CHAPTER 3

Help Manager

Contents

About the Help Manager 3-6
How the Help Manager Displays Balloons 3-8
Default Help Balloons for Menus, Windows, and Icons
About BalloonWriter 3-17
Using the Help Manager 3-18
Providing Text or Pictures for Help Balloons 3-18
Defining Help Messages 3-19
Using Clear, Concise Phrases 3-20
Using Active Constructions 3-22
Using Parallel Structure 3-22
Offering Hints 3-22
Using Consistent Terminology 3-23
Defining the Help Balloon Position 3-23
Specifying the Format for Help Messages 3-23
Specifying Options in Help Resources 3-25
Providing Help Balloons for Menus 3-27

Specifying Header Information for the 'hmnu' Resource

3-13

3-32

Specifying Help for Menu Items Missing From the Resource 3-33
Specifying Help for Menu Titles and for Items Dimmed by System

Software 3-36

Specifying Help for Menu Items 3-39
Specifying Help for a Changing Menu Item 3-43
Specifying Resources by Item Name 3-45

Providing Help Balloons for Menus You Disable for Dialog Boxes 3-47
Providing Help Balloons for Items in Dialog Boxes and Alert Boxes 3-51

Specifying Header Information for the 'hdlg’ Resource

Specifying Missing-Item Information 3-54
Specifying Help for Items in an Alert or Dialog Box

Adding a Help Item to an Item List Resource 3-62

Using a Help Item Versus Using an 'hwin' Resource

Contents

3-54

3-56

3-63

3-1

CHAPTER 3

Providing Help Balloons for Window Content 3-63
Providing Help Balloons for Static Windows 3-65
Specifying Header Information for the 'hrct' Resource 3-67
Specifying Help for Rectangles in Windows 3-67
Associating Help Resources With Static Windows 3-68
Specifying Header Information for the 'hwin' Resource 3-69
Specifying 'hdlg’ or 'hrct' Resources in the *hwin' Resource 3-69
Providing Help Balloons for Dynamic Windows 3-74
Overriding Help Balloons for Non-Document Icons 3-84
Specifying Header Information for the 'hfdr' Resource 3-85
Specifying Help for an Icon 3-85
Overriding Other Default Help Balloons 3-87
Specifying Header Information for the 'hovr' Resource 3-88
Overriding Default Help 3-88
Adding Menu Items to the Help Menu 3-90
Writing Your Own Balloon Definition Function 3-93
Help Manager Reference 3-95
Data Structures 3-95
The Help Message Record 3-95
The Help Manager String List Record 3-97
Help Manager Routines 3-97
Determining Balloon Help Status 3-98
Displaying and Removing Help Balloons 3-99
Enabling and Disabling Balloon Help Assistance 3-107
Adding Items to the Help Menu 3-108
Getting and Setting the Font Name and Size 3-110
Setting and Getting Information for Help Resources 3-114
Determining the Size of a Help Balloon 3-19
Getting the Message of a Help Balloon 3-122
Application-Defined Routines 3-128
Resources 3-132
The Menu Help Resource 3-132
The Dialog-ltem Help Resource 3-140
The Rectangle Help Resource 3-148
The Window Help Resource 3-154
The Finder Icon Help Resource 3-156
The Default Help Override Resource 3-160
Summary of the Help Manager 3-166
Pascal Summary 3-166
Constants 3-166
Data Types 3-168
Help Manager Routines 3-169
Application-Defined Routines 3-170
C Summary 3-170
Constants 3-170
Data Types 3-173
Help Manager Routines 3-173

Contents

CHAPTER 3

Application-Defined Routines
Assembly-Language Summary
Data Structures 3-176
Trap Macros 3-176
Result Codes 3-177

Contents

3-175
3-176

3-3

CHAPTER 3

Help Manager

This chapter describes how you can use the Help Manager to provide your users with
Balloon Help online assistance—information that describes the actions, behaviors, or
properties of your application’s features. When the user turns on Balloon Help
assistance, the Help Manager displays small help balloons as the user moves the cursor
over areas such as controls, menus, and rectangular areas in your windows. Help
balloons are rounded-rectangle windows that contain explanatory information for the
user. (With tips pointing at the objects they annotate, help balloons look like the balloons
used for dialog in comic strips.) You provide help messages in the form of descriptive
text or pictures that appear inside help balloons. Your help messages should be short and
pertinent to the object over which the cursor is located.

For example, when a user moves the cursor to a menu command, a help balloon should
point to that command and explain its purpose. The help balloon remains displayed
until the user moves the cursor away.

The user turns on Balloon Help online assistance for all applications by choosing the
Show Balloons command from the Help menu. All normally available features of your
application are still active when Balloon Help is enabled. The help balloons only provide
information; the actions that the user performs by pressing the mouse button still take
effect as they normally would.

The Help Manager is available in System 7. Use the Gestalt function to determine
whether the Help Manager is present.

Read this chapter if you want to provide help balloons for your application, desk
accessory, control panel, Chooser extension, or other software that interacts with the
user. If you offer an additional help facility for your users, you should give users access
to your information through the Help menu. This chapter explains how you can add
your own menu items to the Help menu to provide one convenient and consistent place
for users to look for help information.

You can provide help balloons for your menus, dialog boxes, alert boxes, and
non-document icons by simply adding resources to your resource file. To provide help
for the content area of windows, you can use either resources or Help Manager routines.
Both methods are described in this chapter.

You typically provide help balloons for your application by creating resources—such as
the 'hmnu' resource, which the Help Manager uses when displaying help balloons for
your menu items. In the 'nmnu' resource, you specify help balloons for menu titles and
menu items in their enabled and disabled (that is, dimmed) states. Menus are described
in the chapter “Menu Manager” in Inside Macintosh; Macintosh Toolbox Essentials.

To provide help balloons for alert boxes and dialog boxes, you typically create an

'hdlg' resource that specifies help balloons for the various items identified in the item
list ('DITL") resource for the alert box or dialog box. If the items include any controls,
such as simple buttons, checkboxes, or complex multipart controls, you specify help
according to the control’s state—active or inactive (that is, dimmed), and checked or not
checked (if applicable). For every item that is not a control, you can provide different
help balloons depending on whether the item is enabled or disabled—that is, depending
on whether you asked the Dialog Manager to return information regarding events in that
item. Dialog boxes and alert boxes are described in the chapter “Dialog Manager” in

3-5

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Inside Macintosh: Macintosh Toolbox Essentials; controls are described in the chapter
“Control Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Depending on whether your windows are static or whether they contain changing or
scrolling information, you use Help Manager resources or Help Manager routines to
provide the content areas of your windows with help balloons. To provide help balloons
for the static windows of your application without modifying its code, you create a
resource of type 'hwin' and another resource of type 'hrct’ or of type'hdlg’ . The
'hwin' resource identifies windows by the titles or the windowKind values in their
window records. To provide help balloons for portions of windows that change or scroll,
you must identify, track, and update those portions within your windows, and then use
the Help Manager function HMShowBalloon to display help balloons for those portions.
Windows are described in the chapter “Window Manager” in Inside Macintosh: Macintosh
Toolbox Essentials.

This chapter provides a brief description of how the Help Manager displays help
balloons. It provides information on the default help balloons and then discusses how to

= USe text or a picture for the help message inside a balloon

» create resources for help balloons for menus, dialog boxes, and alert boxes
= create resources for help balloons for windows

= override the default help balloons provided by system software

= add your own menu items to the Help menu

= write your own balloon definition function

About the Help Manager

3-6

You can use the Help Manager to provide help for these interface features of your
application:

= menu titles and menu items

= dialog boxes and alert boxes

= windows, including any object in the frame or content area
= icons for any desktop objects other than documents

= other application-defined areas

Providing help balloons for menus, dialog boxes, or alert boxes is quite simple, because
you need only to create resources; you don’t have to alter any of your existing code. The
Help Manager automatically sizes, positions, and draws the help balloon and its help
message for you. It is equally simple to provide help balloons for a window whose
contents don’t change location within its content area.

It takes a little more work to provide help balloons for windows in your application that
contain objects that are dynamic or that change their position within the content areas of
their windows. You provide Balloon Help assistance for these objects by tracking the

About the Help Manager

CHAPTER 3

Help Manager

cursor yourself and using Help Manager routines to display help balloons. You can let
the Help Manager remove help balloons, or your application can determine when to
remove help balloons.

The user turns on Balloon Help online assistance by choosing Show Balloons from the
Help menu, which is shown in Figure 3-1. Once the user chooses Show Balloons, help is
enabled for all applications. The Help menu appears to the right of all your menus and
to the left of the Application menu (and to the left of the Keyboard menu if a non-Roman
script system is installed). Users can turn on Balloon Help assistance even when your
application presents an alert box or a modal dialog box, because the Help menu is
always enabled.

Figure 3-1 The Help menu for the Finder

[% File Edit Diew Label Special ?]
About Balloon Help...

Show Balloons

Finder Shortcuts

When Balloon Help assistance is enabled, the Help Manager displays any help balloons
for the current application whenever the user moves the cursor over a rectangular area
that has a help balloon associated with it. For those balloons defined in Help Manager
resources, the Help Manager automatically tracks the cursor and generates the shape
and calculates the position for the help balloon. The Help Manager removes the help
balloon when the cursor is no longer located over the associated area.

The Help Manager provides a default help balloon for inactive windows and displays
default help balloons for the title bar and other parts of the active window. The Help
Manager also displays default help balloons for other standard features of an
application’s user interface. “Default Help Balloons for Menus, Windows, and Icons”
beginning on page 3-13 describes the default help balloons. (Though you probably won’t
want or need to change the messages in these default balloons, you have the ability to do
so, as described in “Overriding Other Default Help Balloons” on page 3-87.) The Help
Manager displays the default help balloons for your application whenever Balloon Help
assistance is enabled, even if your application does not explicitly use or create help
balloons.

Help balloons do not interfere with your application. Because the Help Manager can
display a balloon whether the mouse button is down or up, the user can still click and
double-click to use the normal features of your application.

When the user chooses Hide Balloons from the Help menu, the Help Manager removes
any visible help balloon and stops displaying help balloons until Balloon Help assistance
is enabled again.

About the Help Manager 3-7

Amfrevepy 4oy £

CHAPTER 3

Help Manager

How the Help Manager Displays Balloons

The Help Manager performs most of the work involved with rendering help balloons for
your application. This section gives an overview of the facilities that the Help Manager
uses to display help balloons.

The Help Manager uses the Window Manager to create a special type of window for the
help balloon and then draws the help message in the port rectangle of the window. The
Help Manager is responsible for

= calculating the size of the help balloon (based on the help message you provide)
= determining line breaks for text in a help balloon

= calculating a position for the help balloon so that it appears onscreen

= drawing the help balloon and your help message onscreen

A balloon definition function, which is an implementation of a window definition
function, defines the general appearance of the help balloon. A standard balloon
definition function is provided for you, and it is responsible for

= calculating the help balloon’s content region and structure region, which are based on
the rectangle calculated by the Help Manager

= drawing the frame of the help balloon

For help balloons, the content region is the area inside the balloon frame; it contains the
help message. The structure region is the boundary region of the entire balloon,
including the content area and the pointer that extends from one of the help balloon’s
corners.

The standard balloon definition function is the window definition function (a "WDEF'
resource) with resource ID 126. Figure 3-2 shows the general shape of a help balloon
drawn with this standard balloon definition function.

Figure 3-2 A help balloon drawn with the standard balloon definition function

3-8

Every help balloon is further defined by its hot rectangle, its tip, and a variation code.

About the Help Manager

CHAPTER 3

Help Manager

Figure 3-3 The tip and hot rectangle for a help balloon

WipeoOut typing correction options:

{43,231 \
igmore tards i caps”

To prevent the spelling ¢ %
checker firorm tagging

words--zuch as [
acronyms--that consist
entirely of capital
letters, click this option.

(67 202)

1 Ignore Slang Terms

Cancel Spell Check

F—)

i010)

The hot rectangle encloses the area for which you want to provide Balloon Help online
assistance. When the user moves the cursor over a hot rectangle, the Help Manager
displays the rectangle’s help balloon; the Help Manager removes the help balloon when
the user moves the cursor away from the hot rectangle. To prevent balloons from
flashing excessively, the Help Manager does not display a balloon unless the user leaves
the cursor at the same location for a short time (around one-tenth of a second). This
length of time is set by the system software and cannot be changed.

In Figure 3-3, the help balloon is displayed for a hot rectangle defined by coordinates
(48,23,67,202), which are local to the window. The Help Manager displays and removes
the help balloon as the cursor moves in and out of the area defined by the hot rectangle.

A small pointer extends from a corner of every help balloon, indicating the object or area
that is explained in the help balloon. The tip is the point at the end of this extension.
Figure 3-3 shows an example of a help balloon for a control. The balloon tip is at the
coordinates (10,10), which are local to the hot rectangle.

A variation code specifies the preferred position of the help balloon relative to the hot
rectangle. The balloon definition function draws the frame of the help balloon based on
that variation code.

About the Help Manager 3-9

Amfrevepy 4oy £

CHAPTER 3

Help Manager

As shown in Figure 3-4, the standard balloon definition function provides eight different
positions, which you can specify with a variation code from 0 to 7. The figure also shows
the boundary rectangle for each shape. Note that the tip of the help balloon always
aligns with an edge of the boundary rectangle. If you write your own balloon definition
function, you should support the tip locations defined by the standard variation codes.

Figure 3-4 Standard balloon positions and their variation codes

3-10

Psition 0 Fosition 4

T

L) T X

Position 1 Position &

/ : \

y) Y A

Position 2 Foaition 6

Position 2 Position 7

For most of the help balloons it displays, the Finder uses variation code 6. A balloon with
variation code 6 has its tip in the lower-left corner and projects up slightly and to the
right.

If a help balloon is on the screen and not in the menu bar, the Help Manager uses the
specified variation code to display the help balloon. If a help balloon is offscreen or in
the menu bar, the Help Manager attempts to display the help balloon by using different
variation codes and by moving the tip. Usually, the Help Manager moves the tip by
transposing it across the horizontal and vertical planes of the hot rectangle.

About the Help Manager

CHAPTER 3

Help Manager

Figure 3-5shows the Help Manager making three attempts to fit a help balloon onscreen
by moving the tip to three different sides of the hot rectangle and using an appropriate
variation code for each tip.

Figure 3-5 Alternate positions of a help balloon

ml Wl 4

When positioning a help balloon onscreen, the Help Manager first determines whether
the screen has enough horizontal space and then enough vertical space to display the
balloon using the specified variation code and tip. If the help balloon is either too wide
or too long to fit onscreen at this position, the Help Manager tries a combination of
different variation codes and transpositions around the hot rectangle. In Figure 3-5, the
Help Manager uses a new variation code, moves the tip to a different side of the hot
rectangle, and again tests whether the help balloon fits onscreen. If, after exhausting all
possible positions, the Help Manager still cannot fit the entire help balloon onscreen, the
Help Manager displays a help balloon at the position that best fits onscreen and clips the
help message to fit the balloon at this position.

When you use dialog-item help (‘hdlg') resources or the HMShowBalloon and
HMShowMenuBalloon functions, the Help Manager allows you to specify alternate
rectangles, which give you additional flexibility in positioning your help balloons
onscreen. The Help Manager uses the alternate rectangle instead of the hot rectangle for
transposing help balloons to make them fit onscreen. If you make your alternate
rectangle smaller than your hot rectangle, for example, you have greater assurance that
the Help Manager will be able to fit the help balloon onscreen; if you specify an alternate
rectangle that is larger than your hot rectangle, you have greater assurance that the help
balloon will not obscure some object explained by the balloon.

About the Help Manager 3-11

Amfrevepy 4oy £

3-12

CHAPTER 3

Help Manager

To provide help balloons under most circumstances, you create help resources, which
specify the help messages, the balloon definition functions, the variation codes, and,
when necessary, the tips and the hot rectangles or alternate rectangles for the Help
Manager to use in drawing help balloons. These help resources are

the menu help (‘hmnu') resource, which provides help balloons for menus and menu
items

the dialog-item help (‘hdlg') resource, which provides help balloons for items in
dialog boxes and alert boxes

the rectangle help (‘hrct') resource, which associates a help balloon with a hot
rectangle in a static window

the window help (‘hwin') resource, which associates an ‘hrct' or'hdlg' resource
with a hot rectangle in a window or with an item in a dialog box or alert box

the Finder icon help (‘hfdr') resource, which provides a custom help balloon
message for your application icon

the default help override (‘"hovr') resource, which overrides the help messages of
default help balloons provided in system software

To put help balloons in your application, you have a number of responsibilities:

You must create any necessary help resources for your application.

You must provide the help messages that appear in the balloons. Although you can
store these messages in the help resources themselves or in data structures, localizing
your help messages is much easier if you store them in other resources—such as
'PICT'" ,'STR# ,'STR' ,'TEXT' ,and'styl' resources—that are easier to edit.

In your help resources you must specify a balloon definition function for your help
balloons. Typically, you should use the standard balloon definition function that
draws shapes similar to that shown in Figure 3-2 on page 3-8. This helps maintain a
consistent look across all help balloons used by the Finder and other applications.
However, if you feel absolutely compelled to change the shape of help balloons in
your application, you can write your own balloon definition function as described in
“Writing Your Own Balloon Definition Function” on page 3-93. Be aware, however,
that a different help balloon shape may initially confuse your users.

In your help resources you must specify a variation code. The variation code positions
your balloons onscreen according to the general shape described by their balloon
definition function. If you use the standard balloon definition function, you’ll use
variation codes 0 to 7 to display the help balloons shown in Figure 3-4 on page 3-10.
The preferred variation code is 0. If you are unsure of which variation code to use,
specify 0; the Help Manager will use a different variant if another is more appropriate.
If you write your own balloon definition function, you must define your own
variation codes.

About the Help Manager

CHAPTER 3

Help Manager

For objects other than menu items, you have these additional responsibilities:

= In your help resources you must specify coordinates for the balloon’s tip. For menu
items, the Help Manager automatically places the tip just inside the right edge of the
menu item.

= You must specify rectangles in your help resources. (The hot rectangles for items in
menus, alert boxes, and dialog boxes are automatically defined for you by their
display rectangles.) For 'hdlg’ resources, you specify alternate rectangles for
moving the help balloon. For 'hrct' resources, you specify hot rectangles, which
define the areas onscreen for association with help balloons.

= You must track the cursor in dynamic windows, and, when the cursor moves over a
hot rectangle in your window, you must call Help Manager routines (such as
HMShowBalloon) to display your help balloons. You can let your application or the
Help Manager remove the help balloon when the user moves the cursor out of the hot
rectangle.

In summary, the Help Manager automatically displays help balloons in the following
manner. The user turns Balloon Help assistance on, then moves the cursor to an area
described by a hot rectangle. The Help Manager calculates the size of the help balloon
based on its help message. The Help Manager uses TextEdit to determine word breaks
and line breaks of text in the help balloon. The Help Manager then determines the size of
the help balloon and uses the Window Manager to create a new help balloon. The
Window Manager calls the balloon definition function to determine the help balloon’s
general shape and position. (If the variation code places the help balloon offscreen or in
the menu bar, the Help Manager tries a different variation code or moves the tip of the
help balloon to another side of the hot rectangle or the alternate rectangle.) The window
definition function draws the frame for the help balloon, and the Help Manager draws
the help message of the help balloon.

For most interface features that you want to provide help for, you create the help
message (preferably in a separate, easily edited resource) and, in the help resources
themselves, you specify the standard balloon definition function, one of the eight
variation codes, the tip’s coordinates, and (often) a hot rectangle.

The Help Manager does not automatically display help balloons for dynamic

windows or for menus using custom menu definition procedures. If you want to provide
help balloons for either of these types of objects, or if you want more control over help
balloons, you must identify hot rectangles, create your own data structures to store their
locations, track the cursor yourself, and call HMShowBalloon when the cursor moves to
your hot rectangles. If you wish, you can also write your own balloon definition function
and tip function.

Default Help Balloons for Menus, Windows, and Icons

The Help Manager displays many default help balloons for an application when help is
enabled and the user moves the cursor to certain standard areas of the user interface.
These areas include the standard window frame and the menu titles and menu items in

About the Help Manager 3-13

Amfrevepy 4oy £

3-14

CHAPTER 3

Help Manager

the Apple menu, Help menu, Keyboard menu, and Application menu. You don’t need to
create any resources or use any Help Manager routines to take advantage of the default
help balloons.

The following list summarizes the items that have default help balloons.

Application icon in the Finder. Default help balloons are also provided for desk
accessory, system extension, and control panel icons. You can override these help
messages.

Document icon in the Finder. You cannot override the help message for this icon.

Standard file dialog boxes. You supply balloons for items that you add to these dialog
boxes; you cannot override the help messages for the other items.

Window title bar. A default help balloon is provided for the title bars of windows
created with both standard and custom window definition functions (WDEFs). You
can override the default help message.

Window close box. A default help balloon is provided for the close boxes of windows
created with both standard and customized WDEFs. You can override the default help
message.

Window zoom box. A default help balloon is provided for the zoom boxes of
windows created with both standard and customized WDEFs. You can override the
default help message.

Inactive window. You can override the default help message for inactive windows.

Apple menu title. The default help balloon for the title of the Apple menu is available
only if your application uses the standard menu definition procedure. You cannot
override the default help message for this title.

Apple menu items. Default balloons are provided for items that the user moves to
the Apple Menu Items folder, but there is no default balloon for the About command
or other items that your application adds to this menu; you must provide help
balloons for such items.

Help menu title. The default help balloon for the title of the Help menu is available
only if your application uses the standard menu definition procedure. You cannot
override the default help message for this title.

Help menu items. Default balloons are provided only for the About Balloon Help and
Hide/Show Balloons commands; you must provide help balloons for items you add
to this menu. You cannot override the default help messages.

Application menu title and items. Default help balloons for the title and items of
the Application menu are available only if your application uses the standard menu
definition procedure. You cannot override these default help messages.

Keyboard menu title. The default help balloon for the title of the Keyboard menu is
available only if your application uses the standard menu definition procedure. You
cannot override the default help message.

About the Help Manager

CHAPTER 3

Help Manager

System software uses the Help Manager to display help balloons for most of its dialog
boxes and alert boxes. (For example, the Standard File Package provides help balloons
for its standard file dialog boxes.) If your application uses a system software routine
(such as the StandardPutFile procedure) that provides help balloons, and the user
has enabled Balloon Help assistance, the Help Manager displays each help balloon as the
user moves the cursor to each hot rectangle. If you’ve added your own buttons,
checkboxes, or other controls to such a dialog box or alert box, you can also provide
these controls with help balloons.

The Help Manager uses the window definition function of a window to determine
whether the cursor is in the window frame and, if so, which region of the window (title
bar, close box, or zoom box) the cursor is in. If the cursor is in any of these regions, the
Help Manager displays the associated help balloon. Figure 3-6 shows the default help
balloons for the active window of an application that uses the standard window
definition function. If you use a custom window definition function, the Help Manager
also displays these default help balloons for the corresponding regions of your windows.

Figure 3-6 Default help balloons for the window frame
=T EE
-|_ Close bax xS
To close this
window , click here.
o
&
EH=—— Untitled ——Tg— |
S+) Zoorn box
To change the size of the window
quickly , elick here. Clicking onoce
sizes the window zo that all of its
contents are visible (if possible).
| | Clicking again returns the window
I to itz original size.
E .. r

Untitled

Title bar

This is the window 's title
bar. To rmove the
window , position the
pointer in the title bar
and drag the window.

A
[=]

About the Help Manager 3-15

Amfrevepy 4oy £

CHAPTER 3

Help Manager

The Help Manager also provides these default help balloons for the title bars, close
boxes, and zoom boxes of windows in the Finder. The Finder specifies additional help
for other window regions—for example, the scroll bar and size box—although the Help
Manager does not automatically provide your window with this help.

The Help Manager displays help balloons for the standard window frame and other
standard areas named in the 'hovr' resource. You can override any of the default help
balloons defined in the 'hovr' resource by providing your own resource of type

‘hovr' . See “Overriding Other Default Help Balloons” on page 3-87 for more
information.

The Help Manager displays default help balloons for the Apple menu, Help menu, and
Application menu. The Menu Manager uses the Help Manager to display help balloons
for these menus regardless of whether you supply help balloons for the rest of your
menus. The Help Manager also provides default help balloons for the Keyboard menu
when a non-Roman script system is installed. Figure 3-7 shows the default help balloons
for the Apple menu and Help menu titles.

Note

For all menus and menu items, the Help Manager displays help balloons
only for applications that use the standard menu definition procedure. If
you use your own menu definition procedure, your application must
track the cursor and use Help Manager routines to display and remove
help balloons, as described in “Displaying and Removing Help
Balloons” on page 3-99. O

3-16

Figure 3-7 Default help balloons for the Apple and Help menus
"k [Bl:
N \
Apple menu Help rmenu
Use this menu to open an itern in the Use this menu to get
Apple Menu lterns folder , or to see information that helps
infarmation about the active you use your corputer.

application or program. Y'ou can
customnize the items in this renu by
adding or rermowving iterns from the
Apple Menu lterns folder.

The Help Manager does not provide default help balloons for items you put at the top of
your application’s Apple menu or items you add to the Help menu. You typically put
one item at the top of the Apple menu: the About command for your application. If you
have additional user help facilities, list them in the Help menu—not in the Apple menu.
You have control only over those items that you add to the Apple and Help menus.

About the Help Manager

CHAPTER 3

Help Manager

The Finder provides default help balloons for your application icon and any documents
created by your application. Figure 3-8 shows the default help balloon for the SurfWriter
application and a document created by this application. You can customize the help
balloon for your application icon by providing an 'hfdr' resource; however, you can’t
customize the default help balloon for the documents created by your application.

Figure 3-8 Default help balloons for application and document icons

Thiz is an application—a program Surfw'riter document
with which you can perform a

task aor create a docurnent. ‘ou can apen and
Applications include word rmodify this document
procesgors, graphics programs, uzing the Surfwriter
database programs, games, and application program.

spreadsheets.

Surfwriter 2.0

About BalloonWriter

Apple Computer, Inc., makes available a tool that greatly facilitates the creation of help
balloons. Called BalloonWriter, this tool gives nonprogrammers an easy, intuitive way to
create help balloons. Writers who have no programming experience can use
BalloonWriter to provide your application with fully functional resource code for menus,
dialog and alert boxes, static windows, and non-document Finder icons. In its user’s
guide, BalloonWriter refers to help balloons for these interface features as standard
balloons. For these types of help balloons, BalloonWriter creates 'hmnu' |, 'hdlg'
‘hwin' | ‘hrct’ | and 'hfdr' resources, as appropriate, and places them in the
resource file of your application. BalloonWriter likewise creates and stores'STR ',
'STR#' ,and 'TEXT' resources that contain the help messages authored by your
nonprogramming writers.

For dynamic windows and for menus that use custom menu definition procedures, your
application must track the cursor and use the HMShowBalloon function to display help
balloons. The BalloonWriter documentation refers to these balloons as custom balloons.
BalloonWriter does not create the necessary resources or code that automatically
displays these types of help balloons. However, nonprogrammers can use BalloonWriter
to provide you with conveniently delimited ASCII text that you can then use in
conjunction with HMShowBalloon to display the desired help balloons.

BalloonWriter is available from APDA.

About the Help Manager 3-17

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Using the Help Manager

3-18

You can use the Help Manager to provide information to the user that describes the
action, behavior, or properties of your application’s features. For example, you can create
a help balloon for each menu item to describe what it does.

To determine whether the Help Manager is available, use the Gestalt function with
the gestaltHelpMgrAttr selector. Test the bit field indicated by the
gestaltHelpMgrPresent constant in the response parameter. If the bit is set, then
the Help Manager is present.

CONST gestaltHelpMgrPresent =0; {if this bit is set, then }
{ Help Manager is present}

The Help Manager is initialized at startup time. The user controls whether help is
enabled by choosing the Show Balloons or Hide Balloons command from the Help menu.

The Help menu is specific to each application, just as the File and Edit menus are specific
to each application. The Help menu items that are defined by the Help Manager are
common to all applications, but you can add your own menu items for help-related
information.

The Help Manager automatically appends the Help menu when your application inserts
an Apple menu into its menu bar. The Menu Manager automatically appends the Help
menu to the right of all your menus and to the left of the Application menu (and to the
left of the Keyboard menu if a non-Roman script system is installed).

You can create help balloons for the menus, dialog boxes, alert boxes, or content area of
windows belonging to your application. You can also override some of the default help
balloons—such as the default help balloon for the title bar of a window.

You can specify the help message by using plain text, styled text, or pictures. Although
you should always strive for brevity in your help messages, plain text strings can contain
up to 255 characters. Styled text can contain up to 32 KB of information. The Help
Manager determines the actual size of the help balloon and, for text strings, uses
TextEdit to determine word breaks and line breaks.

The Help Manager automatically tracks the cursor and generates help balloons defined
in standard help resources. Your application can also track the cursor and use Help
Manager routines to display and remove help balloons.

Providing Text or Pictures for Help Balloons

Use help balloons to provide the user with information that describes or explains
interface features of your application. The information you supply in help balloons
should follow a few general guidelines in order to provide the most useful information
to the user. This section describes these guidelines.

Using the Help Manager

CHAPTER 3

Help Manager

For examples of how your application should use help balloons, observe the help
balloons that the Finder, the TeachText application, and system software use.

Defining Help Messages

Use help balloons to explain parts of your application’s interface that might confuse a
new user or features that could help a user become an expert user. The information you
provide in help balloons should identify interface features in your application or
describe how to use them.

The help balloon for an item appears when the user moves the cursor to that item.
Because the user knows exactly what the text is referring to, this is a powerful method of
providing information. But the method has some limitations. There are some kinds of
information that help balloons cannot display effectively.

= Help balloons can show users what they will accomplish by using onscreen objects,
including menu commands, dialog boxes, and tool palettes.

= Help balloons can help experienced Macintosh users who prefer to learn programs by
using them, rather than by reading manuals.

= Help balloons can’t help users who don’t know what they want to do or users who
don’t know where to look.

= Help balloons can’t teach your program by themselves. They can’t substitute for
task-oriented paper or electronic documentation or training.

= Help balloons can’t teach novice Macintosh users the concepts they need to know in
order to use the Macintosh computer.

Help balloons work best when you keep your audience in mind as you write. Ask
yourself these questions when you are planning balloons for your program:

= Who will be using your program?
= What aspects of your program are users unfamiliar with?

= What terminology are your users likely to know?

Unless your application has a specialized audience, it’s best to write for users who
already know something about using the Macintosh (although they may not be experts)
but who don’t know much about your application.

Each help balloon should answer at least one of these questions:

= What is this? For example, when the user moves the cursor to the item count in the
upper-right corner of a Finder window, the Finder displays a help balloon that reads
“This is the number of files or folders in this window.”

= What does this do? For example, when the user moves the cursor to the Find
command in the Finder’s File menu, the Finder displays a help balloon that reads
“Finds and selects items with the characteristics you specify.”

= What happens when I click this? For example, when the user moves the cursor to the
close box of a window, the Window Manager displays a help balloon that first names
the object (“Close box™) and then explains, “To close this window, click here.”

Using the Help Manager 3-19

Amfrevepy 4oy £

3-20

CHAPTER 3

Help Manager

Help messages should be short and easy to understand. You should not include lengthy
instructions or numbered steps in help balloons. Use help balloons to clarify the meaning
of objects in your application—for example, tool icons in palettes.

Use simple, clear language in the information you provide. Include definitions in help
balloons when appropriate.

You can use graphics or styled text in help balloons to illustrate the effects of a
command. For example, to demonstrate the effect of the Bold command in a
word-processing application, you might use styled text to show a word in boldface.

You can provide separate help balloons for two display states—enabled and dimmed
(disabled)—of a menu item. You can also provide separate help balloons for two display
states—active and dimmed (inactive)—of a control. The help balloon that you provide
for an enabled menu item should explain the effect of choosing the item. The help
balloon that you provide for a dimmed menu item should explain why it isn’t currently
available, or, if more appropriate, how to make it available. Similarly, the help balloon
that you provide for an active control should explain the effect of clicking or selecting the
control, and the help balloon that you provide for a dimmed control should explain why
it isn’t currently available, or, if more appropriate, how to make it available.

Complicated dialog boxes can often benefit from help balloons that explain what’s
essential about the dialog box. You can use help balloons to describe groups of controls
rather than individual controls. For example, if a dialog box has several distinct regions
that contain radio buttons or checkboxes, you could provide a help balloon for each set
of radio buttons, rather than providing a separate balloon for each button.

If you use a function to customize standard dialog boxes, use as many of the existing
help balloons as possible. For example, if your application uses any of the standard file
dialog boxes and provides an extra button, you can create a help balloon for the extra
button, and the Help Manager continues to use the default help balloons for other items
in the dialog box.

To make localization easier, you should store your help messages in resources separate
from the help resources. To avoid problems with grammar and sentence structure when
you localize your application, never combine separately stored phrases into one help
message.

Using Clear, Concise Phrases

You can provide up to 255 characters of information using text strings in help balloons.
(You can use up to 32 KB if you use styled text.) However, you should include only the
most relevant information in the help balloon. To determine what to provide, decide
what information would be most useful to a user. This information usually omits

the object’s name, which normally doesn’t matter to the user, and instead tells what the
object is for and what the object does, which does matter to the user.

You might eventually translate your help messages into other languages, so try to keep
the messages as short as possible. When translated, your help messages may require
more words or longer words—and therefore larger balloons and more screen space.
Expect English text to expand 20-30 percent after translation. To keep the translated text

Using the Help Manager

CHAPTER 3

Help Manager

within the Help Manager’s 255-character limit for text strings, limit English text to
approximately 180 characters.

If an item already has a commonly used name, or if it’s a special case of a larger category
of objects, name it in the balloon. The Finder, for example, displays the message “Drag
the title bar to move the window,” since title bars and windows are commonly used
names. However, you don’t need to name everything in your application just so that you
can refer to it in a help balloon. For example, because the tip of the help balloon points to
the subject of the help balloon, you can easily say “To apply the style, click here,” rather
than “The Apply button activates the Styles command. Click the button to activate the
command.”

Many of the items onscreen don’t need names. An item needs a name only if the name
helps the user remember how to use the application. The following items are likely to
need names:

= icons that don’t already have names on the screen
= toolsin a palette

= controls on a ruler

= controls in a paint program

= Finder icons whose names can be changed

If you decide to name an item, make sure that the name you use in the balloon matches
the name used in other documentation.

For balloons that describe menu items, you can use sentence fragments; the grammatical
subject is obvious from the context. For example, the help balloon for the Open
command could read “Opens the selected file” rather than “This command opens the
selected file”; the grammatical subject is obvious from the context. Using sentence
fragments lets users assimilate the message more quickly because they have fewer words
to read.

When you describe a menu item or a button, try to use a word that’s different from the
one that appears onscreen. Using a synonym in this way helps users who aren’t sure
what the item’s name means. For example, the help balloon for a Paste command in the
Edit menu might say something like “Inserts the contents of the Clipboard into the
document.”

Help balloons are usually inappropriate for describing multiple-step procedures,
because a help balloon does not stay on the screen while the user performs the various
steps. The user may begin a procedure described in a help balloon and then become
confused when the information disappears.

You can, however, describe a very simple two-step procedure in a balloon. This is
probably most appropriate for a tool in a palette. For example, the balloon for an eraser
tool might first define the tool as an eraser and then explain, “To remove parts of your
drawing, click this icon, then drag to erase those parts you want to remove.”

Using the Help Manager 3-21

Amfrevepy 4oy £

3-22

CHAPTER 3

Help Manager

Using Active Constructions

Try to use short, active phrases in help balloons. Avoid passive constructions. An active
construction is more forceful because it communicates how the grammatical subject
(usually the user in this context) performs an action. In the sentence “To turn the page,
click here,” the implied “you” (that is, the user) is the subject, and “click” is the action
that the subject performs. Passive constructions show subjects being acted upon rather
than performing an action. For example, in the sentence “The page will be turned when
this button is clicked,” both “page” and “button” are acted upon.

Research suggests that instructional materials are more effective when they present the
goal clause before the action clause, helping readers quickly recognize how the
information meets their needs. A goal might be “To turn the page,” “To calculate the
result,” or “To apply the style.” For example, the message “To turn the page, click here”
starts with a goal statement and then describes the action necessary to fulfill it; users find
this more helpful than a purely descriptive message like “This button turns the page.”

If there is more than one way for the user to achieve a goal, mention only the method
that involves the item to which the user is pointing. In other words, if the user is
pointing to a button, the balloon should tell the user how to use the button, not how to
use a keyboard shortcut for that button. For example, a help balloon for a Save button
might state, “To save the changes you have made to the settings in the dialog box, click
this button”—but the help balloon should not add “or press the Return key.”

If there is more than one method for using the item to which the user is pointing,
describe the method that’s simplest to explain and understand.

