Delay Until Repeat” in the Keyboard control panel. SurfWriter also resets the type
selection if the user begins typing in a different list from the list last typed in. Thus, if the
difference between the current tick count and the gLastKeyTime variable is greater
than gTSThresh , or if gLastListHit is not equal to the current list, then the
SurfWriter application must reset the type selection.

CHAPTER 4

List Manager

4-46 Using the List Manager

Listing 4-17 shows how the SurfWriter application initializes or resets its type-selection
variables.

Listing 4-17 Resetting variables related to type selection

PROCEDURE MyResetTypeSelection;

CONST

KeyThresh = $18E; {location of low-memory word}

kMaxKeyThresh = 120; {120 ticks = 2 seconds}

TYPE

IntPtr = ^Integer; {for accessing low memory}

BEGIN

gListNavigateString := ''; {reset navigation string}

gLastListHit := NIL; {remember active list}

gLastKeyTime := 0; {no keys yet hit}

gTSThresh := 2 * IntPtr(KeyThresh)^; {update type-selection }

{ threshold}

IF gTSThresh > kMaxKeyThresh THEN

gTSThresh := kMaxKeyThresh; {set threshold to maximum}

END;

The MyResetTypeSelection procedure defined in Listing 4-17 initializes three of the
variables to default values and sets the gTSThresh variable to twice the value of the
system global variable KeyThresh , up to a maximum of 120 ticks. By using the same
formula as MyResetTypeSelection for computing the type-selection threshold, you
make sure your application is consistent with other applications as well as with the
Finder. The SurfWriter application calls the MyResetTypeSelection procedure when
it starts up and when it wishes to reset the type selection because the type-selection
threshold has expired. It also calls the procedure whenever it receives a resume event,
because the user might have used the Keyboard control panel, in which case SurfWriter
needs to update the value of the type-selection threshold.

CHAPTER 4

List Manager

Using the List Manager 4-47

Having initialized variables related to type selection, the SurfWriter application needs to
respond to appropriate key-down events. Listing 4-18 illustrates an application-defined
procedure that does this.

Listing 4-18 Selecting an item in response to a key-down event

PROCEDURE MyKeySearchInList (theList: ListHandle; theEvent: EventRecord);

VAR

newChar: Char; {character to add to search string}

theCell: Cell; {cell containing found string}

BEGIN

newChar := CHR(BAnd(theEvent.message, charCodeMask));

IF (gLastListHit <> theList) OR

(theEvent.when - gLastKeyTime >= gTSThresh) OR

(Length(gListNavigateString) = 255) THEN

MyResetTypeSelection;

gLastListHit := theList; {remember list keyed in}

gLastKeyTime := theEvent.when; {record time of key-down event}

{set length of string}

gListNavigateString[0] := Char(Length(gListNavigateString) + 1);

{add character to string}

gListNavigateString[Length(gListNavigateString)] := newChar;

SetPt(theCell, 0, 0);

IF LSearch(@gListNavigateString[1], Length(gListNavigateString),

@MyMatchNextAlphabetically, theCell, theList) THEN

BEGIN

{deselect all cells but new cell}

MySelectOneCell(theList, theCell);

{make sure new selection is visible}

MyMakeCellVisible(theList, theCell);

END;

END;

CHAPTER 4

List Manager

4-48 Using the List Manager

The MyKeySearchInList procedure defined in Listing 4-18 first updates variables
related to type selection. Then it searches through the list for a cell containing the current
search string or for the next cell alphabetically. It searches using the LSearch function in
conjunction with a custom match function defined in Listing 4-15 on page 4-43. The
procedure also uses the MySelectOneCell procedure defined in Listing 4-9 on
page 4-36 and the MyMakeCellVisible procedure defined in Listing 4-10 on page 4-37.

Note

If your compiler enforces range checking, you may need to disable it
before using the code in Listing 4-18, because the code accesses the
length byte of a string directly. See your development system’s
documentation for more information on range checking. ◆

Supporting Arrow-Key Navigation of Lists

This section discusses how your application can support the use of arrow keys to move
the current selection or to extend the current selection using a simple extension
algorithm. For information on implementing a more complex anchor algorithm for
extending the selection, read this section and then the next section, beginning on
page 4-52.

The following constants define the ASCII character codes for the various arrow keys.
These ASCII values for these keys are the same for U.S. and international keyboards.

CONST

kLeftArrow = Char(28); {move left}

kRightArrow = Char(29); {move right}

kUpArrow = Char(30); {move up}

kDownArrow = Char(31); {move down}

To support both the moving of a selection (the user ’s pressing an arrow key without
pressing the Shift key) and the extending of a selection (the user’s pressing of an arrow
key while pressing the Shift key), your application needs to define a routine that
computes a new selection location given an old one. For example, if the user presses
Command–Left Arrow, the routine should find the cell as far to the left of the first
currently selected cell as possible. Listing 4-19 illustrates an application-defined
procedure that does this.

CHAPTER 4

List Manager

Using the List Manager 4-49

Listing 4-19 Determining the location of a new cell in response to an arrow-key event

PROCEDURE MyFindNewCellLoc

(theList: ListHandle; oldCellLoc: Cell;

 VAR newCellLoc: Cell; keyHit: Char;

 moveToExtreme: Boolean);

VAR

listRows, listColumns: Integer; {list dimensions}

BEGIN

WITH theList^^.dataBounds DO

BEGIN

listRows := bottom - top; {number of rows in list}

listColumns := right - left; {number of columns in list}

END;

newCellLoc := oldCellLoc;

IF moveToExtreme THEN

CASE keyHit OF

kUpArrow:

newCellLoc.v := 0; {move to row 0}

kDownArrow:

newCellLoc.v := listRows - 1; {move to last row}

kLeftArrow:

newCellLoc.h := 0; {move to column 0}

kRightArrow:

newCellLoc.h := listColumns - 1; {move to last column}

END

ELSE

CASE keyHit OF

kUpArrow:

IF oldCellLoc.v <> 0 THEN

newCellLoc.v := oldCellLoc.v - 1; {row up}

kDownArrow:

IF oldCellLoc.v <> listRows - 1 THEN

newCellLoc.v := oldCellLoc.v + 1; {row down}

kLeftArrow:

IF oldCellLoc.h <> 0 THEN

newCellLoc.h := oldCellLoc.h - 1; {column left}

kRightArrow:

IF oldCellLoc.h <> listColumns - 1 THEN

newCellLoc.h := oldCellLoc.h + 1; {column right}

END;

END;

CHAPTER 4

List Manager

4-50 Using the List Manager

The MyFindNewCellLoc procedure defined in Listing 4-19 computes the coordinates of
the cell referenced by the newCellLoc parameter based on the coordinates of the
oldCellLoc parameter and the direction of the arrow key pressed. The oldCellLoc
parameter contains the coordinates of the first or last cell in a selection, depending on
which arrow key was pressed. The behavior of MyFindNewCellLoc also depends on
the value passed in the moveToExtreme parameter. For example, if the user pressed the
Command key while pressing an arrow key, the SurfWriter application passes TRUE;
otherwise, it passes FALSE. If moveToExtreme is TRUE, then MyFindNewCellLoc
returns in newCellLoc a cell that is as far as possible from the cell specified in
oldCellLoc . Otherwise, it returns a cell that is within one cell of oldCellLoc . If a cell
cannot be moved in the direction specified by the arrow key, newCellLoc is equivalent
on exit to oldCellLoc .

Having defined the MyFindNewCellLoc procedure, it is easy to move or extend a
selection in response to an arrow-key event. Listing 4-20 illustrates an
application-defined procedure that moves the selection in response to the user’s pressing
an arrow key without pressing the Shift key.

Listing 4-20 Moving the selection in response to an arrow-key event

PROCEDURE MyArrowKeyMoveSelection (theList: ListHandle ;

 keyHit: Char;

 moveToExtreme: Boolean);

VAR

currentSelection: Cell;

newSelection: Cell;

BEGIN

IF MyGetFirstSelectedCell(theList, currentSelection) THEN

BEGIN

IF (keyHit = kRightArrow) OR (keyHit = kDownArrow) THE N

{ find last selected cell}

MyGetLastSelectedCell(theList, currentSelection);

{ move relative to appropriate cell}

MyFindNewCellLoc(theList, currentSelection ,

 n ewSelection, keyHit, moveToExtreme) ;

{ make this cell the selection}

MySelectOneCell(theList, newSelection);

{ make sure new selection is visible}

MyMakeCellVisible(theList, newSelection);

END;

END;

CHAPTER 4

List Manager

Using the List Manager 4-51

The MyArrowKeyMoveSelection procedure defined in Listing 4-20 calls the
MyFindNewCellLoc procedure defined in Listing 4-19 to find the coordinates of a cell
to select. It computes the coordinates of that new cell relative to the first selected cell if
the user pressed a Left Arrow or Up Arrow key; otherwise, it computes the coordinates
of the new cell relative to the last selected cell. After computing the coordinates of the
new cell, MyArrowKeyMoveSelection selects it by calling routines defined in
Listing 4-9 and Listing 4-10.

Listing 4-21 illustrates an application-defined procedure that extends the selection in
response to the user’s pressing an arrow key while pressing the Shift key.

Listing 4-21 Extending the selection in response to an arrow-key event

PROCEDURE MyArrowKeyExtendSelection (theList: ListHandle;

keyHit: Char;

moveToExtreme: Boolean);

VAR

currentSelection : Cell;

newSelection: Cell;

BEGIN

IF MyGetFirstSelectedCell(theList, currentSelection) THEN

BEGIN

IF (keyHit = kRightArrow) OR (keyHit = kDownArrow) THEN

{find last selected cell}

MyGetLastSelectedCell(theList, currentSelection);

{move relative to appropriate cell}

MyFindNewCellLoc(theList, currentSelection ,

 n ewSelection, keyHit, moveToExtreme);

{add a new cell to the selection}

IF NOT LGetSelect(FALSE, newSelection, theList) THEN

LSetSelect(TRUE, newSelection, theList);

{make sure new selection is visible}

MyMakeCellVisible(theList, newSelection);

END;

END;

The MyArrowKeyExtendSelection procedure defined in Listing 4-21 works just
like the MyArrowKeyMoveSelection procedure defined in Listing 4-20, but it does not
deselect all other cells besides the newly selected cell.

CHAPTER 4

List Manager

4-52 Using the List Manager

Listing 4-22 shows an application-defined procedure that takes advantage of the
code listings provided in this section. The SurfWriter application calls the procedure in
Listing 4-22 every time it receives an arrow-key event that affects a list.

Listing 4-22 Processing an arrow-key event

PROCEDURE MyArrowKeyInList (theList: ListHandle; theEvent: EventRecord ;

allowExtendedSelections: Boolean);

BEGIN

IF (NOT allowExtendedSelections) OR

(BAnd(theEvent.modifiers, shiftKey) = 0) THEN

MyArrowKeyMoveSelection(theList,

CHR(BAnd(theEvent.message, charCodeMask)),

BAnd(theEvent.modifiers, cmdKey) <> 0)

ELSE

MyArrowKeyExtendSelection(theList,

 CHR(BAnd(theEvent.message, charCodeMask)),

 BAnd(theEvent.modifiers, cmdKey) <> 0);

END;

The MyArrowKeyInList procedure defined in Listing 4-22 takes three parameters, the
third of which is a Boolean variable that indicates whether the application supports the
use of Shift–arrow key combinations to extend the current selection. If the application
does support this and the user held down the Shift key, the MyArrowKeyInList
procedure calls the procedure in Listing 4-21 to extend the selection. Otherwise, it calls
the procedure in Listing 4-20 to move the selection. Either way, it checks the status of the
Command key to determine whether the appropriate procedure should move as far in
the direction of the arrow key as possible before selecting a new cell.

Supporting the Anchor Algorithm for Extending Lists With Arrow Keys

This section summarizes how your application can support the anchor method for
extending lists with arrow keys. Implementing this method takes a lot of work, but the
extra work may pay off if you expect many users of your application’s lists to make
range selections or if your application uses multicolumn lists. For a comparison between
the anchor algorithm and the extension algorithm illustrated in the previous section, see
“Extension of a Selection With Arrow Keys” on page 4-16.

To support the anchor algorithm, your application must keep track of several types of
information between Shift–arrow key events. Most importantly, your application must
store information about which cell in a list is the anchor cell and which cell is the moving
cell. In response to a Shift–arrow key event, your application should change the location
of the moving cell. It should then highlight all cells in the rectangle whose corners are

CHAPTER 4

List Manager

Using the List Manager 4-53

the anchor cell and the moving cell. This permits the user to use several consecutive
Shift–arrow key combinations to move a rectangular range of cells around the anchor
cell.

