
Contents 1-1

CHAPTER 1

Contents

Resource Manager

Introduction to Resources 1-3
The Data Fork and the Resource Fork 1-4
Resource Types and Resource IDs 1-6
The Resource Map 1-8
Search Path for Resources 1-10

About the Resource Manager 1-12
Using the Resource Manager 1-13

Creating a Resource 1-15
Getting a Resource 1-18
Releasing and Detaching Resources 1-22
Opening a Resource Fork 1-24

Opening an Application’s Resource Fork 1-24
Creating and Opening a Resource Fork 1-25
Specifying the Current Resource File 1-28

Reading and Manipulating Resources 1-30
Writing Resources 1-36
Working With Partial Resources 1-40

Resource Manager Reference 1-42
Data Structure, Resource Types, and Resource IDs 1-42

The Resource Type 1-42
Resource IDs 1-46
Resource IDs of Owned Resources 1-47
Resource Names 1-49

Resource Manager Routines 1-49
Initializing the Resource Manager 1-50
Checking for Errors 1-51
Creating an Empty Resource Fork 1-53
Opening Resource Forks 1-58
Getting and Setting the Current Resource File 1-68
Reading Resources Into Memory 1-71

CHAPTER 1

1-2 Contents

Getting and Setting Resource Information 1-81
Modifying Resources 1-87
Writing to Resource Forks 1-92
Getting a Unique Resource ID 1-95
Counting and Listing Resource Types 1-97
Getting Resource Sizes 1-104
Disposing of Resources 1-106
Closing Resource Forks 1-110
Reading and Writing Partial Resources 1-111
Getting and Setting Resource Fork Attributes 1-116
Accessing Resource Entries in a Resource Map 1-119

Resource File Format 1-121
Resources in the System File 1-126

User Information Resources 1-127
Packages 1-128
Function Key Resources 1-129
Standard Icons 1-129

ROM Resources 1-134
Inserting the ROM Resource Map 1-134
Overriding ROM Resources 1-135

Summary of the Resource Manager 1-137
Pascal Summary 1-137

Constants 1-137
Data Type 1-139
Routines 1-139

C Summary 1-142
Constants 1-142
Data Type 1-143
Routines 1-144

Assembly-Language Summary 1-147
Trap Macros 1-147
Global Variables 1-147

Result Codes 1-148

CHAPTER 1

Introduction to Resources 1-3

Resource Manager

This chapter describes how to use the Resource Manager to read and write resources.
You typically use resources to store the descriptions for user interface elements such as
menus, windows, controls, dialog boxes, and icons. In addition, your application can
store variable settings, such as the location of a window at the time the user closes the
window, in a resource. When the user opens the document again, your application can
read the information in the resource and restore the window to its previous location.

This chapter begins with an introduction to basic concepts you should understand before
you begin to use Resource Manager routines. The rest of the chapter describes how to

■ create resources

■ get a handle to a resource

■ release and detach resources

■ create and open a resource fork

■ set the current resource file

■ read and manipulate resources

■ write resources

■ read and write partial resources

To use this chapter, you should be familiar with basic memory management on
Macintosh computers and the Memory Manager. See the chapter “Introduction to
Memory Management” in Inside Macintosh: Memory for details. You should also be
familiar with the File Manager and the Standard File Package. See Inside Macintosh: Files
for this information.

For information on how to create resources using a high-level resource editor like the
ResEdit application or a resource compiler like Rez, see ResEdit Reference and
Macintosh Programmer’s Workshop Reference. (Rez is provided with Apple’s Macintosh
Programmer’s Workshop [MPW]; both MPW and ResEdit are available through APDA.)

To get information on the format of an individual resource type, see the documentation
for the manager that interprets that resource. For example, to get the format of a ' MENU'
resource, refer to the chapter “Menu Manager” in Inside Macintosh: Macintosh Toolbox
Essentials.

Introduction to Resources

A resource is data of any kind stored in a defined format in a file’s resource fork. The
Resource Manager keeps track of resources in memory and allows your application to
read or write resources.

Resources are a basic element of every Macintosh application. Resources typically
include data that describes menus, windows, controls, dialog boxes, sounds, fonts, and
icons. Because such resources are separate from the application’s code, you can easily
create and manage resources for menu titles, dialog boxes, and other parts of your

CHAPTER 1

Resource Manager

1-4 Introduction to Resources

application without recompiling. Resources also simplify the process of translating
interface elements containing text into other languages.

Applications and system software interpret the data for a resource according to its
resource type. You usually create resources using a resource compiler or resource editor.
This book shows resources in Rez format (Rez is a resource compiler provided with
MPW). You can also use other resource tools, such as ResEdit, to create the resources for
your application.

Inside Macintosh: Macintosh Toolbox Essentials describes how other managers, such as the
Menu Manager, Window Manager, Dialog Manager, and Control Manager, use the
Resource Manager to read resources for you. For example, you can use the Menu
Manager, Window Manager, Dialog Manager, and Control Manager to read descriptions
of your application’s menus, windows, dialog boxes, and controls from resources. These
managers all interpret a resource’s data appropriately once it is read into memory.
Although you’ll typically use these managers to read resources for you, you can also use
the Resource Manager directly to read and write resources.

The Data Fork and the Resource Fork

In Macintosh system software, a file is a named, ordered sequence of bytes stored on a
volume and divided into two forks, the data fork and the resource fork. The data fork
usually contains data created by the user; the application creating the file can store and
interpret the data in the data fork in whatever manner is appropriate. The resource fork
of a file consists of a resource header, the resources themselves, and a resource map.

Figure 1-1 shows the data fork and resource fork of a file.

Figure 1-1 The data fork and resource fork of a file

CHAPTER 1

Resource Manager

Introduction to Resources 1-5

The resource header includes offsets to the beginning of the resource data and
to the resource map. The resource map includes information about the resources in the
resource fork and offsets to the location of each resource.

A Macintosh file always contains both a resource fork and a data fork, although one or
both of those forks can be empty. The data fork of a document file typically contains data
created by the user, and the resource fork contains any document-specific resources, such
as preference settings and the document’s last window position. The resource fork of an
application file (that is, any file with the file type 'APPL') typically includes resources
that describe the application’s menus, windows, controls, dialog boxes, and icons, as
well as the application’s 'CODE' resources. The resource fork of a file is also called a
resource file, because in some respects you can treat it as if it were a separate file.

IMPORTANT

You should store all language-dependent data of your application, such
as text used in help balloons and dialog boxes, as resources. If you do
this, you can begin to localize your application by editing your
application’s resources without recompiling the application code. ▲

When your application writes data to a file, it writes to either the file’s resource fork or
its data fork. Typically, you use File Manager routines to read from and write to a file’s
data fork and Resource Manager routines to read from and write to a file’s resource fork.

Whether you store data in the data fork or the resource fork of a document file depends
largely on whether you can structure that data in a useful manner as a resource. For
example, it’s often convenient to store document-specific settings, such as the
document’s previous window size and location, as a resource in the document’s resource
fork. Data that the user is likely to edit is usually stored in the data fork of a document.

▲ WARNING

Don’t use the resource fork of a file for data that is not in resource
format. The Resource Manager assumes that any information in a
resource fork can be interpreted according to the standard resource
format described in this chapter. ▲

CHAPTER 1

Resource Manager

1-6 Introduction to Resources

Figure 1-2 illustrates the typical contents of the data forks and resource forks of an
application file and a document file.

Figure 1-2 An application’s and a document’s data fork and resource fork

A resource fork can contain at most 2727 resources. The Resource Manager uses a linear
search when searching a resource fork’s resource types and resource IDs. In general, you
should not create more than 500 resources of the same type in any one resource fork.

Resource Types and Resource IDs
You typically use resources to store structured data, such as icons and sounds, and
descriptions of menus, controls, dialog boxes, and windows. When you create a resource,
you assign it a resource type and resource ID. A resource type is a sequence of four
characters that uniquely identifies a specific type of resource, and a resource ID
identifies a specific resource of a given type by number. (You can also use a resource
name instead of a resource ID to identify a resource of a given type. However, a resource
ID is preferred because it’s generally more convenient to generate unique numbers than
unique names.)

For example, to create a description of a menu in a resource, you create a resource of
type ' MENU' and give it a resource ID or resource name that differs from any other
'MENU' resources that you have defined. In general, resource numbers 128 through
32767 are available for your use, although the numbers you can use for some types of
resources are more restricted. (See “Resource IDs” on page 1-46 for more information
about restrictions on the resource IDs used with specific resource types.)

CHAPTER 1

Resource Manager

Introduction to Resources 1-7

System software defines a number of standard resource types. Here are some examples:

You can use these resource types to define their corresponding elements (for example,
use a 'WIND' resource to define a window). You can also create your own resource types
if your application needs resources other than the standard resource types defined by the
system software. See Table 1-2 on page 1-43 for a complete list of standard resource types.

The Resource Manager does not interpret the format of an individual resource type.
When you request a resource of a particular type with a given resource ID, the Resource
Manager looks for the specified resource and, if it finds it, reads the resource into
memory and returns a handle to it.

Your application or other system software routines can use the Resource Manager to
read resources into memory. For example, when you use the Window Manager to read a
description of a window from a 'WIND' resource, the Window Manager uses the
Resource Manager to read the resource into memory. Once the resource is in memory, the
Window Manager interprets the resource’s data and creates a window with the
characteristics described by the resource.

System software stores certain resources for its own use in the System file’s resource
fork. Although many of these resources are used only by the system software, your
application can use some of them if necessary. For example, the standard images for the
I-beam and wristwatch cursors are stored as resources of type 'CURS' in the System file.
Your application can use these resources to change the appearance of the cursor.

Resource
type Descriptio n

'ALRT' Alert box

'CNTL' Control

'CODE' Application code segment

'DITL' Item list in a dialog box or alert box

'DLOG' Dialog box

'ICN#' Large (32-by-32 pixel) black-and-white icon, with mask

'ICON' Large (32-by-32 pixel) black-and-white icon, without mask

'MBAR' Menu bar

'MENU' Menu

'NFNT' Bitmapped font

'STR ' String

'STR#' String list

'WIND' Window

'movv' QuickTime movie

'snd ' Sound

CHAPTER 1

Resource Manager

1-8 Introduction to Resources

The Resource Map
The resource map in the resource fork of a file contains entries for each resource in the
resource fork. Each entry lists the resource’s resource type, resource ID, name, attributes,
and location. When the Resource Manager opens the resource fork of a file, it reads the
resource map into memory. The resource map remains in memory until the file is closed.

The entries in the resource map on disk give the locations of resources as offsets to
their locations in the resource fork. The entries in the resource map in memory specify
the location of resources using handles—a handle whose value is NIL , if the resource is
not currently in memory, or a handle to the resource’s location in memory.

Resource attributes are flags that tell the Resource Manager how to handle the resource.
For example, resource attributes specify whether the resource should be read into
memory immediately when the Resource Manager opens the resource fork or read
into memory only when needed; whether the resource should be read into the
application or system heap; and whether the resource is purgeable.

The resource attributes for a resource are described by bits in the low-order byte of an
integer value. Figure 1-3 shows which bits correspond to each resource attribute.

Figure 1-3 Resource attributes

When it first opens a resource fork, the Resource Manager examines the resource
attributes for each resource listed in the resource map. If the preloaded attribute of the
resource is set, the Resource Manager reads the resource into memory and specifies its
location by setting the resource’s resource map entry in memory to contain a handle to
the resource data. If the preloaded attribute of the resource is not set, the Resource
Manager does not read the resource into memory; instead, it specifies the resource’s
location in the resource map entry in memory with a handle whose value is NI L.

CHAPTER 1

Resource Manager

Introduction to Resources 1-9

When searching for a resource, the Resource Manager always looks in the resource map
in memory, not the resource map of the resource fork on disk. If the resource map in
memory specifies a handle for a particular resource, the Resource Manager uses the
resource in memory; if the resource map in memory specifies a handle whose value is
NIL , the Resource Manager reads the resource from the resource fork on disk into
memory.

You can set the system heap attribute of a resource if you want to read a resource into the
system heap. In most cases you should not set this attribute. If you do not set the system
heap attribute, the Resource Manager reads the resource into relocatable blocks of your
application’s heap.

The purgeable attribute specifies whether the Resource Manager can purge a resource
from memory to make room in memory for other data. If you specify that a resource is
purgeable, you need to use the Resource Manager to make sure the resource is still in
memory before referring to it through its resource handle.

Some resources must not be purgeable. For example, the Menu Manager expects menu
resources to remain in memory, so you should not set the purgeable attribute of a
menu resource. Other resources, such as windows, controls, and dialog boxes, do not
have to remain in memory once the corresponding user interface element has been
created. You should set the purgeable attribute for these kinds of resources.

You can set the locked attribute of a resource if you do not want the resource to be
relocatable or purgeable. The locked attribute overrides the purgeable attribute; when
the locked attribute is set, the resource is not purgeable, even if the purgeable attribute
is set.

Note

If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible. ◆

You can set the protected attribute of a resource to ensure that your application doesn’t
accidentally change the resource ID or name of the resource, modify its contents, or
remove the resource from its resource fork. In most cases you do not need to set this
attribute. If you do set the protected attribute of a resource, you can still use a Resource
Manager routine to change the protected attribute or to set other attributes of the
resource.

The changed attribute applies only while the resource map is in memory. You should
specify a value of 0 for the bit representing the changed attribute of a resource stored on
disk. The Resource Manager sets the changed attribute of a resource’s entry in the
resource map in memory whenever your application changes a resource using the
ChangedResource procedure, changes a resource map entry using the SetResAttrs
or SetResInfo procedure, or adds a resource using the AddResource procedure.

CHAPTER 1

Resource Manager

1-10 Introduction to Resources

Search Path for Resources
When your application uses a Resource Manager routine to read or perform an operation
on a resource, the Resource Manager follows a defined search path to find the resource.
The file whose resource fork the Resource Manager searches first is referred to as the
current resource file. Whenever your application opens a resource fork of a file, that file
becomes the current resource file. Thus, the current resource file usually corresponds to
the file whose resource fork was opened most recently. However, your application can
change the current resource file if needed by using the UseResFil e procedure.

Most of the Resource Manager routines assume that the current resource file is the file on
whose resource fork they should operate or, in the case of a search, the resource fork in
which to begin the search. If the Resource Manager can’t find the resource in the current
resource file, it continues searching until it either finds the resource or has searched all
files in the search path.

On startup, system software calls the InitResources function to initialize the
Resource Manager. The Resource Manager creates a special heap zone within the system
heap and builds a resource map that points to ROM-resident resources. It opens the
resource fork of the System file and reads its resource map into memory.

When a user opens your application, system software opens your application’s resource
fork. When your application opens a file, your application typically opens both the file’s
data fork and the file’s resource fork. When the Resource Manager searches for a
resource, it normally looks first in the resource map in memory of the last resource fork
that your application opened. So, if your application has a single file open, the
Resource Manager looks first in the resource map for that file’s resource fork. If
the Resource Manager doesn’t find the resource there, it continues to search the resource
maps of each resource fork open to your application in reverse order of opening (that is,
the most recently opened is searched first). After looking in the resource maps of the
resource files your application has opened, the Resource Manager searches your
application’s resource map. If it doesn’t find the resource there, it searches the System
file’s resource map.

This default search order allows your application to use resources defined in the System
file, to override resources defined in the System file, to share a single resource among
several files by storing it in your application’s resource fork, and to override
application-defined resources with document-specific resources.

When the Resource Manager opens a resource fork, the File Manager assigns that
resource fork a file reference number, which is a unique number identifying an access
path to the resource fork. Your application needs to keep track of the file reference
number of its own resource fork, so that it can refer specifically to that resource fork
when necessary. Your application may also need to keep track of the file reference
numbers for other resource forks that it opens.

For example, the SurfWriter application stores in its own resource fork the first few bars
of Beethoven’s Fifth Symphony as a resource of type 'snd ' . The SurfWriter application
plays this sound whenever the user writes more than one page of text per hour. The user
can change this sound for all documents created by SurfWriter by using SurfWriter ’s
Preferences command to specify or record a new sound.

CHAPTER 1

Resource Manager

Introduction to Resources 1-11

SurfWriter also allows the user to associate a sound with a specific document by
using SurfWriter’s Set Reward Sound command to specify or record a new sound. When
SurfWriter wants to play the sound, it uses the Resource Manager to read the resource of
type 'snd ' with the resource ID kProductiveWriter . Figure 1-4 shows the search
path the Resource Manager takes to find this sound resource.

Figure 1-4 A typical search order for a specific resource

System software opens SurfWriter’s resource fork when the user opens the SurfWriter
application. On startup, SurfWriter opens its preferences file (SurfWriter Preferences).
When the user opens a SurfWriter document, SurfWriter opens the document’s data fork
and resource fork. When SurfWriter attempts to read an 'snd ' resource, the Resource
Manager looks first in the resource map in memory of the current resource file (in the
example illustrated in Figure 1-4, the SurfWriter document) for the requested resource. If
the Resource Manager doesn’t find the resource, it searches the resource map of the next
most recently opened file (in this example, SurfWriter Preferences). It continues
searching the resource forks in memory of any resource forks open to the SurfWriter

CHAPTER 1

Resource Manager

1-12 About the Resource Manager

application until it either finds the resource or has searched the last resource map in its
search path. Typically the last resource map searched by the Resource Manager is the
resource map of the System file. This allows your application to use resources in the
System file as a default.