Using Parallel Structure

Use similar syntax for help balloons that describe similar objects. For example, all help
balloons that describe buttons should have the same structure. In a style dialog box, you
might provide these messages for the buttons: “To see the style, click Apply,” “To
implement the style, click OK,” and “To do nothing to change the previous style, click
Cancel.”

Users see help balloons provided by many different applications, so a consistent
approach within your application helps them to identify types of balloons quickly and to
develop realistic expectations about their help messages.

Offering Hints

If there are just a few interesting features in your application that would be difficult to
discover, then it’s appropriate to use balloons to call those features to users’ attention.

But if you want to give a hint or shortcut in a balloon, ask yourself these questions:
= Is the balloon reasonably short, even with the hint?

= How often will users need the information? If a feature is very obscure and few
people will need it, the balloon probably shouldn’t describe it.

Using the Help Manager

CHAPTER 3

Help Manager

= Are hints and shortcuts available somewhere else—for example, in a “shortcuts”
dialog box or a quick-reference card? Not all users will look at balloons. If your
program includes many shortcuts and tricks, be sure to list them in other
documentation as well.

= Does the need for hints indicate the need for a different design? If your application
contains many hidden shortcuts and features, then you may need to redesign your
application to make these features more easily accessible to users.

If you include a hint or shortcut, put the hint at the bottom of the balloon and separate it
from the rest of the message by a blank line. For example, the Clean Up Window
command in the Finder’s Special menu initially describes the command’s effect: “Neatly
arranges the icons in the active window.” Then there is a blank line followed by a hint:
“Tip: for other cleanup commands, hold down the Shift or Option key while choosing
this command.”

Using Consistent Terminology

You should employ consistent terminology in all your help balloons. Use language that
users understand; avoid introducing technical jargon or computer terminology into help
balloons. Follow the style and usage standardized by Apple Computer, Inc., in the Apple
Publications Style Guide (available through APDA) to make the most effective use of the
information and vocabulary with which users are already familiar. A supplement to the
Apple Publications Style Guide, titled “How to Write Balloons,” spells out the guidelines
that Apple writers use for the wording and phrasing of help messages. This supplement
also provides many examples of clear and useful help messages as well as
counterexamples of types of messages to avoid.

Defining the Help Balloon Position

When you provide a help balloon, you specify its help message, the tip of the help
balloon, and the variation code for its preferred position. The tip of the help balloon
should point to the object that the help balloon describes. You should specify the tip and
the variation code so that the help balloon doesn’t obscure the object for which you’re
providing help. In most cases, the tip of the help balloon should point to an edge of the
object.

You should also consider how the Help Manager repositions the balloon if the variation
code places it offscreen. “How the Help Manager Displays Balloons” on page 3-8
describes how the Help Manager repositions the help balloon if necessary.

Specifying the Format for Help Messages

You specify the format for your help messages as text strings within help resources, as
text strings within 'STR " resources, as lists of text strings within 'STR#' resources, as
styled text using ' TEXT' and'styl' resources, or as pictures described in 'PICT'
resources.

Using the Help Manager 3-23

Amfrevepy 4oy £

3-24

CHAPTER 3

Help Manager

Later sections in this chapter describe all the help resources in detail. Common to all
the help resources are the following identifiers, by which you identify the format of your
help messages.

Identifi er Help message format

HMStringltem Atext string (a Pascal string stored in the help resource)
HMPictltem A picture (stored in a'PICT" resource)

HMStringResltem A text string (stored in a list of strings as an 'STR#' resource)
HMTEResltem Styled text (stored in both a 'TEXT' and an'styl' resource)
HMSTRResltem A text string (stored inan'STR "' resource)

HMSkipltem No help message—skip this item

You specify the identifiers within the help resources; the Help Manager reads these
identifiers to determine where and how your help messages are stored. You can use the
HMStringltem identifier to store Pascal strings directly in a help resource. However,
you can make it much easier to localize your product by storing your help messages in
separate resources—namely, in 'STR# ,'PICT' ,'STR' ,and'TEXT' rsources—that
can be modified by nonprogrammers using tools like BalloonWriter and the ResEdit
resource editor.

To display a diagram or illustration in 'PICT' format, use the HMPictltem identifier.
You provide a help message by specifying the resource ID of the 'PICT' resource that
contains the diagram or illustration, and the Help Manager displays the picture in a help
balloon.

To display a text string stored in a string list (STR#') resource, use the
HMStringResltem identifier. You provide a help message by specifying two items in
your help resource: the resource ID of an'STR#' resource, and the index to a particular
text string from within that list. For more information on these items, see “Providing
Help Balloons for Menus” beginning on page 3-27.

To display styled text, use the HMTEResltem identifier. You provide a help message by
specifying a resource ID that is common to both a style scrap ('styl') resource and a
"TEXT' resource, and the Help Manager employs TextEdit routines to display your text
with your prescribed styles. For example, you might create a TEXT' resource with
resource ID 1000 that contains the words “Displays your text in boldface print” and a
'styl' resource with resource ID 1000 that applies boldface style to the message. (See
the chapter “TextEdit” in Inside Macintosh: Text for a description of the style scrap.)

To display text from a simple text string ('STR ') resource, use the HMSTRResltem
identifier. You provide a help message by specifying the resource ID of an'STR '
resource, and the Help Manager displays the text from that resource in a help balloon.
With 'STR ' resources, each text string must be stored in a separate resource. It is
usually more convenient to group related help messages in a single 'STR#' resource
and use the HMStringResltem identifier as previously described.

You can use the HMSkipltem identifier for items for which you don’t want to provide a
help balloon. For example, you specify HMSkipltem for the divider lines that appear in
menus. (Divider lines cannot have help balloons.)

Using the Help Manager

CHAPTER 3

Help Manager

Specifying Options in Help Resources

Each help resource contains an element that allows you to specify certain options. Notice
the options element in the following header component for an ‘hmnu' resource.

resource 'hmnu' (130, "Edit", purgeable) {

HelpMgrVersion, / *v ersion of Help Manage r*/
hmDefaultOptions, / *o ption s*/

0, / *b alloon definition functio n* /
0, / *v ariation cod e*/

You should normally use the hmDefaultOptions constant, as shown in the preceding
example, to get the standard behavior for help balloons. However, you can also use the
constants listed here for the options element. (Note that not all options are available for
every help resource.)

CONST hmDefaultOptions =0; {use defaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmAbsoluteCoords =2; {ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}

hmSaveBitsNoWindow =4; {don't create window; save }
{ bits; no update event}
hmSaveBitsWindow =8; {save bits behind window }
{ and generate update event}
hmMatchinTitle =16; {match window by string }

{ anywhere in title string}

If you’re providing help balloons for a desk accessory or a driver that uses owned
resources, use the hmUseSubID constant in the options element. Otherwise, the Help
Manager treats the resource IDs specified in the rest of your help resource as standard
resource IDs. (See the chapter “Resource Manager” in this book for a discussion of
owned resources and their resource IDs.)

As described later in this chapter, you often specify tip and rectangle coordinates in your
help resources. When specifying these coordinates within a scrolling window or
whenever the window origin is offset from the origin of the port rectangle, you may
want to use the hmAbsoluteCoords constant. This causes the Help Manager to ignore
the local coordinates of the port rectangle when tracking the cursor and instead to track
the mouse location relative to the window origin. When you specify the
hmAbsoluteCoords constant as an option in a help resource, the Help Manager
subtracts the coordinates of the window origin from the coordinates of the mouse
location and uses the results for the current mouse location, as shown here:

mousepoint.h := mousepoint.h — portRect.left;
mousepoint.v := mousepoint.v — portRect.top;

Using the Help Manager 3-25

Amfrevepy 4oy £

3-26

CHAPTER 3

Help Manager

With the hmAbsoluteCoords constant specified, the Help Manager always assigns
coordinates (0,0) to the point in the upper-left corner of the window. So, for example, if
the cursor is positioned at point (4,5) in a port rectangle and the window origin is at
(3,4), the Help Manager calculates the cursor at (1,1). If this option is not specified, the
Help Manager uses the port rectangle’s local coordinates when tracking the cursor—for
example, when using the GetMouse procedure.

The Help Manager draws and removes help balloons in three different ways. For all help
resources except'hmnu' resources, the Help Manager by default draws and removes
help balloons as if they were windows. That is, when drawing a balloon, the Help
Manager does not save bits behind the balloon, and, when removing the balloon, the
Help Manager generates an update event. By specifying the hmDefaultOptions

constant in your help resources, you always get the standard behavior of help balloons.
However, you can often specify two options that change the way balloons are drawn and
removed from the screen.

If you specify the hmSaveBitsNoWindow constant for the options element, the

Help Manager does not create a window for displaying the balloon. Instead,

the Help Manager creates a help balloon that is more like a menu than a window. The
Help Manager saves the bits behind the balloon when it creates the balloon. When it
removes the balloon, the Help Manager restores the bits without generating an update
event. You should use this option only in a modal environment where the bits behind the
balloon cannot change from the time the balloon is drawn to the time it is removed. For
example, you might choose the hmSaveBitsNoWindow option in a modal environment
when providing help balloons that overlay complex graphics, which might take a long
time to redraw with an update event. Note that the Help Manager always uses this
behavior when drawing and removing help balloons specified in your 'hmnu'

resources. That is, when you specify the hmDefaultOptions constant in an

'hmnu' resource, the Help Manager provides this sort of balloon instead of drawing a
window for a balloon. (In an'hmnu' resource, you cannot even specify options for
drawing a window for a balloon.)

If you specify the hmSaveBitsWindow constant, the Help Manager treats the help
balloon as a hybrid having properties of both a menu and a window. That is, the Help
Manager saves the bits behind the balloon when it creates the balloon and, when it
removes the balloon, it both restores the bits and generates an update event. You'll rarely
need this option. It is necessary only in a modal environment that might immediately
change to a nonmodal environment—that is, where the bits behind the help balloon are
static when the balloon is drawn, but can possibly change before the help balloon is
removed. For example, if you use an 'hmnu' resource to provide help balloons for menu
titles and menu items, you’ll notice that the Help Manager automatically provides this
sort of behavior (even when you don’t specify the hmSaveBitsWindow option) when
creating help balloons for menu titles.

In the preceding list of constants, the values for the constants represent bit positions that
are set to 1. To override more than one default, add the values of the bit positions for the
desired options and specify this sum, instead of a constant, for the options element. For
example, to use subrange IDs, ignore the window port origin coordinates, and save bits
behind the help balloon without generating an update event, you should add the values

Using the Help Manager

CHAPTER 3

Help Manager

of the bit positions of these options (1, 2, and 4) and specify their sum (7) for the options
element.

If you supply the hmDefaultOptions constant, the Help Manager treats the resource
IDs in this resource as regular resource IDs and not as subrange IDs; it uses the port
rectangle’s local coordinates when tracking the cursor; and it generally creates windows
when drawing balloons and then generates update events without saving or restoring
bits when removing balloons.

The hmMatchinTitle constant is used only in window help (‘hwin') resources to
match windows containing a specified number of characters in their titles. This constant
is explained in more detail in “Providing Help Balloons for Static Windows” on

page 3-65.

The next sections describe how to create help resources that provide help balloons for
the standard user interface features of your application.

Providing Help Balloons for Menus

If your application uses the standard menu definition procedure, you’ll find that it’s
easier to provide help balloons for menus than for any of your other interface features.
This section is relatively lengthy compared to the sections describing dialog boxes, alert
boxes, and windows because it explains in detail much of the work you’ll also perform
when supplying help balloons for those items.

This section assumes that your application uses the standard menu definition procedure.
If your application uses its own menu definition procedure, you must use Help Manager
routines to display and remove help balloons. These routines are described in
“Displaying and Removing Help Balloons” on page 3-99. Even if you use these routines,
you should read this section so that your balloons emulate the behavior that the Help
Manager provides for menus using the standard menu definition function.

To create help balloons for a menu—pull-down, pop-up, or hierarchical—that uses the
standard menu definition procedure, create a resource of type ‘hmnu ' in which you
specify help balloons for the menu title and for each menu item. You create a separate
'hmnu' resource for each menu.

Note

BalloonWriter, available from APDA, is a tool that gives
nonprogrammers an easy, intuitive way to create help balloons for
menus. BalloonWriter creates 'hmnu' resources as appropriate and
places them in the resource file of your application; BalloonWriter
likewise creates and stores'STR "' ,'STR#' , and 'TEXT' resources that
contain the help messages authored by nonprogramming writers.

For menus that use custom menu definition procedures,
nonprogrammers can use BalloonWriter to provide you with delimited
ASCII text that you can then use in conjunction with HMShowBalloon

to display the desired help balloons. O

Using the Help Manager 3-27

Amfrevepy 4oy £

3-28

CHAPTER 3

Help Manager

The Help Manager can display different help balloons for the various states of a menu
item. Each menu item can have up to four help balloons associated with it, one for each
state:

= enabled
= disabled (that is, dimmed)
= enabled and checked

= enabled and marked (that is, marked by a symbol other than a checkmark—for
example, a bullet or a diamond)

For example, you can define a help balloon that the Help Manager displays when the
Cut command is enabled and another help balloon for display when the Cut command
is dimmed. Remember that the help balloon you provide for a dimmed menu item
should explain why it isn’t currently available or, if more appropriate, how to make it
available.

Note

Although enabled anddisabled are the constants you use in a
resource file to display or dim menus and menu items, you shouldn’t
use these terms in your help balloons or user guides. Rather, use the
term menus, menu commands, or menu items for those that are enabled,
and use the term not available or dimmed to distinguish those that have
been disabled. O

When your application calls the Menu Manager function MenuSelect or MenuKey, the
Menu Manager automatically tracks the cursor, highlights enabled menu items, and
displays any additional hierarchical or pop-up menus as the user moves the mouse. As
the user drags the cursor across or through a menu, the Menu Manager uses the Help
Manager to display any help balloons associated with the current state of the menu title
or menu item.

If there is sufficient memory, the standard menu definition procedure saves the bits
behind the help balloon and restores these bits for quick updating of the screen. If there
isn’t sufficient memory to save the bits behind the help balloon, then—as with menus—
the procedure generates appropriate update events. Figure 3-9 shows help balloons for
two instances of a menu, one with the Cut command dimmed, the other with the Cut
command enabled.

Using the Help Manager

CHAPTER 3

Help Manager

Figure 3-9 Help balloons for different states of the Cut command

_Eait I

s S

HEFES

i EEREEH Removes the selected text
Pagie SR and places it termporarily inte
fipnr a storage area called the

— Clipboard. Mot available now
because nothing iz selected.

Hngdn S

Copy #C Remmaves the
Paste I zelected text and
places it temporarily
Clear into a storage area
zalled the Clipboard.

You don’t specify hot rectangles or tip coordinates for menus. The rectangles defined by
the Menu Manager for menu titles and menu items are used as hot rectangles. The Help
Manager initially tries to draw a help balloon for a menu item using variation code 0
(shown in Figure 3-4 on page 3-10) with the tip placed 8 pixels inside the right edge and
halfway between the top and bottom edges of the menu item’s rectangle. If the balloon’s
initial position lies wholly or partially offscreen, the Help Manager tries to redraw the
balloon by moving its tip to the left edge of the item’s rectangle and using variation
code 3. The Help Manager uses variation codes 1 and 2 in its attempts to draw help
balloons for menu titles. The Help Manager never moves the tip for menu titles; instead,
the tip is always located just below the bottom of the menu bar at the midpoint of the
menu title’s text.

The resource ID of each 'hmnu' resource should match the corresponding menu ID. For
example, to provide help balloons for a menu with ID 130, create an 'hmnu’ resource
with resource ID 130.

The 'hmnu' resource contains four types of components, listed below. Each component
consists of several elements that contain information used by the Help Manager.

= The header component is where you specify information that applies to all help
balloons specified in this resource—information such as the version number of the
Help Manager, the balloon definition function, and the variation code.

= The missing-items component is where you specify help messages for any menu
items missing from or unspecified in the rest of the resource. This is useful, for
example, for allowing several menu items to share the same help message.

Using the Help Manager 3-29

Amfrevepy 4oy £

CHAPTER 3

Help Manager

= The menu-title component is where you specify help messages for the menu title.

= A menu-item component is where you specify the help messages for a particular
menu item. You can include any number of menu-item components; however,
the menu-item components in the 'hmnu' resource must appear in the order in which
their corresponding menu items appear in the menu. If you do not provide menu-item
components for any items at the bottom of a menu, a help message from the
missing-items component is used.

Here is the general Rez input format of an 'hmnu' resource. (Rez is the resource
compiler provided with Apple’s Macintosh Programming Workshop [MPW], available
from APDA.)

Component Element
Header Help Manager version
Options
Balloon definition function
Variation code
Missing item Identifier
Help message for missing enabled items
Help message for missing items dimmed by application
Help message for missing enabled-and-checked items
Help message for missing enabled-and-marked items
Menu title Identifier
Help message for enabled menu title
Help message for menu title dimmed by application
Help message for menu title dimmed by system software
Help message for menu items dimmed by system software
First menu item Identifier
Help message for enabled menu item
Help message for menu item dimmed by your application
Help message for enabled-and-checked menu item
Help message for enabled-and-marked menu item
Next menu item (Same as for first menu item)

Last menu item (Same as for first menu item)

Listing 3-1 shows Rez input code for the ‘hmnu* resource for an Edit menu.

3-30 Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-1 Rez input for a partial 'hmnu' resource
resource 'hmnu' (130, "Edit", purgeable) {
/*h eader componen t*/
HelpMgrVersion,
hmDefaultOptions /*o ption s*/
0, /*b alloon definition functio
0, [*v ariation cod e*/
/*m issing-items componen t*/
HMSkipltem {
/*n o missing items, so skip to menu-title componen
2
{/*m enu-title componen t*/

HMStringltem { /*u se following P-string
/*u se string below when menu is enable

s*/

"Edit menu\n\nUse this menu to manipulate text."

/*u se string below when app dims men

u*/

"Edit menu\n\nUse this menu to manipulate text. "
"Not available because you do not have permission "

"to alter this file." ,

/*u se string below for title dimmed by syste

/*s oftware for an alert or modal dialog bo

"Edit menu\n\nUse this menu to manipulate text. "
"Not available because a dialog box is on "

“"the screen." ,
/*u se string below for all items when syste

/*s oftware dims them for an alert or moda

/*d ialogbo x*/

"This item is not available because a dialog box "

"is on the screen."”,

2

[*f irst menu-item component: Undo comman

d*/

HMStringltem {/*u se followin g P-s tring s*/

/*u se string below when command is enable

"Cancels your last edit." ,

/*u se string below when app dims the comman

"Cancels your last edit. Not available because "
"you haven't performed an editing action yet.",

/*c an't check the item, so empty string goes belo

/*¢ an't mark the item, so empty string goes belo

b

Using the Help Manager

n*/

t*/

m */
x*/

m */
[*/

d*/

d*/

w*/

w*/

3-31

Amfrevepy 4oy £

CHAPTER 3

Help Manager

/*s econd menu-item component: divider lin e*/
HMSkipltem {/*n o help balloons for divider line s*/
b
/¥t hird menu-item component: Cut comman d*/
HMStringltem {/*u se following P-string s*/
/*u se string below when command is enable d*/
"Cuts the selected text to the Clipboard."” .
/*u se string below when app dims the comman d*/

"Cuts the selected text to the Clipboard. "
"Not available now because no text is selected.” ,

/*c an't check item, so empty string goes belo w*/
/*c an't mark item, so empty string goes belo w*/
}
/*m enu-item components for Copy, Paste, and Clea r*/
/* ¢ ommands go her e*/

}
h

Specifying Header Information for the 'nmnu’ Resource

The header component of an 'hmnu' resource consists of these elements:

1. Help Manager version.

2. Options.

3. Balloon definition function.

4. Variation code.

Always specify the HelpMgrVersion constant for the Help Manager version element.
For the options element, you must specify the constant hmDefaultOption — s.

The third element in the header component specifies the resource 1D of the window
definition function that is used to draw the frame of the help balloon. To use the
standard balloon definition function, specify 0 for this element; this is the suggested
default. If you use your own balloon definition function (as described in “Writing Your
Own Balloon Definition Function” on page 3-93), specify its resource ID for this element.

3-32 Using the Help Manager

CHAPTER 3

Help Manager

The fourth element in the header component specifies the preferred position of the help
balloon. For example, the standard balloon definition function displays help balloons
according to eight different positions. If you specified the standard balloon definition for
the preceding element, supply a variation code from 0 to 7 to display the balloon
according to one of the eight positions shown in Figure 3-4 on page 3-10. The preferred
variation code is 0. If you are unsure of which variation code to use, specify 0; the Help
Manager will use a different variant if another is more appropriate. If you use your own
balloon definition function, you specify its variation code for this element of the header
component.

Specifying Help for Menu Items Missing From the Resource

After the header component, you specify the format and help messages for help balloons
for missing items, for the menu title, and for the menu items.

Use the missing-items component of the 'nmnu’ resource to specify how the Help
Manager handles menu items that are not described in this resource. You can also use the
missing-items component to supply help messages for menu items that are described in
the 'hmnu' resource but that lack help messages for any particular states.

The missing-items component of this resource is useful when you have menu items with
similar characteristics or when the number of menu items is variable. For example, if
the help message for a dimmed item applies to all dimmed menu items, you can specify
a help message once in the third element of the missing-items component instead of
repeating it in every third element of the various menu-item components.

The missing-items component consists of the following five elements:

1. Anidentifier (either HMStringltem , HMSTRResltem, HMStringResltem
HMPictltem , HMTEResltem, or HMSkipltem) for the format of the help messages.

2. The help message when a menu item is enabled. This message is displayed either
when the item itself is not specified in a menu-item component of this 'hmnu’
resource or when its help message is specified in a menu-item component, but
specified with either an empty string or a resource ID of 0.

3. The help message when your application dims the menu item. This message is
displayed either when the item itself is not specified in a menu-item component of
this 'hmnu’ resource or when its help message is specified in a menu-item
component, but specified with either an empty string or a resource 1D of 0.

4. The help message when a menu item is enabled and checked. This message is
displayed either when the item itself is not specified in a menu-item component of
this 'hmnu’ resource or when its help message is specified in a menu-item
component, but specified with either an empty string or a resource 1D of 0.

5. The help message when a menu item is enabled and marked (with a character other
than a checkmark). This message is displayed either when the item itself is not
specified in a menu-item component of this ‘hmnu’ resource or when its help
message is specified in a menu-item component, but specified with either an empty
string or a resource 1D of 0.

Using the Help Manager 3-33

Amfrevepy 4oy £

3-34

CHAPTER 3

Help Manager

For missing items (as for the rest of the items listed in an 'hmnu' resource), you store the
help messages in text strings within this resource or in separate 'STR ' ,'STR#' |
'PICT" ,or TEXT' and'styl resources. For the first element in the missing-items
component, use one of the identifiers described in “Specifying the Format for Help
Messages” on page 3-23. These identifiers indicate how and where you store your

help messages. Then, depending on the identifier you specify, for the next four elements
supply either text strings for help messages or resource 1Ds of resources that contain

help messages.

There are two additional identifiers that you can specify for menu items in 'hmnu'
resources. These identifiers are explained in “Specifying Help for a Changing Menu
Item” on page 3-43 and in “Specifying Resources by Item Name” on page 3-45.

Identifi er Purpose

HMCompareltem The Help Manager displays help for the current menu
item only when it matches a specified string.

HMNamedResourceltem The Help Manager displays the help message from the
resource that has the same name as the current menu item.

Listing 3-2 on page 3-35 illustrates the help resource for a menu titled Colors. Notice in
the missing-items component that the element describing dimmed states for menu items
has the message “Not available; either you have not selected text to color, or your
monitor does not support color.” Because this resource doesn’t specify a message for any
individual command’s dimmed state, this message appears in help balloons for the Blue,
Green, and Red commands whenever the application disables them. If there are many
reasons why your application may have dimmed an item, don’t name them all. Instead,
describe one or two of the most likely reasons.

Note

As described in the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials, system software automatically dims your
application’s menus as appropriate whenever an alert box or a
fixed-position modal dialog box appears on the screen. You supply help
messages for menu titles and menu items dimmed by system software
in the third and fourth elements of the menu-title component of the
'hmnu' resource, as described in the next section. If your application
uses movable modal dialog boxes or modeless dialog boxes, your
application must dim its menus as appropriate and provide an alternate
'hmnu' resource for this state, as described in “Providing Help Balloons
for Menus You Disable for Dialog Boxes” beginning on page 3-47. O

Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-2 Rez input for the missing-items component of an'hmnu' resource

resource 'hmnu' (132, "Colors", purgeable) {
/*h eader componen t*/
HelpMgrVersion, hmDefaultOptions, 0, O .
/*m issing-items componen t*/
HMStringltem {
" /*n o missing enabled item s*/
/*h elp messages for all items that app dims are belo
"Not available; either you have not selected "
"text to color, or your monitor does "
"not support color.",
/*n o missing enabled-and-checked item

w*/

s*/

/*n o missing enabled-and-marked item s*/

12

{ /*m enu-title componen t*/

HMStringltem { /*u sethes e P-strings f or help message

/*u se string below when menu is enable d*/
"Colors menu\n\nUse this menu to display text in color."

/*u se string below when app dims menu titl e*/

"Colors menu\n\nUse this menu to display text in color."
"Not available because this monitor does not
support color.” .

/*u se string below when system software dims men

/*t itle for an alert or modal dialog bo X*/

"Colors menu\n\nUse this menu to display text in color. "
"Not available because a dialog box is on the "
"screen."”

/*u se string below for all items when system dim

/*t hem for alert and modal dialog boxe s*/

"Colors your selected text. This item is not "

"available because a dialog box is on the screen.”,

},

[*f irst menu-item component: Blue comman d*/

HMStringltem {/*u se thes e P-strings f or help message

s*

/*u se string below when command is enable d*/

"Displays the selected text in blue.",

/*u se missin g-i tems help when app dims men u*/

", /*¢ an't check command, so use empty string her
/*c¢ an't mark command, so use empty string her

Using the Help Manager

s*/

s*/

e*/
e*/

3-35

Amfrevepy 4oy £

3-36

CHAPTER 3

Help Manager

/*second menu-item component: Green command*/
HMStringltem { /*use these P-strings for help messages*/
[*use string below when command is enabled*/
"Displays the selected text in green.",
[*use missing-items help when app dims menu*/
, /*can't check command, so use empty string here*/
, /*can't mark command, so use empty string here*/

3
/*third menu-item component: Red command?*/
HMStringltem { /*use these P-strings for help messages*/
[*use string below when command is enabled*/
"Displays the selected text in red.",
[*use missing-items help when app dims menu*/
) [*can't check command, so use empty string here*/
, /*can't mark command, so use empty string here*/

3

Specifying Help for Menu Titles and for Items Dimmed by System
Software

After the missing-items component, use the menu-title component to specify the help
messages for the menu title and for menu items dimmed by system software. The
menu-title component consists of the following five elements:

1. Anidentifier (either HMStringltem , HMSTRResltem, HMStringResltem
HMPictltem , HMTEResltem, or HMSkipltem) that indicates the format of the help
messages.

2. The help message for the menu title when the menu title is enabled.
3. The help message for the menu title when your application dims the menu title.

4. The help message for the menu title when system software dims the menu title at the
appearance of an alert box or a modal dialog box.

5. The help message for all menu items when system software dims them at the
appearance of an alert box or a modal dialog box.

As in the missing-items component, use the first element in the menu-title component to
specify an identifier that describes the format for the help messages. Depending on the
identifier you specify, for the other elements you supply either text strings for the help
messages or the resource IDs of resources that contain the help messages. The second,
third, and fourth elements correspond to states of the menu title; the fifth element
corresponds to a state of all the menu items.

Using the Help Manager

CHAPTER 3

Help Manager

Use the second element of the menu-title component to specify a help message that
describes the purpose of the menu when it’s enabled. For menus in the menu bar, the
beginning of the message should name the menu and then concisely describe what kinds
of commands are in the menu, as shown in Figure 3-10. (Listing 3-2 on page 3-35
specifies the menu title—*“Colors menu”—and then includes the special characters \n\n
to specify two new lines in a Rez input file before specifying a description of the menu
itself.)

Figure 3-10 A help balloon for an enabled menu title

Colors renu

Uze this menu to
dizplay text in color.

Because some pull-down menus in the menu bar are identified by icons, not words, offer
additional clarification in your help balloon by always providing a name for pull-down
menus. For pop-up menus, simply describe what the user does with the menu; don’t
give the menu a name.

Use the third element of the menu-title component to specify a help message that
identifies the menu, describes what it does, and then describes why your application has
dimmed the menu title. As much as possible, repeat the text that you use for the title’s
enabled state, then describe why it is not enabled. See Figure 3-11 for an example and see
Listing 3-2 on page 3-35 for the Rez input that specifies the help message for the help
balloon shown in the figure.

Figure 3-11 A help balloon for a dimmed menu title

Colors rmenu

Usze thiz menu to dizplay text
in color. Mot available
because this monitor does not
support color.

In general, you should use the phrase “Not available because” to introduce your
explanation of a dimmed title. If there are several reasons why a menu title might be
dimmed, don’t name them all. Instead, describe one or two of the most likely reasons.

Using the Help Manager 3-37

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Use the fourth element of the menu-title component to specify a help message that
describes why system software has dimmed the menu title—that is, because the user
must respond to an alert box or modal dialog box on the screen. Figure 3-12 illustrates an
appropriate help balloon for this situation.

Figure 3-12 A help balloon for a menu title dimmed by the Dialog Manager

Colors renu

Use thiz menu to display
text in color. Mot
available because a dialog
box iz on the screen.

Starting with system software version 7.0, users have been able to use selected menus
while the screen displays an alert box or a modal dialog box. For example, the Show
Balloons (or Hide Balloons) command is always available from the Help menu so that
users can see your help balloons for the modal dialog box or alert box. While some
menus are accessible (in particular, the Help, Keyboard, and—when appropriate—

Edit menus), others aren’t. The chapter “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials describes the circumstances under which menus are enabled or
disabled when alert boxes and dialog boxes are displayed.

Note

If your application uses movable modal dialog boxes, you must dim your

menus and provide an alternate 'hmnu' resource for this state, as

described in “Providing Help Balloons for Menus You Disable for Dialog

Boxes” beginning on page 3-47. O

Use the fifth element to specify the help message for all menu items whenever system
software dims them because of an alert box or a modal dialog box. Because this message
is used for all items in the menu, it needs to be somewhat general, as shown in

Figure 3-13.

Figure 3-13 A help balloon for menu items dimmed by the Dialog Manager

3-38

Mot available
because a dialog
bos 1= on the
SGreen.

Using the Help Manager

CHAPTER 3

Help Manager

Specifying Help for Menu ltems

After you create the header component, the missing-items component, and the
menu-title component, you specify help messages in a menu-item component for

each menu item. The menu-item components in the 'hmnu' resource must appear in the
order in which their corresponding menu items appear in the menu. (Because of this, if
you have menu items that your application can add while it is running, you should add
these dynamic items to the end of the menu to simplify your implementation of help
balloons for your nondynamic items.)

The menu-item component consists of the following five elements:

1. Anidentifier (either HMStringltem , HMSTRResltem, HMStringResltem
HMPictitem , HMTEResltem, or HMSkipltem) that indicates the format of the help
messages.

. The help message for the menu item when the item is enabled.
. The help message for the menu item when your application dims the item.

. The help message for the menu item when the item is enabled and checked.

[S2 NI~ CC I \]

. The help message for the menu item when the item is enabled and marked with a
character other than a checkmark.

For the first element of each menu-item component, supply an identifier to describe the
format of the help messages in that component. Then, depending on the identifier you
specify, use the other elements of the menu-item component to supply either text strings
for the help messages or the resource 1Ds of resources that contain the help messages.

You can use the HMSkipltem identifier for items that appear in your menu but for
which you don’t provide a help balloon. For example, you can specify HMSkipltem for
divider lines that appear in menus. (Divider lines cannot have help balloons.) If you
specify HMSkipltem , the Help Manager does not display help balloons for that menu
item, even if the missing-items component specifies a help message.

For the second element, specify a help message that describes what the item usually
does. Don’t name the menu item. Begin with a verb describing what happens when the
user chooses the item. For example, the help balloon for the Undo command in an Edit
menu should contain something similar to the information in Figure 3-14.

Figure 3-14 A help balloon for a menu item

Cancels your last action.
Use this cornrnand to
replace material you
have cut ar cleared, or
to remove material you
have pasted or typed.

Using the Help Manager 3-39

Amfrevepy 4oy £

CHAPTER 3

Help Manager

For menu items that display a dialog box, it is usually unnecessary to state that a dialog
box will appear. The fact that a menu item displays a dialog box is not what the user
wants to know; the user wants to know what choosing the menu item ultimately
accomplishes.

For the third element, specify a help message that describes what the menu item does
and why your application has dimmed the item. As much as possible, repeat the text
that you use for the item’s enabled state, and then describe why it is not enabled. In
general, you should use the phrase “Not available because” to introduce your
explanation of the dimmed item. If there are multiple reasons why an item might be
dimmed, don’t name them all. Instead, describe one or two of the most likely reasons.
Figure 3-15 gives an example of a help message for a dimmed Undo command.

Figure 3-15 A help balloon for a dimmed menu item

3-40

Cangels your last action. Use this
cormmand to replace material you
hawve cut or cleared, or to remove
material you have pasted or
typed. Mot available because your
last action did not invalve
cutting, pasting, o typing.

If your application checks or otherwise marks a menu item, use the fourth and fifth
elements of that item’s component in the 'hmnu' resource to describe the special
condition indicated by that state. As with dimmed states, try to repeat the text that you
use for the title’s enabled state, and then describe why it is checked or marked. If there
are multiple reasons why an item might be checked or marked, don’t name them all.
Instead, describe one or two of the most likely reasons.

Note that, for any component in the resource, you can specify only one format for all of
its help messages. For example, if you specify the HMSTRResltem identifier in a
menu-item component for the Undo command, you must store all help messages
specified in that component in'STR ' resources. (However, if you specify a resource ID
of 0 or an empty string as the help message of any item in order to use the help message
from the missing-items component, the help message follows the format specified in the
missing-items component.)

You do not have to provide a help message for every state of a menu item. If you do

not provide a help message for a particular state, the Help Manager uses the help
message specified in the missing-items component. If the missing-items component does
not specify a help message for that state either, the Help Manager does not display a help
balloon.

Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-3 shows a sample 'hmnu' resource for another Edit menu.

Although Listing 3-1 and Listing 3-2 illustrate 'hmnu' resources that contain their own

Pascal-string help messages, you should keep your help messages in separate, more

easily localized resources. The 'hmnu' resource in Listing 3-3 stores its help messages in
a separate 'STR#' resource (which is given a corresponding resource ID of 130 for easier

maintenance).

Listing 3-3 Rez input for corresponding 'hmnu' and 'STR# resources

resource 'hmnu' (130, "Edit menu help”, purgeable) {

HelpMgrVersion, 0, 0, 0 , /*s tandard header componen t*/
HMSkipltem { /*m issing-items componen t*/
/*n o missing items, so skip to menu-title componen t*/
3
{ /*m enu title and items belo w*/
/*m enu-title component*/
HMStringResltem {/*u se an 'STR# for help message s*/
130,1 , /¥ STR# res ID, index when menu is enable
130,2 , /¥ STR#'res ID, index when app dims men
130,3 , /¥ STR#', index for title that syste m */
/*s oftware dims for all alert and moda [*/
/*d ialog boxe s*
130, 4 /¥ STR#', index for items that syste m */
/*s oftware dims for all alert and moda [*/
/*d ialog boxe s*
1
[*f irst menu-item component: Undo comman d*/
HMStringResltem { /*u se' STR# resource for help message
130,5 , /¥ STR#' res ID, index when item is enable
130,6 , /¥ STR# res ID, index when item is dimme
0,0, /*¢ an't check comman d*/
0,0 /*¢ an't mark comman d*/
1
/*s econd menu-item component: divider lin e*/
HMSkipltem { /*n o balloon help for divider line s*/
1
/¥t hird menu-item component: Cut comman d*/
HMStringResltem { /*u se an 'STR#' for help message s*/
130,7 , /¥ STR#'res ID, index when item is enable
130,8 , /¥ STR# res ID, index when app dims ite
0,0, /*¢ an't check comman d*/
0,0 /*¢ an't mark comman d*/
1

Using the Help Manager

s*/

3-41

Amfrevepy 4oy £

CHAPTER 3

Help Manager

/*m enu-item component for Copy command goes her e*/

3

resource 'STR#' (130, "Edit menu help strings") {
/*h elp text for Edit men u*/
{/*a rray StringArray: 17 element s*/
/*[1] help text for enabled Edit menu titl e*/
"Use this menu to cancel your last action, to manipulate "
"text, to select the entire content of a document, "
"and to show what's on the Clipboard." ;
/*[2] help text for Edit menu title dimmed by ap p*/
"Use this menu to cancel your last action, to manipulate "
"text, to select the entire content of a document, "
"and to show what's on the Clipboard. Not "
"available now." ;
/*[3] help text for Edit menu title dimmed by syste m */
/*s oftware for all alert and modal dialog boxe s*
/*t hatdon ' tcontain editable text item s*/
"Use this menu to cancel your last action, to manipulate "
"text, to select the entire content of a document, and "
"to show what's on the Clipboard. Not available "
"because a dialog box is on the screen.” ;

/*[4] help for Edit menu items that system software dim s*

/* for a Il alert and modal dialog boxe s*

/*t hatdon ' tcontain editable text item s*/

"Not available because a dialog box is on the screen.” ;

/*[5] help text for enabled Undo comman d*/

"Cancels your last action. Use this command to replace "
"material you have cut or cleared, or to remove material "
"you have pasted or typed." ;

/*[6] help text for Undo command dimmed by ap p*/

"Cancels your last action. Use this command to replace "
"material you have cut or cleared, or to remove material "
"you have pasted or typed. Not available because your "
"last action did not involve cutting, pasting, "
"or typing." ;

/*h elp text for all other commands goes her e*/

3-42 Using the Help Manager

CHAPTER 3

Help Manager

The 'hmnu’ resource in Listing 3-3 specifies the standard balloon definition function
and variation code in the third and fourth elements of the header component. The
missing-items component is specified using the HMSkipltem identifier, meaning that
this 'hmnu' resource does not provide any help balloons for menu items that are
missing from this resource or that do not have help messages specified for any states.