Your application must thus save the location of the anchor cell the first time the user uses
a Shift–arrow key combination to affect a certain rectangular range of cells. For example,
if the user presses Shift–Right Arrow and the user has not before used a Shift–arrow key
combination, then your application should store as the anchor cell the upper-left cell in
the rectangular range of cells to be affected. The moving cell is then one cell to the right
of what was the lower-right corner of this range.

Your application can determine what rectangular range of cells a Shift–arrow key
combination is meant to affect by using the LLastClick function, which returns the
coordinates of the last cell that was clicked. (If your application relies on this function, it
must always update the lastClick field of the list record in response to keyboard
selection of any list item, since keyboard selection of a list item is functionally equivalent
to clicking.) Your application must check the selection status of adjacent cells to find as
big a rectangular range of selected cells surrounding this cell as possible.

Your application can check whether a Shift–arrow key event is affecting a new range of
cells simply by checking the clikTime field of the list record. (Your application must
thus also update this field in response to keyboard selection of any list item.) If the last
click time changes between Shift–arrow key events, your application knows that the user
has clicked the list or used the keyboard to change the selection. In this case, your
application must compute a new anchor cell and moving cell based on the LLastClick
function and the direction of the arrow key pressed. Otherwise, your application can
keep the same anchor cell, move the moving cell in the direction specified by the arrow
key, and highlight cells in the rectangular range of the anchor cell and the moving cell.

In summary, if your application is to support the anchor algorithm for extending a list
selection, it must keep track of an anchor cell, a moving cell, and the time of the last click
in a list. (Your application might store a handle to a relocatable block containing this
information in the userHandle field of the list record.) Whenever a Shift–arrow key
event is meant to affect a new range of cells, your application updates all three of these
variables. Otherwise, it only changes the coordinates of the moving cell from one
Shift–arrow key event to the next.

Outlining the Current List
If a window in your application contains two lists, or contains one list and an editable
text item, then your application should place a 2-pixel outline around a list whenever the
list is the current list and active, that is, whenever typing would affect the list. Your
application should outline the current list so that the user knows that typing affects the
list.

CHAPTER 4

List Manager

4-54 Using the List Manager

Listing 4-23 shows an application-defined procedure that checks whether a list is the
current list. If it is both current and active, it draws a 2-pixel outline around the list.
Otherwise, it draws in the background color of the dialog box to remove the outline.

Listing 4-23 Drawing an outline around a list

PROCEDURE MyDrawOutline (myList: ListHandle);

CONST

kScrollBarWidth = 15; {width of scroll bar}

VAR

myOutlineRect: Rect; {rectangle for outline border}

myPenState: PenState; {current status of pen}

BEGIN

{get list's visible rectangle}

myOutlineRect := myList^^.rView ;

{compensate for scroll bars}

IF myList^^.vScroll <> NIL THEN

myOutlineRect.right := myOutlineRect.right

+ kScrollBarWidth;

IF myList^^.hScroll <> NIL THEN

myOutlineRect.bottom := myOutlineRect.bottom

+ kScrollBarWidth ;

{draw 2-pixel outline 3 pixels from border}

SetPort(myList^^.port); {set port to list's port}

{move out 4 pixels}

InsetRect(myOutlineRect, -4, -4);

GetPenState(myPenState); {store pen state}

IF (myList = gCurrentList) AND myList^^.lActive THEN

PenPat(black) {draw border}

ELSE

PenPat(white); {remove border}

PenSize(2, 2); {use 2-pixel pen}

FrameRect(myOutlineRect); {draw outline}

SetPenState(myPenState); {restore old pen state}

END;

The MyDrawOutline procedure defined in Listing 4-23 determines the rectangle to
draw in by adjusting the list’s visible rectangle to compensate for scroll bars and by then
moving each side of the rectangle 4 pixels. (One pixel is already taken by the list border,
an additional pixel is needed for space between the border and the outline, and the pen
size for the outline is 2 pixels.) The list determines whether to draw or remove a list by

CHAPTER 4

List Manager

Using the List Manager 4-55

comparing the list passed in with an an application-defined global variable,
gCurrentList . If the variable indicates that a list is the current list, and the
MyDrawOutline procedure determines that the list is active, then it draws the outline;
otherwise, it removes it.

Your application can use the refCon field of the list record to create a linked ring list of
all of the lists in a window to make it easier to support outlining. That is, the refCon
field of the first list in a window contains a handle to the second list in a window; the
refCon field of the second list in a window contains a handle to the third, and so on,
until the refCon field of the last list in a window contains a handle to the first.

The advantage of implementing such a ring list is that it makes it easy to change which
list is the current list. In response to a Tab-key event, your application need only find the
next list in a window by looking at the current list’s refCon field and setting the
gCurrentList variable to the list referenced by that field. Without using such a
strategy, your application would need to examine the gCurrentList variable,
determine which of a window’s lists the variable corresponded to, determine which list
in the window is the next list, and then set the gCurrentList variable to this next list.

Listing 4-24 shows an application-defined procedure that adds a list to a ring being
maintained for a particular window.

Listing 4-24 Adding a list to the ring

PROCEDURE MyTrackList (myList: ListHandle);

VAR

aList: ListHandle;

BEGIN

aList := gCurrentList;

IF aList = NIL THEN

gCurrentList := myList {first ListHandle to be tracked}

ELSE

BEGIN

{ look for last ListHandle in ring}

WHILE (ListHandle(aList^^.refCon) <> gCurrentList) DO

{ move to next ListHandle in ring}

aList^^.refCon := ListHandle(aList^^.refCon)^^.refCon ;

{ insert myList into ring}

ListHandle(aList^^.refCon) := myList;

END;

{ add link from myList to current list}

ListHandle(myList^^.refCon) := gCurrentList;

END;

CHAPTER 4

List Manager

4-56 Using the List Manager

The SurfWriter application calls the MyTrackList procedure defined in Listing 4-24
once for each list in a window when it first opens that window. The first list added to the
ring is automatically set to be the current list. SurfWriter initializes the gCurrentList
variable to NIL before creating a ring for each window that uses multiple lists. In
addition, SurfWriter stores the value of the gCurrentList variable whenever a
window containing multiple lists is deactivated and then resets it when the window is
activated again. That way, the gCurrentList variable always stores a handle to the
current list of the active window.

Once all the lists in a window are linked in a ring, it is easy to write a routine that
ensures that only the current list is outlined. Listing 4-25 illustrates such a routine.

Listing 4-25 Updating the outline of all lists in a window

PROCEDURE MyUpdateListOutlines;

VAR

listToUpdate: ListHandle;

BEGIN

listToUpdate := gCurrentList;

IF listToUpdate <> NIL THEN

REPEAT

{ move to next list in ring}

listToUpdate := ListHandle(listToUpdate^^.refCon);

MyDrawOutline(listToUpdate);

UNTIL listToUpdate = gCurrentList;

END;

The MyUpdateListOutlines procedure defined in Listing 4-25 simply calls the
MyDrawOutline procedure for each list in the active window’s ring of lists. The
SurfWriter application calls this procedure each time your application changes which list
is current.

CHAPTER 4

List Manager

Using the List Manager 4-57

Listing 4-26 shows an application-defined procedure that responds to the user’s pressing
the Tab key when the Shift key is not also pressed.

Listing 4-26 Moving the outline to the next list in a window

PROCEDURE MyOutlineNextList;

BEGIN

gCurrentList := ListHandle(gCurrentList^^.refCon);

MyUpdateListOutlines;

END;

If the user presses Shift-Tab, your application should respond by changing the current
list to the previous list. Listing 4-27 shows an application-defined procedure that does
this.

Listing 4-27 Moving the outline to the previous list in a window

PROCEDURE MyOutlinePreviousList;

VAR

previousList: ListHandle;

BEGIN

{co mpute the coordinates of the list before the current lis t}

previousList := gCurrentList;

WHILE (ListHandle(previousList^^.refCon) <> gCurrentList) DO

previousList := ListHandle(previousList^^.refCon) ;

{no w switch the outline to this lis t}

gCurrentList := previousList;

MyUpdateListOutlines;

END;

The MyOutlineNextList and MyOutlinePreviousList procedures defined in
Listing 4-26 and Listing 4-27 work the same if a window contains exactly two lists.

CHAPTER 4

List Manager

4-58 Using the List Manager

Writing Your Own List Definition Procedure
The default list definition procedure supports only the display of unstyled text.
If your application needs to display items graphically, you can create your own
list definition procedure. For example, the Chooser desk accessory uses its own list
definition procedure to display icons and names corresponding to Chooser extensions.
Figure 4-19 illustrates the Chooser ’s use of a custom list definition procedure.

Figure 4-19 The Chooser’s use of a custom list definition procedure

This section explains how you can write a list definition procedure. After writing a list
definition procedure, you must compile it as a resource of type 'LDEF' and store it in
the resource fork of any application that uses the list definition procedure.

This section provides code for a list definition procedure that supports the display of
QuickDraw pictures. It works by requiring the application that uses it to store as cell
data variables of type PicHandle . That way, each cell stores only 4 bytes of data, and
the List Manager’s 32 KB limit is not at risk of being approached for small lists. This list
definition procedure provides enough versatility to display virtually any type of image.

You can write your own list definition procedure to store some type of data other than
unstyled text. You can give your list definition procedure any name you choose, but it
must be defined like this:

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

CHAPTER 4

List Manager

Using the List Manager 4-59

The List Manager can send four types of messages to your list definition procedure, as
indicated by a value passed in the message parameter. The following constants define
the different types of messages:

CONST

lInitMsg = 0; {do any special list initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {take any special disposal action}

Of the second through seventh parameters to a list definition procedure, only the
theList parameter, which contains a handle to a list record, can be accessed by your list
definition procedure in response to all four messages.

The selected , cellRect , theCell , dataOffset , and dataLen parameters pass
information to your list definition procedure only when the value in the message
parameter contains the lDrawMsg or the lHiliteMsg constant. These parameters
provide information about the cell to be affected by the message. The selected
parameter indicates whether the cell should be highlighted. The cellRect and
theCell parameters indicate the cell’s rectangle and coordinates. Finally, the
dataOffset and dataLen parameters specify the offset and length of the cell’s data
within the relocatable block referenced by the cells field of the list record.

Listing 4-28 shows a list definition procedure that processes messages sent to it by the
List Manager.

Listing 4-28 Processing messages to a list definition procedure

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

BEGIN

CASE message OF

lInitMsg:

MyLDEFInit(theList);

lDrawMsg:

MyLDEFDraw(selected, cellRect, theCell, dataOffset,

dataLen, theList);

lHiliteMsg:

MyLDEFHighlight(selected, cellRect, theCell,

 dataOffset, dataLen, theList);

lCloseMsg:

MyLDEFClose(theList);

END;

END;

CHAPTER 4

List Manager

4-60 Using the List Manager

The MyLDEF procedure defined in Listing 4-28 calls procedures defined later in this
section to handle the various messages specified by the message parameter. It passes all
relevant parameters to these message-handling procedures. Thus, it passes only the
theList parameter to the procedures that handle the initialization and close messages.

Responding to the Initialization Message

The List Manager automatically allocates memory for a list and fills out the fields of a list
record before calling your list definition procedure with a lInitMsg message. Your
application might respond to the initialization message by changing fields of the list
record, such as the cellSize and indent fields. (These fields are by default set
according to a formula discussed in “About the List Manager” beginning on page 4-22.)

Many list definition procedures do not need to perform any action in response to the
initialization message. For example, the list definition procedure that allows the
Standard File Package to display small icons next to the names of files uses the standard
cell size and thus does not need to perform any special initialization.

Since pictures can come in a variety of sizes, the pictures list definition procedure
introduced in Listing 4-28 does not need to perform any special initialization either; it
depends on the application that uses the list definition procedure to define the correct
cell size. Thus, Listing 4-29 shows how the pictures list definition procedure responds to
the initialization method.

Listing 4-29 Using the default initialization method

PROCEDURE MyLDEFInit (theList: ListHandle);

BEGIN

END;

Note

Your list definition procedure does not actually need to call a procedure
that responds to the initialization message if it does not need to perform
any special action. ◆

Responding to the Draw Message

Your list definition procedure must respond to the lDrawMsg message by examining the
specified cell’s data and drawing the cell as appropriate. At the same time, your list
definition procedure must ensure that it does not alter the characteristics of the drawing
environment.