Table 1-1 summarizes the typical locations of resources used by an application.

Although you can take advantage of the Resource Manager’s search order to find a
particular resource, in general your application should set the current resource file to the
file whose resource fork contains the desired resource before reading and writing
resource data. In addition, you can restrict the Resource Manager search path by using
Resource Manager routines that look only in the current resource file’s resource map
when searching for a specific resource.

About the Resource Manager

The Resource Manager provides routines that allow your application (and system
software) to create, delete, open, read, modify, and write resources; get information
about them; and alter the Resource Manager’s search path.

Most Macintosh applications commonly read data from resources either indirectly, by
calling other system software routines (such as Menu Manager routines) that in turn call
the Resource Manager, or directly, by calling Resource Manager routines. At any time
during your application’s execution, at least two resource forks from which it can read
information are likely to be open: the System file’s resource fork and your application’s
resource fork.

Table 1-1 Typical locations of resources

Resource fork Resources contained in resource fork

Resource fork of System file Sounds, icons, cursors, and other elements available
for use by all applications, and code resources that
manage user interface elements such as menus,
controls, and windows

Resource fork of application Static data (such as text used in dialog boxes or help
balloons) and descriptions of menus, windows,
controls, icons, and other elements

Resource fork of application’s
preferences file

Data that encodes the user ’s global preferences for the
application

Resource fork of document Data that defines characteristics specific only to this
document, such as its last size and location

CHAPTER 1

Resource Manager

Using the Resource Manager 1-13

As previously described, system software opens the System file’s resource fork at startup
and your application’s resource fork at application launch. Your application is likely to
open the resource forks of several other files at various times while it is running. For
example, if your application saves the last position and size of a window (as determined
by the user), you can use Resource Manager routines to write this information to an
application-defined resource in the document file’s resource fork. The next time the user
opens the document, your application can use the Resource Manager to read the
information saved in this resource and position the document accordingly.

You can store the user ’s general preferences, such as the default font or paper size, in
your application’s preferences file. You store a preferences file in the Preferences folder of
the System Folder. The name of an application’s preferences file typically consists of the
name of the application followed by the word “Preferences.” If your application can be
shared by multiple users, you can use the Resource Manager to create a separate
preferences file for each user.

Using the Resource Manager

You use the Resource Manager to perform operations on resources. To determine
whether certain features of the Resource Manager are available (support for FSSpec
records and partial resources), use the Gestalt function.

Two commonly used Resource Manager routines use a file system specification
(FSSpec) record: the FSpCreateResFile procedure and the FSpOpenResFile
function. These routines are available only in System 7 or later. Call the
Gestalt function with the gestaltFSAttr selector to determine whether the
Resource Manager routines that use FSSpec records exist. If the bit indicated by the
constant gestaltHasFSSpecCalls is set, then the routines are available.

CONST

gestaltFSAttr = 'fs '; {Gestalt selector for }

{ File Mgr attributes}

gestaltHasFSSpecCalls = 1; {check this bit in the }

{ response paramete r}

In addition, the Resource Manager routines for reading and writing partial resources are
available only in System 7 or later versions of system software. Use the Gestalt
function to determine whether these features are available. Call the Gestalt function
with the gestaltResourceMgrAttr selector to determine whether the routines for
handling partial resources exist. If the bit indicated by the constant
gestaltPartialRsrcs is set, then the Resource Manager routines for handling partial
resources are available. For more information about the Gestalt function, see Inside
Macintosh: Operating System Utilities.

CHAPTER 1

Resource Manager

1-14 Using the Resource Manager

CONST

gestaltResourceMgrAttr = 'rsrc'; {Gestalt selector for }

{ Resource Mgr attributes}

gestaltPartialRsrcs = 0; {check this bit in the }

{ response paramete r}

You can use the ResError function to retrieve errors that may result from calling
Resource Manager routines. Resource Manager procedures do not report error
information directly. Instead, after calling a Resource Manager procedure your
application should call the ResError function to determine whether an error occurred.

Resource Manager functions usually return NI L or –1 as the function result when there’s
an error. For Resource Manager functions that return –1, your application can call the
ResError function to determine the specific error that occurred. For Resource Manager
functions that return handles, your application should always check whether the value
of the returned handle is NIL . If it is, your application can use ResError to obtain
specific information about the nature of the error. Note, however, that in some cases
ResError returns noErr even though the value of the returned handle is NIL .

The rest of this section describes how to create a resource using ResEdit or the Rez
resource compiler. It then describes how to use Resource Manager routines to

■ get a handle to a resource and modify a purgeable resource safely

■ release and detach resources

■ create and open a resource fork

■ set the current resource file (the file whose resource fork the Resource Manager
searches first)

■ read and manipulate resources

■ write resources

■ read and write partial resources

For detailed descriptions of all Resource Manager routines, see “Resource Manager
Reference” beginning on page 1-42. For information on writing data to a file’s data fork,
see Inside Macintosh: Files.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-15

Creating a Resource
You typically define the user interface elements of your application, such as menus,
windows, dialog boxes, and controls, by specifying descriptions of these elements in
resources. You can then use Menu Manager, Window Manager, Dialog Manager, or
Control Manager routines to create these elements—based on their resource
descriptions—as needed. You can create resource descriptions using a resource editor,
such as ResEdit, which lets you create the resources in a visual manner; or you can
provide a textual, formal description of resources in a file and then use a resource
compiler, such as Rez, to compile the description into a resource. Figure 1-5 shows the
window ResEdit displays for the SurfWriter application. This window lists all of the
resources in the resource fork of the SurfWriter application.

Figure 1-5 The ResEdit window for the SurfWriter application

CHAPTER 1

Resource Manager

1-16 Using the Resource Manager

You can use ResEdit to examine any of your application’s resources. For example, to
view your application’s 'MENU' resources, double-click that resource in the ResEdit
window. Figure 1-6 shows how ResEdit displays the menus of the SurfWriter application.

Figure 1-6 The menus of the SurfWriter application

CHAPTER 1

Resource Manager

Using the Resource Manager 1-17

Listing 1-1 shows the definition of SurfWriter’s Apple menu in Rez input format.

Listing 1-1 A menu in Rez input format

#define mApple 128

resource 'MENU' (mApple, preload) { /*resource ID, preload resource*/

mApple, /*menu ID*/

textMenuProc, /*uses standard menu definition */

/* procedure*/

0b1111111111111111111111111111101, /*enable About item, */

/* disable divider, */

/* enable all other items*/

enabled, /*enable menu title* /

apple, /*menu title*/

{

/*first menu item*/

"About SurfWriter…", /*text of menu ite m*/

noicon, nokey, nomark, plain; /*item characteristics*/

/*second menu item*/

"-", /*item text (divider)*/

noicon, nokey, nomark, plain /*item characteristics*/

}

};

Your application can also create, modify, and save resources as needed using various
Resource Manager routines.

You can store your application-specific resources in the application file itself. You need
not add resources to your application after it is created. Instead, store any
document-specific resources in the relevant document and store user preferences in a
preferences file in the Preferences folder of the System Folder.

To retrieve resources from your application’s resource fork, you usually use other
managers (such as the Menu Manager or Window Manager). To retrieve resources other
than menus, windows, dialog boxes, or controls, you usually use Resource Manager
routines.

CHAPTER 1

Resource Manager

1-18 Using the Resource Manager

To retrieve a resource from a document file or a preferences file, your application needs
to open the resource fork of the file and then use Resource Manager routines to retrieve
any resources in the file. The section that follows, “Getting a Resource,” describes how
the Resource Manager returns a handle to a resource at your application’s request and
how to modify a purgeable resource safely. The sections “Opening a Resource Fork” and
“Reading and Manipulating Resources” beginning on page 1-24 and page 1-30,
respectively, describe in detail how to use Resource Manager routines to open and read
resources.

Getting a Resource
You usually use the GetResource function to read data from resources other than
menus, windows, dialog boxes, and controls. You supply the resource type and resource
ID of the desired resource, and the GetResource function searches the resource maps
of open resource forks (according to the search path described in “Search Path for
Resources” beginning on page 1-10) for that resource’s entry.

If the GetResource function finds an entry for the requested resource in the resource
map and the resource is in memory (that is, if the resource map in memory does not
specify the resource’s location with a handle whose value is NIL), GetResource returns
a handle to the resource. If the resource is listed in the resource map but is not in
memory (the resource map in memory specifies the resource’s location with a handle
whose value is NIL), GetResource reads the resource data from disk into memory,
replaces the entry for the resource’s location with a handle to the resource, and returns to
your application a handle to the resource. For a resource that cannot be purged (that is,
whose purgeable attribute is not set) you can use the returned handle to refer to the
resource in other Resource Manager routines. (Handles to purgeable resources are
discussed later in this section.)

For example, this code uses GetResource to get a handle to an 'snd ' resource with
resource ID 128.

VAR

resourceType: ResType;

resourceID: Integer;

myHndl: Handle;

resourceType := 'snd ';

resourceID := 128;

myHndl := GetResource(resourceType, resourceID);

CHAPTER 1

Resource Manager

Using the Resource Manager 1-19

Figure 1-7 shows how GetResource returns a handle to a resource at your application’s
request.

Figure 1-7 Getting a handle to a resource

Note that the handle returned to your application is a copy of the handle in the resource
map. The resource map contains a handle to the resource data, and the Resource
Manager returns a handle to the same block of memory for use by your application. If
you use GetResource to get a handle to a resource that has the purgeable attribute set
or if you intend to modify such a resource, keep the following discussion in mind.

CHAPTER 1

Resource Manager

1-20 Using the Resource Manager

If a resource is marked purgeable and the Memory Manager determines that it must
purge a resource to make more room in your application’s heap, it releases the memory
occupied by the resource. In this case, the handle to the resource data is no longer valid,
because the handle’s master pointer is set to NIL . If your application attempts to use the
handle previously returned by the Resource Manager, the handle no longer refers to the
resource. Figure 1-8 shows a handle to a resource that is no longer valid, because the
Memory Manager has purged the resource. To avoid this situation, you should call the
LoadResource procedure to make sure that the resource is in memory before
attempting to refer to it.

Figure 1-8 A handle to a purgeable resource after the resource has been purged

CHAPTER 1

Resource Manager

Using the Resource Manager 1-21

If you need to make changes to a purgeable resource using routines that may cause the
Memory Manager to purge the resource, you should make the resource temporarily not
purgeable. You can use the Memory Manager procedures HGetState , HNoPurge , and
HSetState for this purpose. After calling HGetState and HNoPurge , change the
resource as necessary. To make the changes permanent, use the ChangedResource and
WriteResource procedures; then call HSetState when you’re finished. Listing 1-2
illustrates the use of these routines.

Listing 1-2 Safely changing a resource that is purgeable

VAR

resourceType: ResType;

resourceID: Integer;

myHndl: Handle;

state: SignedByte;

resourceType := 'snd ';

resourceID := 128;

{read the resource into memory}

myHndl := GetResource(resourceType, resourceID);

state := HGetState(my Hndl); {get the state of the handle}

HNoPurge (myHndl) ; {mark the handle as not purgeable}

{modify the resource as needed}

{...}

ChangedResource(myHndl); {mark the resource as changed}

WriteResource(myHndl); {write the resource to disk}

HSetState(myHndl, state); {restore the handle ' s state}

Although you’ll usually want to use WriteResource to write a resource’s data to disk
immediately (as shown in Listing 1-2), you can instead use the SetResPurge procedure
and specify TRUE in the install parameter. If you do this, the Memory Manager calls
the Resource Manager before purging data specified by a handle. The Resource Manager
determines whether the passed handle is that of a resource in your application’s heap,
and, if so, calls WriteResource to write the resource to disk if its changed attribute is
set. You can call the SetResPurge procedure and specify FALSE in the install
parameter to restore the normal state, so that the Memory Manager purges resource data
in memory without checking with the Resource Manager.

CHAPTER 1

Resource Manager

1-22 Using the Resource Manager

Releasing and Detaching Resources
When you’ve finished using a resource, you can call ReleaseResource to release the
memory associated with that resource. For a given resource, the ReleaseResource
procedure releases the memory associated with the resource, setting the handle’s master
pointer to NIL , thus making your application’s handle to the resource invalid. (This is
similar to the situation shown in Figure 1-8.) After releasing a resource, use another
Resource Manager routine if you need to use the resource again. For example, the code
in Listing 1-3 first uses GetResource to get a handle to a resource, manipulates
the resource, then uses ReleaseResource when the application has finished
using the resource. If the application needs the resource later, it must get a valid handle
to the resource by reading the resource into memory again (using GetResource , for
example).

Listing 1-3 Releasing a resource

PROCEDURE MyGetAndPlaySoundResource(resourceID: Integer);

VAR

myHndl: Handle;

BEGIN

myHndl := GetResource('snd ', resourceID);

{use the resource}

{when done, release the resource}

ReleaseResource(myHndl);

END;

Your application can also use the DetachResource procedure to replace a resource’s
handle in the resource map with a handle whose value is NI L. However, the
DetachResource procedure does not release the memory associated with the resource.
You can use DetachResourc e when you want your application to access the resource’s
data directly, without the aid of the Resource Manager, or when you need to pass the
handle to a routine that does not accept a resource handle. (For example, the
AddResource routine used in Listing 1-4 on page 1-24 takes a handle to data, not a
handle to a resource.) Once you detach a resource, the Resource Manager does not
recognize the resource’s handle in the resource map in memory as a valid handle to a
resource, but your application can still manipulate the resource’s data through its own
handle to the data.

Figure 1-9 shows how both your application and the Resource Manager have a handle to
a resource after your application calls GetResourc e. The figure also shows how the
Resource Manager replaces the handle in the resource map in memory with a handle
whose value is NIL when your application calls DetachResource .

CHAPTER 1

Resource Manager

Using the Resource Manager 1-23

Figure 1-9 Detaching a resource

CHAPTER 1

Resource Manager

1-24 Using the Resource Manager

You can also easily copy a resource by first reading in the resource using GetResource ,
detaching the resource using DetachResource , then copying the resource by using
AddResource (and specifying a new resource ID). Listing 1-4 uses this technique to
copy a resource within the current resource file.

Listing 1-4 Detaching a resource

PROCEDURE MyCopyAResource(resourceType: ResType;

resourceID: Integer ;

VAR myHndl: Handle);

VAR

newResourceID: Integer;

BEGIN

myHndl := GetResource(resourceType, resourceID);

DetachResource(myHndl); {detach the resource}

newResourceID := UniqueID(resourceType);

AddResource(myHndl, resourceType, newResourceID, '');

END;

Opening a Resource Fork
When your application opens a file’s resource fork or data fork, the File Manager returns
a file reference number. You use a file reference number in File Manager routines (and
in a few Resource Manager routines) to identify a unique access path to an open fork of a
specific file. Even though the file reference number of the data fork and the resource fork
usually match, you should use the file reference number of a file’s resource fork in
Resource Manager routines; don’t assume that it has the same value as the file reference
number for the same file’s data fork.

Opening an Application’s Resource Fork

Because system software automatically opens your application’s resource fork when the
user opens your application, you do not need to open it explicitly. However, you should
save your application’s file reference number. You can do this by calling the
CurResFile function early in your initialization procedure. (The CurResFile function
returns the file reference number of the current resource file.) Listing 1-5 shows the part
of SurfWriter ’s initialization procedure that gets the file reference number of the
application’s resource fork.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-25

Listing 1-5 Getting the file reference number for your application’s resource fork

PROCEDURE MyInitialize;

BEGIN

 MaxApplZone; {extend heap zone to limit}

 MoreMasters; {get 64 more master pointers}

MoreMasters; {get 64 more master pointers}

 InitGraf(@thePort); {initialize QuickDraw}

 InitFonts; {initialize Font Manager}

InitWindows; {initialize Window Manager}

TEInit; {initialize TextEdit}

InitDialogs(Nil); {initialize Dialog Manager}

InitCursor; {set cursor to arrow}

{get the file ref num of this app ' s resource file }

{ and save it in a global variable}

gAppsResourceFork := CurResFile;

{do other initialization}

END;

SurfWriter uses an application-defined global variable (gAppsResourceFork) to refer
to its resource fork in subsequent calls to Resource Manager routines.

Creating and Opening a Resource Fork

To save resources in the resource fork of a file, you must first create the resource fork (if it
doesn’t already exist in a form that can be used by the Resource Manager) and obtain a
file reference number for it. After creating a new resource fork, you must open it before
writing any resources to it. You’ll usually want to save the file reference number of any
resource fork that your application opens.

To create a resource fork, use the FSpCreateResFile procedure. This procedure
requires four parameters: a file-system specification record (identifying the name and
location of the file), the signature of the application creating the file, the file type of the
file, and the script code for the file.

A file system specification record is a standard format for identifying a file or directory.
The file system specification record for files and directories is available in System 7 and
later versions of system software and is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63 ; {filename or directory name}

END;

CHAPTER 1

Resource Manager

1-26 Using the Resource Manager

Certain File Manager routines—those that open a file’s data fork—also take a file system
specification record as a parameter. You can use the same FSSpec record in Resource
Manager routines that create or open the file’s resource fork.

If the file specified by the FSSpec record doesn’t already exist (that is, if the file has
neither a data fork nor a resource fork), the FSpCreateResFil e procedure creates a
resource file—that is, a resource fork, including a resource map. In this case, the file has a
zero-length data fork. The FSpCreateResFil e procedure also sets the creator, type,
and script code fields of the file’s catalog information record to the specified values.