Following the menu-title component, the menu-item components for the menu items are
listed in the order in which the items appear in the menu. For menu-item components
that do not specify information for a particular state, the Help Manager normally uses
the information from the missing-items component. However, in Listing 3-3 the 'hmnu'
resource does not specify a help message in the missing-items component. Instead, all
help messages are specified in each menu-item component in this resource. Because
there are no enabled-and-checked or enabled-and-marked states for the Undo and Copy
commands, these states are specified with resource IDs of 0.

As described in the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials, system software does not dim your application’s Edit menu when you display
a dialog box that contains editable text items. Listing 3-3 nevertheless provides help
messages for a dimmed Edit menu for those instances when the application displays
alert boxes and dialog boxes that do not contain editable text items.

Specifying Help for a Changing Menu Item

If you have a menu item that changes names, you can use the HMCompareltem

identifier to compare a string against the current menu item in that position. If the string
specified after the HMCompareltem identifier matches the name of the current menu
item, the Help Manager displays the help messages specified in the next four elements of
the 'hmnu' resource. Because of performance considerations, the HMCompareltem
identifier shouldn’t be used unless necessary.

A menu-item component that uses the HMCompareltem identifier uses a different
format than other menu-item components do. Here are the seven elements you use for
specifying help in an 'hmnu' resource for a changing menu item.

1. The HMCompareltem identifier.
2. The string to compare against current menu item.

3. The identifier (either HMStringltem , HMSTRResltem, HMStringResltem
HMPictitem , HMTEResltem, or HMSkipltem) that indicates the format of the help
messages.

. The help message for the menu item when the item is enabled.
. The help message for the menu item when the item is dimmed.

. The help message for the menu item when the item is enabled and checked.

~N O o1 b

. The help message for the menu item when the item is enabled and marked.

Using the Help Manager 3-43

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Create a component that uses the HMCompareltem identifier for every item name that

can appear in a particular menu position. For example, Listing 3-4 shows an ‘hmnu’
resource for a menu command that toggles between Show Colors and Hide Colors.

Note

It is important to provide components for all possible strings that can
appear in the changing item. Also note that if you use the
HMCompareltem identifier for a menu item, you should ensure that the
following menu item has a text string that is different from the one that
the HMCompareltem menu-item component compares against. O

Listing 3-4 Rez input for an 'hmnu' resource that uses HMCompareltem for a changing menu

3-44

item

resource 'hmnu' (132, "Colors menu help", purgeable) {
/*s ee Listing 3-2 for missin g-i tems exampl e*/
/*s ee Listing 3-2 for Colors menu title's help exampl
HMCompareltem { /*h elp message if first command i
/* ¢ alled Show Color s*/
"Show Colors",
HMStringResltem {
132,1 /*e nable d*/
0,0 , /*u se missing item s*/
0,0 , /*i tem can't be checke d*/
0, O /*n o marked stat e*/
3
3

HMCompareltem { /*h elp if the first command i s*
/*c alled Hide Color s*/
"Hide Colors",
HMStringResltem {
132,2 /*e nable d*/
0,0 , /*u se missing item s*/
0,0 , /*i tem can't be checke d*/
0, 0 /*n o marked stat e*/
3
1
/*B lue command's help message s*/
HMStringltem { /*u sethese P - strings for help message
/*u se string below when command is enable d*/
"Displays the selected text in blue.",
", /*u se missin g-i tems help when menu is dimme
" /*c¢ an't check command--use empty string her
" /*c¢ an't mark command--use empty string her

Using the Help Manager

e*/
s*

s*/

d*/
e*/
e*/

CHAPTER 3

Help Manager

} 1
/*s ee Listing 3-2 for other commands' example s*/
}

3

resource 'STR#' (132, "Hide & Show Colors commands help text") {
{
/[1] help text for enabled Show comman d*/
"Shows text in previously selected colors." ;
/*[2] help text for enabled Hide comman d*/
"Show s text in black and white only.";
}

h

As illustrated in Figure 3-16, when the menu command is Show Colors, the Help
Manager displays the help message described by the first HMCompareltem component.
When the menu command is Hide Colors, the Help Manager displays the help message
described by the second HMCompareltem identifier.

Figure 3-16 Help balloons for a changing menu item

Show Colors | Hide Colors |

Shows text in Showrs text
Blue previously Blue in black and
Green selected colors. Green white only .
Red Red

Specifying Resources by Item Name

You can also specify help messages in a component with the HMNamedResourceltem
identifier, which causes the Help Manager to use a resource whose name matches the
name and state of the current menu item. A menu-item component that uses the
HMNamedResourceltem identifier uses a different format than the other menu-item
components do. Here are the two elements you use for specifying named resources as
help messages in an 'hmnu' resource.

1. The HMNamedResourceltem identifier.

2. Aresource type (either 'STR"' ,' PICT' , or, for text, TEXT') that contains the help
messages for the current menu item. If you specify " TEXT' , you also get style
information for the 'TEXT' resource by creating a resource of type 'styl' with the
same name.

Using the Help Manager 3-45

Amfrevepy 4oy £

CHAPTER 3

Help Manager

To provide help for a menu item when it is enabled, create a resource with the same
name as the menu item, then put the help message for the enabled menu item in

this resource. The Help Manager uses the GetNamedResource function to find the
resource—of the type specified in the second element of the menu-item component—that
has the same name as the current menu item.

To provide help for a menu item when it is dim, create a resource with a name consisting
of the menu item and an exclamation point (!), then put the help message for the
dimmed menu item in this resource. When the menu item is dimmed, the Help Manager
appends an exclamation point to the name of the menu item and searches for a resource
by that name. Similarly, if a menu item is enabled and marked with a checkmark or other
mark, the Help Manager appends the mark to the name of the current menu item and
looks for a resource by that name.

For example, the 'hmnu' resource in Listing 3-5 specifies that the Help Manager extracts
the help message from a resource named Red of type 'STR ' when displaying a help
balloon for an enabled menu command named Red. If the menu item is dimmed, the
Help Manager gets the 'STR ' resource with the name Red! and uses its text string for
the help message. If the Red command could be marked with an asterisk (*), the Help
Manager would search for the resource with the name Red* of type 'STR'

3-46

Listing 3-5 Rez input for specifying help messages with named resources
resource 'hmnu’ (132, "Colors menu help", purgeable) {
/*s ee Listing 3-2 for header, missing-items ¥l
/*m enu-title , and m enu-item component s*/
HMNamedResourceltem { /*R ed command's help messag e*/
'STR 'M*u sethe 'STR 'resource named "Red "*/
}
}
2
resource 'STR ' (333, "Red") { /*h elp text for enable d*

/*R ed comman d*/
"Displays the selected text in red."

2
resource 'STR ' (334, "Red!") { /*h elp text for dimme d*/
/*R ed comman d*/
"Not available; either you have not selected text to "
"color, or your monitor does not support color.",
2

Using the Help Manager

CHAPTER 3

Help Manager

Providing Help Balloons for Menus You Disable for Dialog Boxes

The Dialog Manager and the Menu Manager interact to provide various degrees of
access to the menus in your menu bar. For alert boxes and modal dialog boxes without
editable text items, you can simply allow system software to dim your menu titles and
menu items as appropriate. As described in “Specifying Help for Menu Titles and for
Items Dimmed by System Software” beginning on page 3-36, you specify help balloons
for these dimmed menu titles and menu items in the fourth and fifth elements of your
'hmnu' resources’ menu-title components.

However, because system software cannot handle the Undo or Clear command (or any
other context-appropriate command) for you, your application should handle its own
menu bar access for modal dialog boxes with editable text items by performing the
following tasks:

= Use the Menu Manager function Disableltem to disable the Apple menu or the first
item in the Apple menu (typically, your application’s About command) in order to
take control of its menu bar access when displaying a modal dialog box.

= Use the Menu Manager function Disableltem to disable all of your application’s
menus except the Edit menu, as well as any inappropriate commands in the Edit
menu.

= Use the Dialog Manager procedures DialogCut , DialogCopy , DialogPaste , and
DialogDelete to support the Cut, Copy, Paste, and Clear commands in editable text
items.

= Provide your own code for supporting the Undo command.

= Use the Menu Manager function Enableltem to enable your application’s items in
the Help menu as appropriate (system software disables all items except the Hide
Balloons/Show Balloons command).

You don’t need to do anything else for the system-handled menus—namely, Application,
Keyboard, and Help. System software handles these menus for you automatically.

Although it always leaves the Help, Keyboard, and Application menus and their
commands enabled, system software does nothing else to manage the menu bar when
you display movable modal and modeless dialog boxes. Instead, your application
should allow or deny access to the rest of your menus as appropriate to the context. For
example, if your application displays a modeless dialog box for a search-and-replace
command, you should allow access to the Edit menu to assist the user with the editable
text items, and you should allow use of the File menu so that the user can open another
file to be searched. However, you should disable other menus if their commands cannot
be used inside the active modeless dialog box.

Using the Help Manager 3-47

Amfrevepy 4oy £

3-48

CHAPTER 3

Help Manager

When creating a modeless dialog box, your application should perform the following
tasks:

= Use the Menu Manager function Disableltem to disable only those menus whose
commands are invalid in the current context.

= If the modeless dialog box includes editable text items, use the Dialog Manager
procedures DialogCut , DialogCopy , DialogPaste , and DialogDelete to
support the Cut, Copy, Paste, and Clear commands in editable text items.

= Enable your application’s items in the Help menu, as appropriate. (System software
disables all items except the Hide Balloons/Show Balloons command.)

When your application creates a movable modal dialog box, it should perform the
following tasks:

= Leave the Apple menu enabled so that the user can open other applications with it.

= If your movable modal dialog box contains editable text items, leave the Edit menu
enabled but use the Dialog Manager procedures DialogCut , DialogCopy
DialogPaste , and DialogDelete to support the Cut, Copy, Paste, and Clear
commands.

= Use the Menu Manager function Disableltem to disable all of your other menus.

See the chapters “Menu Manager” and “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information about menus, alert boxes, and dialog boxes.

When you use the Menu Manager function Disableltem to dim your menus, the Help
Manager does not know that you have dimmed them because you’re displaying a dialog
box; instead, the Help Manager assumes that you’ve dimmed them for some other
reason. Whenever you dim your own menus—for whatever reason—the Help Manager
always uses the second element of your menu-title component and the second elements
of your menu-item components.

To provide help messages that explain that the menu and its items are dim because your
application dimmed them to display a dialog box, you must use an alternate 'hmnu'
resource.

For example, if an application were to allow only one document at a time to be opened, it
would dim the New command in the File menu whenever a document were open. The
second element of that item’s component specifies a help message similar to this.

/*h elp message for dimmed New comman d*/

" Opens a new SurfWriter document called \"Untitled\". "

" Not available now because a SurfWriter document is "

" already open. (SurfWriter can open only one document "
"atatime.)";

This is not an appropriate message for the item’s help balloon when the application
displays a modal dialog box that contains an editable text item—~but unless the
application changes the 'hmnu' resource for its File menu, this is the message that the
Help Manager displays.

Using the Help Manager

CHAPTER 3

Help Manager

To handle those menus that you dim for dialog boxes, your application must use
alternate 'hmnu' resources. In an alternate 'hmnu’ resource, use the second element of
the missing-items component and the second element of the menu-title component to
specify help balloons for the menu’s dimmed title and all of its dimmed items, as shown
in Listing 3-6.

Listing 3-6 Specifying an alternate 'hmnu' resource for a menu that your application

disables when it displays movable modal dialog boxes

resource '‘hmnu' (kFileHelpID, purgeable)
{ [*u se this when my app lication dims the menu to displa y */
/*am odal dialog bo x with editable text items*/

/*h eader componen t*/
HelpMgrVersion, hmDefaultOptions, 0, 0 ,

/*m issing-items componen t*/
HMStringResltem {
0,0 , /*m issing enabled items: not applicabl e*/
/*b ecause they're all di m*/
256,1 , /*u se this help string for all dimme d*
/*m enu items--they're all missing fro m */
/¥t hisresourc e*/
0,0 , /*m issing enable d-a nd-c hecked items: no t*/
/*a pplicable because they'd be dimme d*/
0,0 , /*m issing enable d-a nd-marked items: no t*/
/*a pplicable because they'd be dimme d*/
1
/*m enu-title componen t*/
{ I*F ile menu title help when dimmed for a movable moda I*/
HMStringResltem {
0,0 , /*n o enabled title: it's dimme d*/
256,2 , /*u se this help string for menu titl e*
/*d immed for a movable modal dialo g*/
0,0 , /*H elp Manager doesn't look here fo r*/
/*m ovable modal dialog s*/
0,0 , /*H elp Manager doesn't look here fo r*/
/*m ovable modal dialog s*/
3
} /*u se missin g-i tems info for all dimmed menu item s*/
1
r esource 'STR#' (256, "help messages for dimmed menus") {
/*us e these when my app lication dims menus to show a*/
/*modald ialogbo x*/
{
/*[1] Dimmed items help tex t*/

Using the Help Manager 3-49

Amfrevepy 4oy £

CHAPTER 3

Help Manager

"Not available now because a dialog box is on "

"the screen."

/*[2] help message for dimmed File menu titl e*/
"File menu\n\nUse this menu to open, close, save, and prin t"
"SurfWriter documents, and to quit SurfWriter. "

"Not available because a dialog box is on the screen."

/*[3] help message for dimmed Tools menu titl e*/

"Tools menu\n\nUse this menu to ... " /*m ore text goes her e*/
"Not available because a dialog box is on the screen." ;

/*h elp messages for other dimmed menu titles go her e*/

3

Use the HMSetMenuResID function to associate alternate 'hmnu' resources with your
menus whenever your application displays a movable modal dialog box. Listing 3-7
illustrates how an application disables its menus and then reassigns them appropriately,
using alternate 'nmnu’ resources before displaying a dialog box.

Listing 3-7 Reassigning 'hmnu' resources before displaying a movable modal dialog box

PROCEDURE MyAdjustMenusForDialogs;

VAR
window: WindowPtr ;
windowType: Integer ;
nyErr: OSErr;
menu: MenuHandle;
BEGIN
window := FrontWindow;

windowType := MyGetWindowType(window);
CASE windowType OF

kMyModalDialogs:
BEGIN
menu := GetMenuHandle(mApple); {get handle to Apple menu}

3-50

IF menu = NIL THEN
EXIT(MyAdjustMenusForDialogs);

Disableltem(menu, 0); {disable Apple menu to get control of menus}
myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}
menu := GetMenuHandle(mFile); {get handle to File menu}

IF menu = NIL THEN
EXIT(MyAdjustMenusForDialogs);
Disableltem(menu, 0); {disable File menu}
myErr := HMSetMenuResID(mFile, kFileHelpID); {set up help balloons}
IF myErr <> NoErr THEN
EXIT(MyAdjustMenusForDialogs);

Using the Help Manager

CHAPTER 3

Help Manager

menu := GetMenuHandle(mTools); {get handle to Tools menu}
IF menu = NIL THEN
EXIT(MyAdjustMenusForDialogs);
Disableltem(menu, 0); {disable Tools menu}
myErr := HMSetMenuResID(mTools, kToolsHelpID); {help balloons}
IF myErr <> NoErr THEN
EXIT(MyAdjustMenusForDialogs);
MyAdjustEditMenuForModalDialogs;
END; {of kMyModalDialogs CASE}
kMyGlobalChangesModelessDialog:
; {adjust menus here as needed}
kMyMovableModalDialog:
; {adjust menus here as follows: }
{ diable all menus except Apple, }
{ call MyAdjustEditMenuForModalDialogs for editable text items}
END; {of CASE}
END;

The MyAdjustMenusForDialogs routine in Listing 3-7 first determines what type of
dialog box is in front: modal, movable modal, or modeless. For modal dialog boxes,
MyAdjustMenusForDialogs disables the Apple menu so that the application can take
control of its menus away from the Dialog Manager. The MyAdjustMenusForDialogs
routine then uses the Menu Manager routines GetMenuHandle and Disableltem to
disable all other application menus except the Edit menu.

To adjust the items in the Edit menu, MyAdjustMenusForDialogs calls another
application-defined routine, MyAdjustEditMenuForModalDialogs . The
MyAdjustEditMenuForModalDialogs routine, which is not shown in this volume,
uses application-defined code to implement the Undo command; uses the Menu
Manager procedure Enableltem to enable the Cut, Copy, Paste, and Clear commands
when appropriate; and disables the commands that support Edition Manager
capabilities.

After removing a dialog box from the screen, enable the appropriate menus again and
use the HMSetMenuResID function to reassociate your original help balloons with the
reenabled menus. (You can pass -1 to the HMSetMenuResID function to remap menus to
their previous'hmnu' resources.)

Providing Help Balloons for Items in Dialog Boxes and
Alert Boxes

For dialog boxes and alert boxes defined with item list (‘DITL") resources, you can
provide help balloons for individual items in the dialog box or alert box by supplying a
resource of type'hdlg’ (dialog-item help). When an item has a help balloon associated
with it, the Help Manager automatically displays and removes the help balloon as the
user moves the cursor into and out of the item’s display rectangle. The Help Manager

Using the Help Manager 3-51

Amfrevepy 4oy £

3-52

CHAPTER 3

Help Manager

can display different help balloons for various states of an item—by highlight value if
the item is a control, and by enabled and disabled states for items that are not controls.

Note

BalloonWriter, available from APDA, gives nonprogrammers an easy,
intuitive way to create help balloons for dialog and alert boxes.
BalloonWriter creates 'hdlg' resources as appropriate and places them
in the resource file of your application; BalloonWriter likewise creates
and stores'STR ' ,'STR#' ,and 'TEXT' resources that contain the
help messages authored by nonprogramming writers. 0O

You can also provide help balloons for other areas of a dialog box or alert box using the
'hwin' (window help) resource as described in “Providing Help Balloons for Static
Windows” on page 3-65.

To create help balloons for items in dialog boxes or alert boxes, create an 'hdlg’
resource that corresponds to an item list resource. You associate the information defined
in the 'hdlg’ resource to the alert or dialog box in one of three ways:

» by adding an item of type Helpltem to the item list resource
= by supplying a resource of type ‘hwin'
= by calling the HMScanTemplateltems function from your application

The 'hdlg® resource specifies the tip, the alternate rectangle, and help messages for
items in a dialog box or alert box. The item list resource describes the items, and, if it
includes an item of type Helpltem , it can contain the resource ID of a corresponding
'hdlg' resource. The Help Manager uses the display rectangles defined in the item list
resource as the hot rectangles for the items. The Help Manager uses the alternate
rectangles specified in the 'hdlg' resource for transposing help balloons’ tips when
trying to fit the balloons onscreen.

For those items designated in the 'hdlg’ resource, the Help Manager automatically
tracks the cursor and displays help balloons when the following conditions are met: the
dialog or alert box has an item of type Helpltem in its item list resource; your
application calls the Dialog Manager routine ModalDialog , IsDialogEvent
NoteAlert , StopAlert , CautionAlert , orAlert ;and help is enabled.

If the cursor passes over any active windows, including dialog or alert boxes, the Help
Manager sear ches the current resource file for resources of type 'hwin' (described in
“Providing Help Balloons for Static Windows” on page 3-65). The Help Manager
attempts to match either the title of the window or the windowKind value in its window
record with the title or windowKind value specified in an'hwin' resource. The
matched 'hwin' resource, in turn, specifies the resource ID of an'hdlg" or 'hrct’
(rectangle help) resource that contains the relevant help message. (The 'hrct' resource
is described in “Providing Help Balloons for Static Windows” on page 3-65.) As
described in “Providing Help Balloons for Window Content” on page 3-63, the 'hwin’
resource can provide help for various other interface features across the entire window
as well as for items in a dialog box or an alert box.

If you prefer, you can track and display help balloons for modal dialog boxes and alert
boxes yourself by using an event-filter function and calling the HMScanTemplateltems

Using the Help Manager

CHAPTER 3

Help Manager

function. Using HMScanTemplateltems requires you to modify your code. For further
information on HMScanTemplateltem s, see “Setting and Getting Information for Help
Resources” beginning on page 3-114.

As shown here, a Rez input file for an 'hdlg' resource contains a header component, a
missing-items component, and dialog-item components.

Component
Header

Missing items

First dialog item

Next dialog item

Last dialog item

Element

Help Manager version

Index number of starting item (first item is number 0)
Options

Balloon definition function

Variation code

Tip’s coordinates

Alternate rectangle

Identifier for help messages

Help message for missing, unselected active controls (that is, those
with highlight values of 0), or for missing enabled items that are
not controls

Help message for missing dimmed controls (that is, those with
highlight values of 255), or for missing disabled items that are not
controls

Help message for missing active controls that are “on” (that is,
those with highlight values of 1)

Help message for missing active controls with highlight values
other than 0, 1, and 255

Tip’s coordinates
Alternate rectangle
Identifier for help messages

Help message for an active, unselected control (that is, one with a
highlight value of 0), or for an enabled item that is not a control

Help message for a dimmed control (that is, one with a highlight
values of 255), or for a disabled item that is not a control

Help message for an active control that is “on” (that is, one with a
highlight value of 1)

Help message for an active control with a highlight value other
than 0, 1, and 255

(Same as for first dialog item)

(Same as for first dialog item)

Using the Help Manager 3-53

Amfrevepy 4oy £

3-54

CHAPTER 3

Help Manager

As described in greater detail later, the way the Help Manager interprets many of the
elements depends on whether the item it describes is a control, such as a checkbox or
radio button, or something else, such as static text or an icon.

Specifying Header Information for the 'hdlg' Resource

Use the header component to specify the Help Manager version number, the starting
index, options, the balloon definition function, and the variation code. As in the other
help resources, specify the HelpMgrVersion constant for the first element of the header
component of the 'hdlg’ resource.

You use the second element to associate the help messages beginning at any item
number and then continuing sequentially through the item list (‘'DITL") resource. To
derive an item number to start from, the Help Manager adds the index number you
specify for this element to the number of the first item in the item list resource. Thus,
index number 0 starts with the item number 1 in the item list resource (because 0 plus 1
equals 1). For example, to describe help messages for only the fifth through seventh
items, specify 4 as the starting index in the header component and, because 4 plus 1
equals 5, provide help messages that start with the fifth and proceed through the sixth
and seventh items.

For the options element, specify a constant (normally, hmDefaultOptions) or the sum
of several constants’ values from this list. (These options are described in “Specifying
Options in Help Resources” beginning on page 3-25.)

CONST hmDefaultOptions =0; {use defaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmAbsoluteCoords =2; {ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}

hmSaveBitsNoWindow =4; {don't create window; save }
{ bits; no update event}
hmSaveBitsWindow =8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the fourth
and fifth elements of the header component. (These are described in detail in “Specifying
Header Information for the 'hmnu' Resource” beginning on page 3-32.)

Specifying Missing-ltem Information

Following the header component, you can specify the help message for items that are
missing from the 'hdlg" resource or that are present but have no help messages defined
for a particular state. (The function of the missing-items component of the 'hdlg'
resource is similar to that of the missing-items component of the 'hmnu' resource. For
details, see “Specifying Help for Menu Items Missing From the Resource” beginning on
page 3-33.)

Using the Help Manager

CHAPTER 3

Help Manager

In the missing-items component, use the first element to specify a set of tip coordinates
and use the second element to specify an alternate rectangle. Both specifications apply to
the help messages specified in the other elements of this component.

The tip’s coordinates are always relative to the item’s position in the dialog box. If you
specify the point (0,0) as a default tip, then it is placed 10 pixels from the right and 10
pixels from the bottom of the item’s rectangle (as specified in the item list resource) for
all missing items. To move the missing item’s tip relative to this default location, you can
specify positive or negative integers in place of the coordinates (0,0).

If you want an alternate rectangle that is either larger or smaller than a display rectangle,
use the missing item’s alternate rectangle to specify offsets that apply to the display
rectangles for all items in the dialog box. (Remember that the alternate rectangle is used
by the Help Manager for transposing the tip if a help balloon does not fit onscreen.) The
Help Manager adds the top, left, bottom, and right offsets to the coordinates of an item’s
display rectangle. For example, if you specify (0,0,0,0) as the missing item’s alternate
rectangle offsets, the Help Manager uses the display rectangles as alternate rectangles for
all missing items. You can specify positive or negative integers for these offsets to move
an alternate rectangle’s coordinates relative to a display rectangle’s coordinates.

Use the third element of the missing-items component to supply one of these identifiers:
HMStringltem , HMSTRResltem, HMStringResltem , HMPictitem , HMTEResltem,
or HMSkipltem , described in “Specifying the Format for Help Messages” on page 3-23.
In the remaining four elements of this component, supply the help messages for items
in the item list resource that do not otherwise have help messages specified in this

'hdlg’ resource. You can supply either text strings for the help messages or the
resource IDs of resources that contain the help messages.

When displaying help balloons for a control, the Help Manager examines the highlight
value in the contrlHilite field of the control record. An active control that is not
selected by the user has a highlight value of 0. Specify a help message for all missing
highlighted controls in the fourth element of the missing-items component of the

'hdlg’ resource.

An inactive—that is, dimmed—control has a highlight value of 255. Specify a help
message for all missing dimmed controls in the fifth element of the missing-items
component.

Note

Don’t confuse a disabled item with an inactive control. When you don’t
want the Control Manager to display visual responses to mouse events
in a control, you make it inactive by using the Control Manager
procedure HiliteControl . When you don’t want the Dialog Manager
to report events involving an item in a dialog box, you mark it

disabled in the item list resource. The Dialog Manager makes no
visual distinction between disabled and enabled items. See the chapters
“Control Manager” and “Dialog Manager” in Inside Macintosh: Macintosh
Toolbox Essentials for more information. O

Using the Help Manager 3-55

Amfrevepy 4oy £

3-56

CHAPTER 3

Help Manager

When, as with checkboxes and radio buttons, the user turns on an on-and-off control,
the control has a highlight value of 1. Specify a help message for all missing, active, “on”
controls in the sixth element of the missing-items component.

In addition to the values 0, 1, and 255, multipart controls—such as scroll bars—can also
take highlight values between 2 and 253, signifying the part code for the part of the
control that has been selected by the user. However, you can specify only one message
for all possible highlight values that a control might have other than 0, 1, and 255. You
can use the seventh element of the missing-items component to specify this message for
missing controls.

The following section offers guidelines about what sorts of messages to provide for
different types of controls according to their states. For more detailed information about
controls, see the chapter “Control Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

When displaying help for items that are not controls, the Help Manager examines only
whether the item is enabled or disabled, as specified in the item list resource. For an
enabled item (other than a control), you specify a help message in the fourth element of
its component in the 'hdlg’ resource. In the fifth element, you specify the help message
for the item when it is disabled. The sixth and seventh elements apply only to controls.
You should supply these elements with either empty strings or resource I1Ds of 0,
depending on the format indicated by the identifier you specified in the third element of
the component.

Specifying Help for Items in an Alert or Dialog Box

After the missing-items component, create dialog-item components that specify help
messages for the individual items. The first dialog-item component must relate to the
item number indexed in the header component; list the remaining dialog-item
components in the same order in which they appear in the item list resource. (See the
chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
information on the item list resource.)

Use the first element of a dialog-item component to specify the coordinates of the help
balloon’s tip for that item. Use coordinates local to the item’s display rectangle (which is
specified in the item list resource) to specify the tip. You can specify (0,0) to place the tip
10 pixels from the right and 10 pixels from the bottom of the item’s display rectangle.

Use the second element of a dialog-item component to specify an alternate rectangle for
the item. Note that you cannot specify hot rectangles—only alternate rectangles—in an
'hdlg' resource. This is because the Help Manager uses the display rectangles specified
in the item list resource as the hot rectangles for help balloons. (If you must specify hot
rectangles that are different from the items’ rectangles, use the 'hrct' resource as
described in “Specifying Help for Rectangles in Windows” on page 3-67.) You can,
however, specify alternate rectangles in 'hdlg’ resources that are different from the
display rectangles defined in the item list resource. Alternate rectangles give you
additional flexibility in positioning your help balloons onscreen. If you make your
alternate rectangle smaller than the display rectangle, for example, you have greater
assurance that the Help Manager will be able to fit the help balloon onscreen; if you

Using the Help Manager

CHAPTER 3

Help Manager

specify an alternate rectangle that is larger than the display rectangle, you have greater
assurance that the help balloon will not obscure some important portion within the
display rectangle.

Specify offsets from the item’s display rectangle if you want an alternate rectangle that is
different from the display rectangle. The Help Manager adds the top, left, bottom, and
right offsets that you specify to the coordinates of the item’s display rectangle. For
example, if you specify (0,0,0,0) as the alternate rectangle’s offsets, the Help Manager
uses the item’s display rectangle as its alternate rectangle. You can specify positive or
negative integers for these offsets to move the alternate rectangle’s coordinates relative
to the display rectangle’s coordinates.

Use the third element of a dialog-item component to supply one of these identifiers:
HMStringltem , HMSTRResltem, HMStringResltem , HMPictitem , HMTEResltem,
or HMSkipltem , described in “Specifying the Format for Help Messages” on page 3-23.
Note that in any one dialog-item component in the resource, you can specify only one
format for all help messages.

The remaining elements in a dialog-item component specify help messages for the
related item. As previously described in “Specifying Missing-ltem Information” on
page 3-54, the Help Manager uses these elements differently according to whether the
item is or is not a control. For elements four through seven in a dialog-item component,
supply either text strings for the help messages or the resource 1Ds of resources that
contain the help messages.

You do not have to provide a help message for every state of an item. If you do not
provide a help message for a particular state, the Help Manager uses the help message
specified in the missing-items component. If the missing-items component does not
specify a help message for that state, then the Help Manager does not display a help
balloon for that state of that item.

In your help balloons for buttons, use the construction “To [perform action], click this
button.” For example, the help message for the OK button in a Spell Check dialog box
should state something similar to “To check the spelling of this document with the
options you’ve chosen, click this button.”

For an unselected radio button or checkbox, use the fourth element of the corresponding
dialog-item component to describe what happens when the user selects the button or
checkbox. For example, an unselected radio button titled “Left” might have a help
balloon that states, “To align all text along the left margin of the document, click this
button.”

For a selected radio button (that is, one that is “on”), use the sixth element of the
corresponding dialog-item component to describe what the selected button does,
beginning with a verb. At the end of the message, state that the button is selected. For
example, a selected radio button titled “Left” might have a help balloon that states,
“Aligns all text along the left margin of the document. This option is selected.”

For a selected checkbox (that is, one that is “on”), use the sixth element of the
corresponding dialog-item component to describe what the selected checkbox does, then
describe how to turn off the option. For example, a selected checkbox titled “On Line”

Using the Help Manager 3-57

Amfrevepy 4oy £

3-58

CHAPTER 3

Help Manager

might have a help balloon that states, “Your Macintosh is connected to a remote
computer. To disconnect, click this box.”

For a radio button or a checkbox that is dimmed, use the fifth element of the
corresponding dialog-item component to describe what it does when it is selected. Use a
sentence fragment that begins with a verb. Then explain why the radio button or
checkbox is not available. For example, a dimmed radio button titled “Left” might have
a help balloon that states, “Aligns all text along the left margin of a document. Not
available because no documents are open.”

For an editable text item in a dialog box, use the word “here” in your help message

to describe the item. Explain what type of information the user should enter, but don’t
describe standard Macintosh editing procedures. For example, an editable text item
identified by static text reading “Name” might have a help balloon that states, “Type
your name here.” Since an editable text item is typically disabled, you’ll use the fifth
element of that item’s component to specify a help balloon.

Since users typically don’t interact with your static text items, you generally shouldn’t
provide them with help balloons.

You can use the HMSkipltem identifier for an item for which you do not want to
provide help. If you specify HMSkipltem , the Help Manager does not display help
balloons for that item, even if the missing-items component specifies a help message.

In most cases, you should try to describe only the item the balloon is pointing to. It may
be tempting to discuss the relationships among items, but this much information can
become complex and difficult to read. Remember that the user can point at other items to
find out what they are. For example, a button titled “Print” might have a help balloon
that states, “To print the document with the options you’ve chosen, click this button.” Do
not complicate the message with information like “To print the number of copies of the
document that you’ve selected to the left, using the printer named at the top of this
dialog box,” and so on.

Listing 3-8 shows a sample dialog-item help resource along with its associated item list
and string list resources.

Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-8

Rez input for an item list resource and an 'hdlg’'

resource

resource 'DITL' (145, "Spelling options", purgeable) {

{ {124,194, 144, 254},

Button {
enabled,
"OK"
3
{48, 23, 67, 202},
CheckBox {
enabled,
"Ignore Words in All Caps"
3
{83, 23, 101, 196},
CheckBox {
enabled,
"Ignor e Slang Terms "
3
{13, 23, 33, 254},
StaticText {
disabled,
"WipeOut typing correction options:"
1
/*i tem for Cancel button goes her e*/
{0,0,0,0} , /*f or help balloon: scan 'hdlg" wit
/*r eslID14 5%
Helpltem {
disabled,
HMScanhdl g /*s can resource type 'hdlg */
{145 } /*g et the resource with ID 14
}

b

r esource 'hdlg' (145, "Spell options help", purgeable)

/*h eader componen t*/

HelpMgrVersion [*v
0, *s
hmDefaultOptions /*o
0, I*b
3, *v
/*m issing-items componen

HMSkipltem { /*n

3
{ *h

Using the Help Manager

ersion of Help Manage r*/
tart help with first item in 'DITL
ption s*/

alloon definition | D*/
ariation code: hang left of item
t*/

o0 missin g-i tems help message

elp messages for item s*/

5*/

-*/

s*/

s*/

3-59

Amfrevepy 4oy £

3-60

CHAPTER 3

Help Manager

/*f irst dialog-item component: OK butto n*/
HMStringResltem {/*s tore help messages in 'STR#' 14 5%/
{10, 10}, [*placet i pinside lefte dge o f button*/
{0,0,0,0} , /*d efault alternate rectangle: us e*/
/*d isplay rectangl e*/

145,1 /*e nabled OK butto n*/

0,0 , /*O K button is never dimme d*/

0,0 , /*n o enabled-and-checked state fo r*/
/*b utto n*

0, 0 /*n o other marked states for butto n*/

}

/*s econd dialog-item component: All Caps ¢ heckbox*/

HMStringResltem { /*s tore help messages in 'STR#' 14 5%/
{6,6} , /*p lace tip in checkbo X*/

{0,0,0,0} , /*d efault alternate rectangle: us e*
/*d isplay rectangl e*/
145, 2 /*h ighlighted state of checkbo X*/
145,3 /*d immed state of checkbo x*/
145, 4 /*c¢ heckbox is checke d*/
0, 0 /*n ot applicable to this contro I*/
1
/*t hird dialog-item component :SI ang Terms checkbo x*/

HMStringResltem { /*s tore help messages in 'STR#' 14 5%/

{6,6} , /*p lace tip in checkbo X*/
{0,0,0,0} , /*d efault alternate rectangle: us e*/
/*d isplay rectangl e*/
145,5 /*h ighlighted state of checkbo X*/
145,6 /*d immed state of checkbo X*/
145,7 /*c heckbox is checke d*/
0, 0 /*n ot applicable to this contro I*/
}

/*d ialog-item component for Cancel button goes her

b
r esource 'STR#' (145, "Spell options help text") {
{

A1)

"To check the spelling of this document with the "
"optionsyou ' ve ch osen, click this button."