Listing 4-30 shows how the pictures list definition procedure responds to the draw
message.

CHAPTER 4

List Manager

Using the List Manager 4-61

Listing 4-30 Responding to the lDrawMsg message

PROCEDURE MyLDEFDraw (selected: Boolean; cellRect: Rect;

 theCell: Cell; dataOffset: Integer;

 dataLen: Integer; theList: ListHandle);

VAR

savedPort: GrafPtr; {old graphics port}

savedClip: RgnHandle; {old clip region}

savedPenState: PenState; {old pen state}

myPicture: PicHandle; {handle to a picture}

BEGIN

{se t up the drawing environmen t}

GetPort(savedPort); {remember the port}

SetPort(theList^^.port); {set port to list's port}

savedClip := NewRgn; {create new region}

GetClip(savedClip); {set region to clip region}

ClipRect(cellRect); {set clip region to cell }

{ rectangle}

GetPenState(savedPenState); {remember pen state}

PenNormal; {use normal pen type }

{dr aw the cell if it contains dat a}

EraseRect(cellRect); {erase before drawing}

IF dataLen = SizeOf(PicHandle) THEN

BEGIN

{get handle to picture}

LGetCell(@myPicture, dataLen, theCell, theList);

{draw the picture}

DrawPicture(myPicture, cellRect);

END;

{se lect the cell if necessar y}

IF selected THEN {highlight cell}

MyLDEFHighlight(selected, cellRect, theCell, dataOffset ,

 d ataLen, theList) ;

{re store graphics environmen t}

SetPort(savedPort); {restore saved port}

SetClip(savedClip); {restore clip region}

DisposeRgn(savedClip); {free region memory}

SetPenState(savedPenState); {restore pen state}

 END;

CHAPTER 4

List Manager

4-62 Using the List Manager

The MyLDEFDraw procedure defined in Listing 4-30 begins by saving characteristics
of the current graphics environment, such as the graphics port, the clipping region, and
the pen state. It also sets the pen to a normal state, and sets the clipping region to the
cell’s rectangle. The MyLDEFDraw procedure then draws in the cell rectangle by erasing
the rectangle, getting the handle stored as the cell’s data, and drawing the picture
referenced by that handle. Then, if the cell should be selected, it simply calls
the MyLDEFHighlight procedure defined in the next section. Before returning,
MyLDEFDraw restores the graphics environment to its previous state and disposes of the
memory it used to remember the clipping region.

Note

For more information on the QuickDraw routines and data structures
used in Listing 4-30, see Inside Macintosh: Imaging With QuickDraw. ◆

Responding to the Highlighting Message

Virtually every list definition procedure should respond to the lHiliteMsg message in
the same way, by inverting the bits in the cell’s rectangle. Your list definition procedure
would need to respond in a different way if selected list items should not simply be
highlighted. For example, in a list of patterns, simply highlighting selected cells could
confuse the user because highlighted patterns look just like other patterns.

Listing 4-31 shows how your list definition procedure can respond to the lHiliteMsg
message in a way that is compatible with all Macintosh models, including models that
do not support Color QuickDraw.

Listing 4-31 Responding to the lHiliteMsg message

PROCEDURE MyLDEFHighlight (selected: Boolean; cellRect: Rect;

theCell: Cell; dataOffset: Integer;

dataLen: Integer; theList: ListHandle);

BEGIN

{use color highlighting if possible}

BitClr(Ptr(HiliteMode), pHiliteBit);

InvertRect(cellRect); {highlight cell rectangle}

END;

For more information on highlighting, see Inside Macintosh: Imaging With QuickDraw.

Responding to the Close Message

The List Manager sends your list definition procedure the lCloseMsg message
immediately before disposing of the data occupied by a list. Your list definition
procedure needs to respond to the close message only if it needs to perform some special
processing before a list is disposed, such as releasing memory associated with a list that
would not be released by the LDispose procedure.

CHAPTER 4

List Manager

Using the List Manager 4-63

The pictures list definition procedure responds to the close message by freeing memory
occupied by the list’s pictures, whose handles are stored in the list. While the LDispose
procedure will dispose of the picture handles themselves, it cannot dispose of the
relocatable blocks referenced by the picture handles.

Listing 4-32 shows how the pictures list definition procedure responds to the
lCloseMsg message.

Listing 4-32 Responding to the lCloseMsg message

PROCEDURE MyLDEFClose (theList: ListHandle);

VAR

aCell: Cell; {cell in the list}

myPicHandle: PicHandle; {handle stored as cell data}

myDataLength: Integer; {length in bytes of cell data}

BEGIN

SetPt(aCell, 0, 0);

IF PtInRect(aCell, theList^^.dataBounds) THEN

REPEAT

{free memory only if cell's data is 4 bytes long}

myDataLength := SizeOf(PicHandle);

LGetCell(@myPicHandle, myDataLength, aCell, theList);

IF myDataLength = SizeOf(PicHandle) THEN

KillPicture(myPicHandle);

UNTIL NOT LNextCell(TRUE, TRUE, aCell, theList);

END;

Using the Pictures List Definition Procedure

The pictures list definition procedure introduced in Listing 4-28 can display a list
containing pictures. For example, the SurfWriter application uses it to display a list of
icons. SurfWriter first creates a list using the MyCreateVerticallyScrollingList
function shown in Listing 4-1 on page 4-27. After creating the list, rather than using the
default cell size as calculated by the List Manager, the SurfWriter application sets the size
of the cells using the LCellSize procedure, as shown in Listing 4-33.

Listing 4-33 Setting the cell size of a list

PROCEDURE MySetCellSizeForIconList(myCellSize: Point;

 myList: ListHandle);

BEGIN

LCellSize(myCellSize, myList);

END;

CHAPTER 4

List Manager

4-64 Using the List Manager

To later add an icon to a list of icons, the SurfWriter application uses the procedure
shown in Listing 4-34.

Listing 4-34 Adding an icon to a list of icons

PROCEDURE MyAddIconToList(myCellRect: Rect; myPlotRect: Rect ;

 myCell: Cell; theList: ListHandle;

 VAR myPicHandle: PicHandle;

 resID: Integer) ;

CONST

kIconWidth = 32; {width of an icon}

kIconHeight = 32; {height of an icon}

kExtraSpace = 2; {extra space on top and to left of icon }

VAR

myIcon: Handle;

BEGIN

{picture occupies entire cell rectangle}

SetRect(myCellRect, 0, 0, kIconWidth + kExtraSpace,

 k IconHeight + kExtraSpace);

{plot icon over portion of rectangle}

SetRect(myPlotRect, kExtraSpace, kExtraSpace, kIconWidth +

 k ExtraSpace, kIconHeight + kExtraSpace);

{load icon from resource file}

myIcon := GetIcon(resID);

{create the picture}

myPicHandle := OpenPicture(myCellRect);

PlotIcon(myPlotRect, myIcon);

ClosePicture;

{store handle to picture as cell data}

LSetCell(@myPicHandle, SizeOf(PicHandle), myCell, theList);

{release icon resource}

ReleaseResource(myIcon) ;

END;

Note that the MyAddIconToList procedure uses the QuickDraw routines
OpenPicture and ClosePicture to bracket the set of drawing commands that it uses
to define the picture data for a particular cell. It then stores the handle to the picture
as the cell’s data, so that the pictures list definition procedure can draw the picture
within the cell.

CHAPTER 4

List Manager

List Manager Reference 4-65

List Manager Reference

This section describes the data structures and routines that are specific to the List
Manager. The “Data Structures” section shows the data structures for the cell, the data
handle, and the list record. The “List Manager Routines” section beginning on page 4-70
describes the routines that your application can use to create, manipulate, get
information about, and dispose of lists. The “Application-Defined Routines” section
beginning on page 4-96 describes list definition procedures, match functions, and
click-loop procedures.

Data Structures
This section describes the data structures that the List Manager uses to store information
about a list.

Your application can use the cell record to specify the coordinates of a cell. For
example, your application must specify cell coordinates to the LAddToCell procedure
to add data to a cell.

The List Manager uses a data handle internally to store information about the contents of
a list’s cells. The List Manager provides routines that allow you to access information
contained in this data handle.

Finally, the List Manager uses a list record to store a variety of information about a list.
To obtain some types of information about a list, your application might need to access
the fields of the list record directly.

The Cell Record

A cell record specifies the coordinates of a cell in a list. The Cell data type defines a cell
record.

TYPE Cell = Point;

Field descriptions

v The row number of the cell.
h The column number of the cell.

Note that column and row numbers are 0-based. Also note that this chapter designates
cells using the notation (column–1, row–1), so that a cell with coordinates (2,5) is in the
third column and sixth row of a list. You specify a cell with coordinates (2,5) by setting
the cell’s h field to 2 and its v field to 5.

CHAPTER 4

List Manager

4-66 List Manager Reference

The Data Handle

The List Manager uses a data handle to store information about a list. The DataHandle
data type defines a data handle.

TYPE DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^DataPtr;

Your application should not change the information in a data handle directly. Your
application can, however, read data stored in a list’s data handle directly by calling the
GetCellDataLocation procedure to find the offset of a cell’s data into the data handle
and the length of the cell’s data.

The List Record

The List Manager uses a list record to store many types of information about a list.
Usually you access a list record through a handle to the list record defined by the data
type ListHandle . The ListRec data type defines a list record.

TYPE ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle ;

CHAPTER 4

List Manager

List Manager Reference 4-67

userHandle: Handle; {for application use}

dataBounds: Rect; {boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer; {used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec; {pointer to a list record}

ListHandle = ^ListPtr ; { handle to a list record}

Field descriptions

rView Specifies the rectangle in which the list’s visible rectangle is located,
in local coordinates of the graphics port specified by the port field.
Note that the list’s visible rectangle does not include the area
needed for the list’s scroll bars. The width of a vertical scroll bar
(which equals the height of a horizontal scroll bar) is 15 pixels.

port Specifies the graphics port of the window containing the list.
indent Defines the location, relative to the upper-left corner of a cell, at

which drawing should begin. List definition procedures should set
this field to a value appropriate to the type of data that a cell in a list
is to contain.

cellSize Contains the size in pixels of each cell in the list. When your
application creates a list, it can either specify the cell size or let the
List Manager calculate the cell size. You should not change the
cellSize field directly; if you need to change the cell size after
creating a list, use the LCellSize procedure.

visible Specifies the cells in a list that are visible within the area specified
by the rView field. The List Manager sets the left and top fields
of visible to the coordinates of the first visible cell; however, the
List Manager sets the right and bottom fields so that each is 1
greater than the horizontal and vertical coordinates of the last
visible cell. For example, if a list contains 4 columns and 10 rows
but only the first 2 columns and the first 5 rows are visible (that is,
the last visible cell has coordinates (1,4)), the List Manager sets the
visible field to (0,0,2,5).

vScroll Contains a control handle for a list’s vertical scroll bar, or NIL if a
list does not have a vertical scroll bar.

hScroll Contains a control handle for a list’s horizontal scroll bar, or NIL if a
list does not have a vertical scroll bar.

CHAPTER 4

List Manager

4-68 List Manager Reference

selFlags Indicates the selection flags for a list. When your application creates
a list, the List Manager clears the selFlags field to 0. This defines
the List Manager’s default selection algorithm. To change the
default behavior for a particular list, set the desired bits in the list’s
selFlags field.
You can use these constants to refer to bits in this field:

CONST

{allow only one item to be selected at once}

lOnlyOne = -128;

{enable multiple item selection without Shift}

lExtendDrag = 64;

{prevent discontiguous selections}

lNoDisjoint = 32;

{reset list before responding to Shift-click}

lNoExtend = 16;

{Shift-drag selects items passed by cursor}

lNoRect = 8;

{allow use of Shift key to deselect items}

lUseSense = 4;

{disable highlighting of empty cells}

lNoNilNilite = 2;

lActive Indicates whether the list is active (TRUE if active, FALSE if inactive).
lReserved Reserved.
listFlags Indicates whether the List Manager should automatically scroll the

list if the user clicks the list and then drags the cursor outside
the list display rectangle.
The following constants define bits in this field that determine
whether horizontal autoscrolling and vertical autoscrolling are
enabled:

CONST

{allow automatic vertical scrolling}

lDoVAutoscroll = 2;

{allow automatic horizontal scrolling}

lDoHAutoscroll = 1;

By default, the List Manager enables horizontal autoscrolling for a
list if the list includes a horizontal scroll bar, and enables vertical
autoscrolling for a list if the list includes a vertical scroll bar.

