
Contents 2-1

CHAPTER 2

Contents

Scrap Manager

Introduction to the Scrap Manager 2-4
The Clipboard 2-10
Intelligent Cut and Paste 2-10

About the Scrap Manager 2-12
Location of the Scrap 2-12

Using the Scrap Manager 2-14
Getting Information About the Scrap 2-15
Putting Data in the Scrap 2-15

Handling the Cut Command 2-15
Handling the Copy Command 2-19
Handling Suspend Events 2-19

Getting Data From the Scrap 2-20
Handling the Paste Command 2-20
Handling Resume Events 2-25

Converting Data Between a Private Scrap and the Scrap 2-26
Converting Data Between the TextEdit Scrap and the Scrap 2-28
Handling Editing Operations in Dialog Boxes 2-31

Scrap Manager Reference 2-31
Data Structures 2-32

The Scrap Information Record 2-32
The Scrap Format Types 2-33

Routines 2-34
Getting Information About the Scrap 2-34
Writing Information to the Scrap 2-35
Reading Information From the Scrap 2-38
Transferring Data Between the Scrap in Memory and the Scrap on
Disk 2-40

CHAPTER 2

2-2 Contents

Summary of the Scrap Manager 2-42
Pascal Summary 2-42

Constants 2-42
Data Types 2-42
Routines 2-42

C Summary 2-43
Data Types 2-43
Routines 2-44

Assembly-Language Summary 2-45
Data Structures 2-45

Result Codes 2-45

CHAPTER 2

2-3

Scrap Manager

This chapter describes how your application can allow the user to cut, copy, and paste
data between documents or within a document by using the Scrap Manager. When you
copy data, your application writes the data to a specific location, and your application
writes the data using a standard format. The Scrap Manager makes this data available to
other applications. Furthermore, when your application copies data such as text or
graphics, you write the data using the standard formats that all Macintosh applications
should support. By using standard formats, the user can copy and paste data between
documents created by your application and others.

The Scrap Manager supports the sharing of static data between applications. That is,
once the data is pasted into another document, there is no connection between the data
that was pasted and the original source of the data. To support dynamic sharing of data,
where the user can copy data from one document into another document and receive
automatic updating of the information when the data in the original document changes,
use the Edition Manager. See Inside Macintosh: Interapplication Communication for
information on the Edition Manager.

You can also support the copying and pasting of sounds, movies, publishers or
subscribers, and other formats. For specific information on supporting sounds and
movies, see Inside Macintosh: Sound and Inside Macintosh: QuickTime, respectively. For
information on supporting publishers and subscribers, see the chapter “Edition
Manager” in Inside Macintosh: Interapplication Communication.

If the Translation Manager is available, the Scrap Manager uses its services as necessary
to translate data in one format into another format. For specific information on the
Translation Manager, see the chapter “Translation Manager” in this book.

If your application uses only TextEdit for all text input, you can use TextEdit routines to
cut, copy, and paste data. For complete information on TextEdit, see the chapter
“TextEdit” in Inside Macintosh: Text .

To support the copying and pasting of data in dialog boxes, use Dialog Manager
routines. See the chapter “Dialog Manager” in Inside Macintosh: Macintosh Toolbox
Essentials for information on how to create and handle dialog boxes.

This chapter discusses the Edit menu commands Cut, Copy, and Paste. For specific
information on how to create and handle menus in your application, see the chapter
“Menu Manager” in Inside Macintosh: Macintosh Toolbox Essentials.

To use this chapter, you should be familiar with the Event Manager, in particular, how to
handle suspend and resume events. See the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials for additional information on the Event Manager.

This chapter begins by describing how the copy-and-paste operation works and the user
interface behind it. The chapter then discusses how you can

■ get information about the current contents of the scrap

■ read data from the scrap

■ write data to the scrap

CHAPTER 2

Scrap Manager

2-4 Introduction to the Scrap Manager

Introduction to the Scrap Manager

You can use the Scrap Manager to

■ copy and paste data within a document created by your application

■ copy and paste data between different documents created by your application

■ copy and paste data between documents created by your application and documents
created by other applications

Figure 2-1 shows two documents from two applications (SurfPaint and SurfWriter) that
the user currently has open. The user can select the data to copy from the SurfPaint
document, choose Copy from the Edit menu, activate the SurfWriter document, then
choose Paste from the Edit menu.

In the example shown in Figure 2-1, when the user chooses Copy, the SurfPaint
application writes the selected data to the scrap. When the user chooses Paste, the
SurfWriter application reads any data from the scrap and inserts the data at the current
insertion point.

For each application, the Scrap Manager maintains a storage area to hold the last data
cut or copied by the user. The area that is available to an application for this purpose is
referred to as the scrap. The scrap can reside either in memory or on disk. All
applications that support copy-and-paste operations read data from and write data to
the scrap.

Whenever the user cuts or copies data, your application should write the data to the
scrap (replacing the previous contents of the scrap); and whenever the user pastes data,
your application should read the data from the scrap. Alternatively, your application can
choose to use its own private scrap, and only write data to and read data from the scrap
when necessary. If you use a private scrap, you must copy the data from your private
scrap to the scrap upon receiving a suspend event. Upon receiving a resume event you
should determine whether the data in the scrap has changed and, if so, either
immediately copy the data from the scrap to your private scrap or copy the data from
the scrap to your private scrap when the user next chooses the Paste command.

CHAPTER 2

Scrap Manager

Introduction to the Scrap Manager 2-5

Figure 2-1 Copying and pasting data between two applications using the scrap

CHAPTER 2

Scrap Manager

2-6 Introduction to the Scrap Manager

You use the Edit menu commands Cut, Copy, and Paste to support cutting, copying, and
pasting of data within a document and between documents. Table 2-1 describes the
actions your application should perform to support these three commands.

You should implement the editing commands as described in Table 2-1 so that when the
user chooses the Paste command—whether applied to the same document or another, in
the same application or another—the data last operated upon by the user (cut or copied)
can be inserted into the current document. Note that if your application implements the
Clear command, in response to the Clear command your application should remove the
data in the current selection but should not save the data into the scrap.

The nature of the data that the user can transfer varies between the application that the
user copies data from and the application that the user pastes data into. The amount of
information retained also depends on the capabilities of the applications supporting the
copy-and-paste operation. For example, an application that allows a user to record and
edit sounds may write a copied sound to the scrap both in 'snd ' and 'TEXT' formats.
Other applications choose which format to read from the scrap. A word processor that
attempts to paste the sound data may not be able to read the sound in the 'snd '
format but should be able to read the data in the 'TEXT' format.

Table 2-1 Actions your application perfoms in response to editing commands

Edit command Actions your application performs

Cut Remove the data in the current selection (if any) and save the data,
either in the scrap or in your application’s private scrap.

Copy Copy the data in the current selection (if any) and save the copied
data, either in the scrap or in your application’s private scrap.

Paste Paste the last data (if any) that the user cut or copied (you get the
data to paste by reading the scrap or your application’s private
scrap). Paste the data at the insertion point, replacing any current
selection.

CHAPTER 2

Scrap Manager

Introduction to the Scrap Manager 2-7

You write data to the scrap using the standard formats that all Macintosh applications
should support: 'PICT' and 'TEXT' . These scrap format types are defined as follows:

■ 'TEXT' : a series of ASCII characters

■ 'PICT' : a QuickDraw picture, which is a saved sequence of drawing commands that
can be played back with the DrawPicture procedure

Your application must be able to write at least one standard format ('PICT' or 'TEXT')
to the scrap and should be able to read both. In addition, your application can support
other optional popular scrap format types (such as 'snd ' or 'm ovv '). Your
application can also write its own private format to the scrap, but must always write one
of the standard formats as well.

When your application requests data from the scrap, it must specify the scrap format
type that the Scrap Manager should retrieve from the scrap. Your application typically
requests its preferred scrap format first; if that format isn’t available, it requests the data
specifying another format type.

If you request a scrap format type that isn’t in the scrap and the Translation Manager is
available, the Scrap Manager uses the Translation Manager to attempt to convert the
data of a scrap format type that does exist in the scrap into the scrap format type
requested by your application. For example, if the SurfWriter application requests data
from the scrap in the 'SURF' scrap format type, and the data in the scrap is available
in the format types 'TEXT' , 'PICT' , and 'SDBS' (SurfDB’s private scrap format type),
the Scrap Manager uses the Translation Manager to convert any one of the scrap format
types 'TEXT' , 'PICT' , or 'SDBS' into the 'SURF' scrap format type. The Translation
Manager looks in the Extensions folder for a translator that can perform one of these
translations. If such a translator is available (for example, a translator that can translate
the 'SDBS' scrap format type into the 'SURF' scrap format type), the Translation
Manager uses the translator to translate the data in the scrap into the requested scrap
format type. If the translation is successful, the Scrap Manager returns to your
application the data from the scrap in the requested scrap format type.