M 21

"To prevent the spelling checker from tagging "

"word s--s uch as acronyms--that consist entirely "

"of capital letters, click this option."

Using the Help Manager

e*/

CHAPTER 3

Help Manager

M 31
"Prevents the spelling checker from tagging "
"word s--s uch as acronyms--that consist entirely "
"of capital letters. Not available until *;
"you install the main dictionary." ;
M 41
"The spelling checker is not tagging "
"word s--s uch as acronyms--that consist entirely "
"of capital letters. Click here to make the ";
"spelling checker tag such words." ;
¥ 51
"To prevent the spelling checker from tagging words "
"considered to b e s lang , c lick this option." ;
T 6%
"Prevents the spelling checker from tagging "
"words considered to b es lang."
"Not available until you install the slang dictionar y.";
LT
"The spelling checker is not tagging "
"words considered to b es lang."
"Click here to make the spelling checker tag such words.
/*h elp strings for Cancel button go her e*/

3

The'hdlg' resource in Listing 3-8 specifies help messages for the first three items in the
item list resource. Figure 3-17 shows the Help Manager displaying a help balloon for the

second item.

Figure 3-17 A help balloon in a modal dialog box

WipeOut typing correction options:

Ignore Words in All Caps
To prevent the spelling

checker from tagging
words——such as (] 1gnore Slang Terms

acronyrms-—that consist
entirely of capital

letters, click this option. Cancel Spell Check

Using the Help Manager

3-61

Amfrevepy 4oy £

3-62

CHAPTER 3

Help Manager

Adding a Help Item to an Item List Resource

In Listing 3-8 on page 3-59, an item of type Helpltem is included in the item list
('DITL") resource. This item isn’t visible to the user; it’s provided so that the Help
Manager can find the 'hdlg" or 'hrct' resource in which you’ve specified the help
messages for your dialog box or alert box.

When creating a help item in an item list resource, specify an empty rectangle—that is,
one with coordinates (0,0,0,0)—for the item’s display rectangle. Specify Helpltem for
the item’s type, and specify disabled for the item’s state. Then, specify one of these
three identifiers:

Identifi er Purpose

HMScanhdlg For the items in an item list resource, the Help Manager
displays the help messages specified inan' hdlg' resource.

HMScanAppendhdig For the items in one item list resource that are appended to
those in another item list resource, the Help Manager
displays help messages specified inan' hdlg" resource.

HMScanhrct For rectangular areas in the dialog box or alert box, the Help
Manager displays help messages specified in an" hrct'
resource.

If you specify help messages for your dialog box or alert box in an 'hdlg’ resource, use
either the HMScanhdlg or the HMScanAppendhdlg identifier. Use the
HMScanAppendhdlg identifier, however, only when you use the Dialog Manager
procedure AppendDITL to append the item list resource to another item list resource.
The AppendDITL procedure is useful, for example, when adding your own items to the
standard file dialog box or print dialog box. When you use the AppendDITL procedure
to add items to an existing dialog box or alert box, the HMScanAppendhdlg identifier
allows you to provide help balloons for the new items in addition to those balloons
already provided for the dialog box or alert box. See the chapter “Dialog Manager” in
Inside Macintosh: Macintosh Toolbox Essentials for more information on the AppendDITL
procedure.

As described in “Specifying Help for Rectangles in Windows” on page 3-67, you can also
use the 'hrct' resource to specify help balloons for areas of your dialog box or alert
box. If you specify help messages for a dialog box or alert box in an 'hrct' resource,
you can use the HMScanhrct identifier in the help item of the box’s item list resource.

Conclude a help item by specifying the resource ID of the 'hdlg" or'hrct’ resource
that provides the help messages for the dialog box or alert box.

Using the Help Manager

CHAPTER 3

Help Manager

Using a Help Item Versus Using an 'hwin' Resource

Adding an item of type Helpltem to an item list resource is the simplest method of
associating the help balloons defined in your 'hdlg’ (or'hrct') resource with the
item list resource. A slightly more involved method requires you to create an 'hwin'
(window help) resource. The advantages and disadvantages of the two methods are
listed here.

The advantages of adding an item for help to the item list resource are that
» it’s simple (you have to create only one resource, the 'hdlg" or 'hrct' resource)

= it works for dialog boxes or alert boxes that have no titles and for those whose
windowKind values do not adequately differentiate them from other windows
(the windowKind field of window records is described in the chapter “Window
Manager” in Inside Macintosh: Macintosh Toolbox Essentials)

The disadvantage of adding an item for help to the item list resource is that it allows you
to associate help balloons only with items listed in the item list resource.

The advantages of using 'hwin' (window help) resources are that

= you can provide a single help balloon for a group of related items (rather than having
separate help balloons for all the items)

= you can provide help balloons for areas instead of items inside the dialog box or alert
box

The disadvantages of using 'hwin' resources are that

= it’s slightly more complex, because you must create an ‘hwin' resource in addition to
either an 'hdlg ' or an'hrct' resource

= it works only for dialog boxes and alert boxes that have titles or windowKind values
that differentiate them from other windows in your application

Using the 'hwin' resource requires treating the dialog box or alert box as a static
window. When the cursor passes over an active window, the Help Manager attempts to
match either the title of the window or the windowKind value (from its window record)
with a title or windowKind value you specify in an'hwin' resource. “Associating Help
Resources With Static Windows” beginning on page 3-68 describes how to use

‘hwin' resources for dialog boxes, alert boxes, and other kinds of static windows you
may wish to define.

Providing Help Balloons for Window Content

You can create help balloons for objects within the content area of your windows. How
you choose to provide help balloons for the content area of your windows depends
mainly on whether your windows are static or dynamic.

A static window doesn’t change its title or reposition any of the objects within its
content area. Adynamic window can reposition any of its objects within the content
area, or its title may change.

Using the Help Manager 3-63

Amfrevepy 4oy £

CHAPTER 3

Help Manager

For example, any window that scrolls past areas of interest to the user is a dynamic
window, because the objects with associated help balloons can change location as the
user scrolls. Awindow that displays only a picture that cannot be resized or scrolled is
an example of a static window. Figure 3-18 shows examples of static and dynamic
windows. “Providing Help Balloons for Static Windows” beginning on page 3-65,
“Associating Help Resources With Static Windows” beginning on page 3-68, and
“Providing Help Balloons for Dynamic Windows” beginning on page 3-74 describe how

to provide help balloons for these types of windows.

Figure 3-18

3-64

Static and dynamic windows

Static windoe

Alex

Groups:

File Sharing
e

E allow user to connect
E Allow user to change password
E Allow user to see entire disk

P

@ Program Link
L—lleow uzet to likn programs

on this Macintosh

T et this user Tink his or her
programs with shared programs
on this computer, check this box.
Prograrn linking roust be turned an
in the Sharing Setup control panel
before the user can link
progranns.

Dynamic window S0

Users & Groups =8I=

4 itern=

58.7 MB in dizk

181 ME a

E

Alex

Using the Help Manager

E

<Guestr

ifd
Sha

User

fou zan share folders, disks, and
programs with this user by
choosing the Sharing cormmand in
the File menu. To set or wiew
connection information for this
user, open this icon.

CHAPTER 3

Help Manager

Providing Help Balloons for Static Windows

To provide help balloons for the static windows of your application without modifying
its code, create a resource of type 'hwin' (window help) and additional resources of
type ‘hrct’ (rectangle help) or 'hdlg’ (dialog-item help). With these resources, the
Help Manager automatically tracks the cursor and displays and removes help balloons
as the cursor moves into and out of the hot rectangles associated with these resources.

The 'hwin' resource allows you to associate 'hrct' and'hdlg’ resources with your
static windows. You use the 'hrct’ and'hdlg’ resources to define help balloons for
the individual objects within your windows. While the Help Manager uses the display
rectangles defined in the item list resource as the hot rectangles for 'hdlg’ resources,
you can specify your own hot rectangles for alert boxes and dialog boxes and other static
windows by using ‘hrct' resources.

Note

BalloonWriter gives nonprogrammers an easy, intuitive way to create
help balloons for static windows and dialog and alert boxes.
BalloonWriter creates 'hdlg" |, 'hwin' , and 'hrct' resources as
appropriate and places them in the resource file of your application;
BalloonWriter likewise creates and stores'STR' |, 'STR#' , and 'TEXT'
resources that contain the help messages authored by nonprogramming
writers. O

You use an 'hrct' resource to specify tip coordinates, hot rectangles, balloon definition
functions, variation codes, and help messages for areas within a static window.

As explained in “Providing Help Balloons for Items in Dialog Boxes and Alert Boxes” on
page 3-51, you use the 'hdlg' resource to specify the tip, alternate rectangle, and help
messages for items in an alert box or dialog box. “Using a Help Item Versus Using an
'hwin' Resource” on page 3-63 describes how to associate either an 'hdlg’ oran

‘hret' resource with an alert box or a dialog box by adding an item of type Helpltem
to the box’s item list resource. This section describes how you can instead treat your
dialog boxes or alert boxes as static windows and use an 'hwin' resource instead of
Helpltem items to associate 'hdlg’ and 'hrct' resources with the boxes.

The ' hwin' resource identifies windows by their titles or by their windowKind values.
You can list all of your windows within one 'hwin' resource, or you can create separate
‘hwin' resources for your separate windows. (You’ll probably find it easier to maintain
your window help if you create only one 'hwin' resource, but, as described later in this
section, you must create separate 'hwin' resources for windows that require different
options. For example, one window may be matched to its 'hwin' resource by a string
anywhere in the window’s title, and another window may be matched to its 'hwin'
resource only by the exact string of the window’s title.) An'hwin' resource contains

the resource ID (or IDs) of one or more ‘hrct ' or' hdlg" resources. With an 'hwin’
resource, you can use both 'hrct' and'hdlg' resources for various parts of the same
window.

Using the Help Manager 3-65

Amfrevepy 4oy £

CHAPTER 3

Help Manager

To use an 'hwin" resource, the window’s window record must specify either a title
or awindowKind value that adequately distinguishes it from other windows.
Within an 'hwin' resource, you could identify the Verb Tenses window shown in
Figure 3-20 on page 3-72 by its title, and you could identify the palette window

in Figure 3-19 on page 3-70 by its windowKind value.

The chapter “Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials
describes the windowKind field of the window record. Note that windowKind values of
0, 1, and 3 through 7 are reserved by system software and that dialog boxes or alert
boxes must have a value of 2. Because your dialog boxes and alert boxes must have a
windowKind value of 2, you can use this value to define only one 'hwin' resource for
all untitled dialog boxes and alert boxes. You may find it difficult—using 'hwin' |
'‘hret” ,and'hdlg’ resources alone—to provide help balloons for untitled dialog and
alert boxes. However, you can use an 'hwin' resource to associate generic help for the
common objects of all your untitled dialog boxes and alert boxes, and you can use the
HMSetDialogResID function to provide help for the unique objects among them.

The HMSetDialogResID function is explained on page 3-117.

You describe the tip, a rectangle, and help messages for each object in static windows
using either 'hrct’ or'hdlg" resources. As shown here, an 'hrct' resource consists
of two types of components: a header component and a hot-rectangle component. You
use hot-rectangle components to specify the hot rectangles within the window and the
help messages for each hot rectangle. (For a description of ' hdlg' resources, see
“Providing Help Balloons for Items in Dialog Boxes and Alert Boxes” beginning on

page 3-51.)

Component Element

Header Help Manager version
Options
Balloon definition function
Variation code

First hot rectangle Identifier for help message

Tip’s coordinates

Hot rectangle coordinates

Help message for hot rectangle
Next hot rectangle (Same as for first hot rectangle)

Last hot rectangle (Same as for first hot rectangle)

3-66 Using the Help Manager

CHAPTER 3

Help Manager

Specifying Header Information for the 'hrct' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first
element of the header component of the 'hrct' resource. For the second element,
specify a constant (normally, hmDefaultOptions) or the sum of several constants’
values from the following list. (“Specifying Options in Help Resources” beginning on
page 3-25 describes these options.)

CONST hmDefaultOptions =0; {us e d efaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmAbsoluteCoords =2; {ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }
{ bits; no update event}
hmSaveBitsWindow =8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and the variation code (both typically 0) in the
third and fourth elements, respectively, of the header component. (The balloon definition
function and the variation code are described in detail in “Specifying Header
Information for the 'hmnu' Resource” on page 3-32.)

Specifying Help for Rectangles in Windows

Following the header component, use hot-rectangle components to specify tip
coordinates, hot rectangles, and help messages for all the areas in the window that
would benefit from having help balloons.

For the first element of each hot-rectangle component, specify the format that the help
messages take. As with the other help resources, specify the format using one of these
identifiers: HMStringltem , HMSTRResltem, HMStringResltem , HMPictltem
HMTEResltem, or HMSkipltem , described in “Specifying the Format for Help
Messages™ on page 3-23.

Use the second element of the hot-rectangle component to specify the coordinates (local
to the window) of the balloon tip. Use the third element to specify the coordinates
(local to the window) of the hot rectangle. Use the fourth element to specify your help
message, as either a text string or a resource ID.

In a hot-rectangle component, you specify the tip, hot rectangle, and help message for
every applicable area in the window. As explained in “Using a Help Item Versus Using
an 'hwin' Resource” on page 3-63, you can associate an 'hrct' resource with an alert
box or a dialog box by adding an item of type Helpltem to the box’s item list resource.
For windows, you create an 'hwin' resource that contains the resource ID of this

‘hret’ resource and that associates the 'hrct' resource with the window. In either

Using the Help Manager 3-67

Amfrevepy 4oy £

3-68

CHAPTER 3

Help Manager

case, the Help Manager automatically tracks the cursor and displays and removes help
balloons as the user moves the cursor into and out of the hot rectangles defined in this
‘hret’ resource.

If you need to supply a help balloon for an area within a larger area that needs a
different help balloon, create 'hrct' resources for both the inner and outer areas and
specify their areas as hot rectangles. In your resource file, list the 'hrct’ resource

for the inner area before the 'hrct’ resource for the outer area. Then, when the cursor is
in the inner hot rectangle, the Help Manager scans its 'hrct' resource first and displays
its help balloon instead of the help balloon for the outer hot rectangle. When the cursor
moves from the inner hot rectangle to the outer, the Help Manager removes the inner
area’s help balloon and displays the balloon for the outer hot rectangle.

As previously explained, you can create an 'hdlg' resource to specify the tips, alternate
rectangles, balloon definitions, variation codes, and help messages for items in an item
list resource, and you can use an 'hwin' resource to associate that 'hdlg’ resource

with a dialog box or alert box. When help is enabled and your application calls the
Dialog Manager routine MbdalDialog , IsDialogEvent | Alert , NoteAlert
CautionAlert , or StopAlert , the Help Manager automatically tracks the cursor and
displays and removes help balloons for items specified in the 'hdlg’ resource.

Associating Help Resources With Static Windows

To associate 'hrct’ and'hdlg’ resources with static windows, create an 'hwin'
resource. As shown here, an ‘hwin' resource consists of two types of components: a
header component and a window component. Use a window component to associate an
‘hret" or'hdlg’ resource with a particular window.

Component Element
Header Help Manager version
Options
First window Resource ID of an'hrct' or'hdlg" resource

Resource type (‘hdlg’ or'hrct’)

Length used to compare title strings—or, if flagged by a
minus sign (=), thewindowKind value of an untitled window

Window title string—or empty string if window is untitled
Next window (Same as the first window component)

Last window (Same as the first window component)

Using the Help Manager

CHAPTER 3

Help Manager

Specifying Header Information for the 'hwin' Resource

Specify the HelpMgrVersion constant for the first element of the header component.
For the second element, specify a constant (normally, hmDefaultOptions) or the sum
of several constants’ values from this list.

CONST hmDefaultOptions =0 {us e d efaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmMatchinTitle = 16; {match window by string }

{ anywhere in title string}

Notice that options regarding local coordinates and bits behind the balloon are not
applicable to the 'hwin' resource, but, compared to the other resources related to the
Help Manager, the 'hwin' resource has a unique option: hmMatchInTitle

If you’re providing help balloons for a desk accessory or a driver that owns other
resources, use the hmUseSubID constant in the second element. (See the chapter
“Resource Manager” in this book for a discussion of owned resources and their resource
IDs.)

You can specify the hmMatchinTitle constant to match windows containing a
specified number of sequential characters starting with any character position in the
window title. If you do not specify the hmMatchinTitle constant for the second
element of the header component, the Help Manager matches characters starting with
the first character of the windowv title.

For example, if an 'hwin' resource specifies the hmMatchInTitle constant in the
header component, specifies in the window component that four characters should be
matched, and specifies the character string Test as the window’s title string, the Help
Manager uses this 'hwin' resource when the cursor is located in any active window
that is titled Test, Window Test, or Test Case or is given a title with any other string that
contains the characters Test .

If you supply the hmDefaultOptions constant, the Help Manager treats the resource
IDs in this resource as regular resource IDs and not as subrange 1Ds, and it begins
matching characters at the first character of the window strings specified in each
window component. As long as the window components all use the same options, you
can list help for all your windows in a single 'hwin' resource. You must create separate
'hwin' resources for window components that require different options.

Specifying 'hdlg' or 'hrct' Resources in the 'hwin' Resource

You can specify multiple window components after the header component.

Within the 'hwin' resource you identify 'hrct’ resources and 'hdlg’ resources by
their resource IDs and by their types. Use the first element of a window component to
specify the resource ID of either an 'hrct’ oran'hdlg' resource. Use the second
element to specify that resource’s type—either 'hrct' or'hdlg' . Use the next

two elements to specify the window with which you want to associate the 'hrct' or
'hdlg’ resource identified in the first two elements.

Using the Help Manager 3-69

Amfrevepy 4oy £

CHAPTER 3

Help Manager

You specify windows in one of these two ways:

= by specifying the number of characters used for matching a windowv title in the third
element of the window component, and by specifying a string consisting of this
number of sequential characters from the window’s title in the fourth element

= by flagging the third element of the component with a minus sign (=), specifying the
windowKind value from the window’s window record in the third element, and
leaving an empty string in the fourth element

When an active window has a title or windowKind value that matches an "hwin’
resource, the Help Manager provides help balloons for the hot rectangles associated with
the specified 'hrct ' and' hdlg' resources.

Figure 3-19 shows a sample palette an application might use and the help balloon
displayed for the hammer tool.

Figure 3-19 A tool palette with a help balloon

3-70

Em Tools ——i—r=

\I’ Harnrnet
To construct a simple
sentence, point to the space
between a werb and a noun,
and then click repeatedly.

Note that the help message in Figure 3-19 names the tool. It’s a good idea to name tools,
because the name of a tool often helps the user determine the purpose of the tool. After
naming the tool, describe one or two likely ways to use it. Don’t describe every shortcut
or trick you can do with the modifier keys.

For dialog boxes and alert boxes, you can use 'hrct' resources to define hot rectangles

in addition to or instead of those associated with the items. For example, you might want
touse an 'hwin' and an 'hrct' resource in a dialog box to associate a single help
balloon with a group of related items rather than provide separate help balloons for all
the individual items. (To provide help balloons for individual items by using 'hdlg'
resources alone, see “Providing Help Balloons for Items in Dialog Boxes and

Alert Boxes” beginning on page 3-51.)

When providing one help balloon for a group of options in a dialog box, describe first
how to implement the options, and then describe how to tell whether an option is
selected. If, for example, radio buttons titled Left, Right, and Middle appear in a dialog
box grouped under the heading Alignment, a single help balloon explaining this group
might state, “To line up the selected text along the left margin, right margin, or middle of

Using the Help Manager

CHAPTER 3

Help Manager

the page, click one of these buttons. A dot indicates the selected option.” A help balloon

for several checkboxes grouped under the heading Style might state, “To apply design

elements to the selected text, click the styles you want. To remove design elements, click

the styles you want to remove. An X means a style has been applied.”

Listing 3-9 shows the 'hwin' resource and the 'hrct' resource for the palette in
Figure 3-19.

Listing 3-9 Rez input for corresponding 'hwin' and 'hrct’ resources

r esource 'hwin' (128, "Window help resource", purgeable) {

HelpMgrVersion, hmDefaultOptions , I*h eader componen t*/
{ /*w indow componen t*/
128, /*r esource ID of type specified on next lin e*/
‘hret' I*r esource type for defining hel p*/
5, /*I ength to use when comparing string s*/
"Tools " /*w indow's title strin g*/
}
3
resource 'hrct' (128, "Tools palette help™) {
/*h eader componen t*/
HelpMgrVersion,
hmDefaultOptions,
0, /*b alloon definition functio n*/
0, [*v ariation cod e*/
{
/*h ot-rectangle component for saw tool goes her e*/
/*h ot-rectangle component for hammer too I*/
HMStringResltem {
{50, 127} , /*t ip's coordinate s*/
{22,99,54,131} , /*h ot rectangl e*/
147, 2 /¥ STR#' resource ID and inde xX*/
}
/*h ot-rectangle components for other tools go her e*/
}
2
resource 'STR#' (147, "Tools palette help text") {
{
[1] sawtoo I*/
/*h elp text for saw tool goes her e*/

/[2] hammertoo I*/
"Hamme\ n\nTo construct a simple sentence, point to the "
"space between a verb and a noun, and then click "

Using the Help Manager

3-71

Amfrevepy 4oy £

CHAPTER 3

Help Manager

"repeatedly.” ;
/*h elp for other tools goes her e*/
}
3

You can also use the ‘'hwin' resource to associate help for items in an alert box or a
dialog box. Figure 3-20 shows the Help Manager displaying a help balloon for an item in
the dialog box titled Verb Tenses.

Figure 3-20 A help balloon for a dialog box with a title

=[I= lerb Tenses

{
{

Listing 3-10 shows how the 'hwin' resource associates an 'hdlg' resource with the
dialog box illustrated in Figure 3-20. This 'hwin' resource associates help with three
different windows: the first is the window titled Tools, the second is an untitled window
with a windowKind value of 10, and the third is the dialog box titled Verb Tenses.

-

Click here to replace
the selected verb
with its future tense.

Listing 3-10 Rez input for specifying help for titled and untitled windows

3-72

r esource 'hwin' (128, "Window help resource”, purgeable) {
/*h eader componen t*/
HelpMgrVersion, hmDefaultOptions,
{ /¥ irst window componen t*/

128, /*h elp resource ID for Tools windo w*/
‘hret' /*r esource type for defining hel p*/
5, /¥l ength to use when comparing string s*/
"Tools" /*w indow's title strin g*/
/*s econd window componen t*/
129, /*h el p resource | D for untitled windo w*/
'‘hdlg' [*r esource type for defining hel p*/
-10, /*m atch on windowKind values of 1 0*/
", /*m atching on windowKind, so empt y*
/*s tring goes her e*/
/¥t hird window componen t*/
130, /*h el pres| D for Verb Tenses windo w*/

Using the Help Manager

CHAPTER 3

Help Manager

‘hdlg’ [*r esource type for defining hel p*/
11, /¥l ength to use when comparing string s*/
"Verb Tenses" /*d ialog box's title strin g*/
}
1
r esource 'hdlg' (130, "Help for Verb Tense control", purgeable) {
/*h eader componen t*/
HelpMgrVersion /*v ersion of Help Manage r*/
0, [*s tart wit h firsti temi nitem list*/
hmDefaultOptions /*o ption s*/
0, /*b alloon definition | D*/
0, [*v ariation cod e*/
/*m issing-items componen t*/
HMSkipltem {/*n o missing-item help messag e*/
3
{ [* irstdialog-item componen t*/
HMStringResltem {
{20, 130} , /*t i p--l ocaltoite m's display r ect angle*/
{0,0,0,0} , /*d efault alternate rectangle: us e*/
/*i tem's display rectangl e*/
131,1 /*h ighlighted control for future tens e*/
131, 2 /*d immed control for future tens e*/
0,0 , /*n o checked state for contro I*/
0, O /*n o other states for contro I*/
1
/*s econd dialog-item componen t*/
HMStringResltem {
{20, 130} , [*tip--local to item's display rectangle*/
{0,0,0,0} , /*d efault alternate rectangle: us e*/
/*i tem's display rectangl e*/
131, 3 , /*h ighlighted control for past tens e*/
131, 4 /*d immed control for past tens e*/
0,0 , /*n o enable d-a nd-c hecked contro I*/
0, 0 /*n o other marks for contro I/
}
}
b
r esource 'STR#' (131, "Verb tense help strings") {
{
/*[1] highlighted control for future tense: help tex t*/
"Click here to replace the selected verb with its "
"future tense." ;
/*[2] dimmed control for future tense: help tex t*/
Using the Help Manager 3-73

Amfrevepy 4oy £

3-74

CHAPTER 3

Help Manager

"Click here to replace a verb with its future tense. "

"Not available now because you have not selected a verb." ;
/*[3]/*h ighlighted control for past tense: help tex t*/
"Click here to replace the selected verb with its past tense.” ;
/*[4] dimmed control for past tense: help tex t*/
"Click here to replace a verb with its past tense. "

"Not available now because you have not selected a verb." ;

Providing Help Balloons for Dynamic Windows

To create help balloons for objects whose location in the content area of windows may
vary, your application needs to use Help Manager routines to display and remove
balloons as the user moves the cursor.

Note

Nonprogrammers can use the BalloonWriter tool to provide you with
delimited ASCII text that you can then use in conjunction with Help
Manager routines to display balloons for dynamic windows. However,
BalloonWriter does not create the resources or routines necessary to
automatically display help balloons for these types of windows. O

You should display or remove help balloons for dynamic windows at the same time that
you normally check the mouse location to display or change the cursor. For example,

if you provide your own Doldle procedure (as described in the chapter “Event
Manager” in Inside Macintosh: Macintosh Toolbox Essentials), you can also check the mouse
location and, if the cursor is located in a hot rectangle, you should display the associated
help balloon.

To create help balloons for the content area of a dynamic window, you need to
» identify the hot rectangles for each area or object

= Create data structures to store the locations of the hot rectangles

= determine how to calculate their changing locations

» track and update the hot rectangles

= use the HMShowBalloon function to display a help balloon when the cursor is located
in a hot rectangle

After defining all the hot rectangles within your content region, create separate 'STR ',
'STR# ,'PICT" ,or'TEXT' and'styl' resources for the help balloons’ messages.
You don’t have to store the help messages in these resources when using
HMShowBalloon , but doing so makes your application easier to localize.

Using the Help Manager

CHAPTER 3

Help Manager

When you use the HMShowBalloon function, your application is responsible for
tracking the cursor and determining when to display the help balloon. If you use the
HMShowBalloon function, you can let the Help Manager track the cursor and determine
when to remove the help balloon, or your application can remove the balloon when
necessary by calling the HMRemoveBalloon function. If you display your own help
balloons using the HMShowBalloon function, you should use the HMGetBalloons
function to determine whether help is enabled before displaying a help balloon. If help is
not enabled, you don’t need to call any Help Manager routines that display balloons,
because they won’t do anything unless HMGetBalloons returns TRUE

The HMShowBalloon function is useful for

= windows whose content changes

= windows that can be resized

= windows that contain hot rectangles with variable locations

= Situations in which you want your application to have more control over the display
and removal of the help balloon

For example, windows with scrolling icons (such as the Users & Groups dynamic
window shown in Figure 3-18 on page 3-64) require you to use HMShowBalloon to
display help balloons for the icons. Likewise, if you have tools—such as rulers that users
configure for tab stops in a word-processing document—that scroll with a document,
you’ll need to use HMShowBalloon to display help balloons for the scrolling tools.

When using HMShowBalloon , you specify the help message, the balloon tip’s
coordinates, an alternate rectangle to use if the Help Manager needs to move the tip, an
optional pointer to a function that can modify the tip and alternate rectangle coordinates,
the balloon definition function, and the variation code. In the final parameter to the
HMShowBalloon function, provide a constant that tells the Help Manager whether to
save the bits behind the balloon.

myErr := HMShowBalloon(aHelpMsg, tip, alternateRect, tipProc,
t heProc, variant, method);

Specify the help message in a help message record, which you pass in the aHelpMsg
parameter to the HMShowBalloon function. You can specify the help message for each
hot rectangle using text strings, 'STR "' resources, 'STR#' resources, styled text
resources, 'PICT' resources, handles to styled text records, or handles to pictures.

Using the Help Manager 3-75

Amfrevepy 4oy £

3-76

CHAPTER 3

Help Manager

The HMMessageRecord data type defines the help message record.

TYPE HMMessageRecord =

RECO®
hmmHelpType: Integer; {type of next field }
CASE IntegerO F
khmmString: (hmmString: Str255) ; {Pascal string }
khmmPict: (hmmPict: Integer) ; {'PICT' resource ID }
khmmsStringRes: (hmmStringRes: HMStringResType) ;
{STR#'res ource }
{ID and index }
khmmTEHandle: (hmmTEHandle: TEHandle)
{TextEdit handle }
khmmPictHandle: (hmmPictHandle: PicHandle) ;
{picture handle }
khmmTERes: (hmmTERes: Integer) i {'TEXT' /' styl' }
{ resource ID }
khmmSTRRes: (hmmSTRRes: Integer) ; {'STR 'resource ID}
END;

The hmmHelpType field specifies the data type of the second field of the help message
record. You specify one of these constants for the hmmHelpType field.

CONSTkhmmString =1; {Pascal string}
khmmPict =2; {'PICT" resource ID}
khmmsStringRes =3; {STR#'res ource ID and index}
khmmTEHandle =4, {TextEdith andle}
khmmPictHandle =5; {picture handle}
khmmTERes = 6; {TEXT" and 'styl' res ource ID}
khmmSTRRes =7, {'STR ' resource ID}

You specify the help message itself in the second field of the help message record.

You can specify the help message by using a text string, a text string stored in a resource
of type 'STR "' , or atext string stored as an'STR#' resource. You can also provide the
information using styled text resources, or you can provide a handle to a styled text
record. If you want to provide a picture for the help message, you can use a resource of
type 'PICT' or provide a handle to a picture.

Listing 3-11 illustrates how to specify a Pascal string using the khmmsString constant in
the help message record. (Although you can specify a string from within your code,
storing the strings in resources and then accessing them through the Resource Manager
makes localization easier.)

Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-11 Using a string resource as the help message for HMShowBalloon

PROCEDURE DoTextStringBalloon;

VAR
aHelpMsg: HMMessageRecord;
tip: Point;
alternateRect : RectPtr ;
err: OSErr,
BEGIN

aHelpMsg.hmmHelpType := khmmString;
aHelpMsg.hmmString := 'To turn the page, click here.’ ;
MySetTipAndAltRect(tip, alternateRect); {i ni tialize values}
err := HMShowBalloon(aHelpMsg, tip, alternateRect,
NIL, 0, 0, kHMRegularWindow);
END;

To use a picture, you can either store the picture as a 'PICT' resource or create the
'PICT" graphic from within your application and provide a handle to it. Because the
Help Manager uses the resource itself or the actual handle that you pass to
HMShowBalloon , your 'PICT' resource should be purgeable, or, when using a handle
toa'PICT" resource, you should release the handle or dispose of it when you are
finished with it.

Listing 3-12 illustrates how to use the khmmPict constant for specifying a 'PICT'
resource ID in a help message record. The help message record is then passed in the
aHelpMsg parameter of the HMShowBalloon function.

Listing 3-12 Using a picture resource as the help message for HMShowBalloon

PROCEDURE DoPictBalloon;

VAR
aHelpMsg: HMMessageRecord;
tip: Point;
alternateRect: RectPtr ;
err: OSErr;
BEGIN
aHelpMsg.hmmHelpType := khmmPict;
aHelpMsg.hmmpPict := 128; {resource ID of 'PICT' resource }
MySetTipAndAltRect(tip, alternateRect); {initialize values}
err := HMShowBalloon(aHelpMsg, tip, alternateRect,
NIL, 0, 0, kHMRegularWindow);
END;

Using the Help Manager 3-77

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Listing 3-13 illustrates how to specify a handle to a 'PICT" resource using the
khmmPictHandle constant in the help message record. The help message record is then
passed to the HMShowBalloon function in the aHelpMsg parameter.

Listing 3-13 Using a handle to a picture resource as the help message for HMShowBalloon

PROCEDURE DoPictBalloon2;

VAR
pict: PicHandle;
aHelpMsg: HMMessageRecord;
tip: Point;
pictFrame: Rect;
alternateRect: RectPtr ;
err: OSErr;
BEGIN
MySetPictFrame(pictFrame); {i nitialize pictFram e}

pict := OpenPicture(pictFrame);
DrawsString(‘Test Balloon');
ClosePicture;
aHelpMsg.hmmHelpType := khmmPictHandle;
aHelpMsg.hmmPictHandle := pict ;
MySetTipAndAltRect(tip, alternateRect); {initialize values}
err := HMShowBalloon(aHelpMsg, tip, alternateRect,
NIL, 0, 0, kHMRegularWindow);

KillPicture(pict);

END;

To specify a help message stored in a string list (STR#' resource) in a help message
record, you must first create a Help Manager string list record. The HMStringResType
data type defines a Help Manager string list record.

TYPE HMStringResType =

RECO®
hmmResID: Integer; {res ource ID of 'STR# resource }
hmmindex: Integer {index of string}

END;

3-78 Using the Help Manager

CHAPTER 3

Help Manager

The hmmResIDfield specifies the resource ID of the 'STR#' resource, and the
hmmindex field specifies the index of a string within that resource.

To use a string stored in an'STR#' resource with the HMShowBalloon function, use the
khmmsStringRes constant in the hmmHelpType field of the help message record, and
supply the hmmStringRes field with a Help Manager string list record, as shown in
Listing 3-14.

Listing 3-14 Using a string list resource as the help message for HMShowBalloon

PROCEDURE DosStringListBalloon;

VAR
aHelpMsg: HMMessageRecord;
tip: Point;
alternateRect: RectPtr,
khmmsStringRes: HMStringResType ;
err: OSErr,

BEGIN

aHelpMsg.hmmHelpType := khmmStringRes ;
aHelpMsg.nmmStringRe s.hmmResID:=1 000;
aHelpMsg.hmmsStringRes.hmmindex = 1;
MySetTipAndAltRect(tip, alternateRect); {initialize values}
err := HMShowBalloon(aHelpMsg, tip, alternateRect,
NIL, 0, 0, kHMRegularWindow);
END;

To use styled text resources with the HMShowBalloon function, use the khmmTERes
constant in the hmmHelpType field of the help message record. In the next field, supply
a resource ID that is common to botha 'TEXT' resource and a style scrap ('styl')
resource. For example, you might create a 'TEXT' resource that contains the words
“Displays your text in boldface print.” You would also create a ' styl' resource (with
the same resource ID as the 'TEXT' resource) that applies boldface style to the word
“boldface.” When you specify the HMTEResltem constant and the resource ID number
of the TEXT' and'styl' resources, the Help Manager employs TextEdit routines to
display your text with your prescribed styles.

Using the Help Manager 3-79

Amfrevepy 4oy £

CHAPTER 3

Help Manager

To use a handle to a styled text record, supply the khmmTEHandle constant in the
hmmHelpType field, as illustrated in Listing 3-15.

Listing 3-15 Using styled text resources as the help message for HMShowBalloon

3-80

PROCEDURE DoStyledTextBalloon;

VAR
aHelpMsg: HMMessageRecord;
tip: Point;
alternateRect X RectPtr;
hTE: TEHandle ;
err: OSErr;
BEGIN
hTE := TEStyleNew(destRect, viewRect); {or, use TENew}

{be sure to fill in data in handle here}
aHelpMsg.hmmHelpType := khmmTEHandle;
aHelpMsg.hmmTEHandle := hTE ;
MySetTipAndAltRect(tip, alternateRect); {initialize values}
err := HMShowBalloon(aHelpMsg, tip, alternateRect,
NIL, 0, 0, kHMRegularWindow);
END;

When using the HMShowBalloon function, you specify the tip in the tip parameter and
the rectangle pointed to in the alternateRect parameter in global coordinates. The
Help Manager calculates the location and size of the help balloon. If the help balloon fits
onscreen, the Help Manager displays the help balloon using the specified tip.

If you use the previously described help resources to define help balloons, the Help
Manager uses the hot rectangles you specify in the help resources for two purposes: first,
to associate areas of the screen with help balloons and, second, to move the tip if the help
balloon doesn’t fit onscreen.

However, if you use the HMShowBalloon function to display help balloons, you must
identify hot rectangles, create your own data structures to store their locations, track the
cursor yourself, and call HMShowBalloon when the cursor moves to your hot
rectangles. The Help Manager does not know the locations of your hot rectangles, so it
cannot use them for moving the tip if the help balloon is placed offscreen. Instead, the
Help Manager uses the alternate rectangle that you point to with the alternateRect
parameter. Often, you specify the same coordinates for the alternate rectangle that you
specify for your hot rectangle. However, you may choose to make your alternate
rectangle smaller or larger than your hot rectangle. If you make your alternate rectangle
smaller than your hot rectangle, you have greater assurance that the Help Manager will
be able to fit the help balloon onscreen; if you specify an alternate rectangle that is larger
than your hot rectangle, you have greater assurance that the help balloon will not
obscure some object explained by the balloon.