CHAPTER 4

List Manager

List Manager Reference 4-69

clikTime Specifies the time in ticks of the last click in the list. If your
application depends on the value contained in this field, then
your application should update the field should the application
select a list item in response to keyboard input.

clikLoc Specifies the location in local coordinates of the last click in the list.
mouseLoc Indicates the current location of the cursor in local coordinates. This

value is continuously updated by the LClick function after the
user clicks a list.

lClikLoop Contains a pointer to a click-loop procedure repeatedly called by
the LClick function, or NIL if the default click-loop procedure is to
be used. For information on click-loop procedures, see “Click-Loop
Procedures” beginning on page 4-100.

lastClick Specifies the coordinates of the last cell in the list that was clicked.
This may not be the same as the last cell selected if the user selects a
range of cells by Shift-dragging or Command-dragging. If your
application depends on the value contained in this field, then
your application should update the field whenever your application
selects a list item in response to keyboard input.

refCon Contains 4 bytes for use by your application.
listDefProc Contains a handle to the code for the list definition procedure that

defines how the list is drawn.
userHandle Contains 4 bytes that your application can use as needed. For

example, your application might use this field to store a handle to
additional storage associated with the list. However, the LDispose
procedure does not automatically release this storage when
disposing of the list.

dataBounds Specifies the range of cells in a list. When your application creates a
list, it specifies the initial bounds of the list. As your application
adds rows and columns, the List Manager updates this field. The
List Manager sets the left and top fields of dataBounds to the
coordinates of the first cell in the list; the List Manager sets the
r ight and bottom fields so that each is 1 greater than the
horizontal and vertical coordinates of the last cell. For example, if a
list contains 4 columns and 10 rows (that is, the last cell in the list
has coordinates (3,9)), the List Manager sets the dataBounds field
to (0,0,4,10).

cells Contains a handle to a relocatable block used to store cell data. Your
application should not change the contents of this relocatable block
directly.

maxIndex Used internally.
cellArray Contains offsets to data that indicate the location of different cells’

data within the data handle specified by the cells parameter. Your
application should not access this field directly.

CHAPTER 4

List Manager

4-70 List Manager Reference

List Manager Routines
This section describes the routines you can use to

■ create and dispose of lists

■ add and delete rows and columns to and from lists

■ find or change cells’ selection status

■ read or change cell data

■ respond to list events

■ affect the display of a list

■ get information about cells

■ change the size of a list or of a cell contained in a list

▲ WARNING

The List Manager ’s routines are contained in a resource of resource type
'PACK' . Calling any of the routines described in this section could
result in the loading of the package resource and the allocation of
memory. Thus, your application should not call any of the routines
described in this section at interrupt time. For more information on
packages, see Inside Macintosh: Operating System Utilities. ▲

Creating and Disposing of Lists

You can create a list by calling the LNew function. When you are through with the
list, you can dispose of it by calling the LDispose procedure.

LNew

You can use the LNew function to create a new list in a window.

FUNCTION LNew (rView, dataBounds: Rect; cSize: Point;

theProc: Integer; theWindow: WindowPtr;

drawit, hasGrow, scrollHoriz, scrollVert: Boolean)

: ListHandle;

rVie w The rectangle in which to display the list, in local coordinates of the
window specified by the theWindow parameter. This rectangle does not
include the area to be taken up by the list’s scroll bars.

dataBounds The initial data bounds for the list. By setting the left and top fields of
this rectangle to (0,0) and the right and bottom fields to
(kMyInitialColumns,kMyInitialRows), your application can create
a list that has kMyInitialColumns columns and kMyInitialRows
rows.

CHAPTER 4

List Manager

List Manager Reference 4-71

cSiz e The size of each cell in the list. If your application specifies (0,0) and is
using the default list definition procedure, the List Manager sets the v
coordinate of this parameter to the sum of the ascent, descent, and
leading of the current font, and it sets the h coordinate using the
following formula:

cSize.h := (rView.right - rView.left) DIV

(dataBounds.right – dataBounds.left)

thePro c The resource ID of the list definition procedure to use for the list. To use
the default list definition procedure, which supports the display of
unstyled text, specify a resource ID of 0.

theWindo w A pointer to the window in which to install the list.

drawIt A Boolean value that indicates whether the List Manager should initially
enable the automatic drawing mode. When the automatic drawing mode
is enabled, the List Manager automatically redraws the list whenever a
change is made to it. You can later change this setting using the
LSetDrawingMode procedure. Your application should leave the
automatic drawing mode disabled only for short periods of time when
making changes to a list (by, for example, adding rows and columns).

hasGro w A Boolean value that indicates whether the List Manager should leave
room for a size box. The List Manager does not actually draw the grow
icon. Usually, your application can draw it with the Window Manager’s
DrawGrowIcon procedure.

scrollHori z
A Boolean value that indicates whether the list should contain a
horizontal scroll bar. Specify TRUE if your list requires a horizontal scroll
bar; specify FALSE otherwise.

scrollVert
Indicates whether the list should contain a vertical scroll bar. Specify
TRUE if your list requires a vertical scroll bar; specify FALSE otherwise.

DESCRIPTION

The LNew function attempts to create a list defined by the function’s parameters and
returns a handle to the newly created list. If the LNew function cannot allocate the list,
it returns NIL . This might happen if there is not enough memory available or if LNew
cannot load the resource specified by the theProc parameter. If the LNew function
returns successfully, then all of the fields of the list record referenced by the returned
handle are correctly set.

If the list contains a horizontal or vertical scroll bar and the window specified by the
parameter theWindow is visible, LNew draws the scroll bar for the new list in the
window just outside the list’s visible rectangle specified by the rView parameter. The
LNew function does not, however, draw a 1-pixel border around the list’s visible
rectangle.

CHAPTER 4

List Manager

4-72 List Manager Reference

SPECIAL CONSIDERATIONS

You should not call the LNew function from within an interrupt, such as in a completion
routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LNew function are

SEE ALSO

See Listing 4-1 on page 4-27 for an example of how to use the LNew function.

LDispose

You can use the LDispose procedure to dispose of the memory associated with a list
that you no longer need.

PROCEDURE LDispose (lHandle: ListHandle);

lHandle The list to be disposed of.

DESCRIPTION

The LDispose procedure releases all memory allocated by the List Manager in creating
a list. First, LDispose issues a close request to the list definition procedure and calls the
Control Manager procedure DisposeControl for the list’s scroll bars (if any).
LDispose then uses the Memory Manager to free the memory referenced by the cells
field, then disposes of the list record itself.

Because LDispose disposes of data associated with cells in your list, there is no need to
clear the data from list cells or to delete individual rows and columns before calling
LDispose .

The LDispose procedure does not dispose of any memory associated with a list that the
List Manager has not allocated. In particular, LDispose does not dispose of any
memory referenced by the userHandle field of the list record. Your application is
responsible for deallocating any memory it has allocated through the userHandle field
before calling LDispose .

SPECIAL CONSIDERATIONS

You should not call the LDispose procedure from within an interrupt, such as in a
completion routine or VBL task.

Trap macro Selector

_Pack0 $0044

CHAPTER 4

List Manager

List Manager Reference 4-73

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDispose procedure are

Adding and Deleting Columns and Rows To and From a List

You can use the LAddColumn and LAddRow functions to add one or more columns or
rows to a list, and you can use the LDelColumn and LDelRow procedures to delete one
or more columns or rows from a list.

LAddColumn

You can use the LAddColumn function to add one or more columns to a list.

FUNCTION LAddColumn (coun t: Integer; c olNum: Integer;

l Handle: ListHandle): Integer;

count The number of columns to add.

colNum The column number of the first column to add.

lHandle The list to which to add the columns.

DESCRIPTION

The LAddColumn function inserts into the given list the number of columns specified by
the count parameter, starting at the column specified by the colNum parameter. The
LAddColumn function returns as its function result the column number of the first
column added, which is equal to the value specified by the colNum parameter if that
value is a valid column number.

If the column number specified by colNum is not already in the list, then new last
columns are added. The value returned by the LAddColumn function thus has
significance only in this case.

▲ WARNING

If there is insufficient memory in the heap to add the new columns, the
LAddColumn function may fail to add the new columns although it
returns a positive function result. Be sure there is enough memory in the
heap to allocate the new columns before calling LAddColumn . ▲

Columns whose column numbers are initially greater than colNum have their column
numbers increased by count .

If the automatic drawing mode is enabled and the columns added by LAddColumn are
visible, then the list (including its scroll bars) is updated. New cells created by a call to
LAddColumn are initially empty.

Trap macro Selector

_Pack0 $0028

CHAPTER 4

List Manager

4-74 List Manager Reference

You may add columns to a list that does not yet have rows. The dataBounds field of the
list record reflects that the list has columns, but you can only access cells when both rows
and columns have been added.

SPECIAL CONSIDERATIONS

You should not call the LAddColumn function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddColumn function are

LAddRow

You can use the LAddRow function to add one or more rows to a list.

FUNCTION LAddRow (coun t: Integer; r owNum: Integer;

l Handle: ListHandle): Integer;

count The number of rows to add.

rowNum The row number of the first row to add.

lHandle The list to add the rows to.

DESCRIPTION

The LAddRow function inserts into the given list the number of rows specified by the
count parameter, starting at the row specified by the rowNum parameter. The LAddRow
function returns as its function result the row number of the first row added, which is
equal to the value specified by the rowNum parameter if that value is a valid row number.

If the row number specified by rowNum is not already in the list, then new last rows are
added. The value returned by the LAddRow function thus has significance only in this
case.

▲ WARNING

If there is insufficient memory in the heap to add the new rows, the
LAddRow function may fail to add the new rows although it returns a
positive function result. Be sure there is enough memory in the heap to
allocate the new rows before calling LAddRow. ▲

Rows whose row numbers are initially greater than rowNum have their row numbers
increased by count .

Trap macro Selector

_Pack0 $0004

CHAPTER 4

List Manager

List Manager Reference 4-75

If the automatic drawing mode is enabled and the rows added by LAddRow are visible,
then the list (including its scroll bars) is updated. New cells created by a call to LAddRow
are initially empty.

You may add rows to a list that does not yet have columns. The dataBounds field of the
list record reflects that the list has rows, but you can only access cells when both rows
and columns have been added.

SPECIAL CONSIDERATIONS

You should not call the LAddRow function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddRow function are

SEE ALSO

For an example that adds rows to a list, see Listing 4-4 on page 4-31.

LDelColumn

You can use the LDelColumn procedure to delete one or more columns from a list.

PROCEDURE LDelColumn (coun t: Integer; c olNum: Integer;

 l Handle: ListHandle);

count The number of columns to delete, or 0 to delete all columns.

colNum The column number of the first column to delete.

lHandle The list from which to delete the columns.

DESCRIPTION

The LDel Column procedure deletes the number of columns specified by the count
parameter, starting at the column specified by the colNum parameter.

If the column specified by colNum is invalid, then nothing is done.

Your application can quickly delete all columns from a list (and thus delete all cell data)
simply by setting the count parameter to 0. The number of rows is left unchanged. Your
application can achieve the same effect by setting the colNum parameter to
lHandle^^.dataBounds.left and setting the count parameter to a value greater
than lHandle^^.dataBounds.right – lHandle^^.dataBounds.left .

Trap macro Selector

_Pack0 $0008

CHAPTER 4

List Manager

4-76 List Manager Reference

Columns whose column numbers are initially greater than colNum have their column
numbers decreased by count .

If the automatic drawing mode is enabled and one or more of the columns deleted by
LDelColum n are visible, then the list (including its scroll bars) is updated.

SPECIAL CONSIDERATIONS

You should not call the LDelColumn procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDelColumn procedure are

LDelRow

You can use the LDelRow procedure to delete one or more rows from a list.

PROCEDURE LDelRow (coun t: Integer; r owNum: Integer;

l Handle: ListHandle);

count The number of rows to delete, or 0 to delete all rows.

rowNum The row number of the first row to delete.

lHandle The list from which to delete the rows.

DESCRIPTION

The LDelRo w procedure deletes the number of rows specified by the count parameter,
starting at the row specified by the rowNum parameter.

If the row specified by r owNum is invalid, then nothing is done.