CHAPTER 2

Scrap Manager

2-8 Introduction to the Scrap Manager

Whenever possible, your application should write both of the standard data types to the
scrap. For example, a graphics application, such as SurfPaint, can choose to write both
'PICT' and 'TEXT' formats to the scrap when the user copies a picture consisting of
text. Figure 2-2 shows a SurfPaint document and a SurfWriter document. The user
copies, then pastes, a picture consisting of text. The SurfPaint application can choose to
write only the 'PICT' format; if it does so, then SurfWriter reads the data from the scrap
in 'PICT' format and inserts the data as a picture in the SurfWriter document. If the
SurfPaint document writes both 'PICT' and 'TEXT' formats to the scrap, SurfWriter
can choose which format to read. In this case, SurfWriter can choose to read the 'TEXT'
format of the data and insert the data as editable text into the document.

Figure 2-2 Writing both standard formats to the scrap

The SurfPaint application uses an application-defined data type to describe the data in
its documents. It uses this same format in its private scrap; this implementation works
well as long as the user is working exclusively with SurfPaint documents. When the
SurfPaint application receives a suspend event, indicating that another application is
about to become the foreground process, SurfPaint copies the data from its private scrap
to the scrap. SurfPaint writes data to the scrap in its own private format ('SFPN'), in
'PICT' format, and if the picture contains text, it writes the data to the scrap in 'TEXT'

CHAPTER 2

Scrap Manager

Introduction to the Scrap Manager 2-9

format as well. Upon receiving a resume event, SurfPaint determines whether the
contents of the scrap have changed and if so, copies the new data from the scrap into its
private scrap. Figure 2-3 shows how the SurfPaint application uses its own private scrap.

Figure 2-3 Using a private scrap

Note that when your application receives a resume event, it should determine whether
the contents of the scrap have changed. If your application uses a private scrap, either
you can choose to copy the data from the scrap to your private scrap immediately or you
can delay copying until the data is needed.

CHAPTER 2

Scrap Manager

2-10 Introduction to the Scrap Manager

If your application writes data to the scrap in more than one format, it should write the
data in its order of preference. For example, the SurfPaint application writes its preferred
scrap format type first (its own private format, 'SFPN'), then writes the data in 'PICT'
format, and then, if appropriate, writes the data in 'TEXT' format. However, the size of
the scrap is limited; therefore, when your application needs to write a large amount of
data to the scrap and there isn’t enough room in the scrap for both your application’s
private scrap format type and one of the standard formats, write the data in the standard
format.

As previously described, the Scrap Manager uses the Translation Manager (if it’s
available) to convert data in one scrap format type into another. If your application
writes its own private scrap format type to the scrap, you may want to provide one or
more translators that translate your private scrap format type into other format types.
See the chapter “Translation Manager” in this book for information on how to write
translators.

The Clipboard
The Clipboard refers to what the user views as residing in the scrap. Your application
can provide a Show Clipboard/Hide Clipboard command to show or hide a window,
referred to as the Clipboard window. When the user chooses this command, your
application should display in its Clipboard window the current contents of the scrap.
Although multiple scrap format types may reside in the scrap, applications that support
a Clipboard window typically display the data in only one format.

If your application provides this command, your application should hide its Clipboard
window (if it’s showing) whenever it receives a suspend event. It can show the
Clipboard window again when it receives a resume event.

Intelligent Cut and Paste
When the user selects text and then chooses the Cut command, or sets the insertion point
and then chooses Paste, your application should apply “intelligent cut and paste,” that
is, discard extra spaces or add spaces, as outlined here. In general, your application
should follow these rules to provide intelligent cut and paste:

■ If the user selects a word or range of words, highlight the selection but not any
adjacent spaces.

■ When the user chooses the Cut command, if the character to the left of the selection is
a space, discard it. Otherwise, if the character to the right of the selection is a space,
discard it.

■ When the user chooses the Paste command, if the character to the left or right of the
current selection or if the character to the left or right of the insertion point is part of a
word, insert a space before pasting the text.

CHAPTER 2

Scrap Manager

Introduction to the Scrap Manager 2-11

Figure 2-4 shows examples of intelligent cut and paste.

Figure 2-4 Intelligent cut and paste

Figure 2-5 shows the results of applying the same operations in an application that
doesn’t support intelligent cut and paste.

Figure 2-5 Non-intelligent cut and paste

See Macintosh Human Interface Guidelines for details of selection techniques and
guidelines for selecting words and paragraphs.

CHAPTER 2

Scrap Manager

2-12 About the Scrap Manager

About the Scrap Manager

You can use the Scrap Manager to support copying and pasting of data. If your
application uses TextEdit (in its windows or dialog boxes), be aware that TextEdit also
maintains its own private scrap. You use TextEdit routines to copy data from the TextEdit
scrap (if any) to the scrap. See “Converting Data Between the TextEdit Scrap and the
Scrap” beginning on page 2-28 for information on TextEdit’s scrap.

The next section describes the location of the scrap. “Using the Scrap Manager”
beginning on page 2-14 provides specific information on how you can use Scrap
Manager routines in your application.

Location of the Scrap
System software allocates space in each application’s heap for the scrap and
allocates a handle to reference the scrap. The system global variable ScrapHandle
contains a handle to the scrap of the current process. When system software launches
an application, it copies the data from the scrap of the previously active application into
the application heap of the newly active application. If the scrap is too large to fit in the
application’s application heap, system software copies the scrap to disk and sets the
value of the handle to the scrap in the application heap to NI L to indicate that the scrap
is on disk.

Figure 2-6 shows two applications (SurfWriter and SurfPaint) that are in memory and
shows the handles and allocated space for the scrap in each application’s heap. In this
example, SurfPaint was the previously active application and the user switches to the
SurfWriter application. At this moment, the system global variable ScrapHandle
references the scrap in SurfPaint’s application heap. SurfPaint’s application heap
contains a handle to the scrap in its application heap.

System software sends SurfPaint a suspend event to begin the switch to the SurfWriter
application. Because SurfPaint uses a private scrap, upon receiving the suspend event it
copies data from its private scrap to the scrap. After SurfPaint responds to the suspend
event, system software copies the data from the scrap in SurfPaint’s application heap to
SurfWriter’s application heap, resizing the scrap in SurfWriter’s application heap as
necessary. System software sets the handle in SurfWriter ’s application heap to reference
the new scrap and sets the system global variable ScrapHandle to reference the scrap
in SurfWriter ’s application heap. System software sends SurfWriter a resume event and
sets the convertClipboardFlag bit in the message field of the event record. System
software sets this bit when the contents of the scrap have changed since the previous
suspend event, indicating to the application that it should copy the scrap to its
private scrap.

CHAPTER 2

Scrap Manager

About the Scrap Manager 2-13

Figure 2-6 Location of the scrap in memory

You can get the size of the scrap and a handle to the scrap in your application’s heap by
calling the InfoScrap function.

Although the scrap is usually located in memory, your application can write the contents
of the scrap in memory to a scrap file using the Unlo adScrap function. After writing
the contents of the scrap to disk, the Unlo adScrap function releases the memory
previously occupied by the scrap in your application’s heap; thereafter, any operations
your application performs on data in the scrap affect the scrap as stored in the scrap file
on disk.

You can use the LoadScrap function to read the contents of the scrap file back into
memory. The LoadScrap function allocates memory in your application’s heap for the
scrap and reads the contents of the scrap on disk into memory; thereafter, any operations
your application performs on data in the scrap affect the scrap in memory.

CHAPTER 2

Scrap Manager

2-14 Using the Scrap Manager

The Scrap Manager keeps track of whether the scrap is in memory or on disk and always
reads data from and writes data to the scrap’s current location. As a result, your
application seldom needs to know the location of the scrap. Your application should use
the Unlo adScrap function only if the scrap in memory isn’t large enough to hold the
data you need to write to the scrap.