If the file specified by the FSSpec record already exists and includes a resource fork with
a resource map, FSpCreateResFil e does nothing, and the ResError function returns
an appropriate result code. If the data fork of the file specified by the FSSpec record
already exists but the file has a zero-length resource fork, FSpCreateResFile creates
an empty resource fork and resource map for the file; it also changes the creator, type,
and script code fields of the catalog information record of the file to the specified values.

Listing 1-6 shows a function that creates a new resource fork, including a resource map.

Listing 1-6 Creating an empty resource fork

FUNCTION MyCreateResourceFork (myFSSpec: FSSpec) : OSErr ;

BEGIN

FSpCreateResFile(myFSSpec, gAppSignature, 'TEXT' ,

 smSystemScript);

MyCreateResourceFork := ResError;

END;

After creating a resource fork, you can open it using the FSpOpenResFile function. The
FSpOpenResFile function returns a file reference number that you can use to change
or limit the Resource Manager’s search order or to close a resource fork.

After opening a resource fork, you can write resources to it using the routines described
in “Writing Resources” beginning on page 1-36. (You can also write to a resource fork
using File Manager routines; in general, you should use the Resource Manager.) When
you are finished using a resource fork that your application has specifically opened, you
should close it using the CloseResFil e procedure. The Resource Manager
automatically closes any resource forks opened by your application that are still open
when your application calls ExitToShell .

CHAPTER 1

Resource Manager

Using the Resource Manager 1-27

Listing 1-7 shows a routine that uses the application-defined function
MyCreateResourceFork (shown in Listing 1-6) to create a new resource fork, opens
the resource fork, writes resources to it, then closes the resource fork when it is finished.

Listing 1-7 Creating and opening a resource fork

FUNCTION MyCreateAndOpenResourceFork (myFSSpec: FSSpec) : OSErr ;

VAR

myErr: OSErr ;

myRefNum: Integer;

BEGIN

{create a resource file}

myErr := MyCreateResourceFork(myFSSpec);

I F myErr = noErr THEN {open the resource file }

myRefNum : = FSpOpenResFile(myFSSpec, fsRdWrPerm);

IF ResError = noErr THEN {write to the resource file}

myErr := MyWriteResourcesToFile (myRefNu m);

CloseResFile (myRefNum) ; {close the resource file}

MyCreateAndOpenResourceFork := myErr;

END;

Note that when you open a resource fork, the Resource Manager resets the search path
so that the file whose resource fork you just opened becomes the current resource file.
For example, suppose the SurfWriter application file is open, and the user opens
document A, then document B. SurfWriter opens the resource forks of both documents.
In this case, the search order is

1. document B (the current resource file)

2. document A

3. the SurfWriter application

4. the System file

If the user is working with document A and SurfWriter uses the UseResFile procedure
to set the current resource file to document A, the new search order is

1. document A (the current resource file)

2. the SurfWriter application

3. the System file

CHAPTER 1

Resource Manager

1-28 Using the Resource Manager

If the user opens another document, document C, and SurfWriter opens its resource fork,
the new search order becomes

1. document C (the current resource file)

2. document B

3. document A

4. the SurfWriter application

5. the System file

Specifying the Current Resource File

When you request a resource, the Resource Manager follows the search order described
in “Search Path for Resources” on page 1-10. To change the starting point of the search or
to restrict the search to the resource fork of a specific file, you can use CurResFile and
UseResFile . To get the file reference number for the current resource file, use the
CurResFile function. You can then use the UseResFile procedure to set the current
resource file to the desired file, use other Resource Manager routines to retrieve any
desired resources, and then use UseResFile again to restore the current resource file to
its previous setting.

For example, the SurfWriter application allows users to specify or record either a special
reward sound that applies only to a specific document or a general reward sound that
can apply to any document. SurfWriter stores a document-specific reward sound
resource in the document and the general reward sound resource in either the SurfWriter
Preferences file (if the reward sound is user-defined) or in the application file. If several
documents are open and SurfWriter needs to play a document-specific reward sound,
SurfWriter attempts to get the sound from that document without searching the resource
forks of any other documents that might be open. If the document doesn’t have the
specified reward sound, SurfWriter searches for the sound in the resource fork of the
preferences file and, if necessary, of the application file and System file.

Listing 1-8 shows how the SurfWriter application uses CurResFile and UseResFile
to get and play the appropriate reward sound for a given document. All reward sounds
share the same resource ID, kProductiveWriter . The application-defined procedure
MyGetAndPlayRewardSou ndResourc e first checks whether the reward sound setting
for the document specifies a sound stored in that document or a general reward sound
stored in the preferences file or elsewhere. If the document has a reward sound, the
procedure sets the current resource file to that document, searches just that document’s
resource fork for the sound, and plays the sound. If the document doesn’t have a reward
sound, the MyGetAndPlayRewardSoundResource procedure sets the current resource
file to SurfWriter Preferences, searches the entire resource chain from that point on for
the sound, and plays the sound. This scheme ensures that SurfWriter always plays the
correct reward sound, even if different reward sound resources in different documents
share the same resource ID.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-29

Listing 1-8 Saving and restoring the current resource file

PROCEDURE MyGetAndPlayRewardSoundResource (refNum : Intege r) ;

VAR

myHndl: Handle;

prevResFile: Integer;

BEGIN

prevResFile := CurResFile; {save the current resource file}

I F MyHasDocumentR ewardSoun d(refNum) T HEN

BEGIN

{first set the current resource file t o a specific d ocument}

UseResFile(refNum) ;

{get reward sound from the document using Get1Resource }

{ to limit search to current resource file and avoid }

{ searching the resource forks of any other open documents }

myHndl := Get 1Resourc e('snd ', kProductiveWriter) ;

END

ELSE

BEGIN

{ set current resource file t o SurfWriter Preferences}

UseResFile(gSurfPrefsResourceF ork) ;

{ get reward s ound resource using GetResource to search }

{ entire resource chain starting with preferences file}

myHndl := Ge tR esourc e('snd ' , kProductiveWriter);

END;

IF myHnd l <> N IL THE N

BEGIN

MyPlayThisSound(myHndl);

ReleaseResource(myHndl);

END;

UseResFile(prevResFile); {restore the current resource }

{ file to its previous setting}

END;

CHAPTER 1

Resource Manager

1-30 Using the Resource Manager

The MyGetAndPlayRewardSoundResource procedure saves the reference number of
the current resource file and then calls the application-defined routine
MyHasDocumentRewardSound to check whether the document has a reward sound
associated with it. If so, MyGetAndPlayRewardSoundResource sets the current
resource file to the value specified by the r efNum parameter. The procedure then uses
the Get1Resource function to get, from the current resource file, a handle to the
resource of type 'snd ' with the ID specified by kProductiveWriter .

If the document doesn’t have a specified reward sound,
MyGetAndPlayRewardSoundResource uses UseResFile to set the current resource
file to the SurfWriter Preferences file’s resource fork and GetResource to search the
entire resource chain from that point. If GetResource locates a resource with the
specified resource ID in the SurfWriter Preferences file, it returns a handle to that
resource; if not, it continues to search until it finds the specified resource or reaches the
end of the resource chain. This ensures that the procedure won’t get a user-defined
resource with the same resource ID in some other SurfWriter document that is currently
open instead of the general reward sound saved in SurfWriter Preferences or in
SurfWriter itself.

If the call to Get1Resource or GetResource is successful (that is, if it does not return
a handle whose value is NI L), MyGetAndPlayRewardSoundResource plays the
appropriate reward sound, then uses ReleaseResourc e to release the memory
occupied by the sound resource. Finally, the procedure uses UseResFile to restore the
current resource file to its previous setting.

Reading and Manipulating Resources
The Resource Manager provides a number of routines that read resources from a
resource fork. When you request a resource, the Resource Manager follows the search
path described in “Search Path for Resources” on page 1-10. That is, the Resource
Manager searches each resource fork open to your application, beginning with the
current resource file, and continues until it either finds the resource or reaches the end of
the chain.

You can change where the Resource Manager starts its search using the UseResFile
procedure. (See the previous section, “Specifying the Current Resource File,” for details.)
You can limit the search to only the current resource file by using the Resource Manager
routines that contain a “1” in their names, such as Get1Resource ,
Get1NamedResource , Get1IndResource , Unique1ID , and Count1Resources .

To get a resource, you can specify it by its resource type and resource ID or by its
resource type and resource name. By convention, most applications refer to a resource by
its resource type and resource ID, rather than by its resource type and resource name.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-31

You can use the SetResLoad procedure to enable and disable automatic loading of
resource data into memory for routines that return handles to resources. Such routines
normally read the resource data into memory if it’s not already there. This is the default
setting and the effect of calling SetResLoa d with the load parameter set to TRUE. If
you call SetResLoa d with the load parameter set to FALSE, subsequent calls to
routines that return handles to resources will not load the resource data into memory.
Instead, such routines return a handle whose master pointer is set to NI L unless the
resource is already in memory. This setting is useful when you want to read from the
resource map without reading the resource data into memory. To read the resource data
into memory after a call to SetResLoa d with the load parameter set to FALSE, call
LoadResource .

▲ WARNING

If you call SetResLoa d with the load parameter set to FALSE, be sure
to call SetResLoa d with the load parameter set to TRUE as soon as
possible. Other parts of system software that call the Resource Manager
rely on the default setting (the load parameter set to TRUE), and some
routines won’t work if resources are not loaded automatically. ▲

In addition to the SetResLoad procedure, you can use the preloaded attribute of an
individual resource to control loading of that resource’s data into memory. The Resource
Manager loads a resource into memory when it first opens a resource fork if the
resource’s preloaded attribute is set.

Note

If both the preloaded attribute and the locked attribute are set, the
Resource Manager loads the resource as low in the heap as possible. ◆

Here’s an example of a situation in which an application might need to read a resource.
The SurfWriter application always saves the last position of a document window when
the user saves the document, storing this information in a resource that it has defined for
this purpose. SurfWriter defines a resource with resource type rWinState and resource
ID kLastWinStateID to store information about the window (its position and its
state—that is, either the user state or the standard state). SurfWriter ’s window state
resource has this format, defined by a record of type MyWindowState :

TYPE MyWindowState =

RECORD

userStateRect : Rect ; {user state rectangle}

zoomState : Boolean ; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr ;

CHAPTER 1

Resource Manager

1-32 Using the Resource Manager

Listing 1-9 shows a procedure called MySetWindowPosition that the SurfWriter
application uses in the process of opening a document. The SurfWriter application stores
the last location of a document in its window state resource. When SurfWriter opens the
document again, it uses MySetWindowPosition to read the document’s window state
resource and uses the resource data to set the window’s location.

Listing 1-9 Getting a resource from a document file

PROCEDURE MySetWindowPosition (myWindow: WindowPtr);

VAR

myData: MyDocRecHnd;

lastUserStateRect: Rect;

stdStateRect: Rect;

curStateRect: Rect;

myRefNum: Integer;

myStateHandle: MyWindowStateHnd;

resourceGood: Boolean;

savePort: GrafPtr;

myErr: OSErr;

BEGIN

myData := MyDocRecHnd(GetWRefCon(myWindow)); {get document record}

HLock(Handle(myData)); {lock the record while manipulating it}

{open the resource fork and get its file reference number}

myRefNum := FSpOpenResFile(myData^^.fileFSSpec, fsRdWrPerm);

myErr := ResError;

IF myErr <> noErr THEN

Exit(MySetWindowPosition);

{get handle to rectangle that describes document's last window position}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState,

kLastWinStateID));

IF myStateHandle <> NIL THEN {handle to data succeeded}

BEGIN {retrieve the saved user state}

lastUserStateRect := myStateHandle^^.userStateRect;

resourceGood := TRUE;

END

ELSE

BEGIN

lastUserStateRect.top := 0; {force MyVerifyPosition to calculate }

resourceGood := FALSE; { the default position}

END;

CHAPTER 1

Resource Manager

Using the Resource Manager 1-33

{verify that user state is practical and calculate new standard state}

MyVerifyPosition(myWindow, lastUserStateRect, stdStateRect);

IF resourceGood THEN {document had state resource}

IF myStateHandle^^.zoomState THEN {if window was in standard state }

curStateRect := stdStateRect { when saved, display it in }

{ newly calculated standard state}

ELSE {otherwise, current state is the user state}

curStateRect := lastUserStateRect

ELSE {document had no state resource}

curStateRect := lastUserStateRect; {use default user state}

{move window}

MoveWindow(myWindow, curStateRect.left, curStateRect.top, FALSE);

{convert to local coordinates and resize window}

GetPort(savePort);

SetPort(myWindow);

GlobalToLocal(curStateRect.topLeft);

GlobalToLocal(curStateRect.botRight);

SizeWindow(myWindow, curStateRect.right, curStateRect.bottom, TRUE);

IF resourceGood THEN {reset user state and standard }

BEGIN { state--SizeWindow may have changed them}

MySetWindowUserState(myWindow, lastUserStateRect);

MySetWindowStdState(myWindow, stdStateRect);

END;

ReleaseResource(Handle(myStateHandle)); {clean up}

CloseResFile(myRefNum);

HUnlock(Handle(myData));

SetPort(savePort);

END;

The MySetWindowPosition procedure uses the FSpOpenResFile function to open
the document’s resource fork, then uses Get1Resource to get a handle to the resource
that contains information about the window’s last position. The procedure can then
verify that the saved position is practical and move the window to that position.

Note that when a Resource Manager routine returns a handle to a resource, the routine
returns the resource using the Handle data type. You usually define a data type (such as
MyWindowState) to access the resource’s data. If you also define a handle to your
defined data type (such as MyWindowStateHnd), you need to coerce the returned
handle to the appropriate type, as shown in this line from Listing 1-9:

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState, kLastWinStateID));

CHAPTER 1

Resource Manager

1-34 Using the Resource Manager

If you use this method, you also need to coerce your defined handle back to a handle of
type Handle when you use other Resource Manager routines. For example, after it has
finished moving the window, MySetWindowPosition uses ReleaseResource to
release the memory allocated to the resource’s data (which also sets the master pointer of
the resource’s handle in the resource map in memory to NIL). As shown in this line from
Listing 1-9, SurfWriter coerces the defined handle back to a handle:

ReleaseResource(Handle(myStateHandle));

After releasing the resource data’s memory, MySetWindowPosition uses the
CloseResFile procedure to close the resource fork.

Note

Listing 1-9 assumes the window state resource is not purgeable. If it
were, MySetWindowPositio n would need to call LoadResource
before accessing the data in the resource. ◆

The Resource Manager also provides routines that let you index through all resources of
a given type (for example, using CountResources and GetIndResource). This can be
useful whenever you want to read all the resources of a given type.

Listing 1-10 shows an application-defined procedure that allows a user to open a file that
contains sound resources. The SurfWriter application opens the specified file, counts the
number of 'snd ' resources in the file, then performs an operation on each 'snd '
resource (adding the name of each resource to its Sounds menu).

Listing 1-10 Counting and indexing through resources

PROCEDURE MyDoOpenSoundResources;

VAR

mySFReply: StandardFileReply; {reply record}

myNumTypes: Integer; {number of types to display}

myTypeList: SFTypeList; {file type of files }

myRefNum: Integer; {resource file reference no}

mySndHandle: Handle; {handle to sound resource}

numberOfSnds: Integer; {# of sounds in resource file}

index: Integer; {index of sound resource}

resName: Str255; {name of sound resource}

curRes: Integer; {saved current resource file }

myType: ResType; {resource type }

myResID: Integer; {resource ID of snd resource}

myWindow: WindowPtr; {window pointer}

menu: MenuHandle; {handle to Sounds menu}

myErr: OSErr; {error information}

CHAPTER 1

Resource Manager

Using the Resource Manager 1-35

BEGIN

curRes := CurResFile;

myWindow := FrontWindow;

MyDoActivate(myWindow, FALSE) ; { deactivate front window}

myTypeList[0] := ' SFSD' ; {show files of this type}

myNumTypes := 1;

{let user choose a file that contains sound resources}

StandardGetFile(NIL, myNumTypes, myTypeList, mySFReply);

IF mySFReply.sfGood = TRUE THE N

BEGIN

myRefNum : = F SpOpenResFile(mySFReply.sfFile, fsRdWrPerm);

IF myRefNum = -1 THEN

DoError ;

menu := GetMenuHandle(mSounds) ;

numberOfSnds := Count1Resources('snd ');

FOR index := 1 TO numberOfSnds DO

BEGIN { t he loo p}

mySndHandle := Get1IndResource('snd ', index);

IF mySndHandle = NIL T HEN

DoErro r

ELSE

BEGIN

GetResInfo(mySndHandle , myResID, myType, r esName);

AppendMenu(menu, resName);

ReleaseResource(mySndHandle);

END; { of mySndHandle <> NIL}

END; { of th e l oop}

UseResFile(curRes);

gSoundResFileRefNum : = myRefNum;

END; { of sfReply.good}

END;

After the user selects a file that contains SurfWriter sound resources (that is, a file of type
' SFSD'), the MyDoOpenSoundResources procedure calls FSpOpenResFile to open
the file’s resource fork and obtain its file reference number. (If FSpOpenResFile fails to
open the resource fork, it returns –1 instead of a file reference number.) The
MyDoOpenSoundResources procedure then uses the Count1Resources function to
count the number of 'snd ' resources in the resource fork. It can then index through
the resources one at a time, using Get1IndResource to open each resource,
GetResInfo to get the resource’s name, and AppendMenu to append each name to
SurfWriter’s Sounds menu.