Your application can quickly delete all rows from a list (and thus delete all cell data)
simply by setting the count parameter to 0. The number of columns is left unchanged.
Your application can achieve the same effect by setting the rowNum parameter to
lHandle^^.dataBounds.top and setting the count parameter to a value greater
than lHandle^^.dataBounds.bottom – lHandle^^.dataBounds.top .

Rows whose row numbers are initially greater than rowNum have their row numbers
decreased by count .

If the automatic drawing mode is enabled and one or more of the rows deleted by
LDelRo w are visible, then the list (including its scroll bars) is updated.

Trap macro Selector

_Pack0 $0020

CHAPTER 4

List Manager

List Manager Reference 4-77

SPECIAL CONSIDERATIONS

You should not call the LDelRow procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDelRow procedure are

Determining or Changing the Selection

Your application can use the LGetSelect function to determine whether a certain cell is
selected or to find the next selected cell. To select or deselect a specific cell, your
application can use the LSetSelect procedure.

LGetSelect

You can use the LGetSelect function to get information about which cells are selected.

FUNCTION LGetSelect (next: Boolean; VAR theCell: Cell;

lHandle: ListHandle): Boolean;

nex t A Boolean value that indicates whether LGetSelect should check only
the cell specified by the parameter theCell (next = FALSE), or
whether it should try to find the next selected cell (next = TRUE).

theCell On input, specifies the first cell whose selection status should be checked.
If next is TRUE, then this parameter on output indicates the next selected
cell greater than or equal to the cell specified on input. Otherwise, this
parameter remains unchanged.

lHandl e The list in which the selection is being checked.

DESCRIPTION

The behavior of the LGetSelect function depends on the value specified in the nex t
parameter.

If next is TRUE, then LGetSelect searches the list for the first selected cell beginning at
the cell specified by theCell . (In particular, LGetSelect first checks cells in row
theCell.v , and then cells in the next row, and so on.) If it finds a selected cell,
LGetSelect returns TRUE and sets the parameter theCell to the coordinates of the
selected cell. If it does not find a selected cell, LGetSelect returns FALSE.

If next is FALSE, then LGetSelect checks only the cell specified by the parameter
theCell . If the cell is selected, LGetSelect returns TRUE. Otherwise, it returns FALSE.

Trap macro Selector

_Pack0 $0024

CHAPTER 4

List Manager

4-78 List Manager Reference

SPECIAL CONSIDERATIONS

You should not call the LGetSelect function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetSelect function are

SEE ALSO

For examples that determine which items are selected in a list, see “Working With List
Selections” beginning on page 4-34.

LSetSelect

You can use the LSetSelect procedure to select or deselect a cell.

PROCEDURE LSetSelect (setIt: Boolean; theCell: Cell;

 lHandle: ListHandle);

setI t A Boolean value that indicates whether the LSetSelect procedure
should select or deselect the specified cell. Specify TRUE to select the cell;
specify FALSE to deselect the cell.

theCel l The cell to be selected or deselected.

lHandl e The list containing the cell to be selected or deselected.

DESCRIPTION

If setIt is TRUE, then the LSetSelect procedure selects the cell specified by the
theCell parameter in the list specified by lHandle . If the cell is already selected,
LSetSelect does nothing.

If setIt is FALSE, then LSetSelect deselects the cell specified by theCell . If the cell
is already deselected, LSetSelect does nothing.

If a cell’s selection status is changed and the cell is visible, LSetSelect redraws the cell.

SPECIAL CONSIDERATIONS

You should not call the LSetSelect procedure from within an interrupt, such as in a
completion routine or VBL task.

Trap macro Selector

_Pack0 $003C

CHAPTER 4

List Manager

List Manager Reference 4-79

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetSelect procedure are

SEE ALSO

For examples that change the items selected in a list, see “Working With List Selections”
beginning on page 4-34.

Accessing and Manipulating Cell Data

To change the data contained in a cell, your application ordinarily uses the LSetCell
procedure. Alternatively, it can use the LAddToCell procedure to append data to a cell,
or the LClrCell procedure to clear all data from a cell. To find the data in a cell, your
application can use the LGetCellDataLocation procedure to find the location of a
cell’s data in memory. Or, your application can use the LGetCell procedure to copy the
data elsewhere in memory.

LSetCell

You can use the LSetCell procedure to change the data contained in a cell.

PROCEDURE LSetCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell ;

 l Handle: ListHandle);

dataPt r A pointer to the new data for a cell.

dataLe n The length in bytes of the data pointed to by the dataPtr parameter.

theCel l The coordinates of the cell to hold the new data.

lHandl e The list containing the cell given in the theCell parameter.

DESCRIPTION

The LSetCell procedure sets the data of the cell specified by the parameter theCell to
dataLen bytes of data beginning at the location specified by dataPtr . Any previous
cell data in theCell is replaced.

If the cell coordinates specified by the theCell parameter are invalid, then LSetCell
does nothing.

▲ WARNING

If there is insufficient memory in the heap, the LSetCell procedure
may fail to set the cell’s data. ▲

Trap macro Selector

_Pack0 $005C

CHAPTER 4

List Manager

4-80 List Manager Reference

If the data of a visible cell is changed and the automatic drawing mode is enabled,
LSetCell updates the list.

SPECIAL CONSIDERATIONS

You should not call the LSetCell procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetCell procedure are

SEE ALSO

For an example that sets the data of cells in a list, see Listing 4-4 on page 4-31.

LAddToCell

You can use the LAddToCell procedure to append data to the data already contained in
a cell.

PROCEDURE LAddToCell (dataPtr: Ptr; dataLen: Integer;

 theCell: Cell; lHandle: ListHandle);

dataPt r A pointer to the data to be appended.

dataLe n The length in bytes of the data pointed to by the dataPtr parameter.

theCel l The coordinates of the cell to which the data should be appended.

lHandl e The list containing the cell given in the theCell parameter.

DESCRIPTION

The LAddToCell procedure appends dataLen bytes of data beginning at the location
specified by dataPtr to data already contained in the cell specified by the parameter
theCell .

If the cell coordinates specified by the parameter theCell are invalid, then the
LAddToCell procedure does nothing.

If the data of a visible cell is changed and the automatic drawing mode is enabled,
LAddToCell updates the list.

Trap macro Selector

_Pack0 $0058

CHAPTER 4

List Manager

List Manager Reference 4-81

SPECIAL CONSIDERATIONS

You should not call the LAddToCell procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAddToCell procedure are

LClrCell

You can use the LClrCell procedure to clear the data contained in a cell.

PROCEDURE LClrCell (theCell: Cell; lHandle: ListHandle);

theCel l The coordinates of the cell to be cleared.

lHandl e The list containing the cell given in the theCell parameter.

DESCRIPTION

The LClrCell procedure clears the data contained in the cell specified by the theCell
parameter.

If the cell coordinates specified by the theCell parameter are invalid, then the
LClrCell procedure does nothing.

If the data of a visible cell is cleared and the automatic drawing mode is enabled,
LClrCell updates the list.

SPECIAL CONSIDERATIONS

You should not call the LClrCell procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LClrCell procedure are

Trap macro Selector

_Pack0 $000C

Trap macro Selector

_Pack0 $001C

CHAPTER 4

List Manager

4-82 List Manager Reference

LGetCellDataLocation

You can find the memory location of cell data by using the LGetCellDataLocation
procedure. The LGetCellDataLocation procedure is also available as the
LFind procedure.

PROCEDURE LGetCellDataLocation (VAR offset, len: Integer;

 t heCell: Cell ;

 l Handle: ListHandle);

offset The LGetCellDataLocation procedure returns in this parameter the
offset of the cell’s data, specified from the beginning of the data handle
referenced by the cells field of the list record.

len The LGetCellDataLocation procedure returns in this parameter the
length of the cell’s data in bytes.

theCell The cell whose data’s location is sought.

lHandle The list containing the cell specified by the parameter theCell .

DESCRIPTION

Your application can use the LGetCellDataLocation procedure to read cell data. The
cells field of the list record contains a handle to a relocatable block used to store all cell
data. When LGetCellDataLocation returns, the offset parameter contains the
offset of the specified cell’s data in this relocatable block, and the len parameter
specifies the length in bytes of the cell’s data. In other words, the first byte of cell data is
located at Ptr(ORD4(lHandle^^.cells^) + offset) , and the last byte of cell data
is located at Ptr(ORD4(lHandle^^.cells^) + offset + len) .

If the cell coordinates specified by the parameter theCell are invalid, then
LGetCellDataLocation sets the offset and len parameters to –1.

▲ WARNING

Your application should not modify the contents of the cells field
directly. To change a cell’s data, use the LSetCell procedure or the
LAddToCell procedure. ▲

SPECIAL CONSIDERATIONS

You should not call the LGetCellDataLocation procedure from within an interrupt,
such as in a completion routine or VBL task.

CHAPTER 4

List Manager

List Manager Reference 4-83

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetCellDataLocation procedure are

SEE ALSO

For an example that uses the LGetCellDataLocation procedure to get the data of a
cell, see Listing 4-13 on page 4-41.

LGetCell

You can use the LGetCell procedure to copy a cell’s data.

PROCEDURE LGetCell (dataPtr: Ptr; VAR dataLen: Integer;

 t heCell: Cell; lHandle: ListHandle);

dataPt r A pointer to the location to which to copy the cell’s data.

dataLen On entry, specifies the maximum number of bytes to copy. On exit,
indicates the number of bytes actually copied.

theCel l The cell whose data is to be copied.

lHandl e The list containing the cell specified by the parameter theCell .

DESCRIPTION

The LGetCell procedure copies up to dataLen bytes of the data of the cell specified by
theCell to the memory location pointed to by dataPtr . If the cell data is longer than
dataLen , only dataLen bytes are copied and the dataLen parameter is unchanged. If
the cell data is shorter than dataLen , then LGetCell sets dataLe n to the length in
bytes of the cell’s data.

SPECIAL CONSIDERATIONS

You should not call the LGetCell procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LGetCell procedure are

Trap macro Selector

_Pack0 $0034

Trap macro Selector

_Pack0 $0038

CHAPTER 4

List Manager

4-84 List Manager Reference

Responding to Events Affecting Lists

Your application can respond to mouse-down events in a list, activate events for a
window containing a list, and update events for a window containing a list simply by
calling the LClick function, the LActivate procedure, and the LUpdate procedure,
respectively. The List Manager does not include a routine that automatically responds to
keyboard events; for information on responding to those, see “Supporting Keyboard
Navigation of Lists” beginning on page 4-45.

LClick

To process a mouse-down event in a list, use the LClick function.

FUNCTION LClick (pt: Point; modifiers: Integer;

 l Handle: ListHandle): Boolean;

pt The location in local coordinates of the mouse-down event. Your
application can simply call GlobalToLocal(myEvent.where) and
then pass myEvent.where in this parameter.

modifier s An integer value corresponding to the modifiers field of the event
record.

lHandle The list in which the mouse-down event occurred.

DESCRIPTION

The LClick function responds to the mouse-down event whose location and modifiers
are specified by the pt and modifiers parameters. The LClick function handles all
user interaction until the user releases the mouse button. The LClick function returns
TRUE if the click was a double-click, or FALSE otherwise.

If the pt parameter specifies a portion of the list’s visible rectangle, then cells are
selected with an algorithm that depends on the list’s selection flags and on the
modifiers parameter. If the user drags the cursor above or below the list’s visible
rectangle and vertical autoscrolling is enabled, then the List Manager vertically
autoscrolls the list. If the user drags the cursor to the right or the left of the list’s visible
rectangle and horizontal autoscrolling is enabled, then the List Manager horizontally
autoscrolls the list.

If the pt parameter specifies a point within the list’s scroll bar, then the List Manager
calls the scroll bar’s control definition procedure to track the cursor and it scrolls the list
appropriately.

SPECIAL CONSIDERATIONS

You should not call the LClick function from within an interrupt, such as in a
completion routine or VBL task.

CHAPTER 4

List Manager

List Manager Reference 4-85

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LClick function are

SEE ALSO

For information on enabling and disabling autoscrolling, see “About the List Manager”
beginning on page 4-22. For information on responding to mouse-down events, see
“Responding to Events Affecting a List” on page 4-32.

LActivate

When your application receives an activate event for a window containing a list, it
should activate or deactivate the list as appropriate. You can use the LActivate
procedure to perform highlighting of the cells and to show or hide any scroll bars.

PROCEDURE LActivate (act: Boolean; lHandle: ListHandle);

ac t A Boolean value that indicates whether the list should be activated.
Specify TRUE to activate the list. Specify FALSE to deactivate the list.

lHandle The list to be activated or deactivated.