If your application transfers the scrap from memory to disk and is then switched to the
background, system software reads the scrap from disk into the newly active
application’s heap. When your application returns to the foreground, system software
writes the scrap from the previous application’s application heap back to disk.

Using the Scrap Manager

This section explains how you can use the Scrap Manager to support copy-and-paste
operations in your application. In particular, this section explains how you can

■ get information about the current contents of the scrap

■ handle the Cut and Copy commands

■ respond to suspend events

■ handle the Paste command

■ respond to resume events

■ use TextEdit to support the editing commands

■ support copying and pasting of data in dialog boxes

The Scrap Manager uses the services of the Translation Manager (if it’s available). To
determine whether the Scrap Manager can use the Translation Manager, call the
Gestalt function with the gestaltScrapMgrAttr selector and check
the value of the response parameter. If the bit indicated by the constant
gestaltScrapMgrTranslationAware is set, then the Scrap Manager uses the
Translation Manager when needed to translate scrap format types.

CONST

gestaltScrapMgrAttr = 'scra'; {Gestalt selector for }

{ Scrap Mgr attributes}

gestaltScrapMgrTranslationAware = 0; {check this bit in the }

{ response parameter }

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-15

Getting Information About the Scrap
To get information about the scrap, you can use the InfoScrap function. The
InfoScrap function returns a pointer to a scrap information record. (See “The Scrap
Information Record” on page 2-32 for detailed information on the fields of this record.)
The information in the scrap information record provides

■ the size (in bytes) of the scrap

■ a handle to the scrap if it’s in memory

■ a count, or number that your application can use to determine whether the contents of
the scrap have changed

■ the location of the scrap (whether in memory or on disk)

■ the filename of the scrap when it is on the disk

For example, this code uses the InfoScrap function to get the size of the scrap.

VAR

curScrapInfoPtr: PScrapStuff;

curScrapSize: LongInt;

curScrapInfoPtr := InfoScrap;

curScrapSize := curScrapInfoPtr^.scrapSize;

Putting Data in the Scrap
Your application should write data to the scrap (or to its own private scrap) whenever
the user chooses the Cut or Copy command and the document the user is working with
contains a selection. In addition, if your application uses a private scrap, your
application must copy the contents of its private scrap to the scrap upon receiving a
suspend event. The next sections explain how to perform these tasks.

Handling the Cut Command

When the user chooses the Cut command and the document the user is working with
contains a selection, your application should remove the data from the selection and
save the data (either in the scrap or in your application’s private scrap).

CHAPTER 2

Scrap Manager

2-16 Using the Scrap Manager

The SurfWriter application doesn’t use a private scrap; whenever the user performs a cut
operation, SurfWriter writes the current selection to the scrap. The SurfWriter application
does define its own private scrap format type and writes this format to the scrap, along
with one of the standard scrap formats. Listing 2-1 shows SurfWriter’s routine for
handling the Cut command (it also uses this routine for the Copy command).

Listing 2-1 Writing data to the scrap

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

isText: Boolean;

ptrToScrapData: Ptr;

length, myLongErr: LongInt;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

ptrToScrapData := NewPtr(kDefaultSize);

isText := MyIsSelectionText;

IF isText THEN {selection contains text}

BEGIN

MyGetSelection('SURF', ptrToScrapData, length);

myLongErr := ZeroScrap;

myLongErr := PutScrap(length, 'SURF', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

MyGetSelection('TEXT', ptrToScrapData, length);

myLongErr := PutScrap(length, 'TEXT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END

ELSE {selection contains graphics}

BEGIN

MyGetSelection('PICT', ptrToScrapData, length);

myLongErr := ZeroScrap;

myLongErr := PutScrap(length, 'PICT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

DisposePtr(ptrToScrapData);

IF cut THEN

MyDeleteSelection;

END

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-17

ELSE

IF windowType <> kNIL THEN

BEGIN {window is a dialog box}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

The DoCutOrCopyCmd procedure first determines the type of window that is frontmost.
If the frontmost window is a document window, DoCutOrCopyCmd uses another
application-defined routine, MyIsSelectionText , to determine whether the current
selection contains text or graphics. If the selection contains only text, SurfWriter writes
the data to the scrap using two formats: its own private format ('SURF') and the
standard format 'TEXT' . The DoCutOrCopyCmd procedure uses another
application-defined routine, MyGetSelection , to return the current selection in a
particular format. DoCutOrCopyCmd then calls the ZeroScrap function to clear the
contents of the scrap. After calling ZeroScrap , DoCutOrCopyCmd calls PutScrap ,
specifying the length of the data, a pointer to the data, and identifying the scrap format
type as 'SURF' . DoCutOrCopyCmd then uses the MyGetSelection routine again, this
time to return the current selection in the 'TEXT' format type. DoCutOrCopyCmd calls
PutScrap to write the data to the scrap, specifying a pointer to the data and identifying
the scrap format type as 'TEXT' .

If the selection contains a picture, DoCutOrCopyCmd uses the MyGetSelection routine
to return the current selection using the 'PICT' format type. After calling ZeroScrap ,
DoCutOrCopyCmd calls PutScrap to write the data to the scrap, specifying a pointer to
the data and identifying the scrap format type as 'PICT' .

Finally, if DoCutOrCopyCmd was called as a result of the user performing a cut
operation, DoCutOrCopyCmd deletes the selection from the current document.

If the frontmost window is a dialog box, DoCutOrCopyCmd uses the Dialog Manager’s
DialogCut (or DialogCopy) procedure to write the selected data to the scrap.

Note that you should always call ZeroScrap before writing data to the scrap. If you
write multiple formats to the scrap, call ZeroScrap once before you write the first
format to the scrap.

You should always write data to the scrap in your application’s preferred order
of formats. For example, SurfWriter ’s preferred format for text data is its own private
format ('SURF'), so it writes that format first and then writes the standard format
'TEXT' .

If your application uses TextEdit in its document windows, then use the TextEdit routine
TECut (or TECopy) instead of ZeroScrap and PutScrap . See Listing 2-8 on page 2-29
for an application-defined routine that uses TextEdit routines to help handle the Cut and
Copy commands.

CHAPTER 2

Scrap Manager

2-18 Using the Scrap Manager

If your application uses a private scrap, then copy the selected data to your private scrap
rather than to the scrap. For example, the SurfPaint application uses a private scrap.
Listing 2-2 shows SurfPaint’s application-defined routine that handles the Cut command
by writing the selected data to its private scrap.

Listing 2-2 Writing data to a private scrap

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

MyWriteDataToPrivateScrap;

{reset gScrapNewData to indicate that this app's private }

{ scrap now contains the most recent data}

IF gScrapNewData THEN

gScrapNewData := FALSE;

IF cut THEN

MyDeleteSelection;

END

ELSE

IF windowType <> kNil THEN

BEGIN {window is a dialog window}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

The application-defined DoCutOrCopyCmd procedure shown in Listing 2-2 calls another
application-defined procedure, MyWriteDataToPrivateScrap , to write the data in
the current selection to the application’s private scrap. SurfPaint uses the
application-defined global variable gScrapNewData to indicate when data should be
read from the scrap instead of its own private scrap as a result of the user choosing the
Paste command. Upon receiving a resume event, if the contents of the scrap have
changed, SurfPaint sets the gScrapNewData global variable to TRUE. If the user chooses
Paste and gScrapNewData is TRUE, SurfPaint reads the scrap to get the data to paste;
otherwise SurfPaint reads its own private scrap to get the data to paste.

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-19

If the user chooses Cut or Copy before the next Paste command, SurfPaint writes the
newly selected data to its private scrap, eliminating the need to read the previous
contents of the scrap, and thus the DoCutOrCopyCmd procedure resets the
gScrapNewData global variable to FALSE.

Handling the Copy Command

When the user chooses the Copy command and the document the user is working with
contains a selection, your application should copy the selected data (without deleting it)
and save the copied data (either in the scrap or in your application’s private scrap). See
Listing 2-1 on page 2-16, Listing 2-2 on page 2-18, and Listing 2-8 on page 2-29 for
application-defined routines that handle the Copy command.

Handling Suspend Events

As previously described, if your application uses a private scrap, your application must
copy the contents of its private scrap to the scrap upon receiving a suspend event. In
addition, if your application supports the Show Clipboard command, it should hide the
Clipboard window if it’s currently showing (because the contents of the scrap may
change while your application yields time to another application).

Listing 2-3 shows SurfPaint’s routine that responds to suspend events (and resume
events).