CHAPTER 1

Resource Manager

1-36 Using the Resource Manager

Note
In most situations, you can use the Menu Manager procedure
AppendResMenu to add names of resources to a menu. See Inside
Macintosh: Macintosh Toolbox Essentials for details. ◆

Writing Resources
After opening a resource fork (as described in “Creating and Opening a Resource Fork”
beginning on page 1-25), you can write resources to it. You can write resources only to
the current resource file. To ensure that the current resource file is set to the appropriate
resource fork, you can use CurResFile to save the file reference number of the
current resource file, then UseResFil e to set the current resource file to the desired
resource fork.

To specify data for a new resource, you usually use the AddResource procedure, which
creates a new entry for the resource in the resource map in memory and sets the entry’s
location to refer to the resource’s data. Note that AddResource changes only the
resource map in memory; it doesn’t change anything on disk. Use the UpdateResFile
or WriteResource procedure to write the resource to disk. The AddResourc e
procedure always adds the resource to the resource map in memory that corresponds to
the current resource file. For this reason, you usually need to set the current resource file
to the desired file before calling AddResource .

If you change a resource that is referenced through the resource map in memory, you use
the ChangedResourc e procedure to set the resChanged attribute of that resource’s
entry. You should then immediately call the UpdateResFile or WriteResourc e
procedure to write the changed resource data to disk. Note that although the
UpdateResFile procedure writes only those resources that have been added or
changed to disk, it also writes the entire resource map to disk (overwriting its previous
contents). The WriteResource procedure writes only the resource data of a single
resource to disk; it does not update the resource’s entry in the resource map on disk.

The ChangedResource procedure reserves enough disk space to contain the changed
resource. It does this every time it’s called, but the actual writing of the resource does not
take place until a call to WriteResource or UpdateResFile . Thus, if you call
ChangedResource several times on a large resource before the resource is actually
written, you may unexpectedly run out of disk space, because many times the amount of
space actually needed is reserved. When the resource is actually written, the file’s
end-of-file (EOF) is set correctly, and the next call to ChangedResource will work as
expected.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-37

IMPORTANT

If your application frequently changes the contents of resources
(especially large resources), you should call WriteResource or
UpdateResFile immediately after calling ChangedResource . ▲

To ensure that the Resource Manager does not purge a purgeable resource while your
application is in the process of changing it, use the Memory Manager procedures
HGetState , HNoPurge , and HSetState . First call HGetState and HNoPurge , then
change the resource as necessary. To make a change to a resource permanent, use the
ChangedResource and WriteResource (or UpdateResFile) procedures; then call
HSetState when you’re finished. (See Listing 1-2 on page 1-21 for an example of this
technique.) However, most applications do not make resources purgeable and therefore
don’t need to take this precaution.

Here’s an example of a situation in which an application might need to write a resource.
As previously described, the SurfWriter application always saves the last position of a
document window when the user saves the document, storing this information in a
resource that it has defined for this purpose. SurfWriter defines a resource with resource
type rWinState and resource ID kLastWinStateID to store the window state (its
position and state, that is, either the user or the standard state). SurfWriter ’s window
state resource has this format, defined by a record of type MyWindowState :

TYPE MyWindowState =

RECORD

userStateRect: Rect; {user state rectangle}

zoomState: Boolean; {window state: TRUE = standard; }

{ FALSE = user}

END;

MyWindowStatePtr = ^MyWindowState;

MyWindowStateHnd = ^MyWindowStatePtr ;

CHAPTER 1

Resource Manager

1-38 Using the Resource Manager

Listing 1-11 shows SurfWriter ’s application-defined routine for saving the last position of
a window in a window state resource in a document’s resource fork.

Listing 1-11 Saving a resource to a resource fork

PROCEDURE MySaveWindowPosition (myWindow: WindowPtr ;

 m yResFileRefNum: Integer);

VAR

l astWindowState : MyWindowState ;

myStateHandle : MyWindowStateHnd ;

curResRefNum: Integer ;

BEGIN

{se t user state provisionally and determine whether window is zoome d}

lastWindowState.userStateRect := WindowPeek(myWindow)^.contRgn^^.rgnBBox;

lastWindowState.zoomState := EqualRect(lastWindowState.userStateRect ,

 MyGetWindowStdState(myWindow)) ;

{ if window i s in standard state, then set the window's user state fro m }

{ the us erStateRect field in the state data record}

IF l astWindowState.zoomState THEN {window was in standard state}

lastWindowState.userStateRect := MyGetWindowUserState(myWindow);

curResRefNum := CurResFile; {save the refNum of current resource file}

UseResFile(myResFileRefNum); {set the current resource file}

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState ,

 kLastWinStateID));

IF m yStateHandle <> NIL THEN {a state data resource already exists}

BEGIN {update it}

myStateHandle^^ := lastWindowState ;

ChangedResource(Handle(myStateHandle)) ;

IF ResError <> noErr THEN

DoError;

END

ELSE {no state data has yet been saved}

BEGIN {add state data resource}

myStateHandle := MyWindowStateHnd(NewHandle(SizeOf(MyWindowState))) ;

IF m yStateHandle <> NIL THEN

BEGIN

myStateHandle^^ := lastWindowState ;

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID ,

' last window state') ;

END;

END;

CHAPTER 1

Resource Manager

Using the Resource Manager 1-39

IF myStateHandle <> NIL THE N

BEGIN

UpdateResFile(myResFileRefNum);

ReleaseResource(Handle(myStateHandle));

END;

UseResFile(curResRefNum);

END;

The MySaveWindowPosition procedure first sets the userStateRect field of the
window state record to the bounds of the current content region of the window. It also
sets the zoomState field of the record to a Boolean value that indicates whether the
window is currently in the user state or standard state. If the window is in the standard
state, the procedure sets the userStateRect field of the window state record to the
user state of the window. (SurfWriter always saves the user state and the last state of the
window. When it opens a document, it sets the user state to its previous state, verifies
that this position is still valid, then calculates the window’s standard state.)

The MySaveWindowPosition procedure then saves the file reference number of the
current resource file and sets the current resource file to the document displayed in
the current window. The procedure then uses the Get1Resource function to determine
whether the resource file of the document already contains a window state resource. If
so, the procedure changes the resource data, then calls ChangedResource to set the
resChanged attribute of the resource’s entry of the resource map in memory. If the
resource doesn’t yet exist, the procedure simply adds the new resource using the
AddResource procedure.

Note that when a Resource Manager routine returns a handle to a resource, it returns the
resource using the Handle data type. You usually define a data type (such as
MyWindowState) to access the resource’s data. If you also define a handle to your
defined data type (such as MyWindowStateHnd), you need to coerce the returned
handle to the appropriate type, as shown in this line from Listing 1-11:

myStateHandle := MyWindowStateHnd(Get1Resource(rWinState, kLastWinStateID));

If you use this method, you also need to coerce your defined handle back to a handle of
type Handle when you use other Resource Manager routines, as shown in this line from
Listing 1-11:

AddResource(Handle(myStateHandle), rWinState, kLastWinStateID,

'last window state');

After MySaveWindowPosition changes or adds the resource (affecting only the
resource map and resource data in memory), the MySaveWindowPosition procedure
makes the change permanent by calling UpdateResFile and specifying the file
reference number of the resource fork to update on disk. The UpdateResFile
procedure writes the entire resource map in memory to disk and updates the resource
data of any resource whose resChanged attribute is set in the resource map in memory.

CHAPTER 1

Resource Manager

1-40 Using the Resource Manager

(If you want to update only the resource that was just changed or added, you can use
WriteResource instead of UpdateResFile .)

Note

Listing 1-11 assumes the window state resource is not purgeable. If it
were, MySaveWindowPositio n would need to call HGetState and
HNoPurge before changing the resource. ◆

When done with the resource, MySaveWindowPosition uses ReleaseResource ,
which releases the memory allocated to the resource’s data (and at the same time sets the
master pointer of the resource’s handle in the resource map in memory to NIL). Then
MySaveWindowPositio n restores the current resource file to its previous setting.

Working With Partial Resources
Some resources, such as the 'snd ' and 'sfnt' resources, can be quite large—
sometimes too large to fit in the available memory. The ReadPartialResource and
WritePartialResourc e procedures, which are available in System 7 and later
versions of system software, allow you to read a portion of the resource into memory or
alter a section of the resource while it is still on disk. You can also use the
SetResourceSize procedure to enlarge or reduce the size of a resource on disk. When
you use ReadPartialResource and WritePartialResource , you specify how far
into the resource you want to begin reading or writing and how many bytes you actually
want to read or write at that spot, so you must be sure of the location of the data.

▲ WARNING

Be aware that having a copy of a resource in memory when you are
using the partial resource routines may cause problems. For example, if
you read the resource into memory using GetResource , modify the
resource in memory, and then access the resource on disk using either
the ReadPartialResource or WritePartialResource procedure,
note that these procedures work with the data in the buffer you specify,
not the data referenced through the resource’s handle. ▲

To read or write any part of a resource, call the SetResLoad procedure specifying
FALSE for its load parameter, then use the GetResource function to get an empty
handle (that is, a handle whose master pointer is set to NIL) to the resource. (Because of
the call to the SetResLoad procedure, the GetResource function does not load the
entire resource into memory.) Then call SetResLoad specifying TRUE for its load
parameter and use the partial resource routines to access portions of the resource.

CHAPTER 1

Resource Manager

Using the Resource Manager 1-41

Listing 1-12 illustrates one way to deal with partial resources. The application-defined
procedure MyReadAPartia l begins by calling SetResLo ad (with the load parameter
set to FALSE) to ensure that the Resource Manager will not attempt to read the entire
resource into memory in the subsequent call to GetResourc e. After calling
GetResource and checking for errors, MyReadAPartial calls SetResLoad (with the
load parameter set to TRUE) to restore normal loading of resource data into memory.
The procedure then calls ReadPartialResource , specifying as parameters the handle
returned by GetResource , an offset to the beginning of the resource subsection to be
read, a buffer into which to read the subsection, and the length of the subsection. The
ReadPartialResource procedure reads the specified partial resource into the
specified buffer.

Listing 1-12 Using partial resource routines

PROCEDURE MyReadAPartial(myRsrcType: ResType; myRsrcID: Integer;

 s tart: LongInt ; c ount: LongInt;

 V AR pu tItHere: Ptr);

VAR

myResHdl: Handle ;

myErr: OSErr ;

BEGIN

SetResLoad(FALSE); {don't load resource }

myResHdl := GetResource(myRsrcType, myRsrcID) ;

myErr := ResError;

SetResLoad(TRUE); {reset to always load}

I F myErr = no Err THEN

BEGIN

ReadPartialResource(myResHdl, start , pu tItHere, count) ;

myErr := ResError;

{ch eck and report erro r}

I F myErr <> noErr THEN DoError (myErr);

END

ELSE {handle e rror from GetResource}

DoError (myErr);

END;

1-42 Resource Manager Reference

CHAPTER 1

Resource Manager

Resource Manager Reference

This section begins by describing the data type, standard resource types, and ranges of
resource IDs used for various kinds of resources. “Resource Manager Routines”
beginning on page 1-49 describes the routines provided by the Resource Manager for
manipulating resources.

“Resource File Format” beginning on page 1-121 describes the format of a resource
fork. “Resources in the System File” beginning on page 1-126 describes System file
resources such as packages and icons. “ROM Resources” beginning on page 1-134
describes how to access ROM resources directly and how to override them.

Data Structure, Resource Types, and Resource IDs
This section describes the data type for the resource type, lists the standard resource
types, and describes the ranges of resource IDs available to your application for different
kinds of resources. The Resource Manager and your application use a resource type and
a resource ID to identify a specific resource.

The Resource Type

The Resource Manager uses the resource type along with the resource ID to identify a
resource uniquely. A resource type is defined by the ResType data type.

TYPE ResType = PACKED ARRAY[1..4] OF Char;

A resource type can be any sequence of four alphanumeric characters, including the
space character. You can define your own resource types, but they must consist of all
uppercase letters and must not conflict with any of the standard resource types.

IMPORTANT

When identifying resource types, the Resource Manager distinguishes
between uppercase letters and their lowercase counterparts. In addition,
Apple reserves for its own use all resource types that consist of all
lowercase letters, all spaces, or all international characters (characters
greater than $7F). ▲

CHAPTER 1

Resource Manager

Resource Manager Reference 1-43

Table 1-2 lists the standard resource types.

Table 1-2 Standard resource types

Resource
type Description

'ADBS' Apple Desktop Bus service routine

'ALRT' Alert box

'BNDL' Bundle

'CDEF' Control definition function

'CDEV' Control device function for a control panel

'CNTL' Control

'CODE' Application code segment

'CURS' Cursor

'DITL' Item list in a dialog or alert box

'DLOG' Dialog box

'DRVR' Desk accessory or other device driver

'FKEY' Command-Shift-number combination

'FOND' Font family record

'FONT' Bitmapped font

'FREF' File reference

'ICN#' Large (32-by-32 pixel) black-and-white icon, with mask

'ICON' Large (32-by-32 pixel) black-and-white icon, without mask

'INIT' System extension

'KCAP' Physical keyboard description (used by Key Caps desk accessory)

'KCHR' Keyboard layout (software); maps virtual key codes to character codes

'LDEF' List definition procedure

'MBAR' Menu bar

'MDEF' Menu definition procedure

'MENU' Menu

'NFNT' Bitmapped font

'PACK' Package

'PAT ' Pattern

'PAT#' Pattern list

continued

CHAPTER 1

Resource Manager

1-44 Resource Manager Reference

'PICT' QuickDraw picture

'POST' PostScript® resource

'PREC' Print record

'SICN' Small (16-by-16 pixel) icon (mask optional)

'SIZE' Size of application’s partition and other information

'STR ' String

'STR#' String list

'WDEF' Window definition function

'WIND' Window

'actb' Alert color table

'alis' Alias record

'card' Video card name

'cctb' Control color table

'cicn' Color icon

'clut' Color look-up table

'crsr' Color cursor

'dctb' Dialog color table

'ddev' Database extension

'eadr' Ethernet hardware address

'fctb' Font color table

'hdlg' Help for dialog box or alert box items

'hfdr' Help for application icons

'hmnu' Help for application menus

'hovr' Help that overrides Finder help

'hrct' Help for areas in windows

'hwin' Association of 'hrct' and 'hdlg' resources to specific windows

'icl4' Large (32-by-32 pixel) color icon with 4 bits of color data per pixel

'icl8' Large (32-by-32 pixel) color icon with 8 bits of color data per pixel

'ics#' Small (16-by-16 pixel) black-and-white icon, with mask

'ics4' Small (16-by-16 pixel) color icon with 4 bits of color data per pixel

'ics8' Small (16-by-16 pixel) color icon with 8 bits of color data per pixel

Table 1-2 Standard resource types (continued)

Resource
type Description

CHAPTER 1

Resource Manager

Resource Manager Reference 1-45

'ictb' Item color table

'itl0' Date and time formats

'itl1' Names of days and months

'itl2' Text Utilities sort hooks

'itl4' Localizable tables and code

'itlk' Remappings of certain key combinations before the KeyTrans function is
called for the corresponding 'KCHR' resource

'kcs#' List of small black-and-white icons, with mask, for a corresponding
'KCHR' resource

'kcs4' Small (16-by-16 pixel) color icon with 4 bits of color data per pixel for a
corresponding 'KCHR' resource

'kcs8' Small (16-by-16 pixel) color icon with 8 bits of color data per pixel for a
corresponding 'KCHR' resource

'mctb' Menu color information table

'mntr' Monitors extension code resource

'movv' QuickTime movie

'pltt' Color palette

'ppat' Pixel pattern

'qdef' Query definition function

'qrsc' Query resource

'sect' Section record

'sfnt' Outline font

'snd ' Sound

'snth' Synthesizer

'styl' TextEdit style record

'sysz' System heap space required by a system extension

'vers' Version number

'wctb' Window color table

'wstr' String (uses word for length byte)

Table 1-2 Standard resource types (continued)

Resource
type Description

CHAPTER 1

Resource Manager

1-46 Resource Manager Reference

Table 1-3 lists resource types that are reserved for use by system software. These resource
types consist entirely of uppercase letters or combinations of uppercase and lowercase
letters and the number sign (#). Other resource types specific to system software that
consist entirely of lowercase letters or other characters are not included in Table 1-3. This
list is provided for your information; you should not use these resource types in your
application.

Resource IDs

A resource is identified by its resource type and resource ID (or, optionally, its resource
type and resource name). The IDs for resources used by the system software and those
used by applications are assigned from separate ranges. By using these ranges correctly,
you can avoid resource ID conflicts.