DESCRIPTION

The LActivate procedure activates the list specified by the lHandle parameter if act
is TRUE and deactivates it otherwise.

If a list is being deactivated, LActivat e removes highlighting from selected cells and
hides the scroll bars. If a list is being activated, LActivate highlights selected cells and
shows the scroll bars.

The LActivate procedure has no effect on a list’s size box, if one exists.

SPECIAL CONSIDERATIONS

You should not call the LActivate procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LActivate procedure are

Trap macro Selector

_Pack0 $0018

Trap macro Selector

_Pack0 $0000

CHAPTER 4

List Manager

4-86 List Manager Reference

SEE ALSO

For information on responding to activate events in lists, see “Responding to Events
Affecting a List” beginning on page 4-32. For general information on events, see the
chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

LUpdate

To respond to an update event, use the LUpdate procedure.

PROCEDURE LUpdate (theRgn: RgnHandle; lHandle: ListHandle);

theRgn The visible region of the list’s port after a call to the Window Manager ’s
BeginUpdate procedure.

lHandle The list to be updated.

DESCRIPTION

The LUpdate procedure redraws all visible cells in the list specified by the lHandle
parameter that intersect the region specified by the parameter theRgn . It also redraws
the scroll bars if they intersect the region.

You should bracket calls to LUpdate by calls to the Window Manager procedures
BeginUpdate and EndUpdat e.

SPECIAL CONSIDERATIONS

You should not call the LUpdate procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LUpdate procedure are

SEE ALSO

For information on responding to update events in lists, see “Responding to Events
Affecting a List” beginning on page 4-32. For general information on events, see the
chapter “Event Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Trap macro Selector

_Pack0 $0064

CHAPTER 4

List Manager

List Manager Reference 4-87

Modifying a List’s Appearance

Your application can use the LSetDrawingMode procedure to enable or disable
automatic drawing of lists. If your application uses LSetDrawingMode to temporarily
disable list drawing, then it must call the LDraw procedure to draw a cell when its
appearance changes, or when new rows or columns are added to the list. To
automatically scroll a list so that the first selected cell is the first cell visible, your
application can use the LAutoScroll procedure. To scroll a list a certain number of cells
horizontally and vertically, your application can use the LScroll procedure.

LSetDrawingMode

You can use the LSetDrawingMode procedure to change the automatic drawing mode
specified when creating a list. The LSetDrawingMode procedure is also available as the
LDoDraw procedure.

PROCEDURE LSetDrawingMode (drawIt: Boolean; lHandle: ListHandle);

drawIt A Boolean value that indicates whether the List Manager should enable
the automatic drawing mode. Specify TRUE to enable the automatic
drawing mode. Specify FALSE to disable the automatic drawing mode.

lHandl e The list whose drawing mode is being changed.

DESCRIPTION

The LSetDrawingMode procedure sets the List Manager’s drawing mode for the list
specified by the lHandle parameter to the state specified by the drawIt parameter.

While the automatic drawing mode is turned off, all cell drawing and highlighting
are disabled, and the scroll bar does not function properly. Thus, your application should
disable the automatic drawing mode only for short periods of time. After enabling it,
your application should ensure that the list is redrawn.

SPECIAL CONSIDERATIONS

You should not call the LSetDrawingMode procedure from within an interrupt, such as
in a completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSetDrawingMode procedure are

Trap macro Selector

_Pack0 $002C

CHAPTER 4

List Manager

4-88 List Manager Reference

SEE ALSO

For an example that disables and then reenables the automatic drawing mode, see
“Adding Rows and Columns to a List” beginning on page 4-30.

LDraw

You can use the LDraw procedure to draw a cell in a list. Ordinarily, you should only
need to use LDraw when the automatic drawing mode has been disabled.

PROCEDURE LDraw (theCell: Cell; lHandle: ListHandle);

theCell The cell to draw.

lHandle The list containing the cell identified by the parameter theCell .

DESCRIPTION

The LDraw procedure draws the cell specified by the parameter theCell . The List
Manager makes the list’s graphics port the current port, sets the clipping region to the
cell’s rectangle, and calls the list definition procedure to draw the cell. It restores the
clipping region and port before exiting.

SPECIAL CONSIDERATIONS

You should not call the LDraw procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LDraw procedure are

LAutoScroll

You can use the LAutoScroll procedure to make the first selected cell visible.

PROCEDURE LAutoScroll (lHandle: ListHandle);

lHandle The list to be scrolled.

Trap macro Selector

_Pack0 $0030

CHAPTER 4

List Manager

List Manager Reference 4-89

DESCRIPTION

The LAutoScroll procedure scrolls the list specified by the lHandle parameter so that
the first selected cell is in the upper-left corner of the list’s visible rectangle.

SPECIAL CONSIDERATIONS

You should not call the LAutoScroll procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LAutoScroll procedure are

LScroll

You can use the LScroll procedure to scroll a list a specified number of rows and
columns.

PROCEDURE LScroll (dCol s: Integer; d Rows: Integer;

 l Handle: ListHandle);

dCols The number of columns to scroll. Specify a positive number to scroll
down (that is, each cell moves up), and a negative number to scroll up.

dRows The number of rows to scroll. Specify a positive number to scroll right
(that is, each cell moves left), and a negative number to scroll left.

lHandle The list to be scrolled.

DESCRIPTION

The LScroll procedure scrolls the list specified by the lHandle procedure the number
of columns and rows specified by dCols and dRows. The List Manager will not scroll
beyond the data bounds of the list.

If the automatic drawing mode is enabled, LScroll does all necessary updating of the
list.

SPECIAL CONSIDERATIONS

You should not call the LScroll procedure from within an interrupt, such as in a
completion routine or VBL task.

Trap macro Selector

_Pack0 $0010

CHAPTER 4

List Manager

4-90 List Manager Reference

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LScroll procedure are

Searching a List for a Particular Item

You can use the LSearch function to search a list for a particular item.

LSearch

You can use the LSearch function to find a cell whose data matches data that you
specify.

FUNCTION LSearch (dataPtr: Ptr; dataLen: Integer; searchProc: Ptr;

VAR theCell: Cell; lHandle: ListHandle)

: Boolean;

dataPt r A pointer to the data being searched for.

dataLe n The length in bytes of the data being searched for.

searchPro c
A pointer to a function to be used to compare the data being searched for
with cell data. If NIL , the Text Utilities Package function
IUMagIDString is used.

theCel l The first cell to be searched. If LSearch finds a match, it returns in this
parameter the coordinates of the first cell whose data matches the data
being searched for.

lHandl e The list to be searched.

DESCRIPTION

Your application can use the LSearch function to search the list specified by the
lHandle parameter beginning at the cell specified by the parameter theCell for a
match. If LSearch finds a match, it returns TRUE and sets the parameter theCell to the
coordinates of the first cell whose data matches the data specified by the dataPtr and
dataLen parameters. Otherwise, LSearch returns FALSE.

The LSearch function determines whether a cell’s data matches the search data by
calling the IUMagIDString function, or the function specified by the searchProc
parameter. If that function returns 0, LSearch has found a match; otherwise, LSearch
checks the next cell in the list.

Trap macro Selector

_Pack0 $0050

CHAPTER 4

List Manager

List Manager Reference 4-91

SPECIAL CONSIDERATIONS

You should not call the LSearch function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSearch function are

SEE ALSO

For examples of use of the LSearch function, see “Searching a List for a Particular Item”
beginning on page 4-43. For information on the syntax of a custom match function, see
“Match Functions” beginning on page 4-99. For information on the IUMagIDString
function, see Inside Macintosh: Text.

Changing the Size of Cells and Lists

Usually, once your application creates a list, it should not need to change the cell size or
the size of the list itself. However, there may be instances in which changing one or both
is desirable. For example, if your list is on the lower-right side of a window that is
resizable, then your application must resize the list if the window containing it is resized.
Your application can do that with the LSize procedure. To resize the cells in a list, your
application can use the LCellSize procedure.

LSize

You can change the size of a list by using the LSize procedure. Usually, you need to do
this only after calling the Window Manager procedure SizeWindow .

PROCEDURE LSize (listWidt h: Integer; l istHeight: Integer;

 l Handle: ListHandle);

listWidth The new width (in pixels) of the list’s visible rectangle.

listHeight
The new height (in pixels) of the list’s visible rectangle.

lHandle The list whose size is being changed.

Trap macro Selector

_Pack0 $0054

CHAPTER 4

List Manager

4-92 List Manager Reference

DESCRIPTION

The LSize procedure adjusts the lower-right side of the list specified by the lHandle
parameter so that the list’s visible rectangle is the width and height specified by the
listWidth and listHeight parameters.

Because the list’s visible rectangle does not include room for the scroll bars, your
application should make listWidth 15 pixels less than the desired width of the list if it
contains a vertical scroll bar, and it should make listHeight 15 pixels less than the
desired height of the list if it contains a horizontal scroll bar.

The contents of the list and the scroll bars are adjusted and redrawn as necessary.
However, LSize does not draw a border around the list’s rectangle. Also, it does not
erase any portions of the old list that may still be visible. However, this approach should
not be a problem if your application only calls LSize after the user resizes a window
containing a list in its lower-right corner.

SPECIAL CONSIDERATIONS

You should not call the LSize procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LSize procedure are

SEE ALSO

For information on the Window Manager’s SizeWindow procedure, see the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

LCellSize

You can change the size of cells by using the LCellSize procedure. All cells in a list
must be the same size, however.

PROCEDURE LCellSize (cSize: Point; lHandle: ListHandle);

cSiz e The new size of each cell in the list.

lHandl e The list whose cells’ size is being changed.

Trap macro Selector

_Pack0 $0060

CHAPTER 4

List Manager

List Manager Reference 4-93

DESCRIPTION

The LCellSize procedure sets the cellSize field of the list record referenced by the
lHandle parameter to the value of the cSize parameter. That is, the list’s new cells will
be of width cSize.h and of height cSize.v .

The LCellSize procedure updates the list’s visible rectangle to contain cells of the
specified size. However, LCellSize does not redraw any cells.

SPECIAL CONSIDERATIONS

You should not call the LCellSize procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LCellSize procedure are

Getting Information About Cells

The List Manager provides three routines that allow your application to obtain
information related to cells. Your application can use the LNextCell function to find the
next cell in a list; this is useful, for example, when performing some operation on all cells
in a list. To find the local QuickDraw coordinates of a cell’s rectangle, your application
can use the LRect procedure. Finally, to determine the cell coordinates of the last cell
clicked, your application can use the LLastClick function.

LNextCell

You can use the LNextCell function to find the next cell in a given row, in a given
column, or in an entire list.

FUNCTION LNextCell (hNex t: Boolean; v Next: Boolean;

 V AR theCell: Cell ; l Handle: ListHandle)

 : Boolean;

hNext A Boolean value that indicates whether LNextCell should check
columns other than the current column.

vNext A Boolean value that indicates whether LNextCell should check rows
other than the current row.

theCel l The coordinates of the current cell.

lHandl e The list in which to find the next cell.

Trap macro Selector

_Pack0 $0014

CHAPTER 4

List Manager

4-94 List Manager Reference

DESCRIPTION

The behavior of the LNextCell function hinges on the values of the hNext and vNext
parameters.

If hNext is TRUE and vNext is FALSE, then LNextCell tries to find a cell whose
coordinates are greater than those of the cell specified in theCell parameter but that is
in the same row as theCell . If successful, LNextCell sets the value of the theCell
parameter to the first such cell and returns TRUE. If the cell initially specified by
theCell is the last cell in its row, however, LNextCell returns FALSE.

If hNext is FALSE and vNext is TRUE, then LNextCell tries to find a cell whose
coordinates are greater than those of the cell specified in theCell parameter but that is
in the same column as theCell . If successful, LNextCell sets the value of the
theCell parameter to the first such cell and returns TRUE. If, however, the cell initially
specified by theCell is the last cell in its column, LNextCell returns FALSE.

If both hNext and vNext are TRUE, then LNextCell tries to find a cell whose
coordinates are greater than those of the cell specified in the parameter theCell . If
successful, LNextCell sets the value of the theCell parameter to the first such cell
and returns TRUE. If, however, the cell initially specified by theCell is the last cell in
the list, LNextCell returns FALSE.

Finally, if both hNext and vNext are FALSE, LNextCell simply returns FALSE.