Listing 2-3 Copying data from the scrap in response to suspend events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWi ndow: WindowPtr;

BEGIN

currentFrontWindow : = FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event; }

END { handle as shown in Listing 2-6 }

ELSE

BEGIN {it's a suspend event}

{copy private scrap to the scrap}

MyConvertScrap(kPrivateToClipboard);

gInBackground := TRUE;

{deactivate front window}

DoActivate (currentFrontWindow, NOT gInBackground, event);

MyHideClipboardWindow; {hide Clipboard window if showing}

MyHideFloatingWindows; {hide any floating windows}

END;

END;

CHAPTER 2

Scrap Manager

2-20 Using the Scrap Manager

Listing 2-3 shows a procedure that responds to suspend and resume events. The
DoSuspendResumeEvent procedure first gets a pointer to the front window using the
Window Manager function FrontWindow . It then examines bit 0 of the message field of
the event record to determine whether the event is a suspend or resume event. See
Listing 2-6 on page 2-25 for details on handling resume events.

For suspend events, the DoSuspendResumeEvent procedure calls the
application-defined MyConvertScrap procedure to copy the contents of its private
scrap to the scrap. (See Listing 2-7 on page 2-27 for the MyConvertScrap procedure.) It
then sets the private global flag gInBackgroun d to TRUE to indicate that the
application is in the background. It calls another application-defined routine to
deactivate the application’s front window. It also calls the application-defined routine
MyHideClipboardWindow to hide the Clipboard window if it’s currently showing.

Getting Data From the Scrap
Your application should read data from the scrap (or from its own private scrap)
whenever the user chooses the Paste command. In addition, if your application uses a
private scrap, upon receiving a resume event your application should determine
whether the contents of the scrap have changed since the previous resume event, and if
so, it should take the appropriate actions. The next sections explain how to perform these
tasks.

Handling the Paste Command

When the user chooses the Paste command, your application should paste the data last
cut or copied by the user. You should insert the new data at the current insertion point
or, if a selection exists, replace the selection with the new data. You get the data to paste
by reading the data from the scrap or from your application’s private scrap.

When you read data from the scrap, your application should request the data in its
preferred scrap format type. If that type of format doesn’t exist in the scrap, then request
the data in another format. For example, SurfWriter’s preferred format type is 'surf' ,
so it requests data from the scrap in this format. If this format isn’t in the scrap,
SurfWriter requests its next preferred type, 'TEXT' . Finally, if the 'TEXT' format isn’t in
the scrap, SurfWriter requests the data in the 'PICT' format.

If your application doesn’t have a preferred scrap format type, then read from the scrap
each format type your application supports. Along with a pointer to the data of the
requested format type, the GetScrap function returns an offset, a value that indicates
the relative offset of the start of that format of data in the scrap. (Note that the returned
value for the offset is valid only if the Translation Manager isn’t available; if the
Translation Manager is available, then your application should not rely on the offset
value.) The format type with the lowest offset is the preferred format type of the
application that put the data in the scrap; thus a format with a lower offset is more likely
to contain more information than formats in the scrap with higher offsets. So when the
Translation Manager isn’t available, use the format with the lowest offset when your
application doesn’t have a particular scrap format that it prefers.

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-21

If you request a scrap format type that isn’t in the scrap and the Translation Manager is
available, the Scrap Manager uses the Translation Manager to convert any one of the
scrap format types currently in the scrap into the scrap format type requested by your
application. The Translation Manager looks for a translator that can perform one of these
translations. If such a translator is available (for example, a translator that can translate
the 'SDBS' scrap format type into the 'SURF' scrap format type), the Translation
Manager uses the translator to translate the data in the scrap into the requested scrap
format type. If the translation is successful, the Scrap Manager returns to your
application the data from the scrap in the requested scrap format type.

Listing 2-4 shows SurfWriter’s routine for handling the Paste command. The SurfWriter
application doesn’t use a private scrap; whenever the user performs a paste operation,
SurfWriter reads the data that is to be pasted from the scrap.

For document windows, the SurfWriter application first determines whether the data in
the scrap exists in its own private scrap format ('SURF') by using the GetScrap
function. If you specify a NIL handle as the location to return the data, GetScrap does
not return the data but does return as its function result the number of bytes (if any) of
data of the specified format that exists in the scrap. If data of this format does exist,
SurfWriter reads the data in this format. SurfWriter allocates the handle to hold any
returned data but does not need to size the handle; GetScrap automatically resizes the
handle passed to it to the required size to hold the retrieved data. Once the data is
retrieved in 'SURF' format, SurfWriter pastes the data into the current document.

If the scrap does not contain data in 'SURF' format (and the available translators can’t
convert any of the scrap format types in the scrap to the 'SURF' format), SurfWriter
determines whether any data in 'TEXT' format exists in the scrap. If so, SurfWriter uses
GetScrap to retrieve the data. Once the data is retrieved in 'TEXT' format, SurfWriter
pastes the data into the current document.

If the scrap does not contain data in 'TEXT' format, SurfWriter determines whether any
data in 'PICT' format exists in the scrap. If so, SurfWriter uses GetScrap to retrieve
the data. Once the data is retrieved in 'PICT' format, SurfWriter determines the
destination rectangle, that is, the rectangle where the picture should be displayed, then
uses the QuickDraw DrawPicture procedure to draw the picture in the window.
SurfWriter stores a handle to this picture and sets other application-defined variables as
needed.

Listing 2-4 Handling the Paste command using the scrap

 PROCEDURE DoPasteCommand;

 VAR

window: windowPtr;

windowType: LongInt;

offset: LongInt;

sizeOfSurfData: LongInt;

sizeOfPictData: LongInt;

sizeOfTextData: LongInt;

CHAPTER 2

Scrap Manager

2-22 Using the Scrap Manager

hDest: Handle;

myData: MyDocRecHnd;

teHand: TEHandle;

destRect: Rect;

myErr: OSErr;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

I F w indowType = kMyDocWindo w T HEN

BEGIN {handle Paste command in document window. Check }

{ whether the scrap contains any data. This app }

{ checks for its preferred format type, 'SURF' , first}

sizeOfSurfData := GetScrap(NIL, 'SURF' , offset);

IF sizeOfSurfData > 0 THEN

BEGIN

{allocate handle to hold data from scra p--G etScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfSurfData := GetScrap(hDest, 'SURF' , offset);

{paste the data into the current document}

MyPasteSurfData(hDest);

HUnlo ck(hDest);

Dispos eHandle(hDest);

END

ELSE

BEGIN {if no 'SURF' dat a in scrap, check for 'TEXT'}

sizeOfTextData := GetScrap(NIL, 'TEXT', offset);

IF sizeOfTextData > 0 THEN

BEGIN

{allocate handle to hold data from scra p--G etScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfTextData := GetScrap(hDest, 'TEXT', offset);

{paste the text into the current document}

MyPasteText(hDest);

HUnlo ck(hDest);

Dispos eHandle(hDest);

END

ELSE {if no 'TEXT' dat a in scrap, check for 'PICT'}

BEGIN

sizeOfPictData := GetScrap(NIL, 'PICT', offset);

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-23

IF sizeOfPictData > 0 THEN

BEGIN

{allocate handle to hold scrap dat a--G etScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory referenced thru hDest handle}

sizeOfPictData := GetScrap(hDest, 'PICT', offset);

{calculate destination rectangle for plotting the }

{ picture}

MyGetDestRect(hDest, destRect);

DrawPicture(PicHandle(hDest), destRect);

{save information about the picture}

myData := MyDocRecHnd(GetWRefCon(window));

myData^^.pictNum := myData^^.pictNum +1 ;

myData^^.pictDestRect[myData^^.pictNum] :=

 destRect;

IF myData^^.windowPicHndl[myData^^.pictNum] = NIL

THEN

myData^^.windowPicHndl[myData^^.pictNum] :=

PicHandle(NewHandle(Size(sizeOfPictData)));

myData^^.windowPicHndl[myData^^.pictNum] :=

PicHandle(h Dest) ;

myErr := HandToHand(Handle

(myData^^.windowPicHndl[myData^^.pictNum]));

HUnlo ck(hDest);

Dispos eHandle(hDest);

END; {of sizeOfPictData > 0}

END; {of " if no 'TEXT' data, check for 'PICT' " }

END; {of " if no 'surf' data, check for 'TEXT' " }

END {of " if windowType = kMyDocWindow " }

ELSE {window is not a document window}

BEGIN

IF windowType <> kNil THEN

BEGIN {handle Paste command in dialog box, }

{ DialogPaste checks whether the dialog box has any }

{ editText items and if so, uses TEPaste to paste }

{ any text from the scrap to the currently selected }

{ editText item, if any}

DialogPaste(window);

END;

END;

END;

CHAPTER 2

Scrap Manager

2-24 Using the Scrap Manager

If your application uses TextEdit in its document windows, then use the TextEdit routine
TEPaste instead of GetScrap to read the data to paste. See Listing 2-9 on page 2-30 for
an application-defined routine that uses TextEdit to help handle the application’s Paste
command.