Table 1-3 Resource types reserved for use by system software

Resource
type Description

'CACH' RAM cache code

'DSAT' System startup alert table

'FCMT' “Get Info” comments

'FMTR' 3.5-inch disk formatting code

'FOBJ' Folder information for an MFS volume

'FRSV' IDs of system fonts

'INTL' International resource (obsolete)

'KMAP' Keyboard mapping (hardware); maps raw key codes to virtual key codes

'KSWP' Defines special key combinations for Script Manager operations

'MBDF' Default menu definition function

'MMAP' Mouse-tracking code

'NBPC' AppleTalk bundle

'PDEF' Printing code

'PTCH' ROM patch code

'ROv#' List of ROM resources to override

'ROvr' Code for overriding ROM resources

'SERD' RAM Serial Driver

CHAPTER 1

Resource Manager

Resource Manager Reference 1-47

In general, system resources use IDs in the range –32767 through 127, and application
resources must use IDs that fall between 128 and 32767. The IDs for some categories
of resources, such as definition procedures and font families, fall in different ranges or
in ranges that are broken down for more specific purposes. This list shows the resource
ID ranges used for most resources.

For a general discussion of font family resource IDs, see Inside Macintosh: Text.

The ID range of definition procedures (which are usually contained in resources such as
the 'WDEF' or 'CDEF' resources) is limited to 12 bits (0 through 4095). The system
software’s own definition procedures, which are located in the System file, have resource
IDs from 0 through 127. The IDs of your definition procedures should be in the range 128
through 4095.

Resource IDs of Owned Resources

Certain types of resources used by system software may have resources of their own in
the same resource fork; the “owning” resource consists of code that reads the “owned”
resource into memory. For example, a desk accessory might have its own pattern and
string resources. This section describes the numbering convention used for owned
resources. This information can be useful if you are writing a desk accessory or other
driver or special types of definition functions for windows, controls, or menus.

Range Description

–32768 through –16385 Reserved; do not use. Any application resource whose ID is
in this range will not work properly in current versions of
system software.

–16384 through –4065 Used for system resources owned by other system resources.

–4064 through –4033 Reserved for use by control panels. (See the chapter
“Control Panels” in this book.)

–4032 through –1 Used for system resources owned by other system
resources. The exception is the 'SIZE' resource, whose ID
can be –1, 0 (preferred size), or 1 (minimum size).

0 through 127 Used for system resources and any definition procedures in
the system software. Applications should not use these
resource IDs.

128 through 32767 Available for your use. Your application’s definition
procedures should use IDs in the range 128 through 4095,
although other resources may use these IDs as well. Font
families for individual script systems have additional
restrictions defined in the appendix on international
resources in Inside Macintosh: Text.

CHAPTER 1

Resource Manager

1-48 Resource Manager Reference

You should use the numbering convention described in this section to associate owned
resources with the resources to which they belong. This allows resource-copying
programs (such as installers) to recognize which additional resources need to be copied
along with an owning resource. Figure 1-10 illustrates the ID of an owned resource.

Figure 1-10 Resource ID of an owned resource

Bits 14 and 15 are always 1. Bits 11 through 13 specify the type of the owning resource, as
follows:

Bits 5 through 10 contain the resource ID of the owning resource (limited to 0 through
63). Bits 0 through 4 contain any desired value (0 through 31).

Some types of resources can’t be owned because their IDs don’t conform to this
convention. For example, a resource of type ' WDEF' can own other resources but cannot
itself be owned, because its resource ID can’t be more than 12 bits long (see the chapter
“Window Manager” in Inside Macintosh: Macintosh Toolbox Essentials). The chapters
describing individual resources provide detailed information about such restrictions.

An owned resource may itself contain the ID of a resource associated with it. For
example, a dialog (' DLOG') resource owned by a desk accessory contains the resource
ID of its item list. Although the item list is associated with the dialog resource, it’s
actually owned (indirectly) by the desk accessory. The resource ID of the item list should
conform to the same special convention as the ID of the dialog resource. For example, if
the resource ID of the desk accessory is 17, the IDs of both the dialog resource and the
item list should contain the value 17 in bits 5 through 10.

Type bits Type

000 ' DRVR'

001 ' WDEF'

010 ' MDEF'

011 ' CDEF'

100 ' PDEF'

101 ' PACK'

110 Reserved for future use

111 Reserved for future use

CHAPTER 1

Resource Manager

Resource Manager Reference 1-49

A program that copies resources may need to change the resource ID of a resource so as
not to duplicate an existing resource ID. Bits 5 through 10 of resources owned, directly or
indirectly, by the copied resource should also be changed when those resources are
copied. In the example just discussed, if the desk accessory must be given a new ID,
bits 5 through 10 of both the dialog resource and the item list resource should also
change.

▲ WARNING

When a resource-copying program changes the ID of an owned
resource, it should also change the ID where it appears in
other resources (such as an item list’s ID contained in a dialog box
resource). ▲

Resource Names

You can use a resource name instead of a resource ID to identify a resource of a given
type. Like a resource ID, a resource name should be unique within each type. If you
assign the same resource name to two resources of the same type, the second assignment
of the name overrides the first, thereby making the first resource inaccessible by name.
When comparing resource names, the Resource Manager ignores case (but does not
ignore diacritical marks).

Resource Manager Routines
This section describes the routines provided by the Resource Manager. You can use these
routines to create, open, and close resource forks; get and set the current resource file;
read resources into memory; get and set resource information; modify resources; write
to resource forks on disk; get a unique resource ID; count and list resource types; get
resource sizes; dispose of resources; read and write partial resources; get and set resource
fork attributes; and access resource entries in the resource map.

The FSpCreateResFile procedure and the FSpOpenResFile function use a file
system specification (FSSpec) record. These routines are available only in System 7 or
later. Use the Gestalt function to determine if these routines are available. If they’re not
available, you can call the equivalent File Manager HFS routines, the HCreateResFile
procedure and the HOpenResFile function.

The Resource Manager provides a means for reporting errors specifically related to
resources. After calling a Resource Manager routine, you can call the ResError function
to determine whether any error occurred. The ResError function returns an integer
value identifying any error reported by the Resource Manager routine that was executed
last. The values listed in the ResError description signify only those errors dealing
specifically with resources. The ResError function can also return values
corresponding to Operating System result codes. The description for each Resource
Manager routine includes the errors ResError may report for that routine under the
subheading “Result Codes”; this list includes both the integer result codes for the
Resource Manager routine as well as common Operating System result codes.

CHAPTER 1

Resource Manager

1-50 Resource Manager Reference

Initializing the Resource Manager

Unlike other Toolbox managers, the Resource Manager does not need to be explicitly
initialized. System software automatically calls the Resource Manager’s
two initialization routines, the InitResources function and the RsrcZoneInit
procedure—the former when the system starts up, and the latter when the system starts
up and when the Process Manager starts up. You should not call either of these routines
directly.

InitResources

When the system starts up, it automatically calls the InitResources function. This
routine is for system use only, and your application should not call it at any time.

FUNCTION InitResources: Integer;

DESCRIPTION

The InitResources function initializes the Resource Manager. InitResources
creates a special heap zone within the system heap and builds a resource map that points
to ROM-resident resources. It opens the resource fork of the System file and reads its
resource map into memory. The InitResources function returns an integer, which is
the file reference number for the System file’s resource fork.

Your application does not need to know the file reference number for the System file’s
resource fork, because every Resource Manager routine with a file reference number
parameter also accepts 0 to mean the System file’s resource fork.

ASSEMBLY-LANGUAGE INFORMATION

The InitResources function sets up three global variables: SysResName, SysMap,
and SysMapHndl . These contain, respectively, the name of the System file’s resource
fork, the file reference number for the resource fork, and a handle to the System file’s
resource map.

RsrcZoneInit

System software automatically calls the RsrcZoneInit procedure when system
software starts up and when the Process Manager starts up. Your application should not
call this routine directly.

PROCEDURE RsrcZoneInit;

CHAPTER 1

Resource Manager

Resource Manager Reference 1-51

DESCRIPTION

System software automatically calls the RsrcZoneInit procedure at system startup
when extensions are loaded, because each extension has its own application heap.
System software calls RsrcZoneInit once again when the Process Manager starts up.
After that, the procedure is not called again.

Checking for Errors

You can use the ResError function in your application to retrieve errors that may result
from calling Resource Manager routines. You also can use ResError to check for an
error after application startup (system software opens the resource fork of your
application during application startup).

ResError

After calling a Resource Manager routine, you can use the ResError function to
determine whether an error occurred and, if so, what it was.

FUNCTION ResError: Integer;

DESCRIPTION

The ResError function reads the value stored in the system global variable ResErr
and returns an integer result code identifying errors, if any, that occurred. If no error
occurred, ResError returns noErr . If an error occurs at the Resource Manager level,
ResError returns one of the integer result codes listed in this section. If an error occurs
at the Operating System level, ResError returns an Operating System result code, such
as the Memory Manager error memFullErr or the File Manager error ioErr .

Resource Manager procedures do not report error information directly. Instead, after
calling a Resource Manager procedure, your application should call the ResError
function to determine whether an error occurred.

Resource Manager functions usually return NIL or –1 as the function result when there’s
an error. For Resource Manager functions that return –1, your application can call the
ResError function to determine the specific error that occurred. For Resource Manager
functions that return handles, your application should always check whether the value
of the returned handle is NIL . If it is, your application can use ResError to obtain
specific information about the nature of the error. Note, however, that in some cases
ResError returns noErr even though the value of the returned handle is NIL .

IMPORTANT

In certain cases, the ResError function returns noErr even though a
Resource Manager routine was unable to perform the requested
operation. See the individual routine descriptions for details about the
circumstances under which this happens. ▲

CHAPTER 1

Resource Manager

1-52 Resource Manager Reference

Only those result codes dealing specifically with resources are listed in this section. See
the description of each Resource Manager routine for a list of errors specific to that
routine and that the ResError function returns.

ASSEMBLY-LANGUAGE INFORMATION

The global variable ResErr stores the current value of ResError , that is, the result code
of the most recently performed Resource Manager operation. In addition, you can
specify an application-defined procedure to be called whenever an error occurs. To do
this, store the address of the procedure in the global variable ResErrProc . The value of
the ResErrProc global variable is usually 0. Before returning a result code other than
noErr , the ResError function puts that result in register D0 and calls the procedure
identified by the ResErrProc global variable.

If you use ResErrProc to detect resource errors, you will get unexpected calls to your
application-defined procedure if you call GetMenu . The Menu Manager routine
GetMenu makes a call to GetResInfo , requesting resource information about
'MDEF' 0. Unfortunately, because ROMMapInsert is set to FALSE, this call fails, setting
ResErr to –192 (resNotFound). This, in turn, causes a call to your application-defined
procedure, even though the GetMenu routine has worked correctly.

To avoid this problem, follow these steps when you call GetMenu if you are using
ResErrProc :

1. Save the address of your application-defined procedure.

2. Clear ResErrProc .

3. Call GetResource for the menu resource you want to get.

4. Check whether GetResource returns a handle whose value is NIL ; if so, process the
error in whatever way is appropriate for your application.

5. Call GetMenu .

6. When you are finished calling GetMenu , restore the previous value of ResErrProc .

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found
resFNotFound –193 Resource file not found
addResFailed –194 AddResource procedure failed
rmvResFailed –196 RemoveResource procedure failed
resAttrErr –198 Attribute inconsistent with operation
mapReadErr –199 Map inconsistent with operation

CHAPTER 1

Resource Manager

Resource Manager Reference 1-53

Creating an Empty Resource Fork

You can use FSpCreateResFile , HCreateResFile , or CreateResFile when you
want to create an empty resource fork—that is, a resource fork that contains no resource
data but does include a resource map. Note that creating a resource fork does not
automatically open it. To open a resource fork of a file created with one of these routines,
use the corresponding routines FSpOpenResFile , HOpenResFile , or OpenResFile .

The FSpCreateResFile procedure is available only in System 7 and later versions of
system software. If FSpCreateResFile is not available, you can use
HCreateResFile or CreateResFile to create a resource fork. The HCreateResFile
procedure allows you to specify a directory ID and a volume reference number, and is
therefore preferred over CreateResFile . The CreateResFile procedure is an earlier
version of HCreateResFile that is still supported but has more restricted capabilities.

Don’t use the resource fork of a file for data that is not in resource format. The Resource
Manager assumes that any information in a resource fork can be interpreted according to
the standard resource format described in this chapter.

The File Manager assumes that the first block of a file’s resource fork is part of the
resource header and puts information there that it uses during scavenging—for example,
after the user presses the Reset switch. For this reason, if you copy a resource file, the
duplicate may not be exactly like the original.

FSpCreateResFile

You can use the FSpCreateResFile procedure to create an empty resource fork using
a file system specification (FSSpec) record.

PROCEDURE FSpCreateResFile (spec: FSSpec;

 creator, fileType: OSType;

 scriptTag: ScriptCode);

spec A file system specification record that indicates the name and location of
the file whose resource fork is to be created.

creato r The signature of the application creating the file.

fileTyp e The file type of the new file.

scriptTa g The script code of the script system in which the Finder and standard file
dialog boxes display the file’s name.

CHAPTER 1

Resource Manager

1-54 Resource Manager Reference

DESCRIPTION

The FSpCreateResFile procedure creates an empty resource fork for a file with the
specified type, creator, and script code in the location and with the name designated by
the spec parameter. (An empty resource fork contains no resource data but does include
a resource map.)

This procedure is available only in System 7 and later versions of system software. If
FSpCreateResFile is not available to your application, you can use
HCreateResFile or CreateResFile .

The spec parameter is a file system specification record, which is the standard format in
System 7 and later versions for identifying a file or directory. The file system
specification record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63 ; {filename or directory name}

END;

Certain File Manager routines—those that open a file’s data fork—also take a file system
specification record as a parameter. You can use the same FSSpec record in Resource
Manager routines that create or open the file’s resource fork.

The creator parameter of FSpCreateResFile contains the signature of the
application that creates the file. Whenever your application creates a document, it
assigns a creator and a file type to that document. Typically your application sets its
signature as the document’s creator.

The fileType parameter indicates the type of file. You can set the file type to a type
especially defined for your application or one of the existing general types, such as
'TEXT' for text (a stream of ASCII characters), or 'pref ' for a preferences file.

Note

The file type should be as descriptive of the file’s data format as
possible. You should not use ' TEXT' as a file type unless the document
contains plain ASCII characters. ◆

The value of the scriptTag parameter is the script code of the script system in which
the Finder and the Standard File Package dialog boxes display the name of the file. For
example, to specify the Roman script system, specify the constant smRoman in the
scriptTag parameter.

If the file specified by the file system specification record doesn’t already exist (that is, if
it has neither a data fork nor a resource fork), the FSpCreateResFil e procedure
creates a resource file—that is, a resource fork, including a resource map. In this case the
file has a zero-length data fork. The FSpCreateResFil e procedure also sets the creator,
type, and script code fields of the file’s catalog information record to the specified values.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-55

If the file specified by the file system specification record already exists and includes a
resource fork with a resource map, FSpCreateResFil e does nothing. If the data fork
of the file specified by the file system specification record already exists but the file has a
zero-length resource fork, FSpCreateResFile creates an empty resource fork and
resource map for the file; it also changes the creator, type, and script code fields of the
catalog information record of the file to the specified values.

If your application uses Standard File Package routines, note that the
StandardPutFile procedure returns a standard file reply record that contains a file
system specification record in the sfFile field.

Before you can work with the newly created file’s resource fork, you must use the
FSpOpenResFile function to open it.

SPECIAL CONSIDERATIONS

The FSpCreateResFile procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51. For
information about using the Gestalt function to determine whether the
FSpCreateResFile procedure is available, see “Using the Resource Manager,”
beginning on page 1-13. For a discussion of the use of the FSpCreateResFile
procedure, see “Creating and Opening a Resource Fork” beginning on page 1-25. For a
description of the FSpOpenResFile function, see page 1-58. For information about the
StandardPutFile procedure and standard file reply records, see Inside Macintosh: Files.
For more information on creators and file types, see the chapter “Finder Interface” in
Inside Macintosh: Macintosh Toolbox Essentials.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the FSpCreateResFile procedure are

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked

Trap macro Selector

_HighLevelFSDispatch $000E

CHAPTER 1

Resource Manager

1-56 Resource Manager Reference

HCreateResFile

If the FSpCreateResFile procedure is not available, you can use the
HCreateResFile procedure to create an empty resource fork.

PROCEDURE HCreateResFile (vRefNum: Integer; dirID: LongInt ;

 f ileName: Str255);

vRefNu m The volume reference number of the volume on which the file is located.

dirI D The directory ID of the directory where the file is located.

fileNam e The name of the file whose resource fork is to be created.

DESCRIPTION

The HCreateResFile procedure creates a file with an empty resource fork in the
directory specified by the vRefNum and dirI D parameters. (An empty resource fork
contains no resource data but does include a resource map.)

If no other file with the given name exists in the specified directory, HCreateResFile
creates a resource file—that is, a resource fork, including a resource map. In this case the
file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a
resource map, HCreateResFile does nothing. If the data fork of the specified file
already exists but the file has a zero-length resource fork, HCreateResFile creates an
empty resource fork and resource map for the file.

Before you can work with the newly created file’s resource fork, you must first use
HOpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The HCreateResFile procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODES

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked

CHAPTER 1

Resource Manager

Resource Manager Reference 1-57

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the HOpenResFile function, see page 1-62.

CreateResFile

If the FSpCreateResFile procedure is not available, you can use the CreateResFile
procedure to create an empty resource fork.

PROCEDURE CreateResFile (fileName: Str255);

fileNam e The name of the file to be created.

DESCRIPTION

The CreateResFile procedure creates a file with an empty resource fork in your
application’s default directory—that is, the directory in which your application is
located.