SPECIAL CONSIDERATIONS

You should not call the LNextCell function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LNextCell function are

SEE ALSO

Listing 4-7 on page 4-34 and Listing 4-8 on page 4-35 show how to find the first and last
selected cell in a list.

Trap macro Selector

_Pack0 $0048

CHAPTER 4

List Manager

List Manager Reference 4-95

LRect

You can use the LRect procedure to find a rectangle that encloses a cell. Because the List
Manager automatically draws cells, few applications need to call this procedure directly.

PROCEDURE LRect (VAR cellRect: Rect; theCell: Cell;

 l Handle: ListHandle);

cellRect The LRect procedure returns in this parameter the rectangle enclosing
the cell, specified in local coordinates of the list’s graphics port. This
rectangle is not necessarily within the list’s rectangle.

theCell The cell for which an enclosing rectangle is sought.

lHandle The list containing the cell specified by the parameter theCell .

DESCRIPTION

The LRect procedure calculates the coordinates of the rectangle enclosing the cell
specified by the theCell parameter. The procedure does not check whether the cell is
actually contained within the list’s visible rectangle.

If the theCell parameter specifies cell coordinates not contained within the list, the
LRect procedure sets the cellRect parameter to (0,0,0,0).

SPECIAL CONSIDERATIONS

You should not call the LRect procedure from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LRect procedure are

Trap macro Selector

_Pack0 $004C

CHAPTER 4

List Manager

4-96 List Manager Reference

LLastClick

You can use the LLastClick function to determine the coordinates of the last cell
clicked in a particular list.

FUNCTION LLastClick (lHandle: ListHandle): Cell;

lHandle The list to be checked for the last cell clicked.

DESCRIPTION

The LLastClick function returns the cell coordinates of the last cell clicked. If the user
has not clicked a cell since the creation of the list, then both the h and v fields of the cell
returned contain negative numbers.

Note that the last cell clicked is not necessarily the last cell selected. The user could
Shift-click in one cell and then drag the cursor to select other cells.

SPECIAL CONSIDERATIONS

You should not call the LLastClick function from within an interrupt, such as in a
completion routine or VBL task.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LLastClick function are

Application-Defined Routines
The List Manager provides several ways that your application can customize its
routines. First, your application can define a list definition procedure to create a list that
displays cells graphically. Second, your application can create a custom match function
to search for a particular item in a list. Finally, you can override the default click-loop
procedure by providing a custom click-loop procedure.

List Definition Procedures

Your application can write a list definition procedure to customize list display. For
example, you can write a list definition procedure to support the display of color icons.
A custom list definition procedure must be compiled as a code resource of type 'LDEF'
and added to the resource file of the application that needs to use it.

Trap macro Selector

_Pack0 $0040

CHAPTER 4

List Manager

List Manager Reference 4-97

MyLDEF

A list definition procedure has the following syntax:

PROCEDURE MyLDEF (message: Integer; selected: Boolean;

VAR cellRect: Rect; theCell: Cell;

dataOffset: Integer; dataLen: Integer;

theList: ListHandle);

message A value that identifies the operation to be performed. These constants
specify the four types of messages:

CONST

lInitMsg = 0; {do any special initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {do any special disposal action}

selecte d A Boolean value that indicates whether the cell specified by the theCell
parameter should be highlighted. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

cellRec t The rectangle (in local coordinates of the list’s graphics port) that encloses
the cell specified by the theCell parameter. Although this parameter is
defined as a VAR parameter, your list definition procedure must not
change the coordinates of the rectangle. This parameter is defined only for
the lDrawMessage and lHiliteMsg messages.

theCel l The coordinates of the cell to be drawn or highlighted. This parameter is
defined only for the lDrawMessage and lHiliteMsg messages.

dataOffse t
The location of the cell data associated with the cell specified by the
theCell parameter. The location is specified as an offset from the
beginning of the relocatable block referenced by the cells field of the list
record. This parameter is defined only for the lDrawMessage and
lHiliteMsg messages.

dataLe n The length in bytes of the cell data associated with the cell specified by
the theCell parameter. This parameter is defined only for the
lDrawMessage and lHiliteMsg messages.

theList The list for which a message is being sent. Your application can access the
list’s list record, or it can call List Manager routines to manipulate the list.

DESCRIPTION

The List Manager calls your list definition procedure whenever an application using the
procedure creates a new list with the LNew function, needs a cell to be drawn, needs a
cell’s highlighting state to be reversed, or has called the LDispose procedure to dispose
of a list.

CHAPTER 4

List Manager

4-98 List Manager Reference

In response to the lInitMsg message, your list definition procedure should perform
any special initialization needed for a list. For example, the procedure might set fields of
the list record, such as the cellSize and indent fields, to appropriate values. Your list
definition procedure does not necessarily need to do anything in response to the
initialization message. If it does nothing, then memory is still allocated for the list, and
fields of the list record are set to the same values as they would be set to if the default list
definition procedure were being used. (For more information on those values, see
“About the List Manager” beginning on page 4-22.)

Your list definition procedure should draw the cell specified by the theCell parameter
after receiving an lDrawMsg message. The procedure must ensure that it does not draw
anywhere but within the rectangle specified by the cellRect parameter. If the
selected parameter is TRUE, then your list definition procedure should draw the cell
in its highlighted state; otherwise, it should draw the cell without highlighting. When
drawing, your list definition procedure should take care not to permanently change any
characteristics of the drawing environment.

Your list definition procedure should respond to the lHiliteMsg message by reversing
the selection status of the cell contained within the rectangle specified by the cellRect
parameter. If a cell is highlighted, your list definition procedure should remove the
highlighting; if a cell is not highlighted, your list definition procedure should highlight it.

The List Manager sends your list definition procedure an lCloseMsg message before it
disposes of a list and its data. Your list definition procedure need only respond to this
message if additional memory has been allocated for the list. For example, your list
definition procedure might allocate a relocatable block in response to the lInitMsg
message. In this case, your list definition procedure would need to dispose of this
relocatable block in response to the lCloseMsg message. Or, if your list definition
procedure defines cells simply to contain pointers or handles to data stored elsewhere in
memory, it would need to dispose of that memory in response to the lCloseMsg
message.

SPECIAL CONSIDERATIONS

You must compile a list definition procedure as a resource of type 'LDEF' before it can
be used by an application.

Because a list definition procedure is stored in a code resource, it cannot have its own
global variables that it accesses through the A5 register. (Some development systems,
however, may allow code resources to access global variables through some other
register, such as A4. See your development system’s documentation for more
information.) If your list definition procedure needs access to global data, it might store a
handle to such data in the refCon or userHandle fields of the list record; however,
applications would not then be able to use these fields for their own purposes.

CHAPTER 4

List Manager

List Manager Reference 4-99

ASSEMBLY-LANGUAGE INFORMATION

The entry point of a list definition procedure must be at the beginning.

SEE ALSO

For an example of a list definition procedure, see “Writing Your Own List Definition
Procedure” beginning on page 4-58.

Match Functions

You can pass a pointer to a custom match function as the third parameter to the
LSearch function. Alternatively, your application can specify NIL to use the Text
Utilities function I UMagIDString , the default match function.

MyMatchFunction

A match function must have the following syntax:

FUNCTION MyMatchFunction (cellDataPtr, searchDataPtr: Ptr ;

 c ellDataLen, searchDataLen: Integer)

 : Integer;

cellDataPtr
A pointer to the data contained in a cell.

searchDataPtr
A pointer to the data being searched for.

cellDataLe n
The number of bytes of data contained in the cell specified by the
cellDataPtr parameter.

searchDataLen
The number of bytes of data contained in the cell specified by the
searchDataPtr parameter.

DESCRIPTION

A custom match function must compare the data defined by the cellDataPtr and
cellDataLen parameters with the data defined by the searchDataPtr and
searchDataLen parameters. If the cell data matches the search data, your match
function should return 0. Otherwise, your match function should return 1.

CHAPTER 4

List Manager

4-100 List Manager Reference

Your match function can use any technique you choose to compare the data. For
example, your match function might consider the search data to be equivalent to the cell
data if both are the same length. Or, your match function might only report a match if
the search data can be found somewhere within the cell data.

The default match function, IUMagIDString , returns 0 if the search data exactly
matches the cell data, but IUMagIDString considers the strings 'Rose' and 'rosé' to
be equivalent. If your application simply needs a match function that works like
IUMagIDString but considers 'Rose' to be different from 'rosé' , you do not need to
write a custom match function. Instead, your application can simply pass
@IUMagString as the third parameter to the LSearch function.

SPECIAL CONSIDERATIONS

A custom match function does not execute at interrupt time. Instead, it is called directly
by the LSearch function. Thus, a match function can allocate memory, and it does not
need to adjust the value contained in the A5 register.

SEE ALSO

For information on the IUMagIDString function and the IUMagString function, see
Inside Macintosh: Operating System Utilities.

For examples of match functions, see “Searching a List for a Particular Item” beginning
on page 4-43.

Click-Loop Procedures

The List Manager supports the use of custom click-loop procedures to allow you to
override the standard click-loop procedure that is used to select cells and automatically
scroll a list. To define a custom click-loop procedure, specify a pointer to your procedure
in the lClikLoop field of the list record. Because the selFlags field of the list record
(described in “Customizing Cell Highlighting” beginning on page 4-38) already provides
a means of customizing the algorithm the List Manager uses to highlight list cells, in
most cases you should not need to define a custom click-loop procedure.

CHAPTER 4

List Manager

List Manager Reference 4-101

MyClickLoop

A click-loop procedure must have the following syntax:

PROCEDURE MyClickLoo p;

DESCRIPTION

If your application defines a custom click-loop procedure, then the LClick function
repeatedly calls the procedure until the user releases the mouse button. A click-loop
procedure may perform any processing desired when it is executed.

Because no parameters are passed to the click-loop procedure, your click-loop procedure
probably needs to access a global variable that contains a handle to the list record, which
contains information about the location of the cursor and other information potentially
of interest to a click-loop procedure. You might also create a global variable that stores
the state of the modifier keys immediately before a call to the LClick function. You
would need to set these global variables immediately before calling LClick .

A click-loop procedure should ordinarily set the Z flag to 1 just before returning. If a
click-loop procedure sets the Z flag to 0, then the LClick function immediately returns.

SPECIAL CONSIDERATIONS

A click-loop procedure does not execute at interrupt time. Instead, it is called directly by
the LClick function. Thus, a click-loop procedure can allocate memory, and it does not
need to adjust the value contained in the A5 register.

ASSEMBLY-LANGUAGE INFORMATION

Your click-loop procedure should ordinarily set register D0 to 1. To stop the LClick
function from calling your procedure for the current mouse-down event, set register D0
to 0.

For your convenience, register D5 contains the current mouse location.