If your application uses a private scrap, then read the data from your private scrap
rather than from the scrap (unless the scrap contains the more recent data). Listing 2-5
shows SurfPaint’s application-defined routine that handles the Paste command by
reading the desired data from its private scrap.

Listing 2-5 Handling the Paste command using a private scrap

PROCEDURE DoPasteCmd;

VAR

window: WindowPtr;

windowType: Integer;

dataToPaste: Ptr;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

IF gNewScrap THEN {if new data in scrap, }

BEGIN { copy to private scrap}

MyConvertScrap(kClipboardToPrivate);

gNewScrap := FALSE;

END;

{get the data to paste from app's private scrap}

dataToPaste := NewPtr (kDefaultSize) ;

MyReadDataFromPrivateScrap(dataToPaste);

MyPasteData(dataToPaste);

Dispos ePtr(dataToPaste);

END

ELSE

IF windowType <> kNil THEN

BEGIN {window is a dialog box}

DialogPaste(window);

END;

END;

The SurfPaint application uses a private scrap, and when it receives a resume event, it
determines whether the contents of the scrap have changed. If so, SurfPaint sets an
application-defined global variable, gScrapNewData , but does not immediately read in
the contents of the scrap. Instead, whenever the user chooses the Paste command,
SurfPaint checks the value of this global variable. If gScrapNewData is TRUE SurfPaint

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-25

reads the new data from the scrap to its private scrap, resets the gScrapNewData global
variable to FALSE, and then performs the paste operation. SurfPaint also resets the value
of the gScrapNewData global variable to FALSE whenever the user chooses the Cut or
Copy command. By using this method, SurfPaint reads in new data from the scrap only
when necessary and avoids reading in data that the user might not use. This method also
decreases the time it takes for the application to return to the foreground, as the
application avoids or delays any lengthy translation of data from the scrap.

Handling Resume Events

As previously described, when your application receives a resume event (and your
application uses a private scrap), your application should determine whether the
contents of the scrap have changed since the previous suspend event. If the contents of
the scrap have changed, your application must be sure to use the new data in the scrap
for the user’s next Paste command (unless the user chooses Cut or Copy before choosing
Paste).

In addition, if your application supports the Show Clipboard command and the
Clipboard window was showing at the time of the previous suspend event, your
application should update its Clipboard window to show the new contents of the scrap.

Listing 2-6 shows SurfPaint’s procedure for handling resume events (and suspend
events).

Listing 2-6 Handling resume events

PROCEDURE DoSuspendResumeEvent (event: EventRecord);

VAR

currentFrontWindow: WindowPtr;

BEGIN

currentFrontWindow := FrontWindow;

IF (BAnd(event.message, resumeFlag) <> 0) THEN

BEGIN {it's a resume event}

IF (BAnd(event.message, convertClipboardFlag) <> 0) THEN

BEGIN

{set flag to indicate there's new data in the scrap}

gNewScrap := TRUE;

END;

gInBackground := FALSE; {app no longer in background}

{activate front window}

DoActivate(currentFrontWindow, NOT gInBackground, event);

{show Clipboard window if it was showing at last suspend }

{ event and update its contents to match scrap}

MyShowClipboardWindow(gNewScrap);

MyShowFloatingWindows; {show any floating windows}

END

CHAPTER 2

Scrap Manager

2-26 Using the Scrap Manager

ELSE

BEGIN {it's a suspend event , }

{ handle as shown in Listing 2-3 }

END;

END;

Listing 2-6 shows a procedure that responds to suspend and resume events. The
DoSuspendResumeEvent procedure first gets a pointer to the front window using the
Window Manager function FrontWindow . It then examines bit 0 of the message field of
the event record to determine whether the event is a suspend or resume event. If the
event is a resume event, the code examines bit 1 of the message field of the event record
to determine whether it needs to read in the contents of the scrap. If so, the code sets an
application-defined global variable, gNewScrap , to indicate that new data exists in the
scrap. When the user next chooses the Paste command, SurfPaint checks the value of the
gNewScrap global variable and, if it’s TRUE, reads the data from the scrap to its private
scrap and then performs the paste operation. If the user chooses the Cut or Copy
command before choosing Paste, then SurfPaint resets the gNewScrap global variable to
FALSE to indicate that its private scrap contains the most recent data for the Paste
command. This technique allows SurfPaint to delay or avoid any lengthy translation of
data from the scrap to its private scrap and decreases the time it takes for SurfPaint to
return to the foreground.

The DoSuspendResumeEvent procedure then sets a private global flag,
gInBackground , to FALSE, to indicate that the application is not in the background. It
then calls another application-defined routine, DoActivate , to activate the application’s
front window. It also calls the application-defined routine MyShowClipboardWindow
to show the Clipboard window and update its contents if it was showing at the time of
the previous suspend event.

Converting Data Between a Private Scrap and the Scrap
If you use a private scrap, you need to copy the data from your private scrap to the scrap
upon receiving a suspend event. Upon receiving a resume event, you need to determine
whether the contents of the scrap have changed since the previous suspend event. If so,
your application must be sure to use the new data in the scrap for the user’s next Paste
command (unless the user chooses Cut or Copy before choosing Paste). In addition, your
application needs to update the contents of its Clipboard window, if necessary.

Listing 2-7 shows the application-defined procedure MyConvertScrap . This procedure
is called either indirectly as a result of a resume event (indicated by the
kClipboardToPrivate , constant) or directly as a result of a suspend event (indicated
by the kPrivateToClipboard constant). If the whichWay parameter contains
kClipboardToPrivate , then the contents of the scrap have changed. In this
case, MyConvertScrap uses GetScrap to read the contents of the scrap. The
MyConvertScrap procedure checks the scrap for 'PICT' data first, and then for
'TEXT' data if the scrap doesn’t contain any data in 'PICT' format. MyConvertScrap
then copies this data to its private scrap.

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-27

If the MyConvertScrap procedure is called as a result of a suspend event, the
procedure copies the data from its private scrap to the scrap. It writes the data to the
scrap in its own private format, in 'PICT' format, and, if appropriate, in 'TEXT' format.

Listing 2-7 Converting data between the scrap and a private scrap

PROCEDURE MyConvertScrap (whichWay: Integer);

VAR

sizeOfTextData: LongInt;

sizeOfPictData: LongInt;

offset: LongInt;

hDest: Handle;

ptrToScrapData: Ptr;

length: LongInt;

myLongErr : LongI nt;

BEGIN

IF whichWay = kClipboardToPrivate THEN

BEGIN {copy scrap to private scrap}

sizeOfPictData := GetScrap (NIL, 'PICT', offset);

IF sizeOfPictData > 0 THEN

BEGIN

{get handle to hold data from scrap, GetScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory reference d by h Dest handle}

sizeOfPictData := GetScrap(hDest, 'PICT', offset);

MyCopyToPrivateScrap(hDest);

HUnlo ck(hDest);

Dispos eHandle(hDest);

END

ELSE {if no 'PICT' data on scrap, check for 'TEXT'}

BEGIN

sizeOfTextData := GetScrap(NIL, 'TEXT', offset);

IF sizeOfTextData > 0 THEN

BEGIN

{allocate handle to hold scrap dat a--G etScrap }

hDest := NewHandle(0); { automatically resizes it}

HLock(hDest);

{put data into memory reference d by h Dest handle}

sizeOfTextData := GetScrap(hDest, 'TEXT', offset);

{copy data to private scrap}

MyCopyToPrivateScrap(hDest);

HUnlo ck(hDest);

CHAPTER 2

Scrap Manager

2-28 Using the Scrap Manager

Dispos eHandle(hDest);

END

END;

END

ELSE

 BEGIN {copy private scrap into scrap}

IF MyGetPrivateScrapSize > 0 THEN {if private scrap }

myLongErr := ZeroScrap; { not empty, clear the scrap}

ptrToScrapData := NewPtr(kDefaultSize);