Using the Help Manager

CHAPTER 3

Help Manager

By specifying a rectangle in the alternateRect parameter, you tell the Help Manager
to call HMRemoveBalloon to automatically remove the balloon when the cursor leaves
the area bounded by the rectangle. However, if you specify NIL for the alternateRect
parameter, your application is responsible for tracking the cursor and determining when
to remove the help balloon. When you specify NIL , the Help Manager also does not
attempt to calculate a new tip position if the help balloon is offscreen.

Use the tipProc parameter (the fourth parameter to HMShowBalloon) to specify the
tip function called by the Help Manager before displaying the balloon. Specify NIL to
use the Help Manager’s default tip function, or supply your own tip function and point
to it in this parameter. Writing your own tip function is described in
“Application-Defined Routines” beginning on page 3-128.

Note

When you call the HMShowBalloon function, the Help Manager does
not display the help balloon or attempt to move the tip under either of
these conditions:

The help balloon’s tip is offscreen or in the menu bar, and you don’t
specify an alternate rectangle.

Both the help balloon’s tip and the alternate rectangle are offscreen. o

Use the parameter theProc (the fifth parameter) to specify a balloon definition
function. To use the standard balloon definition function, specify 0 in this parameter. To
use your own balloon definition function, specify the resource ID of the ' WDEF'resource
containing your balloon definition function. Writing your own balloon definition
function is described in “Writing Your Own Balloon Definition Function” on page 3-93.

Supply a variation code for the balloon definition function in the variant parameter
(the sixth parameter to HMShowBalloon). Specify 0 in the variant parameter to use
the default help balloon shape, specify a code from 1 to 7 to use one of the other
positions provided by the standard balloon definition function, or specify a code to use
one of the positions provided by your own balloon definition function.

Use the method parameter (the last parameter to HMShowBalloon) to specify how the
Help Manager should draw and remove the balloon. Use the following constants for the
parameter.

CONSTkHMRegularwWindow =0; {don't save bits; just update}
kHMSaveBitsNoWindow =1; {save bits; don't do update}
kHMSaveBitsWindow =2; {save bits; do update event}

If you specify kHMRegularWindow , the Help Manager draws and removes the help
balloon as if it were a window: That is, when drawing the balloon, the Help Manager
does not save bits behind the balloon, and when removing the balloon, the Help
Manager generates an update event. This is the standard behavior of help balloons; it is
the behavior you should normally use.

Using the Help Manager 3-81

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If you specify kHMSaveBitsNoWindow in the method parameter, the Help Manager
does not create a window for displaying the balloon. Instead, the Help Manager creates a
help balloon that is more like a menu than a window. The Help Manager saves the bits
behind the balloon when it creates the balloon. When it removes the balloon, the Help
Manager restores the bits without generating an update event. You should use this
technique only in a modal environment where the bits behind the balloon cannot change
from the time the balloon is drawn to the time it is removed. For example, you might
specify the kHMSaveBitsNoWindow constant when providing help balloons for pop-up
menus that overlay complex graphics, which might take a long time to redraw with an
update event.

If you specify kHMSaveBitsWindow , the Help Manager treats the help balloon as a
hybrid having properties of both a menu and a window. That is, the Help Manager saves
the bits behind the balloon when it creates the balloon, and when it removes the balloon,
it both restores the bits and generates an update event. You’ll rarely need this option. It is
necessary only in a modal environment that might immediately change to a nonmodal
environment—that is, where the bits behind the help balloon are static when the balloon
is drawn, but can possibly change before the help balloon is removed.

Listing 3-16 shows a sample routine that displays help balloons for hot rectangles within
the content area of a window.

Listing 3-16 Using HMShowBalloon to display help balloons

3-82

PROCEDURE FindAndShowBalloon (window: WindowPtr);

VAR
i; Integer;
mouse: Point;
savePort: GrafPtr;
helpMsg: HMMessageRecord ;
i nRect: Boolean ;
hotRect: Rect;
result: OSErr;
BEGIN
IF (window = FrontWindow) THEN {only do frontmost windows }
BEGIN
GetPort(savePort); {save the old port for later}
SetPort(window); {set the port to the front window}
GetMouse(mouse); {get the mouse location in local }
{ coords}
inRect := FALSE; {clear flag saying mouse location '}
{ wasn't in any hot rectangle }
IF PtinRect(mouse, window”.portRect) THEN
{if the cursor is in the window }

Using the Help Manager

CHAPTER 3

Help Manager

FORi:=1TO 10 DO {checkal Itenp redefine dhot}
{ rectangles in the window}
IF PtinRect(mouse, MyPredefinedRects[i]) THE N
BEGIN {the cursor is in ahot rect angle }

IF (i <> gLastBalloon) THEN
{user moved ¢ urso r to a different hot rectangle}
BEGIN
hotRect := MyPredefinedRects]i];
LocalToGlobal(hotRect.topLeft);
{converting rect to global}
LocalToGlobal(hotRect.botRight) ;
WTH hotRect DO {put the tip in the middle}
SetPt(mouse, (right + left) div 2,
(bottom + top) div 2);
helpMsg.hmmHelpType := khmmStringRes ;
{ get help message from an" STR#' resource}
helpMsg.hmmStringRes.hmmResID : = kH elpMsgsID ;
helpMsg.hmmsStringRes.hmmindex ;=i ;
result := HMShowBalloo n
(helpMsg , { use just-made help msg

}

mouse, {pointing to this tip }

@MyPredefinedRectsi], {use hot }
{r ectfor alt rect }
N IL, {no special tip proc }
0,0, {using default balloon
kHMRegularWindow) ; {don't save bits behind
IF (result = noErr) THEN {then remember balloon}
gLastBalloon :=i;
END;
inRect := TRUE; {remember when the }
{ cursor is in any hot rect}
END;
IF not inRect THEN
gLastBalloon :=-1; {clear last balloon global for }
{ no hit}
SetPort(savePort); {restore the port}
END;
END; {FindAndShowBalloon}

The FindAndShowBalloon procedure in Listing 3-16 tracks the cursor, and, if the
cursor is located in a predefined hot rectangle, it displays a help balloon for that
rectangle. In this example there are ten predefined rectangles (in the
MyPredefinedRects array) and ten corresponding help messages in an 'STR#'

Using the Help Manager

3-83

Amfrevepy 4oy £

3-84

CHAPTER 3

Help Manager

resource (of ID kHelpMsgsID)—one message for each hot rectangle. Other supporting
routines can update the coordinates of the hot rectangles as their locations change.

You can also use the HMShowBalloon function from the event filter function of a modal
dialog box or an alert box. See the chapter “Dialog Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for information on event filter functions.

Overriding Help Balloons for Non-Document Icons

The Finder displays default help balloons for all icon types. By specifying an 'hfdr'
resource in your application’s resource fork, you can provide your own help balloon for
the Finder to display when the user moves the cursor over your non-document icons.

Note

BalloonWriter, available from APDA, is a tool that gives
nonprogrammers an easy way to create help balloons for most of the
icons that the Finder displays for your software. BalloonWriter creates
an'hfdr' resource and places it in the resource fork of the file
represented by the icon; BalloonWriter likewise creates and stores an
'STR"' resource that contains the help message. O

To override the Finder’s default help balloons for your application icon, desk accessory
icon, system extension icon, or control panel icon, create an 'hfdr' resource in your
resource file. As shown here, an 'hfdr' resource consists of two components: a header
component and an icon component. Use the icon component to specify a help message
for your application’s Finder icon.

Component Element
Header Help Manager version
Options

Balloon definition function
Variation code

Icon Identifier for help message
Help message for application icon

Note
You cannot override the default help balloon that the Finder uses for
document icons. O

Use resource ID -5696 for your 'hfdr' resource. If an 'hfdr' resource with that ID
exists for an application, the Help Manager uses it instead of the default help balloon
supplied by the Finder.

Using the Help Manager

CHAPTER 3

Help Manager

Specifying Header Information for the 'hfdr' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first
element of the header component of the 'hfdr' resource. For the second element,
specify a constant (normally, hmDefaultOptions) or the sum of several constants’
values from the following list. (“Specifying Options in Help Resources” beginning on
page 3-25 describes these options.)

CONST hmDefaultOptions =0; {use defaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmAbsoluteCoords =2; {ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }
{ bits; no update event}
hmSaveBitsWindow =8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the third
and fourth elements, respectively, of the header component. (These are described in
detail earlier in “Specifying Header Information for the 'hmnu' Resource” on page 3-32.)

Specifying Help for an Icon

In the icon component, use the first element to specify the format that the help message
takes. As with the other help resources, specify the format using one of these identifiers:
HMStringltem , HMSTRResltem, HMStringResltem , HMPictitem , HMTEResltem,
or HMSkipltem . These identifiers are described in “Specifying the Format for Help
Messages” on page 3-23. (If you specify HMSkipltem , no help balloon appears.)

Using the Help Manager 3-85

Amfrevepy 4oy £

CHAPTER 3

Help Manager

In the second element of the icon component, specify the help message. Your help
message doesn’t have to describe how to open icons; you can assume that users know
how.

Figure 3-21 shows the default help balloon for application icons on the left. A custom
help balloon for the same icon appears on the right.

Figure 3-21 Default and custom help balloons for an application icon

Ciefaul: Fedp sallaon for Custar help aalloon for
arnapplicatiaican anapplicaticr icon
Thiz is an application—a program Use the Surfwriter word
with which you can perform a processor to create or
tazk or create a docurnent. edit the swellest
applications include word docurnents you ever
processors, graphics programs, wiote on your Macintosh
database programs, games, and cornputer.
spreadshests,

Surfwriter 2.0
Surfwriter 2.0

The custom help balloon on the right side of Figure 3-21 is supplied with the resources
shown in Listing 3-17.

Listing 3-17 Rez input for creating an 'hfdr' resource for an application icon

3-86

r esource 'hfdr' (-5696) { /*h elp for SurfWriter ico n*/
/*h eader componen t*/
HelpMgrVersion, hmDefaultOptions, 0, 0,
{ /*i concomponen t*/

HMSTRResltem { /*u se 'STR ' resource 100 1*/
1001
}
}
b
r esource 'STR ' (1001) { /*h elp message for SurfWrite ricon*/
" Use the SurfWriter word processor to wrote or edit th e"
"swellest d ocuments you ever wrote on "
"y our Macintosh computer."
1

Using the Help Manager

CHAPTER 3

Help Manager

Overriding Other Default Help Balloons

The Help Manager also provides default help balloons for the title bar and the close and
zoom boxes of an active window, for the windows of inactive applications, for inactive
windows of an active application, and for the area outside a modal dialog box.

Apple Computer, Inc., has researched and tested these help messages to ensure that they
are as effective as possible for users. Normally, you shouldn’t need to override them.
However, you can override one or more of these defaults if you feel you absolutely must
by creating a resource of type 'hovr'

Using an 'hovr'

resource sets the default help balloons for your application only:. It

does not affect the default help balloons used by other applications.

An 'hovr'

resource consists of exactly nine components: a header component, a

missing-items component, and seven components that specify help messages for seven
standard user interface features.

Component
Header

Missing-items help

Title bar help

Reserved

Close box help

Zoom box help

Help for active
application’s inactive
windows

Help for inactive
application’s
windows

Help for area outside

a modal dialog box
or alert box

Using the Help Manager

Element

Help Manager version
Options

Balloon definition function
Variation code

Identifier for help message

Help message for items missing from this resource or
lacking help messages

Identifier for help message

Help message for title bar of active window
HMSkipltem identifier (always used here)

No help message; reserved for future use

Identifier for help message

Help message for close box of active window

Identifier for help message

Help message for zoom box of active window
Identifier for help message

Help message for inactive window of active application

Identifier for help message
Help message for window of inactive application

Identifier for help message

Help message for area outside a modal dialog box or an alert
box

3-87

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Specifying Header Information for the 'hovr' Resource

As with the other help resources, specify the HelpMgrVersion constant for the first
element of the header component of the 'hovr' resource. For the second element,
specify a constant (normally, hmDefaultOptions) or the sum of several constants’
values from the following list. (“Specifying Options in Help Resources” beginning on
page 3-25 describes these options.)

CONST hmDefaultOptions =0; {use defaults}
hmUseSubID =1; {use subrange resource IDs }
{ for owned resources}
hmAbsoluteCoords =2; {ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}

hmSaveBitsNoWindow = 4; {don't create window; save }
{ bits; no update event}
hmSaveBitsWindow =8; {save bits behind window }

{ and generate update event}

Specify the balloon definition function and variation code (both typically 0) in the third
and fourth elements, respectively, of the header component. (The balloon definition
function and variation code are described in detail earlier in “Specifying Header
Information for the 'hmnu' Resource” on page 3-32.)

Overriding Default Help

In the first element of the missing-items component, supply an identifier. As with the
other help resources, use one of these identifiers: HMStringltem , HMSTRResltem,
HMStringResltem , HMPictltem , HMTEResltem, or HMSkipltem . These identifiers
are described in “Specifying the Format for Help Messages” on page 3-23. For the second
element, supply either a text string for the help message or the resource ID of the
resource that contains the help message.

The Help Manager expects the remaining components of an 'hovr' resource to be listed
in the order previously shown. If you specify fewer than seven components in the Rez
input file, the Help Manager adds components to the end of your list until there are
seven. Each component that the Help Manager adds uses the message specified in the
missing-items component. The Help Manager also uses the missing-items component’s
help message if the Rez input file specifies an empty string or a resource ID of 0 for any
other component’s help message.

For the first element of each of the remaining components, specify one of these
identifiers: HMStringltem , HMSTRResltem, HMStringResltem , HMPictltem |
HMTEResltem, or HMSkipltem . To use any of the default help balloons, use the
HMSkipltem identifier. For the second element of each of the remaining components,
supply either a text string for the help message or the resource ID of the resource that
contains the help message.

3-88 Using the Help Manager

CHAPTER 3

Help Manager

Listing 3-18 shows a resource of type 'hovr' that overrides all of the default help

balloons.

Listing 3-18 Rez input for an 'hovr' resource

resource 'hovr' (1000) {

/*header component*/
HelpMgrVersion,
hmDefaultOptions, [*options*/
0, /*the balloon definition ID*/
0, [*variation code*/
/*missing-items component*/
HMStringltem { /*missing items in case this resource is */
/* short of components*/
"Missing override message"

3
{
[*remaining components: for overriding default messages*/
HMSkipltem { [*title bar help*/
HMSkKipltem means use default help balloon for this element/
3
HMSKkipltem { [*reserved; always specify HMSkipltem?*/
2
HMStringltem { /*close box help*/
[*empty string means use missing-items help*/
2
HMStringltem { /*zoom box help*/
"Get this message if in Zoom In or Zoom Out box."
2
HMStringltem { [*help for active app's inactive window*/
"Get this message if in inactive window of "
"active application."
3
HMStringltem { [*help for inactive app's window*/
"Get this message if in window of inactive application."
3
HMStringltem { /*help when outside of modal dialog box*/
"Get this message if outside modal dialog box."
}
}

Using the Help Manager

3-89

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Adding Menu Items to the Help Menu

The Help menu is specific to each application, just as the File and Edit menus are. The
Help menu items defined by the Help Manager should be common to all applications,
but you can add your own menu items for help-related information.

If you provide your users with help information in addition to help balloons, you should
append a command to the Help menu for this information. The Help menu gives users
one consistent place to obtain help information.

When adding your own items to the Help menu, include the name of your application in
the command so that users can easily determine which application the help command
relates to. For example, Figure 3-22 shows the Help menu with an item appended to it by
the active application.

Figure 3-22 The Help menu with an appended menu item

3-90

About Balloon Help...

Hide Balloons

SurfllUriter Help...

You add items to the Help menu by using the HMGetHelpMenuHandle function and by
providing an 'hmnu’ resource and specifying the kHMHelpMenulD constant as the
resource ID.

The HMGetHelpMenuHandle function returns a copy of the handle to the Help menu.
Do not use the Menu Manager function GetMenuHandle to get a handle to the Help
menu, because GetMenuHandle returns a handle to the global Help menu, not the

Help menu that is specific to your application. Once you have a handle to the Help menu
that is specific to your application, you can add items to it using the AppendMenu
procedure or other Menu Manager routines. For example, this code adds the menu item
displayed in Figure 3-22.

VAR
mh: MenuHandle;
err . OSErr;
BEGIN

err := HMGetHelpMenuHandle(mh);
IF err =no Err THEN
IF mh <> NIL THEN
BEGIN
AppendMenu(mh, 'SurfWriter Help...");
END;

Using the Help Manager

CHAPTER 3

Help Manager

DrawMenuBar;
END;

Be sure to use an 'hmnu' resource to provide help balloons for items you’ve added to
the Help menu. Use the kHMHelpMenulD constant (-16490) to specify the 'hmnu’
resource ID. After the header component of the 'hmnu' resource, provide a
missing-items component and then the components for your appended items. You don’t
provide a menu-title component here; instead, the Help Manager automatically creates
the help balloons for the Help menu title and the standard Help menu items. The Help
Manager also automatically adds a divider line between the end of the standard Help
menu items and your appended items.

Listing 3-19 shows an 'hmnu' resource for the appended menu item shown in
Figure 3-22.

Listing 3-19 Rez input for specifying help balloons for items in the Help menu

resource 'hmnu' (kHMHelpMenulD, "Help", purgeable) {

HelpMgrVersion, 0, 0, 0 , /*h eader componen t*/

HMSkipltem { /*m issing-items componen t*/
/*n o missing items, so skip to first appended menu-ite m */
/* ¢ omponent*/
3

{ [*f irst menu-item component: SurfWriter Help comman d*/

HMStringResltem { /*u se an'STR# for help message s*/

146, 1, [* STR# resID, index when item is enable dx/
146, 2, [* STR# res|ID, index when item is dimmed*/
146, 3, /* STR# res D, index when item is checke d*/
0, O [*Yitemc an'tbe marke d*

12

2
resource 'STR#' (146, "My help menu items' strings") {
{/*a rray StringArray ;sixe lement s*/
/*[1] enable d S urfWriter Hel p c ommand help tex t*/
"Offers tutorial help for the SurfWrite rtextp rocessor." ;
[2] dimme d S urfWriter Hel p c ommand help tex t*/
"Offers tutorial help for the SurfWrite rtextp rocessor."
"Not available until you open a SurfWriter document.” ;
/*[3] checke d S urfWriter Hel p c ommand help tex t*/
"Closes tutorial help for the SurfWrite rtextp rocessor."”;

}

Using the Help Manager 3-91

Amfrevepy 4oy £

CHAPTER 3

Help Manager

As previously explained in “Providing Help Balloons for Menus” beginning on

page 3-27, the 'hmnu' resource allows you to specify help balloons for four states of a
menu item: enabled, dimmed, enabled and checked, and enabled and marked with a
symbol other than a checkmark. You cannot specify a help balloon for a Help menu item
that system software dims when an alert box or a modal dialog box appears, because
you don’t have access to the missing-items component of the Help menu. When an alert
box or a modal dialog box appears, the Help Manager displays a default help balloon for
all dimmed Help menu items.

The Help Manager automatically processes the event when a user chooses any of the
standard menu items in the Help menu. The Help Manager automatically enables and
disables help when the user chooses Show Balloons or Hide Balloons from the Help
menu. The setting of help is global and affects all applications.

The MenuSelect and MenuKey functions return a result with the menu ID in the high
word and the menu item in the low word. Both functions return the kHMHelpMenulD
constant (-16490) in the high word when the user chooses an appended item from the
Help menu. The menu item number of the appended item is returned in the low word of
the function result. The DoMenuCommangbrocedure shown in Listing 3-20 handles
mouse clicks for those items defined by the application to appear in the Help menu.

Listing 3-20 Responding to the user’s choice in a menu command

3-92

PROCEDURE DoMenuCommanf@menuResult: Longlint);

VAR
menulD, menultem: Integer ;
BEGIN
menulD := Hiwrd(menuResult); {get menu ID}
menultem := LoWrd(menuResult); {get menu item number}
CASE menulD OF
mApple: DoAppleMenuCommand(menultem);
mFile: DoFileMenuCommand(menultem);
mEdit: DoEditMenuCommand(menultem);
mFont: DoFontMenuCommand(menultem);
kHMHelpMenulD: DoHelpMenuCommand(menultem);
END;
HiliteMenu(0);
END;

Using the Help Manager

CHAPTER 3

Help Manager

In the future, Apple may choose to add other items to the Help menu. To determine the
number of items in the Help menu, call the CountMItems function, which is described
in the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

Writing Your Own Balloon Definition Function

The Help Manager takes care of positioning, sizing, and drawing your help balloons,
and the standard balloon definition function provides a consistent and attractive shape
to balloons across all applications.

Although it takes extra work on your part, and your balloons will not share the
consistent appearance of help balloons used by the Finder and by other applications, you
can create your own balloon definition function. The balloon definition function defines
the appearance of the help balloon, which is a special type of window. You implement a
balloon definition function by writing a window definition function that performs the
tasks described in this section. The standard balloon definition function is of type
'WDEF' with resource ID 126.

A balloon definition function is responsible for calculating the content region and
structure region of the help balloon window and drawing the frame of the help balloon.
The content region is the area inside the balloon frame; it contains the help message. The
structure region is the boundary region of the entire balloon, including the content area
and the pointer that extends from one of the help balloon’s corners. (Figure 3-4 on

page 3-10 illustrates the structure regions of the eight standard help balloons.)

The Help Manager first calculates the size of the rectangle that can enclose the help
message and determines where to display the help balloon. The Help Manager uses
TextEdit to determine any word and line breaks in the help message. The Help Manager
determines where to display the help balloon based on the tip and alternate rectangle.

The Help Manager then adds a system-defined distance to the size of the rectangle. This
distance allows for the tip of the help balloon. Note that the tip must always align with
an edge of the boundary rectangle. The Help Manager uses the resulting rectangle as the
boundary rectangle for the help balloon window.

To create the help balloon, the Help Manager uses the Window Manager function
NewWindow The Help Manager specifies the calculated rectangle and the window
definition ID as parameters to NewWindow

The NewWindowfunction calls the balloon definition function in the same manner as a
window definition function. See the chapter “Window Manager” in Inside Macintosh:
Macintosh Toolbox Essentials for more information on writing a window definition
function.

Using the Help Manager 3-93

Amfrevepy 4oy £

3-94

CHAPTER 3

Help Manager

The NewWindowfunction calls your balloon definition function with four parameters:
the variation code that specifies the shape and relative tip position of the help balloon, a
pointer to the window, the action to perform, and a parameter that has variable contents
depending on the action to perform.

Here’s an example that shows the declaration for a balloon definition function called
MyBalloonDef

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;
m essage: Integer;
p aram: Longint): Longint;

The variant parameter is the variation code used to specify the shape and position of
the help balloon. You should use the same relative position for the tip of the help balloon
that the standard variation codes 0 through 7 specify (see Figure 3-4 on page 3-10). This
ensures that the tip of the help balloon points to the object that the help balloon describes.

The parameter theBalloon is a pointer to the window of the help balloon.

The message parameter identifies the action your balloon definition function should
perform. Your balloon definition function can be sent the same messages as a window

definition function, but the only ones your balloon definition function needs to process
are the wDraw and wCalcRgns messages.

When your balloon definition function receives the wCalcRgns message, your function
should calculate the content region and structure region of the help balloon. When your
balloon definition function receives the wDraw message, your function should draw the
frame of the help balloon. If you want to process other messages in your balloon
definition function (for example, performing any additional initialization), you can also
process the other standard 'WDEF' messages. These messages, along with the wDraw
and wCalcRgns messages, are described in the chapter “Window Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

The value of the param parameter depends on the value of the message parameter. The
wCalcRgns andwDraw messages do not use this parameter.

If you want the Help Manager to use your balloon definition function, you specify its
resource ID and the desired variation code either in the HMShowBalloon function or in
the appropriate elements of the ‘'hmnu’ |, 'hdlg" , or 'hrct' resource. The Help
Manager derives your balloon’s window definition ID from its resource ID.

Using the Help Manager

CHAPTER 3

Help Manager

Help Manager Reference

This section describes the data structures, routines, and resources that are specific to the
Help Manager.

The “Data Structures” section shows the data structures for the help message record and
the Help Manager string list record. The “Help Manager Routines” section describes
routines for determining Balloon Help status, displaying and removing help balloons,
adding items to the Help menu, getting and setting the name and size of the font for help
messages, setting and getting information for your application’s help resources,
determining the size of a help balloon, and getting the message of a help balloon. Should
you want to replace the Help Manager’s default balloon definition function and tip
function with your own functions, the “Application-Defined Routines” section describes
how. The “Resources” section describes the resources you can create to provide help
balloons for your menus, alert and dialog boxes, and static windows; you can also create
resources to override default help balloons provided by system software for various
interface elements such as non-document Finder icons.

Data Structures

You can use two data structures to specify a help message to the HMShowBalloon
function.

You use the help message record to describe the format and location of a help
message. You specify the help message record as a parameter to the HMShowBalloon
function.

If the message you want to pass to the HMShowBalloon function is stored in a string list
('STR#') resource, you use a Help Manager string list record to specify the resource ID
of a string list as well as an index to one of the strings in that list. You specify a Help
Manager string list record in a field of a help message record.

The Help Message Record

A help message record describes a help message. The Help Manager displays a help
balloon with that message when the help message record is passed in the aHelpMsg
parameter to the HMShowBalloon function. The HMMessageRecord data type defines
the help message record.

TYPE HMMessageRecord =

RECORD
hmmHelpType: Integer; {type of next field}
CASE Integer OF
khmmsString: (hmmString: Str255); {Pascal string}
khmmPict: (hmmPict: Integer); {'PICT' resource ID}

Help Manager Reference 3-95

Amfrevepy 4oy £

3-96

CHAPTER 3

Help Manager

khmmsStringRes: (hmmStringRes: HMStringResType);

{'STR# resource ID }
{and index}

khmmTEHandle: (hmmTEHandle: TEHandle);

{TextEdit handle}

khmmPictHandle: (hmmPictHandle: PicHandle);

{picture handle}

khmmTERes: (hmmTERes: Integer); {TEXT/'styl' }

{ resource ID}

khmmSTRRes: (hmmSTRRes: Integer) {'STR ' resource ID}

END;

Field descriptions
hmmHelpType

hmmString

hmmPict

hmmsStringRes

hmmTEHandle

hmmPictHandle

Specifies the data type of the next field of the help message record.
You specify one of these constants for the hmmHelpType field.

CONST
khmmsString = 1; {Pascal string}
khmmPict = 2; {'PICT' resource 1D}

khmmsStringRes = 3; {{STR#' resource ID/index}
khmmTEHandle = 4; {TextEdit handle}
khmmPictHandle = 5; {picture handle}
khmmTERes = 6; {TEXT'/'styl' resource ID}
khmmSTRRes =7;{'STR 'resource ID}

Only one field follows the hmmHelpType field, but it can be one of
seven different data types. The field that follows the hmmHelpType
field specifies the help message itself.

Contains a Pascal string for a help message when you supply the
khmmsString constant in the hmmHelpType field. (This is generally
not recommended; instead, you should store the help message in a
resource, which makes localization easier.)

Contains the resource ID of a'PICT' resource for a help message
when you supply the khmmPict constant in the hmmHelpType
field.

Contains a Help Manager string list record (described in “The Help
Manager String List Record” on page 3-97) when you supply the
khmmsStringRes constant in the hmmHelpType field.

Specifies a TextEdit handle to a help message when you supply the
khmmTEHandle constant in the hmmHelpType field.

Specifies a handle to a 'PICT' graphic containing a help message
when you supply the khmmPictHandle constant in the
hmmHelpType field.

Help Manager Reference

CHAPTER 3

Help Manager

hmmTERes Specifies the resource ID of both a " TEXT' and an 'styl’ resource
for a help message when you supply the khmmTEHandle constant
in the hmmHelpType field.

hmmSTRRes Specifies the resource ID of an'STR "' resource for a help message
when you supply the khmnSTRResconstant in the hmmHelpType
field.

Because the Help Manager uses the resource itself or the actual handle that you pass to
HMShowBalloon , your 'PICT' resource should be purgeable, or, when using a handle
toa'PICT" resource, you should release the handle or dispose of it when you are
finished with it.

Examples of how to use a help message record are provided in “Providing Help Balloons
for Dynamic Windows” on page 3-74.

The Help Manager String List Record

To display a help message stored in an'STR#' resource with the HMShowBalloon
function, use the khmmStringRes constant in the hmmHelpType field of the help
message record (which you pass as a parameter to HMShowBalloon), and supply the
hmmsStringRes field of the help message record with a Help Manager string list record.
(The help message record is described in the previous section.) The HMStringResType
data type defines a Help Manager string list record.

TYPE HMStringResType =

RECORD
hmmResID: Integer; {'STR#' resource ID}
hmmindex: Integer ; {index of string}
END;

Field descriptions
hmmResID Specifies the resource ID of the 'STR#' resource.

hmmindex Specifies the index of a string within the 'STR#' resource to use for
a help message.

Help Manager Routines

This section describes the routines you use to display help balloons for the windows of
your application. It also describes how to determine whether help is enabled; how to get
the name and size of the text font in help balloons; how to set or override the help
resources used with a menu, dialog box, or window; and how to get information about
the window the help balloon is displayed in.

If you want to provide help balloons for the menus, alert boxes, dialog boxes, and static
windows of your application, or if you want to override default help balloons provided
by system software for various interface elements (such as non-document Finder icons),
you only need to create the resources containing the descriptive information. “Using the
Help Manager” beginning on page 3-18 gives details on how to create these resources.

Help Manager Reference 3-97

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If help is not enabled, most Help Manager routines do nothing and return the
hmHelpDisabled result code.

IMPORTANT
All of the Help Manager routines may move or purge memory blocks in
the application heap or for some other reason should not be called from
within an interrupt. Your application should not call Help Manager
routines at interrupt time. a

Determining Balloon Help Status

The user turns on Balloon Help assistance by choosing Show Balloons from the

Help menu. To determine whether help is currently enabled, you can use

the HMGetBalloons function. If you display your own help balloons using the
HMShowBalloon function, you should use the HMGetBalloons function to determine
whether help is enabled before displaying a help balloon. If help is not enabled, you
cannot display any help balloons. You can use the HMIsBalloon function to determine
whether a help balloon is currently displayed on the screen.

HMGetBalloons

To determine whether Balloon Help assistance is enabled, use the HMGetBalloons
function.

FUNCTION HMGetBalloons: Boolean;

DESCRIPTION
The HMGetBalloons function returns TRUEIf help is currently enabled and FALSE if
help is not currently enabled. Because the HMGetBalloons function does not load the
Help Manager into memory, it provides a fast way to determine whether Balloon Help
assistance is enabled.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMGetBalloons function are
Trap macro Selector
_Pack14 $0003

SEE ALSO

To determine whether Balloon Help assistance is available, use the Gestalt function as
described in “Using the Help Manager” on page 3-18.

3-98 Help Manager Reference

CHAPTER 3

Help Manager

HMIsBalloon

DESCRIPTION

To determine whether the Help Manager is currently displaying a help balloon, use the
HMIsBalloon function.

FUNCTION HMisBalloon: Boolean;

The HMIsBalloon function returns TRUEIf a help balloon is currently displayed on the
screen and FALSE f a help balloon is not currently displayed. This function is useful for
determining whether a balloon is showing before you redraw the screen. For example,
you might want to determine whether a balloon is displayed so that you can remove it
before opening or closing a window.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMIsBalloon function are

Trap macro Selector
_Pack14 $0007

Displaying and Removing Help Balloons

When the user turns on Balloon Help assistance, the Help Manager automatically tracks
the cursor and displays and removes help balloons as the cursor moves over hot
rectangles specified in 'hrct' resources or over display rectangles associated with
menu items specified in'hmnu’ resources and items specified in'hdlg’ resources. If
you want to provide help balloons for areas not defined in these resources, then your
application is responsible for tracking the cursor and displaying and removing balloons
for these application-defined areas.

To display a help balloon in your application-defined area, use the HMShowBalloon
function. If your application uses its own menu definition procedure, use the
HMShowMenuBalloon function to display a balloon described by the standard balloon
definition function. To remove a balloon that you display using HMShowMenuBalloon ,
you must use the HMRemoveBalloon function. To remove a balloon that you display
using HMShowBalloon , you can either use the HMRemoveBalloon function to remove
the help balloon, or you can let the Help Manager remove it for you.

Help Manager Reference 3-99

Amfrevepy 4oy £

CHAPTER 3

Help Manager

HMShowBalloon

3-100

To display a help balloon of the content area of any window of your application, you can
use the HMShowBalloon function. If the user has enabled Balloon Help assistance, the
HMShowBalloon function displays a help balloon containing the message specified by
the aHelpMsg parameter.

FUNCTION HMShowBalloon (aHelpMsg: HMMessageRecord;

aHelpMsg
tip
alternateRect

tipProc

theProc

variant

metho d

tip: Point; alternateRect: RectPtr;
tipProc: Ptr; theProc, variant: Integer;
method: Integer): OSErr;

The message displayed in the help balloon.
The location, in global coordinates, of the help balloon’s tip.

Arectangle, in global coordinates, that the Help Manager uses if
necessary to calculate a new tip location. If you specify a rectangle in this
parameter, the Help Manager automatically calls the HMRemoveBalloon
function to remove the help balloon when the user moves the cursor
outside the area bounded by the rectangle. If you instead pass NIL in this
parameter, your application must use the HMRemoveBalloon function to
remove the help balloon when appropriate.

The tip function called by the Help Manager before displaying the
balloon. Specify NIL to use the Help Manager’s default tip function, or
supply your own tip function and point to it in this parameter.

The balloon definition function. To use the standard balloon
definition function, specify 0 in this parameter. To use your own
balloon definition function, specify the resource ID of the "'WDEF'
resource containing your balloon definition function.

The variation code for the balloon definition function. Specify 0 in the
variant parameter to use the default help balloon position, specify a
code from 1 to 7 to use one of the other positions provided by the
standard balloon definition function, or specify another code to use one of
the positions provided by your own balloon definition function.

A value that indicates whether the Help Manager should save the bits
behind the balloon and whether to generate an update event.

You can pass one of the following constants in this parameter:
kHMRegularWindow , kHMSaveBitsNoWindow

or kHMSaveBitsWindow .

Help Manager Reference

DESCRIPTION

CHAPTER 3

Help Manager

If help is enabled, the HMShowBalloon function displays a help balloon with the help
message you specify in the aHelpMsg parameter. You use global coordinates to specify
the tip and the rectangle pointed to by the alternateRect parameter. The Help
Manager calculates the location and size of the help balloon. If it fits onscreen, the

Help Manager displays the help balloon using the specified tip location.

If you use the HMShowBalloon function to display help balloons, you must identify hot
rectangles, create your own data structures to store their locations, track the cursor
yourself, and call HMShowBalloon when the cursor moves to your hot rectangles. The
Help Manager does not know the locations of your hot rectangles, so it cannot use them
for moving the tip if the help balloon is placed offscreen. Instead, the Help Manager uses
the alternate rectangle that you point to with the alternateRect parameter. Often,
you specify the same coordinates for the alternate rectangle that you specify for your hot
rectangle. However, you may choose to make your alternate rectangle smaller or larger
than your hot rectangle. If you make your alternate rectangle smaller than your hot
rectangle, you have greater assurance that the Help Manager will be able to fit the help
balloon onscreen; if you specify an alternate rectangle that is larger than your hot
rectangle, you have greater assurance that the balloon will not obscure the object it
explains.

If you specify a rectangle in the alternateRect parameter, the Help Manager
automatically calls HMRemoveBalloon to remove the balloon when the cursor leaves
the area bounded by the rectangle.

If the balloon’s first position is partly offscreen or if it intersects the menu bar, the Help
Manager tries a combination of different balloon variation codes and different tip
positions along the sides of the alternate rectangle to make the balloon fit. Figure 3-5 on
page 3-11 shows what happens when the balloon’s first two positions are located
offscreen. If, after exhausting all possible positions, the Help Manager cannot fit the
entire balloon onscreen, the Help Manager displays a balloon at the position that best fits
onscreen and clips the help message to fit at this position. If the coordinates specified by
both the original tip and the alternateRect parameter are offscreen, the Help
Manager does not display the balloon at all.

If you specify NIL for the alternateRect parameter, your application is responsible
for tracking the cursor and determining when to remove the balloon. The Help Manager
also does not attempt to calculate a new tip location if the balloon is offscreen.

Once the Help Manager determines the location and size of the help balloon, the Help
Manager calls the function pointed to by the tipProc parameter before displaying the
balloon. Specify NIL in the tipProc parameter to use the Help Manager’s default tip
function.