CHAPTER 4

List Manager

4-102 Summary of the List Manager

Summary of the List Manager

Pascal Summary

Constants

CONST

{masks for listFlags field of list record}

lDoVAutoScroll = 2; {allow vertical aut os crolling}

lDoHAutoScroll = 1; {allow horizontal aut os crolling}

{masks for selFlags field of list record}

lOnlyOne = -128; {allow only one item to be selected at once}

lExtendDrag = 64; {enable multiple item selection without Shift}

lNoDisjoint = 32; {prevent discontiguous selections}

lNoExtend = 16; {reset list before responding to Shift-click}

lNoRect = 8; {Shift-drag selects items passed by cursor}

lUseSense = 4; {allow use of Shift key to deselect items}

lNoNi lHi lite = 2; {disable highlighting of empty cells}

{messages to list definition procedure}

lInitMsg = 0; {do any special list initialization}

lDrawMsg = 1; {draw the cell}

lHiliteMsg = 2; {invert cell's highlight state}

lCloseMsg = 3; {take any special disposal action}

Data Types

TYPE

Cell = Point; {cell.v contain s row n umber}

{cell.h contain s co lu mn n umber }

DataArray = PACKED ARRAY[0..32000] OF Char;

DataPtr = ^DataArray;

DataHandle = ^DataPtr ;

CHAPTER 4

List Manager

Summary of the List Manager 4-103

ListRec =

RECORD

rView: Rect; {list's display rectangle}

port: GrafPtr; {list's graphics port}

indent: Point; {indent distance for drawing}

cellSize: Point; {size in pixels of a cell}

visible: Rect; {boundary of visible cells}

vScroll: ControlHandle; {vertical scroll bar}

hScroll: ControlHandle; {horizontal scroll bar}

selFlags: SignedByte; {selection flags}

lActive: Boolean; {TRUE if list is active}

lReserved: SignedByte; {reserved}

listFlags: SignedByte; {automatic scrolling flags}

clikTime: LongInt; {TickCount at time of last click}

clikLoc: Point; {position of last click}

mouseLoc: Point; {current mouse location}

lClikLoop: Ptr; {routine called by LClick}

lastClick: Cell; {last cell clicked}

refCon: LongInt; {for application use}

listDefProc: {list definition procedure}

Handle ;

userHandle: Handle; {for application use}

dataBounds: Rect; {boundary of cells allocated}

cells: DataHandle; {cell data}

maxIndex: Integer; {used internally}

cellArray: {offsets to data}

ARRAY[1..1] OF Integer;

END;

ListPtr = ^ListRec ; {pointer to a list record}

ListHandl e = ^ListPtr; {handle to a list record}

List Manager Routines

Creating and Disposing of Lists

FUNCTION LNew (rVie w: Rect; d ataBounds: Rect; cSize: Point;
theProc: Integer; theWindow: WindowPtr;
drawIt, hasGrow, scrollHoriz,
scrollVert: Boolean): ListHandle;

PROCEDURE LDispose (lHandle: ListHandle);

CHAPTER 4

List Manager

4-104 Summary of the List Manager

Adding and Deleting Columns and Rows To and From a List

FUNCTION LAddColumn (coun t: Integer; c olNum: Integer;
l Handle: ListHandle): Integer;

FUNCTION LAddRow (coun t: Integer; r owNum: Integer;
l Handle: ListHandle): Integer;

PROCEDURE LDelColumn (coun t: Integer; c olNum: Integer;
l Handle: ListHandle);

PROCEDURE LDelRow (coun t: Integer; r owNum: Integer;
l Handle: ListHandle);

Determining or Changing the Selection

FUNCTION LGetSelect (next: Boolean; VAR theCell: Cell;
lHandle: ListHandle): Boolean;

PROCEDURE LSetSelect (setIt: Boolean; theCell: Cell;
lHandle: ListHandle);

Accessing and Manipulating Cell Data

PROCEDURE LSetCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell;
lHandle: ListHandle);

PROCEDURE LAddToCell (dataPtr: Ptr; dataLen: Integer; theCell: Cell;
lHandle: ListHandle);

PROCEDURE LClrCell (theCell: Cell; lHandle: ListHandle) ;

{the LGetCellDataLocation procedure is also available as the LFind procedure}

PROCEDURE LGetCellDataLocation
(VAR offset, len: Integer; theCell: Cell;

lHandle: ListHandle);

PROCEDURE LGetCell (dataPtr: Ptr; VAR dataLen: Integer;
theCell: Cell; lHandle: ListHandle);

Responding to Events Affecting Lists

FUNCTION LClick (pt: Point; modifiers: Integer;
lHandle: ListHandle): Boolean;

PROCEDURE LActivate (act: Boolean; lHandle: ListHandle);

PROCEDURE LUpdate (theRgn: RgnHandle; lHandle: ListHandle);

CHAPTER 4

List Manager

Summary of the List Manager 4-105

Modifying a List’s Appearance

{the LSetDrawingMode procedure is also available as the LDoDraw procedure}

PROCEDURE LSetDrawingMode (drawIt: Boolean; lHandle: ListHandle);

PROCEDURE LDraw (theCell: Cell; lHandle: ListHandle);

PROCEDURE LAutoScroll (lHandle: ListHandle);

PROCEDURE LScroll (dCol s: Integer; d Rows: Integer;
l Handle: ListHandle);

Searching a List for a Particular Item

FUNCTION LSearch (dataPtr: Ptr; dataLen: Integer;
searchProc: Ptr; VAR theCell: Cell;
lHandle: ListHandle): Boolean;

Changing the Size of Cells and Lists

PROCEDURE LSize (listWidt h: Integer; l istHeight: Integer;
lHandle: ListHandle);

PROCEDURE LCellSize (cSize: Point; lHandle: ListHandle);

Getting Information About Cells

FUNCTION LNextCell (hNex t: Boolean; v Next: Boolean;
VAR theCell: Cell;
lHandle: ListHandle): Boolean;

PROCEDURE LRect (VAR cellRect: Rect; theCell: Cell;
lHandle: ListHandle);

FUNCTION LLastClick (lHandle: ListHandle): Cell;

Application-Defined Routines

PROCEDURE MyLDEF (message: Integer; selected: Boolean;
VAR cellRect: Rect; theCell: Cell;
dataOffset: Integer; dataLen: Integer;
theList: ListHandle);

FUNCTION MyMatchFunction (cellDataPtr, searchDataPtr: Ptr;
cellDataLen, searchDataLen: Integer): Integer;

PROCEDURE MyClickLoop ;

CHAPTER 4

List Manager

4-106 Summary of the List Manager

C Summary

Constants

/*masks for listFlags field of list record*/

enum {

lDoVAutoScroll = 2, /*allow vertical aut os crolling*/

lDoHAutoScroll = 1 , /*allow horizontal aut os crolling* /

/*masks for selFlags field of list record* /

l OnlyOne = -128 , /*allow only one item to be selected at once*/

lExtendDrag = 64, /*enable multiple item selection without Shift*/

lNoDisjoint = 32 , /*prevent discontiguous selections*/

lNoExtend = 16, /*reset list before responding to Shift-click*/

lNoRect = 8, /*Shift-drag selects items passed by cursor*/

lUseSense = 4, /*allow use of Shift key to deselect items*/

lNoNi lHi lite = 2 , /*disable highlighting of empty cells* /

/*messages to list definition procedure* /

l InitMsg = 0 , /*do any special list initialization*/

lDrawMsg = 1, /*draw the cell*/

lHiliteMsg = 2, /*invert cell's highlight state*/

lCloseMsg = 3 /*take any special disposal action*/

};

Data Types

t ypdef Point Cell; /*cell.v contain s row n umber*/

/*cell.h contain s column n umber* /

t ypedef char DataArray[32001], *DataPtr, **DataHandle ;

CHAPTER 4

List Manager

Summary of the List Manager 4-107

struct ListRec {

Rect rView; /*list's display rectangle*/

GrafPtr ptr; /*list's graphics port*/

Point indent; /*indent distance for drawing*/

Point cellSize; /*size in pixels of a cell*/

Rect visible; /*boundary of visible cells*/

ControlHandle vScroll ; /*vertical scroll bar*/

ControlHandle hScroll; /*horizontal scroll bar*/

char selFlags; /*selection flags*/

Boolean lActive; /*TRUE if list is active*/

char lReserved; /*reserved*/

char listFlags; /*automatic scrolling flags*/

long clikTime; /*TickCount at time of last click*/

Point clikLoc; /*position of last click*/

Point mouseLoc; /*current mouse location*/

ProcPtr lClikLoop; /*routine called by LClick*/

Cell lastClick; /*last cell clicked*/

long refCon; /*for application use*/

Handle listDefProc; /*list definition procedure*/

Handle userHandle; /*for application use*/

Rect dataBounds; /*boundary of cells allocated*/

DataHandle cells; /*cell data*/

short maxIndex; /*used internally*/

short cellArray[1]; /*offsets to data*/

};

typedef struct ListRect ListRect;

typedef ListRect *ListPtr, **ListHandle;

List Manager Routines

Creating and Disposing of Lists

pascal ListHandle LNew (const Rect *rView, Rect *dataBounds,
Point *cSize, short theProc,
WindowPtr theWindow, Boolean drawIt,
Boolean hasGrow, Boolean scrollHoriz,
Boolean scrollVert);

pascal void LDispose (ListHandle lHandle);

CHAPTER 4

List Manager

4-108 Summary of the List Manager

Adding and Deleting Columns and Rows To and From a List

pascal short LAddColumn (short count, short colNum, ListHandle lHandle);

pascal short LAddRow (short count, short rowNum, ListHandle lHandle);

pascal void LDelColumn (short count, short colNum, ListHandle lHandle);

pascal void LDelRow (short count, short rowNum, ListHandle lHandle);

Determining or Changing the Selection

pascal Boolean LGetSelect (Boolean next, Cell *theCell,
ListHandle lHandle);

pascal void LSetSelect (Boolean setIt, Cell theCell,
ListHandle lHandle);

Accessing and Manipulating Cell Data

pascal void LSetCell (const void *dataPtr, short dataLen,
Cell theCell, ListHandl e lHandle) ;

pascal void LAddToCell (const void *dataPtr, short dataLen,
Cell theCell, ListHandle lHandle);

pascal void LClrCell (Cell theCell, ListHandle lHandle);

/*the LGetCellDataLocation procedure is also available as */

/* the LFind procedure*/

pascal void LGetCellDataLocatio n
(short *offset, short *len, Cell theCell,

ListHandle lHandle);

pascal void LGetCell (void *dataPtr, short *dataLen, Cell theCell,
ListHandle lHandle);

Responding to Events Affecting Lists

pascal Boolean LClick (Point pt, short modifiers, ListHandle lHandle);

pascal void LActivate (Boolean act, ListHandle lHandle);

pascal void LUpdate (RgnHandle theRgn, ListHandle lHandle);

CHAPTER 4

List Manager

Summary of the List Manager 4-109

Modifying a List’s Appearance

/*the LSetDrawingMode procedure is also available as the LDoDraw procedure*/

pascal void LSetDrawingMode
(Boolean drawIt, ListHandle lHandle);

pascal void LDraw (Cell theCell, ListHandle lHandle);

pascal void LAutoScroll (ListHandle lHandle);

pascal void LScroll (short dCols, short dRows, ListHandle lHandle);

Searching for a List Containing a Particular Item

pascal Boolean LSearch (const void *dataPtr, short dataLen,
SearchProcPtr searchProc, Cell *theCell,
ListHandle lHandle);

Changing the Size of Cells and Lists

pascal void LSize (short listWidth, short listHeight,
ListHandle lHandle);

pascal void LCellSize (Point cSize, ListHandle lHandle);

Getting Information About Cells

pascal Boolean LNextCell (Boolean hNext, Boolean vNext, Cell *theCell,
ListHandle lHandle);

pascal void LRect (Rect *cellRect, Cell theCell,
ListHandle lHandle);

pascal Cell LLastClick (ListHandle lHandle);

Application-Defined Routines

pascal void MyLDEF (short message, Boolean selected,
Rect *cellRect, Cel l t heCell,
short dataOffset, short dataLen,
ListHandle theList);

pascal short MyMatchFunction
(Ptr cellDataPtr, Ptr searchDataPtr,

 short cellDataLen, short searchDataLen);

pasca l void M yClickLoop (void);

CHAPTER 4

List Manager

4-110 Summary of the List Manager

Assembly-Language Summary

Data Structures

ListRect Data Structure

0 rView 8 bytes list’s display rectangle
8 port long list’s graphics port

12 indent 4 bytes indent distance for drawing
16 cellSize 4 bytes size in pixels of a cell
20 visible 8 bytes boundary of visible cells
28 vScroll long vertical scroll bar
32 hScroll long horizontal scroll bar
36 selFlags byte selection flags
37 lActive byte nonzero if list is active
38 lReserved byte reserved
39 listFlags byte automatic scrolling flags
40 clikTime long ticks at time of last click
44 clikLoc 4 bytes position of last click
48 mouseLoc 4 bytes current mouse location
52 lClikLoop long pointer to routine called by LClick
56 lastClick 4 bytes last cell clicked
60 refCon long for application use
64 listDefProc long handle to code for list definition procedure
68 userHandle long for application use
72 dataBounds 8 bytes boundary of cells allocated
80 cells long handle to cell data
84 maxIndex word used internally
86 cellArray variable offsets to data

CHAPTER 4

List Manager

Summary of the List Manager 4-111

Trap Macros

Trap Macros Requiring Routine Selectors

_Pack0

Selector Routine

$0000 LActivate

$0004 LAddColumn

$0008 LAddRow

$000C LAddToCell

$0010 LAutoScroll

$0014 LCellSize

$0018 LClick

$001C LClrCell

$0020 LDelColumn

$0024 LDelRow

$0028 LDispose

$002C LSetDrawingMode

$0030 LDraw

$0034 LGetCellDataLocation

$0038 LGetCell

$003C LGetSelect

$0040 LLastClick

$0044 LNew

$0048 LNextCell

$004C LRect

$0050 LScroll

$0054 LSearch

$0058 LSetCell

$005C LSetSelect

$0060 LSize

$0064 LUpdate