{retrieve data from private scrap in private format}

IF (MyGetScrap('SURF' , ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'SURF' , ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

{retrieve data from private scrap in 'PICT' format}

IF (MyGetScrap('PICT', ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'PICT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

{retrieve data from private scrap in 'TEXT' format}

IF (MyGetScrap('TEXT', ptrToScrapData, length) > 0) THEN

BEGIN {copy data to the scrap}

myLongErr := PutScrap(length, 'TEXT', ptrToScrapData);

IF myLongErr <> noErr THEN DoError(myLongErr);

END;

Dispos ePtr(ptrToScrapData);

END;

END;

Converting Data Between the TextEdit Scrap and the Scrap
If your application uses TextEdit to handle text in its document windows, then use
TextEdit routines instead of Scrap Manager routines to implement editing commands.
For example, use the TextEdit procedures TECut , TECopy, and TEPaste to implement
the Cut, Copy, and Paste commands. Upon receiving a suspend event, use TEToScrap
instead of PutScrap to write the data to the scrap (always call ZeroScrap before
calling TEToScrap). Upon receiving a resume event, use TEFromScrap instead of
GetScrap to read data from the scrap. TextEdit uses a private scrap and handles
copying data between its private scrap and the scrap. See Inside Macintosh: Text for
complete information on TextEdit.

CHAPTER 2

Scrap Manager

Using the Scrap Manager 2-29

To implement the Cut (or Copy) commands, use the TextEdit routines TECut (or
TECopy) instead of ZeroScrap and PutScrap . The TextEdit procedures TECut
and TECopy copy the data in the current selection to TextEdit’s private scrap. For
example, Listing 2-8 shows an application-defined routine that uses TextEdit to
help handle the application’s Cut command (assuming the application uses TextEdit to
handle text editing in its document windows).

Listing 2-8 Using TextEdit to handle the Cut command

PROCEDURE DoCutOrCopyCmd (cut: Boolean);

VAR

window: WindowPtr;

windowType: Integer;

myData: MyDocRecHnd;

teHand: TEHandle ;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

teHand := myData^^.editRec;

IF cut THEN

TECut(teHand)

ELSE

TECopy(teHand);

END

ELSE

I F w indowType <> kNI L T HEN

BEGIN {window is a dialog box}

IF cut THEN

DialogCut(window)

ELSE

DialogCopy(window);

END;

END;

CHAPTER 2

Scrap Manager

2-30 Using the Scrap Manager

Use the TextEdit routine TEPaste instead of GetScrap to read the data to paste. The
TEPaste procedure reads the data to paste from TextEdit’s private scrap. Listing 2-9
shows an application-defined routine that uses TextEdit to help handle the application’s
Paste command (assuming the application uses TextEdit to handle text editing in its
document windows).

Listing 2-9 Using TextEdit to handle the Paste command

PROCEDURE DoPasteCmd;

VAR

window: WindowPtr;

windowType: Integer;

myData: MyDocRecHnd;

teHand: TEHandle ;

BEGIN

window := FrontWindow;

windowType := MyGetWindowType(window);

IF windowType = kMyDocWindow THEN

BEGIN

myData := MyDocRecHnd(GetWRefCon(window));

teHand := myData^^.editRec;

TEPaste(teHand);

END

ELSE

I F w indowType <> kNI L T HEN

BEGIN {window is a dialog box }

DialogPaste(window);

END;

END;

Upon receiving a suspend event, use ZeroScrap and then the TextEdit procedure
TEToScrap to copy data from TextEdit’s private scrap to the scrap. Upon receiving a
resume event, use the TextEdit procedure TEFromScrap to copy data from the scrap to
TextEdit’s private scrap. As with any other private scrap and as explained in “Handling
Resume Events” on page 2-25, either you can choose to immediately copy the data from
the scrap to TextEdit’s private scrap or you can delay performing the copy until the data
is needed. See Listing 2-5 on page 2-24 and Listing 2-6 on page 2-25 for code that uses
this approach.

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-31

Handling Editing Operations in Dialog Boxes
You can use the Dialog Manager to handle most editing operations in dialog boxes. In
general, use the procedures DialogCut , DialogCopy , and DialogPaste to support
the Cut, Copy, and Paste commands in editable text items in your dialog boxes. As
shown in Listing 2-2 on page 2-18 and Listing 2-5 on page 2-24, when the user chooses
the Cut, Copy, or Paste command, the application-defined routine uses Dialog Manager
routines to perform the editing operation.

The Dialog Manager uses TextEdit to perform the editing operation. TextEdit copies data
between its private scrap and the editable text item in the dialog box. TextEdit uses a
private scrap, which allows the user to copy and paste data between dialog boxes.
However, your application must make sure the user can copy and paste data between
your application’s dialog boxes and its document windows. That is, when the user
selects text in a document window and chooses Copy, then activates a dialog box and
chooses Paste, the data previously copied from the document window should appear in
the active editable text item. Your application is responsible for maintaining consistency
between the scrap (or your application’s private scrap) and TextEdit’s private scrap.

If your application uses TextEdit for all text editing in its document windows, then you
can easily allow the user to copy and paste between your application’s document
windows and its dialog boxes, as your application uses TECut , TECopy, and TEPaste
for its document windows and DialogCut , DialogCopy , and DialogPaste (which in
turn use TextEdit routines) for its dialog boxes. These routines all use TextEdit’s private
scrap, which maintains consistency of data between editing operations.

If your application does not use TextEdit for text handling in your document windows
and uses a private scrap, then when the user activates a dialog box you should copy any
text data in your private scrap to TextEdit’s private scrap. When a document window
becomes active, if there’s data in TextEdit’s private scrap, you should copy the data to
your private scrap (or the scrap if your application doesn’t use a private scrap).

Similarly, before displaying the Standard File Package’s save dialog box, your
application should copy any text data in its private scrap to the scrap. The Standard File
Package reads the data from the scrap when the user chooses an editing operation and a
standard file dialog box is active. So your application needs to put the text data (if any)
from the last Cut or Copy command in the scrap before calling StandardPutFile .

Scrap Manager Reference

This section describes the data structures and routines that are specific to the Scrap
Manager. The “Data Structures” section describes the scrap information record and scrap
format types. The “Routines” section describes the routines that your application can use
to read and write data to the scrap and to get information about data in the scrap.

CHAPTER 2

Scrap Manager

2-32 Scrap Manager Reference

Data Structures
This section describes the scrap information record and the standard scrap format types.

The Scrap Information Record

The Scrap Manager returns information about the scrap in a scrap information record.
The scrap information record is defined by the ScrapStuff data type.

TYPE

ScrapStuff = {scrap information record}

RECORD

scrapSize: LongInt; {size (in bytes) of scrap}

scrapHandle: Handle; {handle to scrap}

scrapCount: Integer; {indicates whether the contents }

{ of the scrap have changed}

scrapState: Integer; {indicates state and location }

{ of scrap}

scrapName: StringPtr; {fil ename of the scrap}

END;

PScrapStuff = ^ScrapStuff; {pointer to scrap info record}

Field descriptions

scrapSize The size of the scrap in bytes.
scrapHandle A handle to the scrap if it’s in memory; otherwise, this field is NIL .
scrapCount A number that changes each time your application (or another

application) calls the ZeroScrap function. When your application
receives a suspend event, it should copy any data from its private
scrap to the scrap and it can save the value of the scrapCount
field. Upon receiving a resume event, your application can use the
InfoScrap function to examine the current value of the
scrapCount field. If the value in the scrapCount field is different
from the previous value, the contents of the scrap have changed and
your application should copy the data from the scrap to its private
scrap.
Alternatively, rather than saving and examining the value of the
scrapCount field, your application can check the
convertClipboardFlag bit of the event record for a resume
event. If this bit is set, the contents of the scrap have changed and
your application should take the appropriate actions.

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-33

scrapState The location and state of the scrap. This field is positive if the scrap
data is in memory, 0 if the scrap data is on the disk, or negative if
the scrap hasn’t been initialized.

Note

In unusual circumstances the value of scrapState might be 0
when the scrap is actually in memory. This can occur if the user
deletes the scrap file on disk and then performs a cut or copy
operation. ◆

scrapName The filename of the scrap when the scrap is stored on disk. Usually
the scrap file is named “Clipboard”. The scrap file is always stored
on the startup volume.