You can supply your own tip function and point to it in the tipProc parameter. The
Help Manager calls the tip function after calculating the location of the balloon and
before displaying it. In the parameters of your tip function, the Help Manager returns
the tip, the region boundary of the entire balloon, the region boundary for the content
area within the balloon frame, and the variation code to be used for the balloon. This
allows you to examine and possibly adjust the balloon before it is displayed.

Help Manager Reference 3-101

Amfrevepy 4oy £

CHAPTER 3

Help Manager

The Help Manager reads the balloon definition function specified by the parameter
theProc into memory if it isn’t already in memory. If the balloon definition function
can’t be read into memory, the help balloon is not displayed and the HMShowBalloon
function returns the resNotFound result code.

The method parameter specifies whether the Help Manager should save the bits behind
the balloon and whether to generate an update event. You can supply one of these
constants for the parameter.

CONSTkHMRegularwWindow =0; {don't save bits; just update}
kHMSaveBitsNoWindow =1; {save bits; don't do update}
kHMSaveBitsWindow =2; {save bits; do update event}

If you specify kHMRegularWindow , the Help Manager draws and removes the help
balloon as if it were a window: That is, when drawing the balloon, the Help Manager
does not save bits behind the balloon, and, when removing the balloon, the Help
Manager generates an update event. This is the standard behavior of help balloons; it is
the behavior you should normally use.

If you specify kHMSaveBitsNoWindow in the method parameter, the Help Manager
does not create a window for displaying the balloon. Instead, the Help Manager creates a
help balloon that is more like a menu than a window. The Help Manager saves the bits
behind the balloon when it creates the balloon. When it removes the balloon, the Help
Manager restores the bits without generating an update event. You should use this
method only in a modal environment where the bits behind the balloon cannot change
from the time the balloon is drawn to the time it is removed. For example, you might
specify the kHMSaveBitsNoWindow constant when providing help balloons for pop-up
menus that overlay complex graphics, which might take a long time to redraw with an
update event.

If you specify kHMSaveBitsWindow , the Help Manager treats the help balloon as a
hybrid having properties of both a menu and a window. That is, the Help Manager saves
the bits behind the balloon when it creates the balloon, and, when it removes the balloon,
it both restores the bits and generates an update event. You’ll rarely need this option. It is
necessary only in a modal environment that might immediately change to a nonmodal
environment—that is, where the bits behind the balloon are static when the balloon is
drawn, but can possibly change before the balloon is removed.

HMShowBalloon returns the noErr result code if the help balloon was successfully
displayed.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and the routine selector for the HMShowBalloon function are

Trap macro Selector
_Pack14 $0B01

3-102 Help Manager Reference

RESULT CODES

SEE ALSO

CHAPTER 3

Help Manager

noErr 0 No error; the help balloon was displayed

paramErr -50 Error in parameter list

mem~FullErr -108 Not enough room in heap zone

resNotFound -192 Unable to read resource

hmHelpDisabled -850 Help balloons are not enabled

hmBalloonAborted -853 Because of constant cursor movement, the
help balloon wasn’t displayed

hmOperationUnsupported -861 Invalid value passed in the method
parameter

You specify the help message in the aHelpMsg parameter. “Providing Help Balloons for
Dynamic Windows” beginning on page 3-74 shows how to specify this information.

You can supply your own tip function (as explained in the description of the MyTip
function, which begins on page 3-130) and point to it in the tipProc parameter.

Figure 3-4 on page 3-10 illustrates the variation codes you can specify in the variant
parameter and their corresponding help balloon positions for the standard balloon
definition function.

If your application uses its own menu definition procedure, you can use the
HMShowMenuBalloon function to display help balloons for the menus that your menu
definition procedure manages. The HMShowMenuBalloon function is next.

HMShowMenuBalloon

The Help Manager displays help balloons for applications that provide 'hmnu'
resources and use the standard menu definition procedure. If your application uses your
own menu definition procedure, you can still use the Help Manager to display help
balloons for the menus that your menu definition procedure manages. Use the
HMShowMenuBalloon function to display balloons described by the standard balloon
definition function. If you want to use your own balloon definition function from within
your menu definition procedure, call the HMShowBalloon function (described in the
previous section) and specify the kKHMSaveBitsNoWindow constant for the method
parameter. You can also use the HMShowlenuBalloon function as an alternative to
creating an 'hmnu’ resource for your menu.

FUNCTION HMShowMenuBalloon (itemNum: Integer; itemMenulD: Integer;
itemFlags: Longlnt;
itemReserved: Longlnt;
tip: Point; alternateRect: RectPtr;
tipProc: Ptr; theProc: Integer;
variant; Integer): OSErr;

Help Manager Reference 3-103

Amfrevepy 4oy £

DESCRIPTION

3-104

CHAPTER 3

Help Manager

itemNum

itemMenulD

itemFlags

itemReserved

tip

alternateRect

tipProc

theProc
variant

The number of the menu item over which the cursor is currently located.
Use a positive number in the itemNum parameter to specify a menu item,
use -1 if the cursor is located over a divider line, or use 0 if the cursor is
located over the menu title.

The ID of the menu in which the cursor is currently located.

Along integer from the menu flags, telling whether a menu item is
enabled or dimmed and whether the menu itself is enabled or dimmed.
The Help Manager uses this value to determine which balloon to display
from the 'nmnu' resource.

Reserved for future use by Apple. Specify 0 in this parameter.

The tip for the help balloon. The standard menu definition procedure
places the tip 8 pixels from either the right or left edge of the menu item.
For menu titles, the standard menu definition procedure centers the tip at
the bottom of the menu bar; you should not specify a tip with coordinates
in the menu bar for any menu titles.

The Help Manager uses the tip you specify in this parameter unless it
places the help balloon offscreen or in the menu bar. If the tip is offscreen,
the Help Manager uses the rectangle specified in the alternateRect
parameter to calculate a new tip location.

The rectangle that the Help Manager uses to calculate a new tip location.
(The standard menu definition procedure specifies the alternate rectangle
as the rectangle that encloses the menu title or menu item.) If the
balloon’s first position is offscreen or in the menu bar, the Help Manager
tries a different balloon variation code or calculates a new tip by
transposing it to an opposite side of the alternate rectangle. If you specify
NIL for the alternateRect parameter, the Help Manager does not
attempt to calculate a new tip position when the help balloon is offscreen.

The tip function that the Help Manager calls before displaying the
balloon. Specify NIL to use the Help Manager’s default tip function, or
supply your own tip function and point to it in this parameter.

Reserved for use by Apple. Specify 0 in this parameter.

The variation code for the standard balloon definition function. Specify 0
to use the default balloon position or a code between 1 and 7 to use one of
the other standard positions shown in Figure 3-4 on page 3-10.

The HMShowMenuBalloon function saves the bits behind the help balloon before
displaying the help balloon. When you remove the balloon, the Help Manager restores
the bits that were previously behind it.

Help Manager Reference

CHAPTER 3

Help Manager

After your menu definition procedure determines that the cursor is located in a menu
item, you can use the HMShowMenuBalloon function to display any help balloons
associated with that item. You must then use the HMRemoveBalloon function to remove
the balloon when the cursor moves away from the menu item.

If you use the HMShowMenuBalloon function to display help balloons, you must
identify hot rectangles, create your own data structures to store their locations, track the
cursor yourself, and call HMShowMenuBalloon when the cursor moves to your hot
rectangles. The Help Manager does not know the locations of your hot rectangles, so it
cannot use them for moving the tip if the balloon is placed offscreen. Instead, the Help
Manager uses the alternate rectangle that you point to with the alternateRect
parameter.

Unlike the way the alternateRect parameter works in the HMShowBalloon function,
specifying an alternate rectangle to HMShowMenuBalloon does not cause the Help
Manager to track the cursor and remove the balloon for you. You must still track the
cursor and use the HMRemoveBalloon function to remove the balloon when the cursor
moves out of the area specified by the hot rectangle.

Specify NIL in the tipProc parameter to use the tip function values calculated by the
Help Manager. If you supply your own tip function and specify it in the tipProc
parameter, the Help Manager returns the tip, the region boundary of the entire balloon,
the region boundary for the content area within the balloon frame, and the variation
code to be used for the help balloon before displaying it. This allows you to examine and
possibly adjust the balloon before it is displayed.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the HMShowMenuBalloon function are

Trap macro Selector

_Pack14 $0E05

noErr 0 No error; the help balloon was displayed

memFullErr -108 Not enough room in heap zone

hmHelpDisabled -850 Help balloons are not enabled

hmBalloonAborted -853 Because of constant cursor movement, the help
balloon wasn’t displayed

hmSameAsLastBalloon -854 Menu and item are same as last menu and item

You can supply your own tip function (as explained in the description of the MyTip
function, which begins on page 3-130) and point to it in the tipProc parameter.

The HMRemoveBalloon function is described next.

Help Manager Reference 3-105

Amfrevepy 4oy £

CHAPTER 3

Help Manager

HMRemoveBalloon

DESCRIPTION

3-106

To remove a help balloon that your application displays using the function
HMShowMenuBalloon , use the HMRemoveBalloon function. If your application
does not specify an alternate rectangle to the HMShowBalloon function, use
HMRemoveBalloon to remove the help balloon you display with HMShowBalloon .

FUNCTION HMRemoveBalloon: OSEtrr;

The HMRemoveBalloon function removes any balloon that is currently visible—unless
the user is using Close View and is pressing the Shift key. (This action keeps the help
balloon onscreen even while the user moves away from the hot rectangle under Close
View.)

If you use the HMShowBalloon function to display help balloons, you can either let the
Help Manager track the cursor and remove the balloon when the cursor moves out of the
hot rectangle, or your application can track the cursor and determine when to remove
the balloon. To let the Help Manager track the cursor and remove the balloon when
using the HMShowBalloon function, specify a rectangle in the alternateRect

parameter. If you want your application to track the cursor and remove the balloon
when using the HMShowBalloon function, specify NIL in the alternateRect

parameter. You must then use the HMRemoveBalloon function to remove the balloon
when the user moves the cursor outside the rectangle.

If you use the HMShowMenuBalloon function to display help balloons, you must always
track the cursor and use the HMRemoveBalloon function to remove the balloon when
the cursor moves out of the hot rectangle.

WARNING

The HMRemoveBalloon function removes any help balloon that is
currently visible, regardless of the application that displayed it. You
should call HMRemoveBalloon only when the cursor is in the content
area of your application window but not in a hot rectangle, and you
should never call it when your application is in the background. a

If the user is using Close View and is pressing the Shift key, the help balloon stays
onscreen even while the user moves away from the hot rectangle. The
HMRemoveBalloon function returns a result code of hmCloseViewActive in this case.

If you use your own menu definition procedure, you should call HMRemoveBalloon
when your procedure receives messages about saving or restoring bits. (These messages
are described in the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.)

Help Manager Reference

CHAPTER 3

Help Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMRemoveBalloon function are

Trap macro Selector
_Pack14 $0002

RESULT CODES
noErr 0 No error or the help balloon was removed
hmHelpDisabled -850 Help balloons are not enabled
hmNoBalloonUp -862 No balloon showing
hmCloseViewActive -863 Balloon can’t be removed because Close View

is in use
SEE ALSO

The description of the HMShowBalloon function begins on page 3-100; the description
of the HMShowMenuBalloon function begins on page 3-103.

Enabling and Disabling Balloon Help Assistance

You can enable or disable help using the HMSetBalloons function. If you enable or
disable help, you do so for all applications. Because the setting of Balloon Help
assistance should be under the user’s control, in most cases you should not modify the
user’s setting. However, if you feel your application absolutely must enable or disable
Balloon Help assistance, you can use the HMSetBalloons function. If you modify this
setting, return it to its previous state as soon as possible.

HMSetBalloons

To enable or disable Balloon Help assistance for the user, use the HMSetBalloons
function.

FUNCTION HMSetBalloons (flag: Boolean): OSEtrr;

flag Specifies whether help should be enabled or disabled for all applications
and the system software.

DESCRIPTION
If the value of the flag parameter is TRUE HMSetBalloons enables Balloon Help
assistance. If the value of the flag parameter is FALSE, HMSetBalloons disables
Balloon Help assistance. If a help balloon is showing, you must first remove it using the
HMRemoveBalloon function before you use HMSetBalloons to disable Balloon Help
assistance.

Help Manager Reference 3-107

Amfrevepy 4oy £

CHAPTER 3

Help Manager

SPECIAL CONSIDERATIONS

When Balloon Help assistance is disabled, the Help Manager does not display help
balloons for any applications. When help is disabled, the HMShowBalloon and
HMShowMenuBalloon functions do not display help balloons; they return nonzero
result codes.

Because the setting of Balloon Help assistance should be under the user’s control, you
generally should not use the HMSetBalloons function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMSetBalloons function are

Trap macro Selector
_Pack14 $0104

RESULT CODES
noErr 0 No error
paramErr -50 Error in parameter list
memFullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource

SEE ALSO

The description of the HMShowBalloon function begins on page 3-100; the description
of the HMShowMenuBalloon function begins on page 3-103.

Adding Items to the Help Menu

The Help Manager automatically appends the Help menu when your application inserts
an Apple menu into its menu bar. The Menu Manager automatically appends the Help
menu to the right of all your menus and to the left of the Application menu (and to the
left of the Keyboard menu if a non-Roman script system is installed).

The Help menu is specific to each application. The Help menu items defined by the Help
Manager should be common to all applications, but you can append your own menu
items for help-related information by using the HMGetHelpMenuHandle function.

HMGetHelpMenuHandle

To append items to the Help menu, use the HMGetHelpMenuHandle function.
FUNCTION HMGetHelpMenuHandle (VAR mh: MenuHandle): OSErr;

mh A copy of a handle to the Help menu.

3-108 Help Manager Reference

DESCRIPTION

CHAPTER 3

Help Manager

The HMGetHelpMenuHandle function returns in its mhparameter a handle to your
application’s help menu. With this handle, you can append items to the Help menu by
using the AppendMenu procedure or other related Menu Manager routines. The Help
Manager automatically adds the divider line that separates your items from the rest of
the Help menu.

Be sure to define help balloons for your items in the Help menu by creating an ‘hmnu’
resource and specifying the kHMHelpMenulD constant as its resource ID.

The Menu Manager functions MenuSelect and MenuKey return a result with the menu
ID in the high word and the menu item in the low word. Both functions return the
HelpMgrID constant in the high word when the user chooses an appended item from
the Help menu. The number of the appended menu item is returned in the low word

of the function result. In the future, Apple Computer, Inc., may choose to add other items
to the Help menu. To determine the number of items in the Help menu, call the Menu
Manager function CountMlItems .

SPECIAL CONSIDERATIONS

Do not use the Menu Manager function GetMenuHandle to get a handle to the Help
menu, because GetMenuHandle returns a handle to the global Help menu, not the
Help menu that is specific to your application.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the HMGetHelpMenuHandle function are

Trap macro Selector

_Pack14 $0200

noErr 0 No error

paramErr -50 Error in parameter list
memFullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource
hmHelpManagerNotInited —-855 Help menu not set up

“Adding Menu Items to the Help Menu” beginning on page 3-90 provides details and
illustrative sample code for using HMGetHelpMenuHandle . The 'hmnu' resource is
described in detail in “Providing Help Balloons for Menus” beginning on page 3-27. See
the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials for
information about AppendMenu, MenuSelect , MenuKey, and other Menu Manager
routines.

Help Manager Reference 3-109

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Getting and Setting the Font Name and Size

Using the HMGetFont and HMGetFontSize functions, you can get information about
the font name and size currently used for text strings displayed in help balloons.
Using the HMSetFont and HMSetFontSize functions, you can change the font name
and size.

HMGetFont

DESCRIPTION

To get information about the font that is currently used to display text in help balloons,
use the HMGetFont function.

FUNCTION HMGetFont (VAR font: Integer): OSErr;

font The global font number used to display text in help balloons.

The HMGetFont function returns in itsfont parameter the global font number used to
display text in help balloons. HMGetFont returns this information only for Pascal strings
stored in the help resources themselves and for strings from 'STR# and'STR''
resources; it does not return information about text in 'PICT" or styled text resources, or
in handles to either of these resources.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-110

The trap macro and routine selector for the HMGetFont function are

Trap macro Selector

_Packl4 $020A

noErr 0 No error

mem~FullErr -108 Not enough room in heap zone

The chapter “TextEdit” in Inside Macintosh: Text describes global font numbers.

Help Manager Reference

CHAPTER 3

Help Manager

HMGetFontSize

DESCRIPTION

To get information about the font size that is currently used to display text in help
balloons, use the HMGetFontSize function.

FUNCTION HMGetFontSize (VAR fontSize: Integer): OSErr;

fontSize The global font size used to display text in help balloons.

The HMGetFontSize function returns in itsfontSize parameter the global font size
used to display text in help balloons. This information applies only to Pascal strings
stored in the help resources themselves and to strings from 'STR#' and'STR'
resources; it does not apply to text in 'PICT' or styled text resources, or in handles to
either of these resources.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the HMGetFontSize function are

Trap macro Selector

_Pack14 $020B

noErr 0 No error

memFullErr -108 Not enough room in heap zone

See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about font
sizes.

Help Manager Reference 3-111

Amfrevepy 4oy £

HMSetFont

CHAPTER 3

Help Manager

DESCRIPTION

You can use the HMSetFont function to specify the font used to display text in help
balloons.

FUNCTION HMSetFont (font: Integer): OSErr;

font A global font number.

The HMSetFont function sets the font for help balloons in all applications that display
help balloons.

This function applies only to Pascal strings stored in the help resources themselves and
to strings from 'STR# and'STR"' resources; it does not apply to text in 'PICT' or
styled text resources, or in handles to either of these resources.

SPECIAL CONSIDERATIONS

Use this function with extreme restraint, because the default font provides a consistent
look across applications. If your application uses this function to change the font name
or size, the change affects all applications that display help balloons.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

3-112

The trap macro and routine selector for the HMSetFont function are

Trap macro Selector
_Pack14 $0108

noErr 0 No error
mem~FullErr -108 Not enough room in heap zone

See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about fonts
and font numbers.

Help Manager Reference

CHAPTER 3

Help Manager

HMSetFontSize

You can use the HMSetFontSize function to specify the font size used to display text in
help balloons.

FUNCTION HMSetFontSize (fontSize: Integer): OSErr;

font Size The global font size the Help Manager uses to display text in help
balloons.

DESCRIPTION
The HMSetFontSize function sets the font size for help balloons in all applications and
software that display help balloons. This function applies only to Pascal strings stored in
the help resources themselves and to strings from 'STR#' and'STR ' resources; it does
not apply to text in 'PICT' or styled text resources, or in handles to either of these
resources.

SPECIAL CONSIDERATIONS
Use this function with extreme restraint, because the default font size provides a
consistent look across applications. If your application uses this function to change the
font size, the change affects all applications that display help balloons.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMSetFontSize function are

Trap macro Selector
_Pack14 $0109
RESULT CODES
noErr 0 No error
memFullErr -108 Not enough room in heap zone

SEE ALSO
See the chapter “TextEdit” in Inside Macintosh: Text for detailed information about fonts
and font sizes.

Help Manager Reference 3-113

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Setting and Getting Information for Help Resources

Using the HMSetMenuResID or HMScanTemplateltems function, you can set help
resources for menus, dialog boxes, or windows of your application that do not currently
have help resources associated with them. You can also supplement the ‘hmnu' and
'hdlg’ resources currently associated with the menus and dialog boxes of your
application by using the HMSetMenuResID or HMSetDialogResID function. You can
use the HMGetMenuResID function to determine the 'hmnu' resource ID associated
with a menu.

When you use the HMSetDialogResID function, you can supplement any 'hdlg'
resources that are specified in item list (DITL') resources. The resource you specify in
the HMSetDialogResID function adds to any help that already exists in the form of
an'hdlg’ resource for the next dialog box or alert box to be displayed. You can use an
'hdlg’ resource (described in “Providing Help Balloons for Items in Dialog Boxes and
Alert Boxes” on page 3-51) to provide help balloons for items common to several dialog
boxes and alert boxes, and you can use the HMSetDialogResID function to provide
help balloons for items that you add to individual dialog boxes and alert boxes.

You can use the HMGetDialogResID function to get the resource ID of the 'hdlg'
resource that will be used by the next dialog box as a result of a previous call to the
HMSetDialogResID function. If the 'hdlg® resource currently in use has not been
overridden by a call to HMSetDialogResID , the HMGetDialogResID function returns
a result code of resNotFound

You can use the HMGetDialogResID and HMSetDialogResID functions when
displaying nested dialog boxes (although, in general, you should close one dialog box
before displaying another). For example, you can save the 'hdlg" resource of the
current dialog box, set a new'hdlg' resource, display the new dialog box, and then
restore the setting of the previous'hdlg® resource when you close the second dialog
box.

HMSetMenuResID

3-114

You can use the HMSetMenuResID function to set the 'hmnu' resource for a menu that
did not previously have one or to supplement the existing ‘hmnu’ resource for a menu.

FUNCTION HMSetMenuResID (menulD, resID: Integer): OSEtrr;

menulD The menu to associate with the 'hmnu' resource.

resiD The resource ID of the 'hmnu' resource to use for the menu specified by
the menulD parameter.

Help Manager Reference

CHAPTER 3

Help Manager

DESCRIPTION

The resID parameter specifies the resource ID of the 'hmnu' resource to use for the
menu specified by the menulD parameter. The menu identified by the menulD
parameter should correspond to an existing menu in your menu list. The Help Manager
maintains a list of the menus whose 'hmnu' resources you set using the
HMSetMenuResID function.

Before your application terminates, specify -1 in the resID parameter to disassociate a
particular menu and an'hmnu' resource that you previously associated using the
HMSetMenuResID function.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMSetMenuResID function are

Trap macro Selector
_Packi14 $020D
RESULT CODES
noErr 0 No error
mem~FullErr -108 Not enough room in heap zone

SEE ALSO

“Providing Help Balloons for Menus You Disable for Dialog Boxes” beginning on
page 3-47 describes how to use HMSetMenuResID to associate an alternate 'hmnu’
resource with a menu that your application dims when it displays a dialog box.

HMGetMenuResID

After you use the HMSetMenuResID function to associate a menu with an‘hmnu’
resource, you can use the HMGetMenuResID function to get the resource ID of the
'hmnu' resource.

FUNCTION HMGetMenuResID (menulD: Integer;
VAR resID: Integer): OSErr;

menulD The menu for which you want the associated 'hmnu’ resource. The value
specified in the menulD parameter must have been previously associated
using the HMSetMenuResID function.

resiD The resource ID of the 'hmnu' resource associated with the specified
menu.

Help Manager Reference 3-115

Amfrevepy 4oy £

CHAPTER 3

Help Manager

DESCRIPTION

HMGetMenuResID returns in itsresID parameter the resource ID of the 'hmnu'

resource associated with the menu specified by the menulD parameter. If the menu does
not have an 'hmnu’ resource that was previously set using HMSetMenuResID, the
HMGetMenuResID function returns -1 in theresID parameter and a nonzero result
code.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMGetMenuResID function are

Trap macro Selector
_Packi14 $0314
RESULT CODES
noErr 0 No error
resNotFound -192 Unable to read resource

SEE ALSO
The HMSetMenuResID function is described on page 3-114.

HMScanTemplateltems

You can use the HMScanTemplateltems function to search for a resource of type
‘ndlg" or'hret'

FUNCTION HMScanTemplateltems (whichID, whichResFile: Integer;
whichType: ResType): OSEirr;

whichID The resource ID of the 'hdlg’ or 'hrct’ resource to search for.

whichResFile
The file reference number of the resource file to search.

whichType The type of help resource to search for—either 'hdlg" or 'hrct'

DESCRIPTION

The HMScanTemplateltems function searches a resource file for resources of type

‘hdlg’ or’'hrct’ . Specify the resource ID of the 'hdlg® or 'hrct’ resource to search

for in the whichID parameter. Specify the resource type in the whichType parameter.

When HMScanTemplateltems returns the value for noErr , the Help Manager applies
the help messages in the specified 'hdlg' or 'hrct’ resource to the active window.

3-116 Help Manager Reference

CHAPTER 3

Help Manager

The resource file specified in the whichResFile parameter must already be open.
Specify -1 in the whichResFile parameter to search the current resource file.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMScanTemplateltems function are

Trap macro Selector
_Pack14 $0410
RESULT CODES
noErr 0 No error
fnOpnErr -38 File not open
memFullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource
SEE ALSO

If you want the capability that HMScanTemplateltems provides without modifying
your code, you can add a Helpltem item to your item list (DITL") resources or add an
'hwin' resource—as described in “Using a Help Item Versus Using an 'hwin' Resource”
on page 3-63 and in “Associating Help Resources With Static Windows” on page 3-68.

HMSetDialogResID

You can use the HMSetDialogResID function to set the 'hdlg’ resource that specifies
help balloons for the next dialog box or alert box.

FUNCTION HMSetDialogResID (resID: Integer): OSEtrr;

resiD The resource ID of the 'hdlg’ resource to use when your application
displays the next dialog box or alert box.

DESCRIPTION
The HMSetDialogResID function uses the 'hdlg" resource specified in the resID
parameter to supplement whatever 'hdlg' resource might already be associated with
the next dialog box or alert box that you display. HMSetDialogResID supplements the
help messages specified by a Helpltem item in the next dialog or alert box’s item list
('DITL") resource. Specify -1 in the resID parameter to reset or clear a previous call to
the HMSetDialogResID function.

Help Manager Reference 3-117

Amfrevepy 4oy £

CHAPTER 3

Help Manager

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMSetDialogResID function are

Trap macro Selector
_Pack14 $010C
RESULT CODES
noErr 0 No error
memFullErr -108 Not enough room in heap zone

SEE ALSO

You typically use HMSetDialogResID in conjunction with the HMGetDialogResID
function, which is described in the following section.

HMGetDialogResID

You can use the HMGetDialogResID function to get the resource 1D of the 'hdlg'
resource that will be used by the next dialog box as a result of a previous call to the
HMSetDialogResID function.

FUNCTION HMGetDialogResID (VAR resID: Integer): OSErr;

resiD The resource ID of the last 'hdlg’ resource set with the
HMSetDialogResID function.

DESCRIPTION

The HMGetDialogResID function returns in itsresID parameter the resource ID of the
last 'hdlg' resource set with the HMSetDialogResID function.

You can use the HMGetDialogResID and HMSetDialogResID functions when your
application displays nested dialog boxes (although you should generally close one
dialog box before displaying another). For example, you can save the 'hdlg' resource
of the current dialog box, set a new'hdlg’ resource, display the new dialog box, and
then restore the setting of the previous 'hdlg" resource when you close the second
dialog box.

If the 'hdlg’ resource currently in use was not set by a call to the HMSetDialogResID
function, the HMGetDialogResID function returns a result code of resNotFound

3-118 Help Manager Reference

CHAPTER 3

Help Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetDialogResID function are

Trap macro Selector
_Packi14 $0213
RESULT CODES
noErr 0 No error
memFullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource
SEE ALSO

You typically use HMGetDialogResID in conjunction with the HMSetDialogResID

function, which is described on page 3-117.

Determining the Size of a Help Balloon

If your application does extensive drawing, the Help Manager provides three functions
that may be helpful for determining the dimensions of your help balloons before
displaying them. Then you can ensure that your help balloons don’t obscure an area that
requires an inordinate amount of time to update.

To get the size of a help balloon before the Help Manager displays it, use the
HMBalloonRect or HMBalloonPict function. To get the size of the currently
displayed help balloon, use the HMGetBalloonWindow function.

HMBalloonRect

To get information about the size of a help balloon before the Help Manager displays it,
you can use the HMBalloonRect function.

FUNCTION HMBalloonRect (aHelpMsg: HMMessageRecord;
VAR coolRect: Rect): OSErr;

aHelpMsg The help message for the help balloon.

coolRect The coordinates of the rectangle that encloses the help message. The
upper-left corner of the rectangle has the coordinates (0,0).

Help Manager Reference 3-119

Amfrevepy 4oy £

DESCRIPTION

CHAPTER 3

Help Manager

The HMBalloonRect function calculates the coordinates that the Help Manager uses for
a particular balloon, permitting you to specify the help message for a help balloon and
then obtaining the size (but not the position) of the rectangle used for the balloon. Note
that the HMBalloonRect function does not display the help balloon.

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the HMBalloonRect function are
Trap macro Selector

_Pack14 $040E

noErr 0 No error

paramErr -50 Error in parameter list

memFullErr -108 Not enough room in heap zone

The aHelpMsg parameter is of data type HMMessageRecord, which is described in
“Providing Help Balloons for Dynamic Windows” beginning on page 3-74.

HMBalloonPict

DESCRIPTION

3-120

To get a handle to a picture before displaying it in a help balloon, use the
HMBalloonPict function.

FUNCTION HMBalloonPict (aHelpMsg: HMMessageRecord,;
VAR coolPict: PicHandle): OSErr;

aHelpMsg The help message for the help balloon; in this case, a picture.

coo IPic t A handle to the picture that the Help Manager will use if you later choose

to display the help balloon.

The HMBalloonPict function does not display the help balloon; it returns a handle to
the picture that the Help Manager will use if you later choose to display a help balloon
with the specified help message.

The pictFrame field of the picture handle in the coolPict parameter contains the
same rectangle as the rectangle obtained from the HMBalloonRect function. The
rectangle specifies the display rectangle that surrounds the picture.

Help Manager Reference

CHAPTER 3

Help Manager

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMBalloonPict ~ function are
Trap macro Selector
_Pack14 $040F
RESULT CODES
noErr 0 No error
paramErr -50 Error in parameter list
memFullErr -108 Not enough room in heap zone
SEE ALSO

The aHelpMsg parameter is of data type HMMessageRecord . “Providing Help Balloons
for Dynamic Windows” beginning on page 3-74 describes the fields of this record.

HMGetBalloonWindow

DESCRIPTION

The Help Manager displays help balloons in special windows; to get a pointer to the
window record of the curently displayed help balloon, use the HMGetBalloonWindow
function.

FUNCTION HMGetBalloonWindow (VAR window: WindowPtr): OSEtrr;

window A pointer to the window record for the currently displayed help balloon.

In its window parameter, HMGetBalloonWindow returns a pointer to the window
record for the currently displayed help balloon. The window record contains a graphics
port record, which in turn defines the port’s rectangle.

If no help balloon is currently displayed, the HMGetBalloonWindow function returns
NIL in the window parameter. The HMGetBalloonWindow function also returns NIL for
balloons created with the HMShowMenuBalloon function because no windows are
created; likewise, NIL is returned for balloons created with the HMShowBalloon
function when the kHMSaveBitsNoWindow constant is specified as the method
parameter.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HMGetBalloonWindow function are

Selector
$0215

Trap macro
_Pack14

Help Manager Reference 3-121

Amfrevepy 4oy £

RESULT CODES

SEE ALSO

CHAPTER 3

Help Manager

noErr 0 No error
mem~FullErr -108 Not enough room in heap zone

The description of the HMShowMenuBalloon function begins on page 3-103; the
description of the HMShowBalloon function begins on page 3-100.

Getting the Message of a Help Balloon

Using the HMEXxtractHelpMsg and HMGetindHelpMsg functions, you can extract
information from existing help resources.

You can use HMEXxtractHelpMsg to extract the help messages specified in existing help
resources. You might find this useful if you have duplicate commands and you want to
store help messages in only one resource. For example, if you have a dialog box that
replicates portions of a pull-down menu, you could specify help messages in the ‘hmnu’
resource for the pull-down menu, and use HMExtractHelpMsg to extract those help
messages to use with the related items in the dialog box’s 'hdlg’ resource.

HMExtractHelpMsg

3-122

You can use the HMExtractHelpMsg function to extract the help balloon messages from
existing help resources.

FUNCTION HMExtractHelpMsg (whichType: ResType;
whichResID, whichMsg,
whichState: Integer;
VAR aHelpMsg: HMMessageRecord): OSErr;

whichType The type of help resource. You can use one of these constants:
kHMMenuResType kHMDialogResType , kHMRectListResType
kHMOverrideResType , or kHMFinderApplResType

whichResID
The resource 1D of the help resource whose help message you wish to
extract.

whichMsg The index of the component you wish to extract. The header and
missing-items components don’t count as components to index, because
this function always skips those two components. For help resources that
include both header and missing-items components, specify 1 to get the
help messages contained in a help resource’s menu-title component.

Help Manager Reference

DESCRIPTION

CHAPTER 3

Help Manager

whichState
For menu items and items in alert or dialog boxes, specifies the state of
the item whose message you wish to extract. Use one of the following
constants: kHMEnableditem , kHMDisableditem , kHMCheckedltem |,
or kKHMOtherltem .

aHelpMsg A help message record.

The HMExtractHelpMsg function returns in itsaHelpMsg parameter the help message
for an item in a specified state.

The whichType parameter identifies the type of resource from which you are extracting
the help message. You can use one of these constants for the whichType parameter.

CONSTKkHMMenuResType ='hmnu’; {menu help resource type}
kHMDialogResType ="'hdlg’; {dialog help resource type}
kHMWindListResType = 'hwin’; {window help resource type}
kHMRectListResType ="'hrct’; {rectangle help resource type}
kHMOverrideResType ="'hovr’; {help override resource }

{ type}

kHMFinderApplResType = 'hfdr’ {application icon help }
{ resource type}

The whichState parameter specifies the state of the item whose message you want to
extract. You can use one of these constants for the whichState = parameter.

CONSTKkHMEnabledltem =0; {enabled state for menu items; }

{ contrlHilite value of O for }
{ controls}

kHMDisabledltem =1; {disabled state for menu items; }
{ contrlHilite value of 255 for }
{ controls}

kHMCheckedltem =2; {enabled-and-checked state for }
{ menu items; contrlHilite value }
{ of 1 for controls that are "on"}

kHMOtherltem =3; {enabled-and-marked state for menu }
{ items; contrlHilite value }
{ between 2 and 253 for controls}

For the kHMRectListResType , kHMOverrideResType ,and
kHMFinderApplResType resource types—which don’t have states—supply
the kKHMEnableditem constant for the whichState parameter.

Help Manager Reference 3-123

Amfrevepy 4oy £

CHAPTER 3

Help Manager

The application-defined procedure shown in Listing 3-21 extracts the help balloon
message from the 'hmnu' resource with a resource ID of 128. A value of 1 is supplied as
the whichMsg parameter to retrieve information about the resource’s first component
(after the header and missing-items components, that is), which is the menu title. The
menu title has four possible states; to retrieve the help message for the menu title in its
dimmed state, the constant kHMDisabledltem is used for the whichState parameter.
The help message record returned in aHelpMsg is then passed to HMShowBalloon ,
which displays the message in a balloon whose tip is located at the point specified in the
tip parameter.

Listing 3-21 Using the HMExtractHelpMsg function

FUNCTION MyShowBalloonForDimMenuTitle: OSErr;

VAR
aHelpMsg: HMMessageRecord;
tip: Point;
alternateRect: Rect;
err: OSErr;
BEGIN

err := HMExtractHelpMsg(kHMMenuResType, 128, 1,
kHMDisabledltem, aHelpMsg) ;

| F err = noErr THEN

{be sure to assign a tip and rectangle coordinates here}

err := HMShowBalloon(aHelpMsg, tip, alternateRect,

NIL, 0, 0, kHMRegularWindow) ;

MyShowBalloonForDimMenuTitle:= err;

END;

To retrieve all of the help messages for a given resource, set whichMsg to 1 and make
repeated calls to HMExtractHelpMsg , incrementing whichMsg by 1 on each
subsequent call until it returns the hmSkippedBalloon result code.

SPECIAL CONSIDERATIONS

3-124

If HMCompareltem appears as a component of an 'hmnu' resource that you’re
examining, neither this function nor HMGetindHelpMsg performs a comparison against
the current name of any menu item. Instead, these functions return the messages listed

in your HMCompareltem components in the order in which they appear in the 'hmnu’
resource.

When supplying an index for the whichMsg parameter, don’t count the header
component or the missing-items component as components to index. This function
always skips both components; therefore, for help resources that include both header
and missing-items components, specify 1 to get the help messages contained in a help
resource’s menu-title component.

Help Manager Reference

CHAPTER 3

Help Manager

ASSEMBLY-LANGUAGE INFORMATION

RESULT CODES

SEE ALSO

The trap macro and routine selector for the HMExtractHelpMsg function are

Trap macro Selector

_Pack14 $0711

noErr 0 No error

paramErr -50 Error in parameter list

mem~FullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource
hmSkippedBalloon —-857 No help message to fill in
hmWrongVersion -858 Wrong version of Help Manager resource
hmUnknownHelpType -859 Help message record contained a bad type

The aHelpMsg parameter is of data type HMMessageRecord . “Providing Help Balloons
for Dynamic Windows” beginning on page 3-74 describes the fields of the help message
record.