If no other file with the given name exists in the default directory or any of the other
directories searched by PBOpenRF (see the following section, “Special Considerations”),
CreateResFile creates a resource file—that is, a resource fork, including a resource
map. In this case the file has a zero-length data fork.

If a file with the specified name already exists and includes a resource fork with a
resource map, CreateResFile does nothing. Call ResError to determine whether an
error occurred. If the data fork of the specified file already exists but the file has a
zero-length resource fork, CreateResFile creates an empty resource fork and resource
map for the file.

Before you can work with the newly created file’s resource fork, you must use
OpenResFile or a related function to open it.

SPECIAL CONSIDERATIONS

The CreateResFile procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

The CreateResFile procedure first checks whether a file with the specified name
exists. (If so, ResError returns the result code dupFNErr .) To perform this check,
CreateResFile calls PBOpenRF, which looks first in the default directory for a file
with the same name, then in the root directory of the boot volume (if the default
directory is on the boot volume), and then in the System Folder (if one exists on the same
volume as the default directory). It is thus impossible, for example, to use
CreateResFile to create a file in the default directory if a file with the same name
already exists in the System Folder. To avoid this problem, use FspCreateResFile or
HCreateResFile whenever possible.

CHAPTER 1

Resource Manager

1-58 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the OpenResFile function, see page 1-66.

Opening Resource Forks

To open a resource fork, the Resource Manager calls the appropriate File Manager
routine and returns the file reference number that it gets from the File Manager. If the file
reference number returned is greater than 0, you can use this number to refer to the
resource fork in some other Resource Manager routines.

The FSpOpenResFile , HOpenResFile , OpenRFPerm, and OpenResFile functions all
open resource forks. Use the FSpOpenResFile function to open a resource fork using a
file system specification (FSSpec) record. You can determine whether
FSpOpenResFile is available by calling the Gestalt function with the
gestaltFSAttr selector code.

If FSpOpenResFile is not available, you can use HOpenResFile , OpenRFPerm, or
OpenResFile to open a resource fork. The HOpenResFile function allows you to
specify both a directory ID and a volume reference number, and is therefore preferred if
FSpOpenResFile is not available. The OpenRFPerm and OpenResFile functions are
earlier versions of HOpenResFile that are still supported but are more restricted in
their capabilities.

FSpOpenResFile

You can use the FSpOpenResFile function to open a file’s resource fork using a file
system specification (FSSpec) record.

FUNCTION FSpOpenResFile (spec: FSSpec;

 permission: SignedByte): Integer;

noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
tmfoErr –42 Too many files open
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked
dupFNErr –48 Another file with the same name exists in the default directory,

the root directory of the boot volume, or the System Folder

CHAPTER 1

Resource Manager

Resource Manager Reference 1-59

spe c A file system specification record specifying the name and location of the
file whose resource fork is to be opened.

permissio n
A value that specifies a read/write permission combination.

DESCRIPTION

The FSpOpenResFile function opens the resource fork of the file identified by the
spec parameter. It also makes this file the current resource file.

This function is available only in System 7 and later versions of system software. If
FSpOpenResFile is not available to your application, you can use HOpenResFile ,
OpenRFPerm, or OpenResFile instead.

The spec parameter is a file system specification record, which is a standard format in
System 7 and later versions for identifying a file or directory. The file system
specification record for files and directories is defined by the FSSpec data type.

TYPE FSSpec = {file system specification}

RECORD

vRefNum: Integer; {volume reference number}

parID: LongInt; {directory ID of parent directory}

name: Str63 ; {filename or directory name}

END;

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

Use fsCurPerm to request whatever permission is currently allowed. If write access is
unavailable (because the file is locked or because the resource fork is already open with
write access), then read permission is granted. Otherwise, read/write permission is
granted.

Use fsRdPerm to request permission to read the file, and fsWrPerm to write to it. If
write permission is granted, no other access paths are granted write permission. Because
the File Manager doesn’t support write-only access to a file, f sWrPerm is synonymous
with fsRdWrShPerm .

Use fsRdWrPerm and fsRdWrShPerm to request exclusive or shared read/write
permission, respectively. If your application is granted exclusive read/write permission,
no users are granted permission to write to the file; other users may, however, be granted

CHAPTER 1

Resource Manager

1-60 Resource Manager Reference

permission to read the file. Shared read/write permission allows multiple access paths
for writing and reading.

The Resource Manager reads the resource map from the specified file’s resource fork into
memory. It also reads into memory every resource in the resource fork whose
resPreload attribute is set.

The FSpOpenResFile function returns a file reference number for the resource fork.
You can use this reference number to refer to the resource fork in other Resource
Manager routines.

If you attempt to use FSpOpenResFile to open a resource fork that is already open,
FSpOpenResFile returns the existing file reference number or a new one, depending
on the access permission for the existing access path. For example, your application
receives a new file reference number after a successful request for read-only access to a
file previously opened with write access, whereas it receives the same file reference
number in response to a second request for write access to the same file. In this case,
FSpOpenResFile doesn’t make that file the current resource file.

If the FSpOpenResFile function fails to open the specified file’s resource fork (for
instance, because there’s no file with the given file system specification record or because
there are permission problems), it returns –1 as the file reference number. Use the
ResError function to determine what kind of error occurred.

You don’t have to call FSpOpenResFile to open the System file’s resource fork or an
application file’s resource fork. These resource forks are opened automatically when the
system and the application start up, respectively. To get the file reference number for
your application, call the CurResFile function after your application starts up and
before you open any other resource forks.

The FSpOpenResFile function checks that the information in the resource map is
internally consistent. If it isn’t, ResError returns the result code mapReadErr .

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The FSpOpenResFile function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
FSpOpenResFile ; however, you should avoid doing so. If a resource fork is opened
twice—once with read/write permission and once with read-only permission—two
copies of the resource map exist in memory. If you change one of the resources in
memory using one of the resource maps, the two resource maps become inconsistent and
the file will appear damaged to the second resource map.

If you must use this technique for read-only access, call FSpOpenResFile immediately
before your application reads information from the file and close the file immediately
afterward. Otherwise, your application may get unexpected results.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-61

If an application attempts to open a second access path with write access and the
application is different from the one that originally opened the resource fork,
FSpOpenResFile returns –1, and the ResError function returns the result code
opWrErr .

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE' resources), you must bracket your calls to
FSpOpenResFile with calls to SetResLoad with the load parameter set to FALSE
and then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. If you don’t do this, the Segment Loader Manager
treats any preloaded ' CODE' resources as your code resources when you make an
intersegment call that triggers a call to LoadSeg while the other application is first in the
resource chain. In this case, your application can begin executing the other application’s
code, and severe problems will ensue. If you need to get ' CODE' resources from the
other application’s resource fork, you can still prevent the Segment Loader Manager
problem by calling UseResFile with your application’s file reference number to make
your application the current resource file.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl . The trap macro and routine selector for the
FSpOpenResFile are

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51. For
information about using the Gestalt function to determine whether the
FSpOpenResFile procedure is available, see “Using the Resource Manager” beginning
on page 1-13. For an example of the use of FSpOpenResFile to open a resource fork,
see Listing 1-7 on page 1-27.

Trap macro Selector

_HighLevelFSDispatch $0000

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Permissions error (on file open)
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

CHAPTER 1

Resource Manager

1-62 Resource Manager Reference

For information about the CurResFile and UseResFile routines, see page 1-68 and
page 1-69, respectively.

For more information about permission parameter constants or the OpenRF function,
see Inside Macintosh: Files.

HOpenResFile

If the FSpOpenResFile function is not available, you can use HOpenResFile to open a
file’s resource fork.

FUNCTION HOpenResFile (vRefNum: Integer; dirID: LongInt ;

 f ileName: Str255;

 p ermission: SignedByte): Integer;

vRefNu m The volume reference number of the volume on which the file is located.

dirI D The directory ID of the directory where the file is located.

fileNam e The name of the file whose resource fork is to be opened.

permissio n
A constant for one of the read/write permission combinations.

DESCRIPTION

The HOpenResFile function opens the resource fork of the file with the name specified
by the fileName parameter in the directory specified by the vRefNum and dirID
parameters. It also makes this file the current resource file.

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with
FSpOpenResFile . The same information applies to HOpenResFile .

The Resource Manager reads the resource map from the resource fork of the specified file
into memory. It also reads into memory every resource whose resPreload attribute is
set.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-63

The HOpenResFile function returns a file reference number for the file. You can use this
file reference number to refer to the file in other Resource Manager routines. If the file’s
resource fork is already open, HOpenResFile returns the file reference number but does
not make that file the current resource file.

If the HOpenResFile function fails to open the specified file’s resource fork (because
there’s no file with the specified name or because there are permission problems), it
returns –1 as the file reference number. Use the ResError function to determine what
kind of error occurred.

You don’t have to call HOpenResFile to open the System file’s resource fork or an
application file’s resource fork. These files are opened automatically when the system
and the application start up, respectively. To get the file reference number for your
application, call the CurResFile function after the application starts up and before you
open the resource forks for any other files.

The HOpenResFile function checks that the information in the resource map is
internally consistent. If it isn’t, ResError returns the result code mapReadErr .

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The HOpenResFile function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
HOpenResFile ; however, you should avoid doing so. See page 1-60 for discussion of
this issue in relation to FSpOpenResFile . The HOpenResFile function works the
same way.

Versions of system software before System 7 do not allow you to use HOpenResFile to
open a second access path, with write access, to a resource fork. In this case,
HOpenResFile returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE' resources), you must bracket your calls to
HOpenResFile with calls to SetResLoad with the load parameter set to FALSE and
then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. The discussion of this issue in relation to
FSpOpenResFile (page 1-60) also applies to HOpenResFile .

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl .

CHAPTER 1

Resource Manager

1-64 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF
function, see Inside Macintosh: Files.

OpenRFPerm

If the FSpOpenResFile and HOpenResFile functions are not available, you can use
the OpenRFPerm function to open a file’s resource fork.

FUNCTION OpenRFPerm (fileName: Str255; vRefNum: Integer;

permission: SignedByte): Integer;

fileNam e The name of the file whose resource fork is to be opened.

vRefNu m The volume reference number or directory ID for the volume or directory
in which the file is located.

permissio n
A constant for one of the read/write permission combinations.

DESCRIPTION

The OpenRFPerm function opens the resource fork of the file with the name specified by
the fileName parameter in the directory or volume specified by the vRefNum
parameter. It also makes this file the current resource file.

In addition to opening the resource fork for the file with the specified name,
OpenRFPerm lets you specify in the permission parameter the read/write permission
of the resource fork the first time it is opened.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

CHAPTER 1

Resource Manager

Resource Manager Reference 1-65

You can use the OpenRFPerm function if the FSpOpenResFile function is not
available. You can determine whether FSpOpenResFile is available by calling the
Gestalt function with the gestaltFSAttr selector code. The OpenRFPerm is an
earlier version of the HOpenResFile function.

You can specify the access path permission for the resource fork by setting the
permission parameter to one of these constants:

CONST

fsCurPerm = 0; {whatever is currently allowed}

fsRdPerm = 1; {read-only permission}

fsWrPerm = 2; {write permission}

fsRdWrPerm = 3; {exclusive read/write permission}

fsRdWrShPerm = 4; {shared read/write permission}

See page 1-59 for information about specifying access path permission with
FSpOpenResFile . The same information applies to OpenRFPerm.

The Resource Manager reads the resource map from the resource fork for the specified
file into memory. It also reads into memory every resource in the resource fork whose
resPreload attribute is set.

The OpenRFPerm function returns a file reference number for the file whose resource
fork it has opened. You can use this file reference number to refer to the file in other
Resource Manager routines. If the file’s resource fork is already open, OpenRFPerm
returns the file reference number but does not make that file the current resource file.

If the OpenRFPerm function fails to open the specified file’s resource fork (because
there’s no file with the given name or because there are permission problems), it
returns –1 as the file reference number. Use the ResError function to determine what
kind of error occurred.

You don’t have to call OpenRFPerm to open the System file’s resource fork or an
application file’s resource fork. These files are opened automatically when the system
and the application start up, respectively. To get the file reference number for your
application, call the CurResFile function after the application starts up and before you
open the resource forks for any other files.

The OpenRFPerm function checks that the information in the resource map is internally
consistent. If it isn’t, ResError returns the result code mapReadErr .

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The OpenRFPerm function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

It’s possible to create multiple, unique, read-only access paths to a resource fork using
OpenRFPerm; however, you should avoid doing so. See page 1-60 for discussion of this
issue in relation to FSpOpenResFile ; OpenRFPerm works the same way.

CHAPTER 1

Resource Manager

1-66 Resource Manager Reference

Versions of system software before System 7 do not allow you to use OpenRFPerm to
open a second access path, with write access, to a resource fork. In this case,
OpenRFPerm returns the reference number already assigned to the file.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE' resources), you must bracket your calls to
OpenRFPerm with calls to SetResLoad with the load parameter set to FALSE and then
to TRUE. You must also avoid making intersegment calls while the other application’s
resource fork is open. The discussion of this issue in relation to FSpOpenResFile
(page 1-60) also applies to OpenRFPerm.

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl .

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about permission parameter constants and the OpenRF
function, see Inside Macintosh: Files.

OpenResFile

If the FSpOpenResFile function is not available, you can use the OpenResFile
function to open a resource fork.

FUNCTION OpenResFile (fileName: Str255): Integer;

fileNam e The name of the file whose resource fork is to be opened.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

CHAPTER 1

Resource Manager

Resource Manager Reference 1-67

DESCRIPTION

The OpenResFile function opens the resource fork of the file with the name specified
by the fileName parameter in the application’s default directory—that is, the directory
in which the application is located. It also makes this file the current resource file.

Like the OpenRFPerm function, the OpenResFile function takes a filename and opens
the resource fork for the file with that name. Unlike OpenRFPerm, OpenResFile does
not let you specify the read/write permission of the resource fork the first time it is
opened. The OpenResFile function is an earlier version of the OpenRFPerm function.

If it finds the specified file in your application’s default directory, OpenResFile reads
the file’s resource map into memory and returns a file reference number for the file. It
also reads into memory every resource in the resource fork whose resPreload attribute
is set.

You can use the file reference number returned by OpenResFile to refer to the file in
other Resource Manager routines. If the file’s resource fork is already open,
OpenResFile returns the file reference number but does not make that file the current
resource file.

If the OpenResFile function fails to open the specified file’s resource fork (for instance,
because there’s no file with the given name), it returns –1 as the file reference number.
Use the ResError function to determine what kind of error occurred.

You don’t have to call OpenResFile to open the System file’s resource fork or an
application file’s resource fork. These resource forks are opened automatically when the
system and the application start up, respectively. To get the file reference number for
your application, call the CurResFile function after the application starts up and
before you open the resource forks for any other files.

The OpenResFile function checks that the information in the resource map is internally
consistent. If it isn’t, ResError returns the result code mapReadErr .

To open a resource fork just for block-level operations, such as copying files without
reading the resource map into memory, use the File Manager function OpenRF.

SPECIAL CONSIDERATIONS

The OpenResFile function may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

If you want to open the resource fork for another application (or any resource fork other
than your application’s that includes ' CODE' resources), you must bracket your calls to
OpenResFile with calls to SetResLoad with the load parameter set to FALSE and
then to TRUE. You must also avoid making intersegment calls while the other
application’s resource fork is open. The discussion of this issue in relation to
FSpOpenResFile (page 1-60) also applies to OpenResFile .

ASSEMBLY-LANGUAGE INFORMATION

A handle to the resource map for the most recently opened resource fork is stored in the
global variable TopMapHndl .

CHAPTER 1

Resource Manager

1-68 Resource Manager Reference

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Getting and Setting the Current Resource File

Most of the Resource Manager routines assume that the current resource file is the file on
whose resource fork they should operate or, in the case of a search, the file where they
should begin. In general, the current resource file is the last one whose resource fork
your application opened unless you specify otherwise.

Two routines work specifically with the current resource file: CurResFile and
UseResFile . The CurResFile function tells you which of the files whose resource
forks are currently open is the current resource file. The UseResFil e procedure sets the
current resource file.

The HomeResFile function gets the file reference number associated with a particular
resource.

CurResFile

You can use the CurResFile function to get the file reference number of the current
resource file.

FUNCTION CurResFile: Integer;

DESCRIPTION

The CurResFile function returns the file reference number associated with the current
resource file. You can call this function when your application starts up (before opening
the resource fork of any other file) to get the file reference number of your application’s
resource fork.

noErr 0 No error
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
opWrErr –49 File already open with write permission
permErr –54 Attempt to open locked file for writing
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
mapReadErr –199 Map inconsistent with operation

CHAPTER 1

Resource Manager

Resource Manager Reference 1-69

If the current resource file is the System file, CurResFil e returns the actual file
reference number. You can use this number or 0 with routines that take a file reference
number for the System file. All Resource Manager routines recognize both 0 and the
actual file reference number as referring to the System file.

ASSEMBLY-LANGUAGE INFORMATION

The current resource file’s reference number is stored in the global variable CurMap.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the CurResFile function, see Listing 1-8 on page 1-29.

UseResFile

You can use the UseResFile procedure to set the current resource file.

PROCEDURE UseResFile (refNum: Integer);

refNu m The file reference number for a resource fork.