The Scrap Format Types

Data in the scrap is defined by a scrap format type, a four-character sequence that
defines the type of data.

TYPE ResType = PACKED ARRAY[1..4] OF Char;

The standard scrap format types are

■ 'TEXT' : a series of ASCII characters

■ 'PICT' : a QuickDraw picture, which is a saved sequence of QuickDraw commands
that can be displayed using the DrawPicture procedure

Optional scrap format types include

■ 'sty l' : a series of bytes that have the same format as a TextEdit 'styl' resource
and that describe styled text data

■ 'snd ' : a series of bytes that have the same format as an 'snd ' resource and that
define a sound

■ 'movv' : a series of bytes that have the same format as an ' movv' resource and that
define a movie

Your application should support the 'TEXT' and 'PICT' scrap format types and
should optionally support any other scrap format types (such as 'snd ') that are
appropriate to your application.

In general, when your application writes data to the scrap, the Scrap Manager appends
the data to the scrap in this format:

Number
of bytes Contents

4 Scrap format type

4 Length of following data in bytes

n Data; n must be even

CHAPTER 2

Scrap Manager

2-34 Scrap Manager Reference

Routines
This section describes the routines you use to

■ get information about the scrap

■ write data to the scrap

■ read data from the scrap

■ store the scrap in memory onto disk

■ read the scrap from disk into memory

Getting Information About the Scrap

You can get information about the scrap using the InfoScrap function.

InfoScrap

You can use the InfoScrap function to get information about the scrap.

FUNCTION InfoScrap: PScrapStuff;

DESCRIPTION

The InfoScrap function returns a pointer to a scrap information record. The
information in the scrap information record provides

■ the size (in bytes) of the scrap

■ a handle to the scrap if it’s in memory

■ a count, or number, that your application can use to determine whether the contents
of the scrap have changed

■ the location of the scrap (whether in memory or on disk)

■ the filename of the scrap when it is on the disk

ASSEMBLY-LANGUAGE INFORMATION

You can also access the same information as that stored in the scrap information record
using system global variables that have the same names as the fields of the scrap
information record.

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-35

SEE ALSO

See “Getting Information About the Scrap” on page 2-15 for an example that uses the
InfoScrap function to get information about the scrap. See page 2-32 for information
on the fields of the scrap information record.

Writing Information to the Scrap

To write information to the scrap, first use the ZeroScrap function to clear the contents
of the scrap, and then use the PutScrap function to write data in a specific format to the
scrap. You can use the PutScrap function multiple times to place data in more than one
format in the scrap.

ZeroScrap

You use the ZeroScrap function to clear the contents of the scrap before writing data to
the scrap.

FUNCTION ZeroScrap : LongInt;

DESCRIPTION

If the scrap already exists (in memory or on the disk), the ZeroScrap function clears its
contents; otherwise, ZeroScrap initializes the scrap in memory. Whenever your
application needs to write data to the scrap as a result of a cut or copy operation by the
user, you should call ZeroScrap before calling PutScrap . Whenever your application
needs to write data in one or more formats to the scrap, you should call ZeroScrap
before the first time you call PutScrap .

If your application uses TEToScrap to write TextEdit’s scrap to the scrap, your
application should call ZeroScrap to clear the contents of the scrap first. However, note
that your application does not have to call ZeroScrap before calling TECut or TECopy.

The ZeroScrap function returns a long integer with the value noErr if ZeroScrap
successfully clears the contents of or initializes the scrap. Otherwise, the ZeroScrap
function returns a nonzero value, whose value corresponds to a result code.

SPECIAL CONSIDERATIONS

Your application should not call the ZeroScrap function at interrupt time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
memFullErr –108 Not enough memory in heap zone

CHAPTER 2

Scrap Manager

2-36 Scrap Manager Reference

PutScrap

You can use the PutScrap function to write data in a specific format to the scrap.

FUNCTION PutScrap (length: LongInt; theType: ResType; source: Ptr)

: LongInt;

length The number of bytes of data to write to the scrap.

theType The scrap format type of the data to be written to the scrap. The scrap
format type is a four-character sequence that refers to the particular
data format, such as 'TEXT' , 'PICT' , 'styl' , 'snd ' , or 'movv' .

source A pointer to the data that the PutScrap function should write to the
scrap.

DESCRIPTION

The PutScrap function writes the specified number of bytes of data from the memory
location pointed to by the source parameter to the scrap. The Scrap Manager writes the
data to the current location of the scrap (your application’s heap or disk).

Whenever your application needs to write data to the scrap as a result of a cut or copy
operation, your application uses the PutScrap function to write a representation of the
data to the scrap. If your application uses a private scrap, it should copy data from its
private scrap to the scrap using the PutScrap function whenever it receives a suspend
event. Your application can use the PutScrap function multiple times to write different
formats of the same data to the scrap.

IMPORTANT

Whenever your application needs to write data in one or more formats
to the scrap, you should call ZeroScrap before the first time you call
PutScrap . ▲

If your application writes multiple formats to the scrap, you should write
your application’s preferred scrap format type first. For example, if the SurfWriter
application’s preferred scrap format type is a private scrap format type called 'SURF'
and SurfWriter also supports the scrap format types 'TEXT' and 'PICT' , then
SurfWriter should write the data to the scrap using the 'SURF' scrap format type first,
and then write any other scrap format types that it supports in subsequent order of
preference.

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-37

▲ WARNING

Do not write data to the scrap that has the same scrap format type as
any data already in the scrap. If you do so, the new data is appended to
the scrap. Note that when you request data from the scrap using the
GetScrap function, GetScrap returns the first data that it finds with
the requested scrap format type; thus you cannot retrieve any appended
data of the same format type using GetScrap . ▲

If your application uses TextEdit to handle text in its documents, use TextEdit routines to
implement cut and copy operations and to write the TextEdit scrap to the scrap. If your
application uses the Dialog Manager to handle editable text in your application’s dialog
boxes and a dialog box is the frontmost window, use the Dialog Manager procedure
DialogCut or DialogCopy to copy the data from the current editable text item to the
scrap.

If the scrap does not already exist (in memory or on the disk), the PutScrap function
returns a long integer with the value noScrapErr . The PutScrap function returns
other nonzero values corresponding to result codes if an error occurs.

SPECIAL CONSIDERATIONS

The PutScrap function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

See Listing 2-1 on page 2-16, Listing 2-2 on page 2-18, and Listing 2-7 on page 2-27 for
examples that write data to the scrap. If your application uses a private scrap, see
“Handling Editing Operations in Dialog Boxes” on page 2-31 for information on
maintaining consistency of the scrap when copying and pasting data between document
windows and dialog boxes. See Inside Macintosh: Text for information on TextEdit. See
Inside Macintosh: Imaging With QuickDraw for information on the QuickDraw 'PICT'
format.

noErr 0 No error
noScrapErr –100 Scrap does not exist (not initialized)

CHAPTER 2

Scrap Manager

2-38 Scrap Manager Reference

Reading Information From the Scrap

To read information from the scrap, use the GetScrap function.

GetScrap

You can use the GetScrap function to read data of a specific format from the scrap.

FUNCTION GetScrap (hDest: Handle; theType: ResType;

 VAR offset: LongInt): LongInt;

hDest A handle to the memory location where the GetScrap function should
place the data from the scrap. If you specify NIL in this parameter, the
GetScrap function does not read in the data but does return the offset of
the data in the scrap and the number of bytes of the requested scrap data
type if the requested type exists in the scrap.

theType The scrap format type of the data to be read from the scrap.

offset The GetScrap function returns in this parameter the location of the data
in the scrap. This value is expressed as an offset (in bytes) from the
beginning of the scrap. If the Translation Manager is available, the value
of the offset parameter is undefined.

DESCRIPTION

The GetScrap function looks in the scrap for any data of the requested scrap format
type and returns the first data of the requested type that it finds. The GetScrap function
writes the data to the memory location specified by the hDest parameter.

The GetScrap function reads the data from the scrap, makes a copy of it in memory,
and sets the handle specified by the hDest parameter to refer to this copy. The
GetScrap function resizes the handle specified by the hDest parameter if necessary.

Your application can use the GetScrap function multiple times to read different formats
of the same data from the scrap. If more than one format of the same scrap format type
exists in the scrap, the GetScrap function returns the first occurrence of that format
type that it finds. For example, if data of type 'TEXT' , 'PICT' , and 'TEXT' exist on the
scrap, and your application requests the data in the scrap with scrap format type
'TEXT' , the GetScrap function returns the first data of type 'TEXT' that it finds.