HMGetindHelpMsg

To extract the help messages in existing help resources as well as additional information
regarding the help resource, such as its variation code, tip location, and so on, use the
HMGetindHelpMsg function.

FUNCTION HMGetindHelpMsg (whichType: ResType;
whichResID, whichMsg,
whichState: Integer;
VAR options: Longint; VAR tip: Point;
VAR altRect: Rect; VAR theProc: Integer;
VAR variant: Integer;
VAR aHelpMsg: HMMessageRecord;
VAR count: Integer): OSErr;

whichType The type of help resource. You can use one of these constants:
kHMMenuResType, kHMDialogResType , kHMRectListResType
kHMOverrideResType , or kHMFinderApplResType

whichResID
The resource 1D of the help resource whose help message you wish to
extract.

Help Manager Reference 3-125

Amfrevepy 4oy £

DESCRIPTION

3-126

CHAPTER

Help Manager

whichMsg

whichState

options
tip

altRect
theProc
variant
aHelpMsg
count

Like the HMExtractHelpMsg

The index of the component you wish to extract. The header and
missing-items components don’t count as components to index, because
this function always skips those two components. For help resources that
include both header and missing-items components, specify 1 to get the
help messages contained in a help resource’s menu-title component.

For menu items and items in alert and dialog boxes, specifies the state of
the item whose message you wish to extract. Use one of the following
constants: kHMEnableditem , kHMDisableditem , kHMCheckedltem |,
or kKHMOtherltem .

The value of the options
The coordinates of the help balloon’s tip location.

element of the help resource.

The coordinates of the help balloon’s alternate rectangle.
The resource ID of the help balloon’s 'WDEF' resource.
The balloon definition function’s variation code.

The help message.

The number of components defined in the resource (not counting the
header and missing-items components).

function, the HMGetindHelpMsg function returns in its

aHelpMsg parameter the help message for an item in a specified state. The
HMGetindHelpMsg function uses additional parameters to return even more
information about the help balloon than does HMExtractHelpMsg

To retrieve all of the help balloon messages and related information for a given resource,
set whichMsg to 1 and make repeated calls to HMGetindHelpMsg , incrementing

whichMsg by 1 on each subsequent call until it returns the hmSkippedBalloon

code.

result

The whichType parameter identifies the type of resource from which you are extracting
the help message. You can use one of these constants for the whichType parameter.

CONSTKHMMenuResType ='hmnu’; {menu help resource type}
kHMDialogResType ="'hdlg’; {dialog help resource type}
kHMWindListResType ="'hwin’; {window help resource type}
kHMRectListResType = "'hrct’; {rectangle help resource type}
kHMOverrideResType ="'hovr’; {help override resource }

{ type}
kHMFinderApplResType = 'hfdr’; {application icon help }

{ resource type}

Help Manager Reference

CHAPTER 3

Help Manager

The whichState parameter specifies the state of the item whose message you want to
extract. You can use one of these constants for the whichState parameter.

CONSTKkHMEnabledltem =0; {enabled state for menu items; }

{ contrlHilite value of O for }
{ controls}

kHMDisabledltem =1; {disabled state for menu items; }
{ contrlHilite value of 255 for }
{ controls}

kHMCheckedltem =2; {enabled-and-checked state for }
{ menu items; contrlHilite value }
{ of 1 for controls that are "on"}

kHMOtherltem =3; {enabled-and-marked state for menu }
{ items; contrlHilite value }
{ between 2 and 253 for controls}

For the kHMRectListResType , kHMOverrideResType ,and
kHMFinderApplResType resource types—which don’t have states—supply
the kKHMEnableditem constant for the whichState parameter.

SPECIAL CONSIDERATIONS
If HMCompareltem appears as a component of an 'hmnu' resource that you're
examining, neither this function nor HMExtractHelpMsg performs a comparison
against the current name of any menu item. Instead, these functions return the messages
listed in your HMCompareltem components in the order in which they appear in the
'hmnu' resource.

When supplying an index for the whichMsg parameter, don’t count the header
component or the missing-items component as components to index. This function
always skips both components; therefore, for help resources that include both header
and missing-items components, specify 1 to get the help messages contained in a help
resource’s menu-title component.

ASSEMBLY-LANGUAGE INFORMATION
The trap macro and routine selector for the HMGetindHelpMsg function are

Trap macro Selector
_Pack14 $1306

Help Manager Reference 3-127

Amfrevepy 4oy £

RESULT CODES

SEE ALSO

CHAPTER 3

Help Manager

noErr 0 No error

paramErr -50 Error in parameter list

mem~FullErr -108 Not enough room in heap zone
resNotFound -192 Unable to read resource
hmSkippedBalloon -857 No help message to fill in
hmWrongVersion -858 Wrong version of Help Manager resource
hmUnknownHelpType —-859 Help message record contained a bad type

The aHelpMsg parameter is of data type HMMessageRecord . “Providing Help Balloons
for Dynamic Windows” beginning on page 3-74 describes the fields of the help message
record.

Application-Defined Routines

3-128

A balloon definition function is responsible for calculating the content region and
structure region of the help balloon window and drawing the frame of the help balloon.
The Help Manager takes care of positioning, sizing, and drawing your help balloons,
and the standard balloon definition function provides a consistent and attractive shape
to balloons across all applications. Though it takes extra work on your part, and your
balloons will not share the consistent appearance of help balloons used by the Finder
and by other applications, you can create your own balloon definition function,
described in this section as MyBalloonDef

When you use the HMShowBalloon and HMShowMenuBalloon functions to display
help balloons, you pass a pointer to a tip function in the tipProc parameter. Normally,
you supply NIL in this parameter to use the Help Manager’s default tip function.
However, you can also supply your own tip function, described in this section as MyTip .
The Help Manager calls your tip function after calculating the size and the location of a
help balloon and before displaying it. This allows you to examine and, if necessary,
adjust the balloon before it is displayed. For example, if you determine that the help
balloon would obscure an object that requires extensive redrawing, you might use a
different variation code to move the balloon.

Help Manager Reference

CHAPTER 3

Help Manager

MyBalloonDef

Here’s a sample declaration for a balloon definition function called MyBalloonDef

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;
message: Integer;
param: Longint): Longint;

variant The variation code used to specify the shape and position of the help
balloon. You should use the same relative position for the tip of the
help balloon that the standard variation codes 0 through 7 specify. This
ensures that the tip of the help balloon points to the object that the help
balloon describes.

theBalloon
A pointer to the window of the help balloon.

message Identifies the action your balloon definition function should perform.
Your balloon definition function can be sent the same messages as a
window definition function, but the only ones your balloon definition
function needs to process are the wCalcRgns and wDraw messages.

When your balloon definition function receives the wCalcRgns message,

your function should calculate the content region and structure region of
the help balloon.

When your balloon definition function receives the wDraw message, your
function should draw the frame of the help balloon.

If you want to process other messages in your balloon definition function
(for example, performing any additional initialization), you can also
process the other standard 'WDEF' messages.

param As with a window definition function, the value of this parameter
depends on the value of the message parameter. Because this parameter
is not used by the wCalcRgns and wDraw messages, your balloon
definition function should disregard the value of this parameter.

DESCRIPTION

Your balloon definition function must define the appearance of the help balloon, which
is a special type of window. You can implement your own balloon definition function by
writing a window definition function that performs the tasks described in this section.
(The standard balloon definition function is of type 'WDEF' with resource 1D 126.)

Your balloon definition function is also responsible for calculating the content region and
structure region of the help balloon window and drawing the frame of the help balloon.
The content region is the area inside the balloon frame; it contains the help message. The
structure region is the boundary region of the entire balloon, including the content area
and the pointer that extends from one of the help balloon’s corners.

If you want the Help Manager to use your balloon definition function, you specify its
resource ID and the desired variation code either in the HMShowBalloon function or in

Help Manager Reference 3-129

Amfrevepy 4oy £

SEE ALSO

MyTip

CHAPTER 3

Help Manager

the appropriate elements of the ‘hmnu’ |, 'hdlg" , or 'hrct’ resource. The Help
Manager derives your balloon’s window definition ID from its resource ID.

In the variant parameter, you should use the same relative position for the tip of the
help balloon that the standard variation codes 0 through 7 specify, as illustrated in
Figure 3-4 on page 3-10.

The wCalcRgns and wDraw messages are described in the chapter “Window Manager”
of Inside Macintosh: Macintosh Toolbox Essentials.

DESCRIPTION

3-130

Here’s a sample declaration of a tip function called MyTip .

FUNCTION MyTip (tip: Point; structure: RgnHandle; VAR r: Rect;
VAR variant: Integer): OSErr;

tip The location of the help balloon tip.

structure A handle to the help balloon’s region structure. The Help Manager
returns this value. The structure region is the boundary region of the
entire balloon, including the content area and the pointer that extends
from one of the help balloon’s corners.

r The coordinates of the help balloon’s content region. The content region is
the area inside the balloon frame; it contains the help message. If this
rectangle is not appropriate for the current screen display, you can specify
different coordinates in this parameter.

variant Variation code to be used for the help balloon. If this variation code is not
appropriate for the current screen display, you can specify different
coordinates in this parameter.

Before displaying a help balloon created with the HMShowBalloon or
HMShowMenuBalloon function, the Help Manager calls this function if you pointtoitin
the tipProc parameter of either HMShowBalloon or HMShowMenuBalloon . The Help
Manager returns the location of the help balloon tip, a handle to the help balloon’s
region structure, the coordinates of its content region, and the variation code to be used
for the help balloon. If the help balloon that HMShowBalloon or HMShowMenuBalloon
initially calculates is not appropriate for your current screen display, you can make
minor adjustments to it by specifying a different rectangle in the r parameter (in which
case the Help Manager automatically adjusts the structure parameter so that the
entire balloon is larger or smaller as necessary) or by specifying a different variation

code in the variant parameter.

Help Manager Reference

CHAPTER 3

Help Manager

If you need to make a major adjustment to the help balloon, return the
hmBalloonAborted result code and call HMShowBalloon or HMShowMenuBalloon
with appropriate new parameter values. To use the values returned in your tip function’s
parameters, return the noErr result code.

Listing 3-22 shows an example of using a tip function to refrain from displaying a
balloon if it obscures an area of the screen that requires extensive drawing.

Listing 3-22 Using a tip function

SEE ALSO

VAR
temprect: Rect;
DontObscureRect: Rect;
tip: Point;
structure: RgnHandle;
aHelpMsg: HMMessageRecord;
BEGIN
{be sure to determine DontObscureRect and fill in aHelpMsg}
IF HMShowBalloon(aHelpMsg, tip, NIL, @MyTip, 0, O,
kHMRegularwindow) = noErr
THEN
{test whether balloon obscures complex graphic }
{ in DontObscureRect}
IF SectRect(structure™.rgnBBox, DontObscureRect,
temprect) THEN
{don't show this balloon but call HMShowBalloon later}
MyTip := hmBalloonAborted
ELSE {use the balloon as calculated by the Help Manager}
MyTip := noErr;
END;

Figure 3-4 on page 3-10 illustrates the structure regions and positions of the eight
standard help balloons.

The HMShowBalloon function is described on page 3-100, and the
HMShowMenuBalloon function is described on page 3-103.

Help Manager Reference 3-131

Amfrevepy 4oy £

Resources

CHAPTER 3

Help Manager

This section describes the resources that the Help Manager uses to size, position, and
draw help balloons for menus, alert and dialog boxes, static windows, non-document
Finder icons, and several default help balloons provided by system software.

Help resources generally specify help messages, a balloon definition function, a variation
code, and, when necessary, the balloon tip and either a hot rectangle or an alternate
rectangle. The Help Manager uses this information as appropriate when drawing help
balloons. These help resources are

= the menu help (‘'hmnu') resource, which provides help balloons for menus and menu
items

» the dialog-item help ('hdlg') resource, which provides help balloons for items in
dialog boxes and alert boxes

= the rectangle help (‘hrct') resource, which associates a help balloon with a hot
rectangle in a static window

= the window help ('hwin') resource, which associates an 'hrct’ or'hdlg’ resource
with a hot rectangle in a window or with an item in a dialog box or alert box

= the Finder icon help (‘"hfdr') resource, which provides a custom help balloon for
your application icon

» the default help override (‘hovr') resource, which overrides the help messages of
default help balloons provided in system software

This section describes the structures of these resources after they are compiled by the Rez
resource compiler, available from APDA. If you are interested in creating the Rez input
files for these resources, see “Using the Help Manager” beginning on page 3-18 for
detailed information.

The Menu Help Resource

3-132

To provide help balloons for a menu—pull-down, pop-up, or hierarchical—that uses the

standard menu definition procedure, you can create a menu help resource. A menu help

resource is a resource of type 'hmnu' ; in it, you specify help balloons for the menu title

and for each item in the menu. You create a separate 'hmnu' resource for each menu. All
'hmnu' resources must have resource IDs greater than 128.

The format of a Rez input file for an 'hmnu’ resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hmnu' resource. If you are
concerned only with creating 'hmnu' resources, see “Providing Help Balloons for
Menus” beginning on page 3-27. That section gives a detailed description, using several
code samples, of how to use Rez input files to create 'hmnu' resources.

Help Manager Reference

CHAPTER 3

Help Manager

An'hmnu' resource consists of a header component, a missing-items component, a
menu-title component, and a variable number of menu-item components. Figure 3-23
shows the general structure of a compiled 'hmnu' resource.

Figure 3-23 Structure of a compiled menu help (hmnu') resource
... ;
a
Imnm" eroune By les :
i
- Hep Marager rersan 2 i
i
Tpione 4 3
Header |
et porerit Ealloon deiniton funcion 2 i
i
Warizfon code 2 :
i
Henm count 2 i
-~ ;
a
£ Mietir-itenme component [variable
i
i
i
.{J M arride com porent j" Wariable 2
i
i
a
.{J Firet raaru-dem com porent j" Wariable :
i
i
i
] i
i F5 i
i
i
i
Lot maradiem com porent Warizble 3
i
i
i

If you examine a compiled version of an'hmnu' resource, you find that the header
component consists of the following elements:

= Help Manager version. The version of the Help Manager to use; specified in a Rez
input file with the HelpMgrVersion constant.

= Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

= Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

Help Manager Reference 3-133

Amfrevepy 4oy £

3-134

CHAPTER 3

Help Manager

= Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

= Item count. The number of remaining components—including the missing-items,
menu-title, and menu-item components—defined in the rest of this resource.

The Help Manager identifies each component by its order in the resource. The
missing-items component always follows the header component of an ‘hmnu’ resource.
The menu-title component always follows the missing-items component. Then a variable
number of menu-item components are stored in this resource. The Help Manager
determines the end of the 'hmnu’' resource by using the item count information in the
header component.

The structures of the missing-items component, the menu-title component, and the
menu-item components depend on identifiers specified inside the components. The
identifiers used in a Rez input file are described in “Specifying the Format for Help
Messages” on page 3-23.

The missing-items component, the menu-title component, and the menu-item
components can each specify four different help messages:

= First help message.
o In the missing-items component, this is the help message for missing enabled items.
o In the menu-title component, this is the help message for the enabled menu title.
o In all subsequent menu-item components, this is the help message for enabled
menu items.
= Second help message.

o In the missing-items component, this is the help message for missing items that are
dimmed by the application.

o In the menu-title component, this is the help message for the menu title when the
application dims it.

o Inall subsequent menu-item components, this is the help message for menu items
when the application dims them.
= Third help message.

o In the missing-items component, this is the help message for missing
enabled-and-checked items.

o In the menu-title component, this is the help message for the menu title when
system software dims it at the appearance of an alert box or a modal dialog box.

o In all subsequent menu-item components, this is the help message for
enabled-and-checked menu items.

Help Manager Reference

CHAPTER 3

Help Manager

= Fourth help message.
o In the missing-items component, this is the help message for missing
enabled-and-marked items.
o In the menu-title component, this is the help message for all menu items when
system software dims them at the appearance of an alert box or a modal dialog box.

o Inall subsequent menu-item components, this is the help message for
enabled-and-marked menu items.

An empty string or a resource ID of 0 for any messages in the menu-title or menu-item
components causes the Help Manager to use the appropriate help message contained in
the missing-items component.

Since they all adhere to the formats specified by the previously described identifiers, the
missing-items component, the menu-title component, and the menu-item components
can have similar structures. The Help Manager determines the end of a component by
examining its length, which is stored in the first 2 bytes of the component.

Figure 3-24 shows the structure of a component that stores its help messages as Pascal
strings within the 'hmnu' resource itself.

Figure 3-24 Structure of an 'hmnu’ component compiled with the HMStringltem identifier

il neeme-lillle, moummrilem

rampmnil mdig Paicdl sl Aylex
Sz 2
Tope cf dale 2
i Text srirg FaL T
i Text srirg £ 1mm
£ Text srirg FaL s
i Text srirg £ 1mm
NSligenncat bybes Okl

Help Manager Reference 3-135

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If you examine a compiled version of an'hmnu’' resource, you find that a component
identified in a Rez input file by the HMStringltem identifier consists of the following
elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 1 is specified here when the help messages are stored as
Pascal strings within this component.

= Text string. The first help message (as previously described).

» Text string. The second help message (as previously described).
» Text string. The third help message (as previously described).

= Text string. The fourth help message (as previously described).

= Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-25 shows the structure of an'hmnu' component that specifies its help messages
as text strings stored in string list (STR#') resources.

Figure 3-25 Structure of an 'hmnu' component compiled with the HMStringResltem identifier

3-136

vy idrens, nealidte orees-ien
compereal ering shreg s Byles

Tize

T!.rpe ofdats

Regcure= |0

Iredex irvbo edrireg liet

Regcure= |0

Iredex irvbo edrireg liet

Regcure= |0

Iredex irvbo edrireg liet

Regcure= |0

L L T L T L T L L I L L I L T %}

Iredex irvbo edrireg liet

Help Manager Reference

CHAPTER 3

Help Manager

If you examine a compiled version of an'hmnu’' resource, you find that a component
identified in a Rez input file by the HMStringResltem identifier consists of the
following elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 3 is specified here when the help messages for this component
are stored in string list (‘'STR#') resources.

= Resource ID. The resource ID of an'STR#' resource.

= Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. This text string is used for the first help message
(as previously described).

Three more pairs of resource IDs/index numbers follow. The text strings that these pairs
refer to are used for the second, third, and fourth help messages, respectively.

Figure 3-26 shows the structure of an'hmnu’ component that specifies its help messages
in picture ('PICT") resources, styled text (TEXT' and'styl') resources, or string
('STR") resources.

Figure 3-26 Structure of an 'hmnu' component compiled with the HMPictltem , HMTEResltem,

or HMSTRResltem identifier

iy dew s, meas-lidie or
meaw-lem compoesenl e picle,
shyled lexk orsireg e uces By lex

Tize

Type ofdata

Feecure= |0

Feecure= |0

Feecure= |0

R P P M [o

Feecure= |0

Help Manager Reference 3-137

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If you examine a compiled version of an'hmnu’' resource, you find that a component
identified in a Rez input file by either the HMPictitem , HMTEResltem, or
HMSTRResltem identifier consists of the following elements:

= Size. The number of bytes contained in this component.

= Type of data.
o The value 2 is specified here when the help messages for this component are stored
in'PICT" resources.
o The value 6 is specified here when the help messages for this component are stored
as styled text—that is, in both 'TEXT' and'styl' resources.
o The value 7 is specified here when the help messages for this component are stored
in'STR" resources.

= Resource ID.

o Theresource ID of a'PICT' resource when the value 2 is specified as the type of
data. The Help Manager uses the picture contained in this resource for the first help
message (as previously described).

o The resource ID common to both a 'TEXT' and an'styl’ resource when the
value 6 is specified as the type of data. The Help Manager uses the styled text
specified by these resources for the first help message.

o Theresource ID ofan'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text contained in this resource for the first help
message.

Three more resource IDs follow; the Help Manager uses these resources (either 'PICT" |
'TEXT' and'styl ,or'STR"') for the second, third, and fourth help messages,
respectively (as previously described).

Figure 3-27 shows the structure of an'hmnu’ component that specifies no help
messages.

Figure 3-27 Structure of an 'hmnu' component compiled with the HMSkipltem identifier

iy e s, measlitle orees-ien

o mpo wes b withon b aay belp seesranes Byles
Size 2
T!.rpe ofdata 2

If you examine a compiled version of an'hmnu' resource, you find that a component
identified by the HMSkipltem identifier consists of the following elements:

» Size. The value 4, for the number of bytes contained in this component.

= Type of data. The value 256.

3-138 Help Manager Reference

CHAPTER 3

Help Manager

For menu-item components, two additional identifiers are available: HMCompareltem
and HMNamedResourceltem . When the HMCompareltem identifier is specified, the
Help Manager compares a string specified in the component against the current menu
item. If the string matches the current menu item, the Help Manager uses the help
messages specified in the rest of the component, shown in Figure 3-28. This type of
component is useful for a menu item that can change names.

Figure 3-28 Structure of a menu-item component compiled with the HMCompareltem identifier

hemn-deim cungumel smpy:ndmg
A hirmging miem il Rl
Sie r
Tope of daic z
f Tewd <hing FaLTE
Lligrrneat hwtes Tl
{ Heln mr essages tlr verahla

If you examine a compiled version of an'hmnu' resource, you find that a component
identified in a Rez input file by the HMCompareltem identifier consists of these elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 512 appears here when the Help Manager is to use the help
messages specified in this component only when the current menu item matches a
specified text string.

= Text string. The string against which to compare the current menu item. If the current
menu item matches this string, then the Help Manager uses the help messages
specified in this component.

= Alignment bytes. Zero or one bytes used to make the previous text string end on a
word boundary.

= Help messages. The four help messages for the menu item. The structure may follow
that of any of the previously described menu-item components; that is, this element
consists of a value representing the format of the help messages specified in the rest of
the component, the size of the rest of the component, and specifications for four actual
help messages for the menu item.

When the identifier HMNamedResourceltem is specified, the Help Manager retrieves
help messages from a resource that matches the name and state of the current menu item.

Help Manager Reference 3-139

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Figure 3-29 shows the format of a menu-item component that uses named resources for
help messages.

Figure 3-29 Structure of a menu-item component compiled with the HMNamedResourceltem
identifier

e nw-ilem compoeeal wring saeeed
rexowees forkelp nessaoes Byles
Size 2
Tg,rpe ofdat 2
Fricecir oo hypes 4

If you examine a compiled version of an'hmnu' resource, you find that a component
identified in a Rez input file by the HMNamedResourceltem identifier consists of these
elements:

» Size. The number of bytes contained in this component.

= Type of data. The number 1024 is specified here when the Help Manager is to use
named resources for help messages.

= Resource type. The resource type ('STR "' ,'STR# ,'PICT' , or, for text, TEXT') of
the resource that contains the help messages for the current menu item. The Help
Manager then uses the GetNamedResource function to find the resource with the
same name as the current menu item. (If TEXT' is specified, the Help Manager also
uses the style information contained in an'styl' resource with the same name.) If
the menu item is dimmed, the Help Manager appends an exclamation point (!) to the
menu item string and searches for a resource by that name. If the menu item is
enabled and marked with a checkmark or other mark, the Help Manager appends the
mark to the menu item string and looks for a resource with that name.

The Dialog-Item Help Resource

You can provide help balloons for individual items in a dialog box or an alert box by
supplying a dialog-item help resource, which is a resource of type 'hdlg' . You specify
different help balloons for various states of an item—by highlight value if the item is a
control, and by enabled or disabled states for items that are not controls.

To associate an 'hdlg" resource with a particular alert box or dialog box, either you
must include an item of type Helpltem in the box’s item list (' DITL") resource, or you
must create an 'hwin' resource. Listing 3-8 on page 3-59 shows how to use an item of
type Helpltem —and Listing 3-10 on page 3-72 shows you how to use an 'hwin'

3-140 Help Manager Reference

CHAPTER 3

Help Manager

resource—for associating an 'hdlg’ resource with a particular alert box or dialog box.
For detailed information about using an item of type Helpltem , see “Using a Help Item
Versus Using an ‘hwin' Resource” on page 3-63. For detailed information on using an
‘hwin' resource, see “Associating Help Resources With Static Windows” on page 3-68.

All'nhdlg" resources must have resource IDs greater than 128.

The format of a Rez input file for an 'hdlg" resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hdlg' resource. If you are
concerned only with creating 'hdlg' resources, see “Providing Help Balloons for Items
in Dialog Boxes and Alert Boxes” on page 3-51 for a detailed description, using several
code samples, of how to use Rez input files to create 'hdlg’ resources.

An'hdlg’ resource consists of a header component, a missing-items component, and a
variable number of dialog-item components. Figure 3-30 shows the general structure of a
compiled 'hdlg' resource.

Figure 3-30 Structure of a compiled dialog-item help (‘hdlg') resource

bdlg" esource Byles
—
Help M anager warsion 2
e 2
Hexder] prane *
mmpmen'l:
Ealoon d=dnifon funcion 2
Vanafon code 2
Hem cournt 2
L

Mieein gridenn & component

Fret dakgriten component

Lt diadogribenn com poreent

Help Manager Reference 3-141

Amfrevepy 4oy £

3-142

CHAPTER 3

Help Manager

If you examine a compiled version of an'hdlg" resource, you find that the header
component consists of the following elements:

= Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

= Index. An index (starting with 0) into an item list ('DITL") resource. The Help
Manager adds the value of this index to the number of the first item in the item
list resource and then associates the result with an item number within the item list
resource; therefore, index 0 corresponds to item 1 in the item list resource (because 0
plus 1 equals 1). The Help Manager then uses the first dialog-item component in the
'ndlg" resource to provide help for the item to which this index corresponds.
Subsequent dialog-item components specify help messages for subsequent items in
the item list resource. For example, when 4 is specified as the index, the first
dialog-item component specifies help messages for the fifth item in an item list
resource. (As explained earlier, either an item of type helpltem in the item
list resource or an'hwin' resource is used to associate the messages in the
dialog-item components of this'hdlg’ resource with the items of a particular dialog
box or alert box.)

= Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

= Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

= Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

= Item count. The number of remaining components—that is, the missing-items
component plus all dialog-item components—defined in the rest of this resource.

The missing-items component always follows the header component of an 'hdlg'
resource. Then a variable number of dialog-item components are stored in this resource.
The Help Manager determines the end of the 'hdlg" resource by using the item count
information in the header component. The Help Manager determines the type of each
component by its order in the resource.

The structures of the missing-items component and the dialog-item components depend
on identifiers specified inside the components. The identifiers used in a Rez input file are
described in “Specifying the Format for Help Messages” on page 3-23.

Help Manager Reference

CHAPTER 3

Help Manager

The missing-items component and the dialog-item components can each specify four
different help messages:

= First help message.

o In the missing-items component, this is the help message both for missing, active,
unselected controls (that is, those with highlight values of 0) and for missing
enabled items that are not controls.

o In dialog-item components, this is the help message for an active, unselected
control (that is, one with a highlight value of 0) or for an enabled item that is not
a control.

= Second help message.

o In the missing-items component, this is the help message both for missing dimmed
controls (that is, those with highlight values of 255) and for missing disabled items
that are not controls.

o In dialog-item components, this is the help message for a dimmed control (that is,
one with a highlight value of 255) or for a disabled item that is not a control.

= Third help message.
o In the missing-items component, this is the help message for missing active
controls that are checked (that is, those with highlight values of 1).
o In dialog-item components, this is the help message for an active control that is
checked (that is, one with a highlight value of 1).

= Fourth help message.
o In the missing-items component, this is the help message for missing, selected
controls with highlight values between 2 and 253.

o In dialog-item components, this is the help message for a selected control with any
highlight value between 2 and 253.

An empty string or a resource ID of 0 for a message in any dialog-item component
causes the Help Manager to use the appropriate help message contained in the
missing-items component.

Since they both adhere to the formats specified by the previously described identifiers,
the missing-items component and the dialog-item components can have similar
structures. The Help Manager determines the end of a component by examining its
length, which is stored in the first 2 bytes of the component.

Help Manager Reference 3-143

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Figure 3-31 shows the structure of a component that stores its help messages as Pascal
strings within the 'hdlg" resource itself.

Figure 3-31 Structure of an 'hdlg’ component compiled with the HMStringltem identifier

hfisedim:y demms o clickong-il oo mmppnmenl

g Poaca drimigs Figlex
Sie 2
Tupe cf dals 2
“ip's rrondinares d
‘(’ Alsrrata rerctancle z R
]
4 Tet Srirg £ imes
f’ Text srirg ‘; 1 ko 255
]
4 Tet Srirg £ imes
:?]
Tzl =lriry £ 1w em
Aligrneat bytes Ohad

If you examine a compiled version of an'hdlg' resource, you find that a component
identified in a Rez input file by the HMStringltem identifier consists of the following
elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 1 is specified here when the help messages are stored as
Pascal strings within this component.

= Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

= Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

3-144 Help Manager Reference

CHAPTER 3

Help Manager

= Text string. The first help message (as previously described).

= Text string. The second help message (as previously described).
= Text string. The third help message (as previously described).

= Text string. The fourth help message (as previously described).

= Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-32 shows the structure of an'hdlg’ component that specifies its help messages
as text strings stored in string list (STR#') resources.

Figure 3-32 Structure of an 'hdlg’ component compiled with the HMStringResltem identifier

i vy em x o rdimleg-des compose sk
wwi ¥ g B

t

Tize

Type afdata

Tip'e coordinzies

AlErrate rectange

Feecurc= |0

Irede: irvbo etrineg liet

Feecurc= |0

Irede: irvbo etrineg liet

Feecurc= |0

Irede: irvbo etrineg liet

Feecurc= |0

R B B R B D D M M [[o

Irede: irvbo etrineg liet

If you examine a compiled version of an'hdlg" resource, you find that a component
identified in a Rez input file by the HMStringResltem identifier consists of the
following elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 3 is specified here when the help messages for this component
are stored in string list (‘'STR#') resources.

= Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

Help Manager Reference 3-145

Amfrevepy 4oy £

CHAPTER 3

Help Manager

= Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

= Resource ID. The resource ID of an'STR#' resource.

= Index into the string list resource. A number used as an index to a particular text
string within the 'STR# resource. This text string is used for the first help message
(as previously described).

Three more pairs of resource IDs and their index numbers follow. The text strings
referenced by these pairs are used for the second, third, and fourth help messages,
respectively.

Figure 3-33 shows the structure of an'hdlg’ component that specifies its help messages
in picture ('PICT") resources, styled text (TEXT" and'styl') resources, or string
('STR ") resources.

Figure 3-33 Structure of an 'hdlg’ component compiled with the HMPictltem , HMTEResltem,

3-146

or HMSTRResltem identifier

iy dem x o rd mlog-des compose sl wring

pichure, shyled bexk orsirag resosces By lex

e 2

Type afdata 2

Tip'e coor dirmise 4

Z Elernate rectanghe FE

Reecune= 1D 2

Reecune= 1D 2

Reecune= 1D 2

Reecune= 1D 2

Help Manager Reference

CHAPTER 3

Help Manager

If you examine a compiled version of an'hdlg" resource, you find that a component
identified in a Rez input file by either the HMPictitem , HMTEResltem, or
HMSTRResltem identifier consists of the following elements:

Size. The number of bytes contained in this component.

Type of data.

O

The value 2 is specified here when the help messages for this component are stored
in'PICT" resources.

The value 6 is specified here when the help messages for this component are stored
as styled text—that is, in both 'TEXT' and'styl' resources.

The value 7 is specified here when the help messages for this component are stored
in'STR" resources.

Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the item’s display rectangle.

Alternate rectangle. The coordinates for a rectangle used by the Help Manager for
transposing the tip if a help balloon does not fit onscreen. These coordinates are local
to the item’s display rectangle.

Resource ID.
o Theresource ID of a'PICT' resource when the value 2 is specified as the type of

data. The Help Manager uses the picture contained in this resource for the first help
message (as previously described).

The resource ID common to both a " TEXT' and an'styl’ resource when the

value 6 is specified as the type of data. The Help Manager uses the styled text
specified by these resources for the first help message.

The resource ID of an'STR "' resource when the value 7 is specified as the type of
data. The Help Manager uses the text contained in this resource for the first help
message.

Three more resource IDs follow; the Help Manager uses these resources (either 'PICT" |
‘TEXT' and'styl ,or'STR"') for the second, third, and fourth help messages,
respectively (as previously described).

Help Manager Reference 3-147

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Figure 3-34 shows the structure of an’hdlg’ component that specifies no help
messages.

Figure 3-34 Structure of an 'hdlg’ component compiled with the HMSkipltem identifier

i vy em x o rdimleg-des compose sk

wriktheo ik may bee ip e annes By lex
e 2
T!.l'Pi: ofdata 2

If you examine a compiled version of an'hdlg' resource, you find that a component
identified by the HMSkipltem identifier consists of the following elements:

= Size. The value 4, for the number of bytes contained in this component.

= Type of data. The value 256.

The Rectangle Help Resource

3-148

You can use a rectangle help resource to define hot rectangles for displaying help
balloons within a static window, and to specify the help messages for those balloons. A
rectangle help resource is a resource of type 'hrct’ . All 'hrct' resources must have
resource IDs greater than 128.

To associate the hot rectangles and help messages defined in an 'hrct' resource with a
particular window, you must also create a window help (‘hwin') resource, which is
described in “Associating Help Resources With Static Windows” on page 3-68.

The format of a Rez input file for an 'hrct' resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hrct’ resource. If you are
concerned only with creating 'hrct' resources, see “Specifying Help for Rectangles in
Windows” on page 3-67 for a detailed description of how to use Rez input files to create
‘hret’ resources.

An 'hrct’ resource consists of a header component and a variable number of
hot-rectangle components. Figure 3-35 shows the general structure of a compiled
‘hret’ resource.

Help Manager Reference

CHAPTER 3

Help Manager

Figure 3-35

Structure of a compiled rectangle help (hrct') resource
"ot esoane Bylex
—
Halp M znager warsion 2
Cptiare 4
Ealoon detinidon fancdon 2
Vanzfon code 2
L Hatrecturgle com ponent count 2
{ Firethotractinghe com ponant gl' Variable
arizble
Lawet brob e gl coen porerit Warizbile

Hazedar
cemponent

If you examine a compiled version of an 'hrct'

component consists of the following elements:

Help Manager Reference

Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion

constant.

resource, you find that the header

Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

Balloon definition function. The resource ID of the window definition function used

for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by 0 in the Rez input file.

Variation code. A number signifying the preferred position of the help balloon relative

to the hot rectangle. The balloon definition function draws the frame of the help

balloon based on the variation code specified here. The eight variation codes and how

they affect the standard balloon definition function are illustrated in Figure 3-4 on

page 3-10.

Hot-rectangle component count. The number of hot-rectangle components defined in
the rest of this resource.

3-149

Amfrevepy 4oy £

CHAPTER 3

Help Manager

The Help Manager determines the end of the 'hrct’ resource by using the component
count information in the header component.

The structures of the hot-rectangle components depend on identifiers specified inside the
components. The identifiers used in a Rez input file are described in “Specifying the
Format for Help Messages” on page 3-23.

Figure 3-36 shows the structure of a component that stores its help message as a Pascal
string within the 'hrct’ resource itself.

Figure 3-36 Structure of an 'hrct’ component compiled with the HMStringltem identifier

3-150

Hat rectansgle componcet uoing o Pasi o dlriwy ~ Biyles
S)
Tmz of doca 2
Tp's coonditaes 1
{‘? Hit reckange FaE
rd Te:d ing PR
Al ghrnckk botes Jea i

If you examine a compiled version of an 'hrct' resource, you find that a component
identified in a Rez input file by the HMStringltem identifier consists of the following
elements:

» Size. The number of bytes contained in this component.

= Type of data. The value 1 is specified here when the help message is stored as a Pascal
string within this component.

= Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

= Hot rectangle. The coordinates (local to the window) of a rectangle. The Help
Manager displays a help message when the user moves the cursor over this rectangle.

Help Manager Reference

CHAPTER 3

Help Manager

Text string. The help message that the Help Manager displays when the user moves
the cursor over the hot rectangle.

Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-37 shows the structure of a hot-rectangle component that specifies its help
message as a text string stored in a string list ('STR#') resource.

Figure 3-37 Structure of an 'hrct’ component compiled with the HMStringResltem identifier

Ho k- rec g e oo m po wes | ey = sireg lisd

RO T Byles

Hoe 2

Type afdata 2

Tip'e coordinaiee 4

i Hot re chargle re

Reecurz= 1D 2

Ird e indo edrireg liet 2

If you examine a compiled version of an 'hrct' resource, you find that a component
identified in a Rez input file by the HMStringResltem identifier consists of the
following elements:

Help Manager Reference

Size. The number of bytes contained in this component.

Type of data. The value 3 is specified here when the help message for this component
is stored inan'STR#' resource.

Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

Hot rectangle. The coordinates (local to the window) of a rectangle. The Help

Manager displays a help message when the user moves the cursor over this rectangle.

Resource ID. The resource ID of an'STR#' resource.

Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. When the user moves the cursor over the hot
rectangle, the Help Manager displays this text string for the help message.

3-151

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Figure 3-38 shows the structure of a hot-rectangle component that specifies its help
message in a picture ('PICT') resource, in styled text (TEXT' and'styl') resources,
orinastring (STR"') resource.

Figure 3-38 Structure of an 'hrct’” component compiled with the HMPictltem , HMTEResltem,

3-152

or HMSTRResltem identifier

Ho bechasqle com peesbering a prolee,

slylked kext or shrieg esource Bylex
e 2
Type afdata 2
Tip'e coordinaie e 4
I Hotrectange Fa-
Reeoirce 10 2

If you examine a compiled version of an 'hrct' resource, you find that a component
identified in a Rez input file by either the HMPictltem , HMTEResltem, or
HMSTRResltem identifier consists of the following elements:

= Size. The number of bytes contained in this component.

= Type of data.

o The value 2 is specified here when the help message for this component is stored in
a'PICT" resource.

o The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

o The value 7 is specified here when the help message for this component is stored in
an'STR"' resource.

= Tip’s coordinates. The coordinates of the help balloon’s tip. The tip’s coordinates are
local to the window.

= Hot rectangle. The coordinates (local to the window) of a rectangle. The Help
Manager displays a help message when the user moves the cursor over this rectangle.

Help Manager Reference

CHAPTER 3

Help Manager

Resource ID.

o Theresource ID of a'PICT' resource when the value 2 is specified as the type of
data. When the user moves the cursor over the hot rectangle, the Help Manager
displays the picture stored in this resource for the help message.

o The resource ID common to both a 'TEXT' and an 'styl’ resource when the
value 6 is specified as the type of data. When the user moves the cursor over the
hot rectangle, the Help Manager displays the styled text specified in these resources
for the help message.

o Theresource ID ofan'STR ' resource when the value 7 is specified as the type of
data. When the user moves the cursor over the hot rectangle, the Help Manager
uses the text string stored in this resource for the help message.

Figure 3-39 shows the structure of a hot-rectangle component that doesn’t specify a help
message.

Figure 3-39 Structure of an 'hrct’” component compiled with the HMSkipltem identifier

Ho bk rec bnwghe com powesbwilho sba belp wesage Byles

Tize 2
T!.I'Pi: ofdata b=}
Tlp'e- coordnzies 4

{ Hotrechirge 4I' 2

If you examine a compiled version of an 'hrct' resource, you find that a component
identified by the HMSkipltem identifier consists of the following elements:

Help Manager Reference

Size. The value 4, for the number of bytes contained in this component.
Type of data. The value 256.

Tip’s coordinates. In this instance, the Help Manager does not use this information
because it does not display a help balloon.

Hot rectangle. The coordinates (local to the window) of a rectangle that is to be
skipped. When the user moves the cursor over this rectangle, the Help Manager does
not display any help messages.

3-153

Amfrevepy 4oy £

CHAPTER 3

Help Manager

The Window Help Resource

3-154

To associate the help balloons defined in an 'hrct' resource with a particular window,
you must create a window help resource. Unless you include an item of type Helpltem

in an item list resource, you also must create a window help resource to associate an
'hdlg’ resource with a particular alert box or dialog box. The window help resource is
a resource of type 'hwin' . All 'hwin' resources must have resource IDs greater

than 128.

The 'hwin' resource merely associates ‘hrct' and’'hdlg’ resources with windows.
To specify hot rectangles, help balloon characteristics, and help messages for areas in a
static window, you must use 'hrct’ or'hdlg' resources, which are described in
“Specifying Help for Rectangles in Windows” on page 3-67 and “Providing Help
Balloons for Items in Dialog Boxes and Alert Boxes” on page 3-51, respectively.

The format of a Rez input file for an 'hwin' resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hwin' resource. If you are
concerned only with creating 'hwin' resources, see “Associating Help Resources With
Static Windows” on page 3-68 for a detailed description of how to use Rez input files to
create 'hwin' resources.

An'hwin' resource consists of a header component and a variable number of window
components. Figure 3-40 shows the general structure of a compiled 'hwin' resource.

Help Manager Reference

CHAPTER 3

Help Manager

Figure 3-40 Structure of a compiled window help (hwin') resource

‘huein' resme:e

el Wenager wersch

opiore

Windcw conpechenl coank

Fezouce D (of 'Beet’ or "Rdlg' resounce)

Twpe af aszccisced resoure [T hoeet’ or "Rdlg')

gth of conparizon shhg—ot awindowkind walue

YWindow LEe Srng fok conpsrison

FaLY-

Aigamen: butes

Om |

4

Fezouce D (of 'Beet’ or "Rdlg' resounce)

Twpe af aszccisced resoure [T hoeet’ or "Rdlg')

gth of conparizon shhg—ot awindowkind walue

YWindow LEe Srng fok conpsrison

FaLY-

rﬂ_
Hzader
cofIpahent

L

-
Firt
Vhdow — Lea
cofIpahent

L

rl"_
Laztwirdow 1
cofmnparert | 21

L

Aigamen: butes

Om |

Help Manager Reference

3-155

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If you examine a compiled version of an'hwin' resource, you find that the header
component consists of the following elements:

Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

Window component count. The number of window components defined in the rest of
this resource. The Help Manager determines the end of the 'hwin' resource by
using this component count information.

If you examine a compiled version of an'hwin' resource, you find that a window
component consists of the following elements:

Resource ID. The ID of the associated resource (either 'hrct’ or'hdlg’) that
specifies the help messages for the window.

Type of associated resource. A resource type; either 'hrct' or'hdlg’

Length of comparison string—or a windowKind value. If the integer in this element is
positive, this is the number of characters used for matching this component to a
window’s title. If the integer in this element is negative, this is a value used for
matching this component to a window by the windowKind value in the window’s
window record.

Windowv title string. If the previous element is a positive integer, this element consists
of characters that the Help Manager uses to match this component to a window by the
window’s title. If the previous element is a negative integer, this is an empty string.

Alignment bytes. Zero or one bytes used to make the window title string end on a
word boundary.

The Finder Icon Help Resource

3-156

The Help Manager displays default help messages for all Finder icon types. By creating a
Finder icon help override resource, you can provide your own help message for the Help
Manager to display when the user moves the cursor over your non-document icons. A
Finder icon help resource is a resource of type 'hfdr' . An'hfdr' resource must have a
resource ID of —-5696.

The format of a Rez input file for an 'hfdr' resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hfdr' resource. If you are
concerned only with creating 'hfdr’ resources, see “Overriding Help Balloons for
Non-Document Icons” on page 3-84 for a detailed description of how to use Rez input
files to create an 'hfdr' resource.

Help Manager Reference

CHAPTER 3

Help Manager

An'hfdr' resource consists of a header component and one icon component.
Figure 3-41 shows the general structure of a compiled 'hfdr' resource.

Figure 3-41 Structure of a compiled Finder icon help ('hfdr') resource
"hiitr" esowes Byles
—
Hzlp M anzgar wereion 2
Cptiare 4
Ha 2vdar _
o pareent Balacn defrifon funsian 2
Wanadon oode b=}
L bonm oo F-mm‘l:mu‘d: b=}
b=or .
o poreent { (rarizble formad 1' Warizble

If you examine a compiled version of an 'hfdr' resource, you find that the header
component consists of the following elements:

Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by the number 0 in the Rez input
file.

Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

Icon component count. The value 1, because only one icon component can be defined
in this resource.

The structure of the icon component depends on the identifier specified for that
component. The identifiers used in a Rez input file are described in “Specifying the
Format for Help Messages” on page 3-23.

Help Manager Reference 3-157

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Figure 3-42 shows the structure of an icon component that stores its help message as a
Pascal string within the 'hfdr' resource itself.

Figure 3-42 Structure of an 'hfdr' ~ component compiled with the HMStringltem identifier

lzon compoment nomny o Moo o tring Ayl =
S)
Tope of dalc 2
4 Taxt tirg PRl
Mlighaneat bytez Ok

If you examine a compiled version of an 'hfdr' resource, you find that a component
identified in a Rez input file by the HMStringltem identifier consists of the following
elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 1 is specified here when the help messages are stored as a
Pascal string within this component.

= Text string. The help message that the Help Manager displays when the user moves
the cursor over the icon.

= Alignment bytes. Zero or one bytes used to make the previous text strings end on a
word boundary.

Figure 3-43 shows the structure of an icon component that specifies its help message as a
text string stored in a string list (STR#') resource.

3-158

Figure 3-43 Structure of an 'hfdr' ~ component compiled with the HMStringResltem identifier
ko s composenl wring » shrindg |t resouree Byles
Size 2
T!.rpe ofdata 2
P geaarze 10 2
Ired=s irb liwt 2

Help Manager Reference

CHAPTER 3

Help Manager

If you examine a compiled version of an 'hfdr’ resource, you find that a component
identified in a Rez input file by the HMStringResltem identifier consists of the
following elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 3 is specified here when the help messages for this component
are stored in string list (‘'STR#') resources.

= Resource ID. The resource ID of an'STR#' resource.

= Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. The Help Manager displays this text string for the
help message.

Figure 3-44 shows the structure of an icon component that specifies its help message in a
picture ('PICT") resource, in styled text (TEXT' and'styl') resources, or in a string
('STR") resource.

Figure 3-44 Structure of an 'hfdr' ~ component compiled with the HMPictltem , HMTEResltem,

or HMSTRResltem identifier

ko composeal uring a pichere, sbyled lexl,

orsireg esowee Bylex
e 2
Type afdata 2
Reeourze 1D 2

If you examine a compiled version of an'hfdr' resource, you find that a component
identified in a Rez input file by either the HMPictltem , HMTEResltem, or
HMSTRResltem identifier consists of the following elements:

= Size. The number of bytes contained in this component.

= Type of data.
o The value 2 is specified here when the help message for this component is stored in
a'PICT" resource.

o The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

o The value 7 is specified here when the help message for this component is stored in
an'STR"' resource.

Help Manager Reference 3-159

Amfrevepy 4oy £

CHAPTER 3

Help Manager

= Resource ID.

o Theresource ID of a'PICT' resource when the value 2 is specified as the type of
data. The Help Manager displays the picture stored in this resource for the help
message.

o The resource ID common to both a 'TEXT' and an'styl’ resource when the
value 6 is specified as the type of data. The Help Manager displays the styled text
specified in these resources for the help message.

o Theresource ID ofan'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text string stored in this resource for the help
message.

Figure 3-45 shows the structure of an icon component that doesn’t specify a help
message.

Figure 3-45 Structure of an 'hfdr' ~ component compiled with the HMSkipltem identifier

kon composenbwith wo belp message Byles
Dize 2
T!.rpe ofdata 2

If you examine a compiled version of an'hfdr' resource, you find that a component
identified by the HMSkipltem identifier consists of the following elements:

= Size. The value 4, for the number of bytes contained in this component.

= Type of data. The value 256.

The Default Help Override Resource

3-160

The Help Manager also provides default help balloons for the title bar and the close and
zoom boxes of an active window, for the windows of inactive applications, for inactive
windows of an active application, and for the area outside a modal dialog box.

Apple has researched and tested these help messages to ensure that they are as effective
as possible for users. Normally, you don’t need to override them. However, by creating a
default help override resource you can override one or more of these defaults if
absolutely necessary. A default help override resource is a resource of type 'hovr' . The
'hovr' resource must have a resource ID greater than 128.

The format of a Rez input file for an 'hovr' resource differs from its compiled output
form. This section describes the structure of a Rez-compiled 'hovr' resource. If you are
concerned only with creating 'hovr' resources, see “Overriding Other Default Help
Balloons” on page 3-87 for a detailed description of how to use Rez input files to create
'hovr' resources.

Help Manager Reference

CHAPTER 3

Help Manager

An'hovr' resource consists of a header component, a missing-items component, and
seven additional components for various interface elements. Figure 3-46 shows the

general structure of a compiled 'hovr' resource.

Figure 3-46 Structure of a compiled default help override (‘hovr') resource
*hovyr" esoane Byles
—
Hep Marmger wareion 2
Cpione 4
Hezder _
i proreenit Balleon dedinition fancion 2
Wariafon cods 2
e oounit 2
L
‘7 Miesireg-ideri & comn porerit ! Wanable
Z Tidebar com porert j ‘Wanakis
5t
Fimgex e il 2
<o ponent Type of datn 2
‘7 Close-bocee oo porient ! ‘Wanakl=
‘rf Lot bocee o ponient ‘_f’T ‘Wanakl=
Z Con porertfor aebire application's inzeire windoae j Wanakl=
! C-:-mp-:nmti:-r nzclire applimi-:-n'e ANred e ! Warnabe

{ Cotn porent for area cuteide modal dialeg o { Warizkle

Help Manager Reference

3-161

Amfrevepy 4oy £

3-162

CHAPTER 3

Help Manager

If you examine a compiled version of an'hovr' resource, you find that the header
component consists of the following elements:

Help Manager version. The version of the Help Manager to use. This is usually
specified in a Rez input file with the HelpMgrVersion constant.

Options. The sum of the values of available options, described in “Specifying Options
in Help Resources” beginning on page 3-25.

Balloon definition function. The resource ID of the window definition function used
for drawing the help balloon. The standard balloon definition function is of type
'WDEF' with resource ID 126; this can be specified by 0 in the Rez input file.

Variation code. A number signifying the preferred position of the help balloon relative
to the hot rectangle. The balloon definition function draws the frame of the help
balloon based on the variation code specified here. The eight variation codes and how
they affect the standard balloon definition function are illustrated in Figure 3-4 on
page 3-10.

Item count. The value 8 for the number of components defined in the rest of this
resource.

The Help Manager uses the order of the components in this resource to determine their
purposes.

The structures of the remaining components depend on identifiers specified inside the
components. The identifiers used in a Rez input file are described in “Specifying the
Format for Help Messages” on page 3-23.

Each component can specify one help message, as listed here.

Missing-items component. The Help Manager expects seven more components to
follow, in the order listed here. If fewer than seven components are specified in the
Rez input file, the Help Manager adds components to the end of the list until there are
seven. Each component that the Help Manager adds uses the message specified in the
missing-items component. The Help Manager also uses the missing-items
component’s help message if the input file specifies an empty string or a resource ID
of 0 for any other component’s help message.

Title-bar component. The help message for title bar of the active window.

Reserved component. This element is reserved and should have no help message. The
HMSkipltem identifier should always be specified in the Rez input file for this
component.

Close-box component. The help message for the close box of the active window.
Zoom-box component. The help message for the zoom box of the active window.

Component for active application’s inactive windows. The help message for the
inactive windows of the active application.

Component for inactive applications’ windows. The help message for the windows of
inactive applications.

Component for area outside modal box. The help message for the desktop area
outside a modal dialog box or an alert box.

Help Manager Reference

CHAPTER 3

Help Manager

Figure 3-47 shows the structure of an'hovr’ component that stores its help message as
a Pascal string within the 'hovr' resource itself.

Figure 3-47 Structure of an 'hovr' component compiled with the HMStringltem identifier
‘have ' { opoent wakny @ Paseal aing Butes
Sixz o
Tupe of caka 2
e Tt 2tihg £ 10256
aligrnent ades ko

If you examine a compiled version of an'hovr' resource, you find that a component
identified in a Rez input file by the HMStringltem identifier consists of the following
elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 1 is specified here when the help message is stored as a Pascal
string within this component.

= Text string. The help message appropriate for the component (as previously
described).

= Alignment bytes. Zero or one bytes used to make the text string end on a word
boundary.

Figure 3-48 shows the structure of an 'hovr' component that specifies its help message
as a text string stored in a string list (STR#') resource.

Figure 3-48 Structure of an 'hovr' component compiled with the HMStringResltem identifier

"horr * componenl wing & siring kst esouce Byles

Tize

Tg,rpe ofdats

Reecure= |0

Iredex i liet

R M M

Help Manager Reference 3-163

Amfrevepy 4oy £

CHAPTER 3

Help Manager

If you examine a compiled version of an'hovr' resource, you find that a component
identified in a Rez input file by the HMStringResltem identifier consists of the
following elements:

= Size. The number of bytes contained in this component.

= Type of data. The value 3 is specified here when the help message for this component
is stored in a string list (STR#') resource.

= Resource ID. The resource ID of an'STR#' resource.

= Index into the string list resource. A number used as an index to a particular text
string within the 'STR#' resource. The Help Manager uses this text string for the
help message of the appropriate component (as previously described).

Figure 3-49 shows the structure of an'hovr' component that specifies its help message
in a picture ('PICT') resource, in styled text (TEXT' and'styl') resources, orina
string ('STR ') resource.

Figure 3-49 Structure of an 'hovr' component compiled with the HMPictltem , HMTEResltem,

3-164

or HMSTRResltem identifier

"bhorr " composenl wing a piclere,

shyled lexk orsbrng esouce Bylex
Dz o
Type afdata o
Fimwairize 100 o

If you examine a compiled version of an'hovr' resource, you find that a component
identified in a Rez input file by either the HMPictltem , HMTEResltem, or
HMSTRResltem identifier consists of the following elements:

= Size. The number of bytes contained in this component.

= Type of data.

o The value 2 is specified here when the help message for this component is stored in
a'PICT" resource.

o The value 6 is specified here when the help message for this component is stored as
styled text—that is, in both 'TEXT' and 'styl' resources.

o The value 7 is specified here when the help message for this component is stored in
an'STR"' resource.

Help Manager Reference

CHAPTER 3

Help Manager

= Resource ID.
o Theresource ID of a'PICT' resource when the value 2 is specified as the type of
data. The Help Manager displays the picture stored in this resource for the help
message.

o The resource ID common to both a 'TEXT' and an 'styl’ resource when the
value 6 is specified as the type of data. The Help Manager displays the styled text
specified in these resources for the help message.

o Theresource ID ofan'STR ' resource when the value 7 is specified as the type of
data. The Help Manager uses the text string stored in this resource for the help
message.

Figure 3-50 shows the structure of an'hovr' component that doesn’t specify a help
message.

Figure 3-50 Structure of an 'hovr' component compiled with the HMSkipltem identifier

*hovr " componsnlwith w0 bedp mesrage Byles
E=F. S 2
T!,rpe ofdats 2

aa

If you examine a compiled version of an'hovr' resource, you find that a component
identified in the Rez input file by the HMSkipltem identifier consists of the following

elements:
= Size. The value 4, for the number of bytes contained in this component.

= Type of data. The value 256.

Help Manager Reference 3-165

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Summary of the Help Manager

Pascal Summary

Constants

CONST
gestaltHelpMgrAttr ="'help’; {Gestalt selector}
gestaltHelpMgrPresent = 0 { if this bit is set, then }

{ Help Manager is present}
hmBalloonHelpVersion = $0002; {Help Manager version}
kBalloonWDEFID =126; {resource ID of standard balloon }

{ 'WDEF' function}
kHMHelpID = -5696; {ID of various Help Manager }

{ resources (in Pack14 range); }

{ also used for 'hfdr' resource ID}
{Help menu constants}
kHMAboutHelpltem =1; {About Balloon Help menu item
kHMHelpMenulD = -16490; {Help menu resourc el D}

kHMShowBalloonsltem =3;

{Hel plt em type for 'DITL' resources
helpltem =1;

{option bits for help resources}

hmDefaultOptions =0;
hmUseSubID =1;
hmAbsoluteCoords =2;
hmSaveBitsNoWindow =4;
hmSaveBitsWindo w =8;
hmMatchinTitle =16;

3-166 Summary of the Help Manager

{Show/Hide Balloons menu item}

{help item}

{use defaults}

{use subrange resource IDs }
{ for owned resources}
{ignore coords of window }

{ origin and treat upper-left }
{ corner of window as 0,0}
{don't create window; save }
{ bits; no update event}
{save bits behind window and }
{ generate update event}
{match window by string }

{ anywhere in title string}

CHAPTER 3

Help Manager

{constants for hmmHelpType field of HMMessageRecord}

khmmString =1;
khmmPict =2;
khmmsStringRes =9
khmmTEHandle =4;
khmmPictHandle =5;
khmmTERes =6;
khmmSTRRes =7,
{resource types for styled text in resources}
kHMTETextResType = 'TEXT",
kHMTEStyleResType = 'styl’;

{Pascal string}

{'PICT resource ID}

{'STR# res ID and index}
{TextEdit handle}

{picture handle}

{TEXT" and 'styl' resource 1D}
{'STR ' resource ID}

{TEXT' resource type}
{'styl' resource type}

{constants for whichState parameter when extracting help }
{ message records from 'hmnu’ and 'hdlg' resources}

kHMEnabledlte m =0;
kHMDisabledlte m =1;
kHMCheckedlte m =2;
kHMOtherltem =3;

{enabled state for menu items; }
{ contrlHilite value of O for }

{ controls}

{disabled state for menu items; }
{ contrlHilite value of 255 for }

{ controls}
{enabled-and-checked state for }
{ menu items; contrlHilite }

{ value of 1 for controls that }

{ are "on"}
{enabled-and-marked state for }
{ menu items; contrlHilite }

{ value between 2 and 253 for }
{ controls}

{resource types for whichType parameter used when extracting }

{ help message}

kHMMenuResType ='hmnu’;
kHMDialogResType ="'hdlg’;
kHMWindListResType = 'hwin’;
kHMRectListResType ="'hrct’;
kHMOverrideResType ="'hovr’;
kHMFinderApplResType = 'hfdr;

{menu help resource type}
{dialog help resource type}
{window help resource type}
{rectangle help resource type}
{help override resource type}
{app icon help resource type}

{constants for method parameter in HMShowBalloon}

kHMRegularwindow =0;
kHMSaveBitsNoWindow =1,
kHMSaveBitsWindow =2;

Summary of the Help Manager

{don't save bits; just update}
{save bits; don't do update}
{save bits; do update event}

3-167

Amfrevepy 4oy £

CHAPTER 3

Help Manager

{constants for help types in ‘hmnu’, 'hdlg’, ‘hrct’, 'hovr', and }
{ 'hfdr' resources--useful only for walking these resources}

kHMStringltem
kHMPictltem
kHMStringResltem
kHMTEResltem
kHMSTRResltem
kHMSkKipltem
kHMCompareltem

kHMNamedResourceltem

kHMTrackCntlltem

Data Types

=1L {Pascal string}

=4 {'PICT' resource ID}

=3, {'STR#' resource ID & index}
=6 {TEXT' & 'styl' resource ID}
=1 {'STR ' resource ID}

= 256; {don't display a balloon}

=512; {for 'nmnu’, use help message }
{ if menu item matches string}

=1024; {for 'nmnu’, use menu item to }
{ get a named resource}

=2048; {reserved}

TYPE HMStringResType =

{Help Manager string list record}

RECORD
hmmResID: Integer; {'STR#' resource ID}
hmmindex: Integer; {index of string}
END;
HMMessageRecPtr = "HMMessageRecord,;
HMMessageRecord = {help message record}
RECORD
hmmHelpType: Integer; {type of next field}
CASE Integer OF
khmmString: (hmmString: Str255); {Pascal string}
khmmPict: (hmmPict: Integer); {'PICT' resource ID}
khmmsStringRes: (hmmStringRes: HMStringResType);
{'STR#' resource }
{ID and index}
khmmTEHandle: (hmmTEHandle: TEHandle) ; { TextEdit handle}
khmmPictHandle: (hmmPictHandle: PicHandle);
{picture handle}
khmmTERes: (hmmTERes: Integer); {TEXT/'styl' }
{ resource 1D}
khmmSTRRes: (hmmSTRRes: Integer) {'STR ' resource ID}
END

3-168 Summary of the Help Manager

CHAPTER 3

Help Manager

Help Manager Routines

Determining Help Balloon Status

FUNCTION HMGetBalloons : Boolean;
FUNCTION HMiIsBalloon : Boolean;

Displaying and Removing Help Balloons

FUNCTION HMShowBalloon (aHelpMsg: HMMessageRecord,; tip: Point;
alternateRect: RectPtr; tipProc: Ptr;
thePro c: Integer; v ariant: Integer;
method: Integer): OSErr;

FUNCTION HMShowMenuBalloon (itemNum: Integer; itemMenulD: Integer;
itemFlags: Longlnt; itemReserved: Longint;
tip: Point; alternateRect: RectPtr;
tipProc: Ptr; theProc: Integer;
variant: Integer): OSEtrr;

FUNCTION HMRemoveBalloon : OSEr;

Enabling and Disabling Balloon Help Assistance
FUNCTION HMSetBalloons (flag: Boolean): OSEtrr;
Adding Items to the Help Menu
FUNCTION HMGetHelpMenuHandle
(VAR mh: MenuHandle): OSEtrr;

Getting and Setting the Font Name and Size

FUNCTION HMGetFont (VAR font: Integer): OSErr;
FUNCTION HMGetFontSize (VAR fontSize: Integer): OSEtrr;
FUNCTION HMSetFont (font: Integer). OSErr;
FUNCTION HMSetFontSize (fontSize: Integer). OSErr;

Setting and Getting Information for Help Resources
FUNCTION HMSetMenuResID (menul D: Integer; r eslD: Integer): OSErt;
FUNCTION HMGetMenuResID (menulD: Integer; VAR resID: Integer): OSErr;

FUNCTION HMScanTemplateltems
(whichID: Integer; whichResFile: Integer;
whichType: ResType): OSEirr;

FUNCTION HMSetDialogResID (reslID: Integer): OSErr;
FUNCTION HMGetDialogResID (VAR reslID: Integer): OSEtrt;

Summary of the Help Manager

3-169

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Determining the Size of a Help Balloon

FUNCTION HMBalloonRect (aHelpMsg: HMMessageRecord;
VAR coolRect: Rect): OSErr;
FUNCTION HMBalloonPict (aHelpMsg: HMMessageRecord,;

VAR coolPict: PicHandle): OSEtrr;

FUNCTION HMGetBalloonWindow
(VAR window: WindowPtr): OSEtr;

Getting the Message of a Help Balloon

FUNCTION HMExtractHelpMsg (whichType: ResType;
whichResl D: Integer; w hichMs g: Integer;
whichState: Integer;
VAR aHelpMsg: HMMessageRecord): OSEtrr;

FUNCTION HMGetindHelpMsg (whichType: ResType;
whichResl D: Integer; w hichMs g: Integer;
whichState: Integer;
VAR options: Longlnt; VAR tip: Point;
VAR altRect: Rect; VAR theProc: Integer;
VAR variant: Integer;
VAR aHelpMsg: HMMessageRecord;
VAR count: Integer): OSEtrr;

Application-Defined Routines

FUNCTION MyBalloonDef (variant: Integer; theBalloon: WindowPtr;
message: Integer; param: Longint): Longint;
FUNCTION MyTip (tip: Point; structure: RgnHandle;

VAR r: Rect; VAR variant: Integer): OSEtr;

C Summary
Constants
enum {
#define gestaltHelpMgrAtt r ' help' [*Gestalt selector*/
gestaltHelpMgrPresent = 0 / *if this bit is set, then */
/* Help Manager is present*/
2
enum {
hmBalloonHelpVersion = 0x0002, /*Help Manager version*/

3-170 Summary of the Help Manager

CHAPTER 3

Help Manager

kBalloonWDEFID =126,

kHMHelpID = -5696,

/*Help menu constants*/
kHMAboutHelpltem =1,
kHMHelpMenulD

kHMShowBalloonsltem

1
1
w 4
o
g
(e}
o

/*help item type for 'DITL' resources*/
Helpltem =1,

[*option bits for help resources*/

enum {

hmDefaultOptions =0,
hmUseSublD =1,
hmAbsoluteCoords =2
hmSaveBitsNoWindow =4,
hmSaveBitsWindow =8,
hmMatchinTitle =16,

/*resource ID of standard balloon */
/* "WDEF' function*/

/*ID of various Help Manager */

/* resources (in Pack14 range); */
/* also used for 'hfdr' resource ID*/

/*About Balloon Help menu item*/
/*Help menu resource ID*/
/*Show/Hide Balloons menu item*/

[*help item*/

[*use defaults*/

/*use subrange resource IDs */
/* for owned resources*/
/*Yignore coords of window */

/* origin and treat upper-left */
/* corner of window as 0,0%*/

/*don't create window; save */

[* bits; no update event*/

[*save bits behind window and */
/* generate update event*/
/*match window by string */

/* anywhere in title string*/

[*constants for hmmHelpType field of HMMessageRecord*/

khmmString =1,
khmmPict =2,
khmmStringRes =3,
khmmTEHandle =4,
khmmPictHandle =5,
khmmTERes =6,
khmmSTRRes =7,
/*resource types for styled text in resources*/
#define KHMTETextResType TEXT'
#define KHMTEStyleResType 'styl'

Summary of the Help Manager

[*Pascal string*/

[*'PICT' resource ID*/

[*'STR#' res ID and index*/
[*TextEdit handle*/

[*picture handle*/

[FTEXT" and 'styl' resource ID*/
/*'STR ' resource ID*/

[*TEXT' resource type*/
[*'styl' resource type*/

3-171

Amfrevepy 4oy £

CHAPTER 3

Help Manager

[*constants for whichState parameter when extracting help */
/* message records from 'hmnu' and 'hdlg' resources*/

kHMEnableditem =0, [*enabled state for menu items; */
/* contrlHilite value of O for */
[* controls*/
2
enum {
kHMDisabledltem =1, [*disabled state for menu items; */
/* contrlHilite value of 255 for */
[* controls*/
kHMCheckedltem =2, /*enabled-and-checked state for */
/* menu items; contrlHilite */
/* value of 1 for controls that */
[* are "on"*/
kHMOtherltem =3, /*enabled-and-marked state for */
/* menu items; contrlHilite */
/* value between 2 and 253 for */
[* controls*/
[*resource types for whichType parameter used when extracting */
/* help message*/
#define kKHMMenuResType ‘hmnu' /*menu help resource type*/
#define kHMDialogResType 'hdlg’ [*dialog help resource type*/
#define KHMWindListResType "hwin' /*window help resource type*/
#define KHMRectListResType ‘hret' [*rectangle help resource type*/
#define kKHMOverrideResType ‘hovr' /*help override resource type*/
#define kKHMFinderApplResType 'hfdr' [*app icon help resource type*/
[*constants for method parameter in HMShowBalloon*/
kHMRegularWindow =0, /*don't save bits; just update*/
kHMSaveBitsNoWindow =1, [*save bits; don't do update*/
kHMSaveBitsWindow =2 [*save bits; do update event*/
2
enum {
[*constants for help types in 'hmnu’, 'hdlg', ‘hrct’, *hovr', and */
/* *hfdr' resources--useful only for walking these resources*/
kHMStringltem =1, [*Pascal string*/
kHMPictltem =2, /*PICT' resource ID*/
kHMStringResltem =3, [*'STR#' resource ID & index*/
kHMTEResltem =6, [*TEXT' & 'styl' resource ID*/
kHMSTRResltem =7, /*'STR ' resource ID*/
kHMSkKipltem =256 /*don't display a balloon*/
3-172 Summary of the Help Manager

CHAPTER 3

Help Manager

kHMCompareltem =512, [*for 'hmnu’, use help message */
/* if menu item matches string*/
kHMNamedResourceltem = 1024, [*for 'hmnu’, use menu item to */
/* get a named resource*/
kHMTrackCntlltem =2048 [*reserved*/
2
Data Types
struct HMStringResType { /*Help Manager string list record*/
short hmmResID; [*'STR#' resource |D*/
short hmmindex; /*index of string*/
2
typedef struct HMStringResType HMStringResType;
struct HMMessageRecord { /*help message record*/
short hmmHelpType; [*type of next field*/
union {
char hmmString[256]; [*Pascal string*/
short hmmpPict; /*PICT' resource ID*/
Handle hmmTEHandle; [*TextEdit handle*/
HMStringResType hmmsStringRes; [*'STR#' resource ID and index*/
short hmmpPictRes; [*unused*/
Handle hmmPictHandle; [*picture handle*/
short hmmTERes; [FTEXT'/'styl' resource ID*/
short hmmSTRRes; /*'STR ' resource ID*/
bu;
2

typedef struct HMMessageRecord HMMessageRecord,;
typedef HMMessageRecord *HMMessageRecPtr;

Help Manager Routines

Determining Help Balloon Status

pascal Boolean HMGetBalloons
(void);

pascal Boolean HMIsBalloon (void);

Summary of the Help Manager

3-173

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Displaying and Removing Help Balloons

pascal OSErr HMShowBalloon (const HMMessageRecord *aHelpMsg, Point tip,
RectPtr alternateRect, Ptr tipProc,
short theProc, short variant, short method);

pascal OSErr HMShowMenuBalloon
(short itemNum, short itemMenulD,
long itemFlags, long itemReserved,
Point tip, RectPtr alternateRect,
Ptr tipProc, short theProc, short variant);

pascal OSErr HMRemoveBalloon
(void);

Enabling and Disabling Balloon Help Assistance
pascal OSErr HMSetBalloons (Boolean flag);

Adding Items to the Help Menu

pascal OSErr HMGetHelpMenuHandle
(MenuHandle *mh);

Getting and Setting the Font Name and Size

pascal OSErr HMGetFont (short *font);
pascal OSErr HMGetFontSize (short *fontSize);
pascal OSErr HMSetFont (short font);
pascal OSErr HMSetFontSize (short fontSize);

Setting and Getting Information for Help Resources

pascal OSErr HMSetMenuResID
(short menulD, short resID);

pascal OSErr HMGetMenuResID
(short menulD, short *resID);

pascal OSErr HMScanTemplateltems
(short whichID, short whichResFile,
ResType whichType) ;

pascal OSErr HMSetDialogResID
(short resID);

pascal OSErr HMGetDialogResID
(short *resID);

3-174 Summary of the Help Manager

CHAPTER 3

Help Manager

Determining the Size of a Help Balloon

pascal OSErr HMBalloonRect (const HMMessageRecord *aHelpMsg,
Rect *coolRect);

pascal OSErr HMBalloonPict (const HMMessageRecord *aHelpMsg,
PicHandle *coolPict);

pascal OSErr HMGetBalloonWindow
(WindowPtr *window);

Getting the Message of a Help Balloon

pascal OSErr HMExtractHelpMsg
(ResType whichType, short whichResID,
short whichMsg, short whichState,
HMMessageRecord *aHelpMsgQ);

pascal OSErr HMGetlindHelpMsg
(ResType whichType, short whichResID,
short whichMsg, short whichState,
long *options, Point *tip, Rect *altRect,
short *theProc, short *variant,

HMMessageRecord *aHelpMsg, short *count);

Application-Defined Routines

pascal long MyBalloonDef (short variant, WindowPtr theBalloon,
short message, long param);
pascal OSErr MyTip (Point tip, RgnHandle structure,

Rect *r, short *variant);

Summary of the Help Manager

3-175

Amfrevepy 4oy £

CHAPTER 3

Help Manager

Assembly-Language Summary

Data Structures

Help Message Data Structure

0 hmmHelpType word Resource type
2 hmmHelpMessage variable Help balloon message

Trap Macros

Trap Macros Requiring Routine Selectors

_Packl4

Selector Routine

$0002 HMRemoveBalloon
$0003 HMGetBalloons

$0007 HMIsBalloon

$0104 HMSetBalloons

$0108 HMSetFont

$0109 HMSetFontSize

$010C HMSetDialogResID
$0200 HMGetHelpMenuHandle
$020A HMGetFont

$020B HMGetFontSize
$020D HMSetMenuResID
$0213 HMGetDialogResID
$0215 HMGetBalloonWindow
$0314 HMGetMenuResID
$040E HMBalloonRect

$040F HMBalloonPict

$0410 HMScanTemplateltems
$0711 HMEXxtractHelpMsg
$0B01 HMShowBalloon
$0E05 HMShowMenuBalloon
$1306 HMGetIindHelpMs g

3-176 Summary of the Help Manager

CHAPTER 3

Help Manager

Result Codes

noErr

fnOpnErr
paramErr
memFullErr
resNotFound
hmHelpDisabled
hmBalloonAborted

hmSameAsLastBalloon
hmHelpManagerNotInited
hmSkippedBalloon
hmWrongVersion
hmUnknownHelpType
hmOperationUnsupported
hmNoBalloonUp
hmCloseViewActive

Summary of the Help Manager

-38
-50
-108
-192
-850
—-853

-854
—-855
-857
-858
-859
-861
-862
-863

No error

File not open

Error in parameter list

Not enough room in heap zone

Unable to read resource

Help balloons are not enabled

Because of constant cursor movement, the help balloon
wasn’t displayed

Menu and item are same as previous menu and item
Help menu not set up

No help message to fill in

Wrong version of Help Manager resource

Help message record contained a bad type

Invalid value passed in the method parameter

No balloon showing

Balloon can’t be removed because Close View is in use

3-177

Amfrevepy 4oy £