DESCRIPTION

The UseResFile procedure searches the list of files whose resource forks have been
opened for the file specified by the refNum parameter. If the specified file is found, the
Resource Manager sets the current resource file to the specified file. If there’s no resource
fork open for a file with that reference number, UseResFile does nothing. To set the
current resource file to the System file, use 0 for the refNum parameter.

Open resource forks are arranged as a linked list with the most recently opened resource
fork at the beginning. When searching open resource forks, the Resource Manager starts
with the most recently opened file. You can call the UseResFile procedure to set the
current resource file to a file opened earlier, and thereby start subsequent searches with
the specified file. In this way, you can cause any files higher in the resource chain to be
left out of subsequent searches.

When a new resource fork is opened, this action overrides previous calls to UseResFile
and the entire list is searched. For example, if five resource forks are opened in the order
R0, R1, R2, R3, and R4, the search order is R4-R3-R2-R1-R0. Calling UseResFile(R2)
changes the search order to R2-R1-R0; R4 and R3 are not searched. When the resource
fork of a new file (R5) is opened, the search order becomes R5-R4-R3-R2-R1-R0.

noErr 0 No error

CHAPTER 1

Resource Manager

1-70 Resource Manager Reference

You typically call CurResFile to get and save the current resource file, UseResFile to
set the current resource file to the desired file, then (after you are finished using the
resource) UseResFile to restore the current resource file to its previous value. Calling
UseResFile(0) causes the Resource Manager to search only the System file’s resource
map. This is useful if you no longer wish to override a system resource with one by the
same name in your application’s resource fork.

SPECIAL CONSIDERATIONS

The FSpOpenResFile , HOpenResFile , and OpenResFile functions, which also set
the current resource file, override previous calls to UseResFile .

ASSEMBLY-LANGUAGE INFORMATION

The settings of the system global variables RomMapInsert and TmpResLoad affect
resource search order. These global variables determine whether the Resource Manager
searches ROM-resident resources before the System file’s resources.

The Resource Manager normally searches ROM resources only when you use the
RGetResourc e function to get a handle to the resource, and even then only after it
searches the System file’s resource fork. To search for a resource in ROM before searching
the System file’s resource fork, your application must first alter the resource search order
by inserting the ROM resource map in front of the System file’s resource map.

When the value of the system global variable RomMapInsert is TRUE, the Resource
Manager inserts the ROM resource map before the System file’s resource map for the
next call only (including any Resource Manager routine that gets a resource, not just
RGetResource). When the value of RomMapInsert is TRUE, the adjacent variable
TmpResLoad determines whether the value of the global variable ResLoad is
considered TRUE or FALSE, overriding the actual value of ResLoad for the next call
only. The values of the RomMapInsert and TmpResLoad variables are cleared after
each call to a Resource Manager routine.

You can use two global constants to set these variables in tandem. Set the system global
variable RomMapInsert to the global constant mapTrue to insert the ROM resource
map with SetResLoad(TRUE) . Set the system global variable RomMapInsert to the
global constant mapFalse to insert the ROM resource map with SetResLoad(FALSE) .

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-71

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the UseResFile procedure, see Listing 1-8 on page 1-29.

For descriptions of the FSpOpenResFile , HOpenResFile , and OpenResFile
functions, see page 1-58 through page 1-66. For a description of the SetResLoa d
procedure, see page 1-79.

HomeResFile

To get the file reference number associated with a particular resource, use the
HomeResFile function.

FUNCTION HomeResFile (theResource: Handle): Integer;

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the HomeResFile function returns the file reference
number for the resource fork containing the specified resource. If the given handle isn’t a
handle to a resource, HomeResFile returns –1, and the ResError function returns the
result code resNotFound . If HomeResFile returns 0, the resource is in the System file’s
resource fork. If HomeResFile returns 1, the resource is ROM-resident.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Reading Resources Into Memory

The routines described in this section allow your application to read resource data into
memory. The GetResource and Get1Resource functions get a resource specified by a
resource type and a resource ID. The GetNamedResource and Get1NamedResource
functions get a resource specified by name. The RGetResource function searches the
ROM-resident resources as well as the open resource forks.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-72 Resource Manager Reference

The SetResLoad procedure enables and disables automatic loading of resource data
into memory for routines that return handles to resources, and the LoadResource
procedure reads resource data into memory for a purged resource or after you’ve called
SetResLoa d with the load parameter set to FALSE.

When your application requests a resource, the Resource Manager normally looks in the
current resource file’s resource map in memory. If it can’t find an entry for the specified
resource, the Resource Manager searches the resource maps for each open resource fork
in the reverse order that the resource forks were opened. If it can’t find an entry for the
specified resource in any of these resource maps, the Resource Manager searches your
application’s resource map. If it can’t find an entry for the specified resource in
your application’s resource map, the Resource Manager searches the resource map for
the System file.

The Resource Manager determines whether or not to load the specified resource into
memory according to the entry for that resource in the resource map. If the resource’s
resource map entry contains a valid handle, the Resource Manager returns that handle. If
the value of the handle is NIL , the Resource Manager reads the resource data into
memory.

Before reading the resource data into memory, the Resource Manager calls the Memory
Manager to allocate a relocatable block for the resource data. The Memory Manager
allocates the block, assigns a master pointer to the block, and returns to the Resource
Manager a pointer to the master pointer. The Resource Manager then installs this handle
in the resource map and also returns a handle to the resource.

If the resource’s resource map entry contains an empty handle (a handle whose master
pointer is set to NIL) and the value of the system global variable ResLoad is TRUE, the
Resource Manager routines that get resources reallocate the resource’s handle and read
the resource data from disk back into memory.

IMPORTANT

In certain situations, a Resource Manager routine can return an empty
handle (a handle whose master pointer is set to NIL). For instance, if
you’ve called SetResLoad with the load parameter set to FALSE and
the resource data isn’t already in memory, and then you call the
GetResource function (or any of the other Resource Manager routines
that get a resource), the Resource Manager routine returns an empty
handle (a handle whose master pointer is set to NIL). This can also
happen if you read resource data for a purgeable resource into memory
and then call SetResLoad with the load parameter set to FALSE. If the
resource data is later purged, when you call GetResource (or other
routines that get a resource), the Resource Manager returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

CHAPTER 1

Resource Manager

Resource Manager Reference 1-73

GetResource

You can use the GetResource function to get resource data for a resource specified by
resource type and resource ID.

FUNCTION GetResource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The GetResource function searches the resource maps in memory for the resource
specified by the parameters theType and theID . The resource maps in memory, which
represent all the open resource forks, are arranged as a linked list. When searching this
list, GetResource starts with the current resource file and progresses through the list
(that is, searching the resource maps in reverse order of opening) until it finds the
resource’s entry in one of the resource maps.

If the GetResource function finds the specified resource entry in one of the resource
maps and the entry contains a valid handle, it returns that handle. If the entry contains a
a handle whose value is NIL , and if you haven’t called SetResLoa d with the load
parameter set to FALSE, GetResource attempts to read the resource into memory.

If GetResourc e can’t find the resource data, it returns NIL , and ResError returns the
result code resNotFound . The GetResource function also returns NIL if the resource
data to be read into memory won’t fit, in which case ResError returns an appropriate
Memory Manager result code. If you call GetResource with a resource type that can’t
be found in any of the resource maps of the open resource forks, the function returns
NIL , but ResError returns the result code noErr . You should always check that the
value of the returned handle is not NIL .

You can change the resource map search order by calling the UseResFile procedure
before GetResource .

SPECIAL CONSIDERATIONS

Calling GetResource may move or purge memory blocks in the application heap. Your
application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-74 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of GetResource , see page 1-18 through page 1-24.

To include ROM-resident system resources in the Resource Manager’s search of the
resource maps of open resource forks, use the RGetResourc e function as described on
page 1-78.

For information about the UseResFile and SetResLoa d procedures, see page 1-69
and page 1-79, respectively.

Get1Resource

You can use the Get1Resource function to get resource data for a resource in the
current resource file.

FUNCTION Get1Resource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The Get1Resource function searches the current resource file’s resource map in
memory for the resource specified by the theType and theID parameters. If
Get1Resource finds an entry for the resource in the current resource file’s resource
map and the entry contains a valid handle, it returns that handle. If the entry contains a
handle whose value is NI L, and if you haven’t called SetResLoa d with the load
parameter set to FALSE, Get1Resource attempts to read the resource into memory.

If Get1Resource can’t find the resource data, it returns NIL , and ResError returns the
result code resNotFound . The Get1Resource function also returns NIL if the resource
data to be read into memory won’t fit, in which case ResError returns an appropriate
Memory Manager result code.

If you call Get1Resource with a resource type that can’t be found in the resource map
of the current resource file, the function returns NIL , but ResError returns the result
code noErr . You should always check that the value of the returned handle is not NIL .

You can change the resource map search order by calling the UseResFile procedure
before Get1Resource .

CHAPTER 1

Resource Manager

Resource Manager Reference 1-75

SPECIAL CONSIDERATIONS

Calling Get1Resource may move or purge memory blocks in the application heap.
Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the Get1Resource function, see Listing 1-8 on page 1-29 and
Listing 1-9 on page 1-32.

To include ROM-resident system resources in the Resource Manager’s search of the
resource maps for open resource forks, use the RGetResourc e function as described on
page 1-78.

For information about the UseResFile and SetResLoa d procedures, see page 1-69
and page 1-79, respectively.

GetNamedResource

You can use the GetNamedResource function to get a named resource.

FUNCTION GetNamedResource (theType: ResType; name: Str255)

: Handle;

theType A resource type.

name A name that uniquely identifies a resource of the specified type. Strings
passed in this parameter are case-sensitive.

DESCRIPTION

The GetNamedResource function searches the resource maps in memory for the
resource specified by the parameters theType and name. The resource maps in memory,
which represent all the open resource forks, are arranged as a linked list. When
GetNamedResource searches this list, it starts with the current resource file and
progresses through the list in order (that is, in reverse chronological order in which the
resource forks were opened) until it finds the resource’s entry in one of the resource
maps.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-76 Resource Manager Reference

If GetNamedResource finds the specified resource entry in one of the resource maps
and the entry contains a valid handle, the function returns that handle. If the entry
contains a handle whose value is NI L, and if you haven’t called SetResLoa d with the
load parameter set to FALSE, GetNamedResource attempts to read the resource into
memory.

If the GetNamedResource function can’t find the resource data, it returns NIL , and
ResError returns the result code resNotFound . The GetNamedResource function
also returns NIL if the resource data to be read into memory won’t fit, in which case
ResError returns an appropriate Memory Manager result code. If you call
GetNamedResource with a resource type that can’t be found in any of the resource
maps of the open resource forks, the function returns NIL as well, but ResErro r returns
the result code noErr . You should always check that the value of the returned handle is
not NIL .

You can change the resource map search order by calling the UseResFile procedure
before GetNamedResource .

SPECIAL CONSIDERATIONS

The GetNamedResource function may move or purge memory blocks in the
application heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To include ROM-resident system resources in the Resource Manager’s search of the
resource maps for open resource forks, use the RGetResourc e function as described on
page 1-78.

For information about the UseResFile and SetResLoa d procedures, see page 1-69
and page 1-79, respectively.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-77

Get1NamedResource

You can use the Get1NamedResource function to get a named resource in the current
resource file.

FUNCTION Get1NamedResource (theType: ResType; name: Str255)

 : Handle;

theType A resource type.

name A name that uniquely identifies a resource of the specified type.

DESCRIPTION

The Get1NamedResource function searches the current resource file’s resource map in
memory for the resource specified by the parameters theType and name. If
Get1NamedResource finds an entry for the resource in the current resource file’s
resource map and the entry contains a valid handle, the function returns that handle. If
the entry contains a handle whose value is NI L, and if you haven’t called SetResLoa d
with the load parameter set to FALSE, Get1NamedResource attempts to read the
resource into memory.

If it can’t find the resource data, Get1NamedResource returns NIL , and ResError
returns the result code resNotFound . The Get1NamedResource function also returns
NIL if the resource data to be read into memory won’t fit, in which case ResError
returns an appropriate Memory Manager result code.

If you call Get1NamedResource with a resource type that can’t be found in the
resource map of the current resource file, the function returns NIL , but ResError
returns the result code noErr . You should always check that the value of the returned
handle is not NIL .

You can change the search order by calling the UseResFile procedure before
Get1NamedResource .

SPECIAL CONSIDERATIONS

The Get1NamedResource function may move or purge memory blocks in the
application heap. Your application should not call this function at interrupt time.

RESULT CODES

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-78 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To include ROM-resident system resources in the Resource Manager’s search of the
resource maps for open resource forks, use the RGetResourc e function, described next.

For information about the UseResFile and SetResLoa d procedures, see page 1-69
and page 1-79, respectively.

RGetResource

You can use the RGetResource function to get resource data for a resource and include
ROM-resident system resources in the Resource Manager ’s search of resource maps.

FUNCTION RGetResource (theType: ResType; theID: Integer): Handle;

theType A resource type.

theID An integer that uniquely identifies a resource of the specified type.

DESCRIPTION

The RGetResource function searches the resource maps in memory for the resource
specified by the parameters theType and theID . The resource maps in memory, which
represent all open resource forks, are arranged as a linked list. The RGetResourc e
function first uses GetResource to search this list. The GetResource function starts
with the current resource file and progresses through the list in order (that is, in reverse
chronological order in which the resource forks were opened) until it finds the resource’s
entry in one of the resource maps. If GetResource doesn’t find the specified resource in
its search of the resource maps of open resource forks (which includes the System file’s
resource fork), RGetResource sets the global variable RomMapInsert to TRUE, then
calls GetResource again. In response, GetResourc e performs the same search, but
this time it looks in the resource map of the ROM-resident resources before searching the
resource map of the System file.

If RGetResource finds the specified resource entry in one of the resource maps and the
entry contains a valid handle, the function returns that handle. If the entry contains a
handle whose value is NI L, and if you haven’t called SetResLoa d with the load
parameter set to FALSE, RGetResource attempts to read the resource into memory.

If it can’t find the resource data, RGetResource returns NIL , and ResError returns the
result code resNotFound . The RGetResource function also returns NIL if the resource
data to be read into memory won’t fit, in which case ResError returns an appropriate
Memory Manager result code. If you call RGetResource with a resource type that can’t
be found in any of the resource maps of the open resource forks, the function returns
NIL , but ResError returns the result code noErr . You should always check that the
value of the returned handle is not NIL .

CHAPTER 1

Resource Manager

Resource Manager Reference 1-79

SPECIAL CONSIDERATIONS

The RGetResource function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information, see “Inserting the ROM Resource Map” beginning on page 1-134.

For a description of the UseResFile procedure, see page 1-69. The SetResLoa d
procedure is described next.

SetResLoad

You can use the SetResLoad procedure to enable and disable automatic loading of
resource data into memory for routines that return handles to resources.

PROCEDURE SetResLoad (load: Boolean);

load A Boolean value that determines whether Resource Manager routines
should read resource data into memory. If you set this parameter to TRUE,
Resource Manager routines that return handles will, during subsequent
calls, automatically read resource data into memory if it is not already in
memory; if you set this parameter to FALSE, Resource Manager routines
will not automatically read resource data into memory.

DESCRIPTION

Routines that return handles to resources normally read the resource data into memory if
it’s not already there. The default setting (load = TRUE) maintains this state. If the
load parameter is set to FALSE, routines that return handles to resources will not,
during subsequent calls, load the resource data into memory. Instead, such routines
return a handle whose master pointer is set to NIL unless the resource is already in
memory. In addition, when first opening a resource fork the Resource Manager won’t
load into memory resources whose resPreload attribute is set.

You can use the SetResLoad procedure when you want to read from the resource map
without reading the resource data into memory. To read the resource data into memory
after a call to SetResLoad , call the LoadResource procedure, which is described next.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-80 Resource Manager Reference

▲ WARNING

If you call SetResLoa d with the load parameter set to FALSE, be sure
to call SetResLoa d with the load parameter set to TRUE as soon as
possible. Other parts of system software that call the Resource Manager
expect this value to be TRUE, and some routines won’t work if resources
are not loaded automatically. ▲

ASSEMBLY-LANGUAGE INFORMATION

The current value of SetResLoad is stored in the global variable ResLoad .

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about the global variable ResLoad , see “Inserting the ROM
Resource Map” beginning on page 1-134.

LoadResource

You can use the LoadResource procedure to get resource data after you’ve called
SetResLoa d with the load parameter set to FALSE or when the resource is purgeable.

PROCEDURE LoadResource (theResource: Handle);

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource, LoadResource reads the resource data into memory. If
the resource is already in memory, or if the theResource parameter doesn’t contain a
handle to a resource, then LoadResource does nothing. To determine whether either of
these situations occurred, call ResError . If the resource is already in memory,
ResError returns noErr ; if the handle is not a handle to a resource, ResError returns
resNotFound .

noErr 0 No error

CHAPTER 1

Resource Manager

Resource Manager Reference 1-81

SPECIAL CONSIDERATIONS

If you’ve changed the resource data for a purgeable resource and the resource is purged
before being written to the file, the changes will be lost. In this case, LoadResource
rereads the original resource from the file’s resource fork. You should use
ChangedResource or SetResPurge before calling LoadResource to ensure that
changes made to purgeable resources are written to the resource fork.

ASSEMBLY-LANGUAGE INFORMATION

The LoadResource procedure preserves all registers.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For information about the SetResLoad , ChangedResource , and SetResPurge
procedures, see page 1-79, page 1-88, and page 1-94, respectively.