If your application supports more than one scrap format type, your application should
attempt to read its preferred scrap format type first. If your application doesn’t prefer
one scrap format type over any other type, it should try reading each of the scrap format
types that it supports and use the type that returns the lowest offset. The scrap
format type with the lowest offset indicates that this format type was written before any
of the others and therefore was preferred by the application that wrote it.

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-39

Note
The returned value for the offset parameter is valid only if the
Translation Manager isn’t available; if the Translation Manager is
available, then your application should not rely on the offset value. ◆

If you request a scrap format type that isn’t in the scrap and the Translation Manager is
available, the Scrap Manager uses the Translation Manager to convert the data of a scrap
format type that does exist in the scrap into the scrap format type requested by your
application. For example, if the SurfWriter application requests data from the scrap in
the 'SURF' scrap format type, and the data in the scrap is available in the format types
'TEXT' , 'PICT' , and 'SDBS' (SurfDB’s private scrap format type), the Scrap Manager
uses the Translation Manager to convert any one of the scrap format types 'TEXT' ,
'PICT' , or'SDBS' into the 'SURF' scrap format type. The Translation Manager looks
for a translator that can perform one of these translations. If such a translator is available
(for example, a translator that can translate the 'SDBS' scrap format type into the
'SURF' scrap format type), the Translation Manager uses the translator to translate the
data in the scrap into the requested scrap format type. If the translation is successful, the
Scrap Manager returns to your application the data from the scrap in the requested scrap
format type.

If your application uses TextEdit to handle text in its documents, use TextEdit routines to
implement the paste operation and to copy data from the scrap to the TextEdit scrap. If
your application uses the Dialog Manager to handle editable text items in your
application’s dialog boxes and a dialog box is the frontmost window, use the Dialog
Manager procedure DialogPaste to copy data from the scrap to the current editable
text item.

If the GetScrap function successfully reads the data of the requested scrap format type
from the scrap, GetScrap returns as its function result the length (in bytes) of the data.
Otherwise, GetScrap returns a negative function result that indicates the error. If
GetScrap returns the constant noTypeErr , then the data in the scrap isn’t available in
the scrap format type requested by your application. If the Translation Manager is
available and GetScrap returns the constant noTypeErr , this value also indicates that
the Translation Manager could not find any translators to convert the data into the scrap
format type requested by your application.

CONSTnoTypeErr = -102; {no data of the requested scrap format type}

SPECIAL CONSIDERATIONS

The GetScrap function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

CHAPTER 2

Scrap Manager

2-40 Scrap Manager Reference

SEE ALSO

See Listing 2-4 on page 2-21, Listing 2-5 on page 2-24, and Listing 2-7 on page 2-27 for
examples that read data from the scrap. If your application uses a private scrap, see
“Handling Editing Operations in Dialog Boxes” on page 2-31 for information on
maintaining consistency of the scrap when copying and pasting data between document
windows and dialog boxes. See Inside Macintosh: Text for information on TextEdit. See
Inside Macintosh: Imaging With QuickDraw for information on the QuickDraw 'PICT'
format.

Transferring Data Between the Scrap in Memory and the Scrap on Disk

When system software launches your application, it initially allocates space in your
application’s heap for the scrap. To write the scrap from memory to the scrap file, use the
UnloadScrap function. To read data from a scrap file into memory, use the LoadScrap
function.

UnloadScrap

You can use the UnloadScrap function to write the scrap from memory to the scrap file.

FUNCTION UnloadScrap: LongInt;

DESCRIPTION

The UnloadScrap function writes the scrap in memory to the scrap file and releases the
memory occupied by the scrap in your application’s heap. The scrap file is located in the
System Folder of the startup volume and has the filename as indicated by the
scrapName field of the scrap information record (usually “Clipboard”). If the scrap is
already on the disk, the UnloadScrap function does nothing.

UnloadScrap returns as its function result a long integer corresponding to a result code.

SPECIAL CONSIDERATIONS

The UnloadScrap function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error

CHAPTER 2

Scrap Manager

Scrap Manager Reference 2-41

LoadScrap

You can use the LoadScrap function to read the scrap from the scrap file into memory.

FUNCTION LoadScrap: LongInt;

DESCRIPTION

The LoadScrap function allocates memory in your application’s heap to hold the scrap
and then reads the scrap from the scrap file into memory. The scrap file is located in the
System Folder of the startup volume and has the filename (usually “Clipboard”) as
indicated by the scrapName field of the scrap information record. If the scrap is already
in memory, LoadScrap does nothing.

LoadScra p returns as its function result a long integer corresponding to a result code.

SPECIAL CONSIDERATIONS

The LoadScrap function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
ioErr –36 I/O error
memFullErr –108 Not enough memory in heap zone

CHAPTER 2

Scrap Manager

2-42 Summary of the Scrap Manager

Summary of the Scrap Manager

Pascal Summary

Constants

gestaltScrapMgrAttr = 'scra'; {Gestalt selector for }

{ Scrap Mgr attributes}

gestaltScrapMgrTranslationAware = 0; {c heck this bit in the }

{ response parameter to see }

{ whether Scrap Mgr supports }

{ Translation Mgr}

Data Types

TYPE

ScrapStuff = {scrap information record}

RECORD

scrapSize: LongInt; {size (in bytes) of scrap}

scrapHandle: Handle; {handle to scrap}

scrapCount: Integer; {indicates whether the contents }

{ of the scrap have changed}

scrapState: Integer; {indicates state and location }

{ of scrap}

scrapName: StringPtr; {fil ename of the scrap}

END;

PScrapStuff = ^ScrapStuff; {pointer to a scrap information record}

Routines

Getting Information About the Scrap

FUNCTION InfoScra p : PScrapStuff;

CHAPTER 2

Scrap Manager

Summary of the Scrap Manager 2-43

Writing Information to the Scrap

FUNCTION ZeroScrap : LongInt;

FUNCTION PutScrap (length: LongInt; theType: ResType; source: Ptr)
: LongInt;

Reading Information From the Scrap

FUNCTION GetScrap (hDest: Handle; theType: ResType;
VAR offset: LongInt): LongInt;

Transferring Data Between the Scrap in Memory and the Scrap on Disk

FUNCTION UnloadScrap : LongInt;

FUNCTION LoadScrap : LongInt;

C Summary

enum {

#define gestaltScrapMgrAttr 'scra' /*Gestalt selector for */

/* Scrap Mgr attributes*/

gestaltScrapMgrTranslationAware = 0 /*check this bit in the */

/* response parameter to see */

/* whether Scrap Mgr supports */

/* Translation Mgr*/

};

Data Types

struct ScrapStuff { /*scrap information record*/

long scrapSize; /*size (in bytes) of scrap*/

Handle scrapHandle; /*handle to scrap* /

short scrapCount; /*indicates whether the contents */

/* of the scrap have changed* /

short scrapState; /*indicates state and location */

/* of scrap*/

StringPtr scrapName; /*fil ename of the scrap*/

};

typedef struct ScrapStuff ScrapStuff;

typedef ScrapStuff *PScrapStuff;

CHAPTER 2

Scrap Manager

2-44 Summary of the Scrap Manager

Routines

Getting Information About the Scrap

pascal PScrapStuff InfoScra p
(void);

Writing Information to the Scrap

pascal long ZeroScrap (void);

pascal long PutScrap (long length, ResType theType, Ptr source);

Reading Information From the Scrap

pascal long GetScrap (Handle hDest, ResType theType, l ong *offset);

Transferring Data Between the Scrap in Memory and the Scrap on Disk

pascal long UnloadScrap (void);

pascal long LoadScrap (void);

CHAPTER 2

Scrap Manager

Summary of the Scrap Manager 2-45

Assembly-Language Summary

Data Structures

Scrap Information Data Structure

Result Codes

0 ScrapSize long size (in bytes) of the scrap
4 ScrapHandle long handle to scrap
8 ScrapCount 2 bytes indicates whether the contents of the scrap have changed

10 ScrapState 2 bytes indicates state and location of scrap
12 ScrapName long pointer to the filename of the scrap

noErr 0 No error
dskFulErr –34 Disk full
ioErr –36 I/O error
noScrapErr –100 Scrap does not exist (not initialized)
noTypeErr –102 No data of the requested scrap format type in scrap
memFullErr –108 Not enough memory in heap zone