Getting and Setting Resource Information

The Resource Manager provides four routines that allow you to get and set information
about resources. The GetResInfo procedure returns the resource ID, resource type, and
resource name for a specified resource. The SetResInfo procedure sets the resource
name and resource ID for a specified resource. The GetResAttrs function returns a
resource’s attributes, and the SetResAttrs function sets a resource’s attributes.

GetResInfo

You can use the GetResInfo procedure to get a resource’s resource ID, resource type,
and resource name.

PROCEDURE GetResInfo (theResource: Handle; VAR theID: Integer;

 VAR theType: ResType; VAR name: Str255);

theResourc e
A handle to a resource.

theI D GetResInfo returns the resource ID of the specified resource in this
parameter.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-82 Resource Manager Reference

theTyp e GetResInfo returns the resource type of the specified resource in this
parameter.

name GetResInfo returns the name of the specified resource in this parameter.

DESCRIPTION

Given a handle to a resource, the GetResInfo procedure returns the resource’s
resource ID, resource type, and resource name. If the handle isn’t a valid handle to
a resource, GetResInfo does nothing; to determine whether this has occurred, call
ResError .

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

To set a resource’s ID, resource type, or resource name, use the SetResInfo procedure.
It is described next.

SetResInfo

You can use the SetResInfo procedure to change the name and resource ID of a
resource.

PROCEDURE SetResInfo (theResource: Handle; theID: Integer;

 name: Str255);

theResource
A handle to a resource.

theID The new resource ID.

name The new name or an empty string to preserve the resource name.

DESCRIPTION

Given a handle to a resource, SetResInfo changes the resource ID and the resource
name of the specified resource to the values given in theID and name. If you pass an
empty string for the name parameter, the resource name is not changed. The
SetResInfo procedure changes the information in the resource map in memory, not in
the resource file itself.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-83

▲ WARNING

Do not change a system resource’s resource ID or name. Other
applications may already access the resource and may not work
properly if you change the resource ID, resource name, or both. ▲

If the parameter theResource doesn’t contain a handle to an existing resource,
SetResInfo does nothing, and ResError returns the result code resNotFound . If
the resource map becomes too large to fit in memory (for example, after an unnamed
resource is given a name), SetResInfo does nothing, and ResError returns an
appropriate Memory Manager result code. The same is true if the resource data in
memory can’t be written to the resource fork (for example, because the disk is full). If the
resProtected attribute is set for the resource, SetResInfo does nothing, and
ResError returns the result code resAttrErr .

If you want to write changes to the resource map on disk after updating the resource
map in memory, call the ChangedResource procedure for the same resource after you
call SetResInfo .

IMPORTANT

Even if you don’t call ChangedResourc e after using SetResInfo to
change the name and resource ID of a resource, the change may be
written to disk when the Resource Manager updates the resource fork. If
you call ChangedResource for any resource in the same resource fork,
or if you add or remove a resource, the Resource Manager writes the
entire resource map to disk after a call to UpdateResFile or when
your application terminates. In these cases, all changes to resource
information in the resource map become permanent. If you want any of
the changes to be temporary, you should restore the original information
before the resource is updated. ▲

SPECIAL CONSIDERATIONS

The SetResInf o procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the ChangedResource and UpdateResFile procedures, see
page 1-88 and page 1-92, respectively.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute does not permit operation

CHAPTER 1

Resource Manager

1-84 Resource Manager Reference

GetResAttrs

You can use the GetResAttrs function to get a resource’s attributes.

FUNCTION GetResAttrs (theResource: Handle): Integer;

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the GetResAttrs function returns the resource’s
attributes as recorded in its entry in the resource map in memory. If the value of the
theResource parameter isn’t a handle to a valid resource, GetResInfo does nothing,
and the ResError function returns the result code resNotFound .

The GetResAttrs function returns the resource’s attributes in the low-order byte of the
function result. Each attribute is identified by a specific bit in the low-order byte. If the
bit corresponding to an attribute contains 1, then that attribute is set; if the bit contains 0,
then that attribute is not set. You can use these constants to refer to each attribute:

CONST

resSysHeap = 64; {set if read into system heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource fork}

The resSysHeap attribute indicates whether the resource is read into the system heap
(resSysHeap attribute is set to 1) or your application’s heap (resSysHeap attribute is
set to 0).

If the resPurgeable attribute is set to 1, the resource is purgeable; if it’s 0, the resource
is nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLocked attribute
overrides the resPurgeable attribute. If the resLocked attribute is 1, the resource is
nonpurgeable regardless of whether resPurgeable is set. If it’s 0, the resource is
purgeable or nonpurgeable depending on the value of the resPurgeable attribute.

If the resProtected attribute is set to 1, your application can’t use Resource Manager
routines to change the resource ID or resource name, modify the resource contents, or
remove the resource from its resource fork. However, you can use the SetResAttrs
procedure to remove this protection.

If the resPreload attribute is set to 1, the Resource Manager reads the resource’s
resource data into memory immediately after opening its resource fork. You can use this
setting to make multiple resources available for your application as soon as possible,

CHAPTER 1

Resource Manager

Resource Manager Reference 1-85

rather than reading each one into memory individually. If both the resPreload
attribute and the resLocked attribute are set, the Resource Manager loads the resource
as low in the heap as possible.

If the resChanged attribute is set to 1, the resource has been changed; if it’s 0, the
resource hasn’t been changed. This attribute is used only while the resource map is in
memory. The resChanged attribute must be 0 in the resource fork on disk.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on
page 1-8.

To change a resource’s attributes in the resource map in memory, use the SetResAttrs
procedure. It is described next.

SetResAttrs

You can use the SetResAttrs procedure to change a resource’s attributes in the
resource map in memory.

PROCEDURE SetResAttrs (theResource: Handle; attrs: Integer);

theResource
A handle to a resource.

attr s The resource attributes to set.

DESCRIPTION

Given a handle to a resource, SetResAttrs changes the resource attributes of the
resource to those specified in the attrs parameter. The SetResAttrs procedure
changes the information in the resource map in memory, not in the file on disk. The
resProtected attribute changes immediately. Other attribute changes take effect the
next time the specified resource is read into memory but are not made permanent until
the Resource Manager updates the resource fork.

If the value of the parameter theResource isn’t a valid handle to a resource,
SetResAttrs does nothing, and the ResError function returns the result code
resNotFound .

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-86 Resource Manager Reference

Each attribute is identified by a specific bit in the low-order byte of a word. If the bit
corresponding to an attribute contains 1, then that attribute is set; if the bit contains 0,
then that attribute is not set. You can use these constants to specify each attribute:

CONST

resSysHeap = 64; {set if read into system heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to resource fork}

The r esSysHeap attribute determines whether the resource is read into your
application’s heap (resSysHeap attribute set to 0) or the system heap (resSysHeap
attribute set to 1). You should set this bit to 0 for your application’s resources. Note that
if you do set the r esSysHeap attribute to 1 and the resource is too large for the system
heap, the bit is cleared and the resource is read into the application heap.

Set the resPurgeable attribute to 1 to make the resource purgeable; you can set it to 0
to make the resource nonpurgeable. However, do not use SetResAttrs to make a
purgeable resource nonpurgeable.

Because a locked resource is nonrelocatable and nonpurgeable, the resLocked attribute
overrides the resPurgeable attribute. If you set the resLocked attribute to 1, the
resource is nonpurgeable regardless of whether or not you set r esPurgeabl e. If you
set the resLocked attribute to 0, the resource is purgeable or nonpurgeable depending
on the value of the resPurgeable attribute.

If you set the resProtected attribute to 1, your application can’t use Resource
Manager routines to change the resource ID or resource name, modify the resource
contents, or remove the resource from its resource fork. If you set the resProtected
attribute to 0, you remove this protection. Note that this attribute change takes effect
immediately.

If you set the resPreload attribute to 1, the Resource Manager reads the resource’s
resource data into memory immediately after opening its resource fork. You can use this
setting to make multiple resources available for your application as soon as possible,
rather than reading each one into memory separately.

The resChanged attribute indicates whether or not the resource has been changed; do
not use SetResAttrs to set the resChanged attribute. Be sure the attrs parameter
passed to SetResAttrs doesn’t change the current setting of this attribute. To
determine the attribute’s current setting, call the GetResAttrs function. To set
the resChanged attribute, call the ChangedResource procedure. Note
that the resChanged attribute is used only while the resource map is in memory. The
resChanged attribute must be 0 in the resource fork on disk.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-87

If you want the Resource Manager to write the modified resource map to disk after a
subsequent call to UpdateResFile or when your application terminates, call the
ChangedResource procedure after you call SetResAttrs .

▲ WARNING

Do not use SetResAttrs to change a purgeable resource. If you make a
purgeable resource nonpurgeable by setting the resPurgeable
attribute with SetResAttrs , the resource doesn’t become
nonpurgeable until the next time the specified resource is read into
memory. Thus, the resource might be purged while you’re changing it. ▲

SPECIAL CONSIDERATIONS

The SetResAttrs procedure does not return an error if you are setting the attributes of
a resource in a resource file that has a read-only resource map. To find out whether this is
the case, use GetRes File Attrs .

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on
page 1-8.

For a description of the GetRes File Attrs function, see page 1-116. To mark a resource
as changed, use the ChangedResource procedure, described next.

Modifying Resources

The Resource Manager provides two routines that change the resChanged attribute of a
specified resource. The ChangedResource procedure allows you to indicate that a
resource in memory has been changed, and the AddResource procedure allows you to
add a new resource to a resource map.

If the resChanged attribute for a resource has been set and your application calls
UpdateResFil e or quits, the Resource Manager writes both the entire resource map
and the resource data for that resource to the resource fork of the corresponding file on
disk. If the resChanged attribute has been set and your application calls
WriteResource , the Resource Manager writes only the resource’s data to disk.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-88 Resource Manager Reference

ChangedResource

If you’ve changed a resource’s data or changed an entry in a resource map, you can use
the ChangedResource procedure to set a flag in the resource’s resource map entry in
memory to show that you’ve made changes.

PROCEDURE ChangedResource (theResource: Handle);

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the ChangedResource procedure sets the resChanged
attribute for that resource in the resource map in memory. If the resChanged attribute
for a resource has been set and your application calls UpdateResFile or quits, the
Resource Manager writes the resource data for that resource (and for all other resources
whose resChanged attribute is set) and the entire resource map to the resource fork of
the corresponding file on disk. If the resChanged attribute for a resource has been set
and your application calls WriteResource , the Resource Manager writes only the
resource data for that resource to disk.

If you change information in the resource map with a call to SetResInfo or
SetResAttrs and then call ChangedResource and UpdateResFile , the Resource
Manager still writes both the resource map and the resource data to disk. If you want
any of your changes to the resource map or resource data to be temporary, you must
restore the original information before the Resource Manager updates the resource fork
on disk.

After writing a resource to disk, the Resource Manager clears the resource’s
resChanged attribute in the appropriate entry of the resource map in memory.

If the given handle isn’t a handle to a resource, if the modified resource data can’t be
written to the resource fork, or if the resProtected attribute is set for the modified
resource, ChangedResource does nothing. To find out whether any of these errors
occurred, call ResError .

When your application calls ChangedResourc e, the Resource Manager attempts to
reserve enough disk space to contain the changed resource. If the modified resource data
can’t be written to the resource fork (for example, if there’s not enough room on disk),
the resChanged attribute is not set to 1. If this is the case and you call UpdateResFile
or WriteResource , the Resource Manager won’t know that the resource data has been
changed. Thus, the routine won’t write the modified resource data to the resource fork
and won’t return an error. For this reason, always make sure that the ResError function
returns the result code noErr after a call to ChangedResource .

CHAPTER 1

Resource Manager

Resource Manager Reference 1-89

IMPORTANT

If you need to make changes to a purgeable resource using routines that
may cause the Memory Manager to purge the resource, you should
make the resource temporarily not purgeable. To do so, use the Memory
Manager procedures HGetState , HNoPurge , and HSetState to make
sure the resource data remains in memory while you change it and until
the resource data is written to disk. (You can’t use the SetResAttrs
procedure for this purpose, because the changes don’t take effect
immediately.) First call HGetState and HNoPurge , then change the
resource as necessary. To make a change to a resource permanent, use
ChangedResource and UpdateResFile or WriteResourc e; then
call HSetState when you’re finished. Or, instead of calling
WriteResource to write the resource data immediately, you can call
SetResPurg e with the install parameter set to TRUE before making
changes to purgeable resource data.

If your application doesn’t make its resources purgeable, or if the
changes you are making to a purgeable resource don’t involve routines
that may cause the resource to be purged, you don’t need to take these
precautions. ▲

SPECIAL CONSIDERATIONS

The ChangedResource procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

When called, ChangedResource reserves disk space for the changed resource. The
procedure reserves space every time you call it, but the resource is not actually written
until you call WriteResource or UpdateResFile . Thus, if you call
ChangedResource several times before the resource is actually written, the procedure
reserves much more space than is needed. If the resource is large, you may unexpectedly
run out of disk space. When the resource is actually written, the file’s end-of-file (EOF) is
set correctly, and the next call to ChangedResource will work as expected.

If your application frequently changes the contents of resources (especially large
resources), you should call WriteResource or UpdateResFile immediately after
calling ChangedResource .

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the ChangedResource procedure, see Listing 1-2 on
page 1-21 and Listing 1-11 on page 1-38.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute inconsistent with operation

CHAPTER 1

Resource Manager

1-90 Resource Manager Reference

For descriptions of the UpdateResFile and WriteResource procedures, see
page 1-92 and page 1-93, respectively. For descriptions of the SetResInfo ,
SetResAttrs , and SetResPurge procedures, see page 1-82, page 1-85, and page 1-94,
respectively.

For information about using the Memory Manager procedures HGetState , HNoPurge ,
and HSetState , see Inside Macintosh: Memory.

AddResource

You can use the AddResource procedure to add a resource to the current resource file.

PROCEDURE AddResource (th eData: Handle; theType: ResType;

 t heID: Integer; name: Str255);

th eData A handle to data in memory to be added as a resource to the current
resource file (not a handle to an existing resource).

theType The resource type of the resource to be added.

theID The resource ID of the resource to be added.

name The name of the resource to be added.

DESCRIPTION

Given a handle to any type of data in memory (but not a handle to an existing resource),
AddResourc e adds the given handle, resource type, resource ID, and resource name to
the current resource file’s resource map in memory. The AddResource procedure sets
the resChanged attribute to 1; it does not set any of the resource’s other attributes—that
is, all other attributes are set to 0.

▲ WARNING

The AddResource procedure doesn’t verify whether the resource ID
you pass in the parameter theID is already assigned to another resource
of the same type. You should call the UniqueID or Unique1ID function
to get a unique resource ID before adding a resource with
AddResource . ▲

If the resChanged attribute of a resource has been set and your application calls
UpdateResFile or quits, the Resource Manager writes both the resource map and the
resource data for that resource to the resource fork of the corresponding file on disk. If
the resChanged attribute for a resource has been set and your application calls
WriteResource , the Resource Manager writes only the resource data for that resource
to disk.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-91

If you add a resource to the current resource file, the Resource Manager writes the
entire resource map to disk when it updates the file. If you want any of your changes to
the resource map or resource data to be temporary, you must restore the original
information before the Resource Manager updates the file on disk.

If the value of the parameter the Data is an empty handle (that is, a handle whose
master pointer is set to NIL), the Resource Manager writes zero-length resource data to
disk when it updates the resource. If the value of t heData is either NIL or a handle to
an existing resource, AddResource does nothing, and the ResError function returns
the result code addResFailed . If the resource map becomes too large to fit in memory,
AddResource does nothing, and ResError returns an appropriate result code. The
same is true if the resource data in memory can’t be written to the resource fork (for
example, because the disk is full).

When your application calls AddResourc e, the Resource Manager attempts to reserve
disk space for the new resource. If the new resource data can’t be written to the resource
fork (for example, if there’s not enough room on disk), the resChanged attribute is not
set to 1. If this is the case and you call UpdateResFile or WriteResource , the
Resource Manager won’t know that resource data has been added. Thus, the routine
won’t write the new resource data to the resource fork and won’t return an error. For this
reason, always make sure that the ResError function returns the result code noErr
after a call to AddResource .

To copy an existing resource, get a handle to the resource you want to copy, call the
DetachResource procedure, then call AddResource . To add the same resource data to
several different resource forks, call the Memory Manager function HandToHand to
duplicate the handle for each resource.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For examples of the use of the AddResourc e procedure, see Listing 1-4 on page 1-24
and Listing 1-11 on page 1-38.

For descriptions of the UpdateResFile and WriteResource procedures, see
page 1-92 and page 1-93, respectively. For descriptions of the UniqueID and
Unique1ID functions, see page 1-96. For a description of the DetachResource
procedure, see page 1-108.

For information about using the Memory Manager procedure HandToHand , see Inside
Macintosh: Memory.

noErr 0 No error
addResFailed –194 AddResource procedure failed

CHAPTER 1

Resource Manager

1-92 Resource Manager Reference

Writing to Resource Forks

The Resource Manager provides three procedures that you can use to write resource
information to disk. The UpdateResFile procedure updates the resource map and
resource data of a resource fork on disk so that it matches the corresponding resource
map and resource data in memory. The WriteResource procedure updates the
resource data of just one resource on disk. The SetResPurge procedure sets up
the Resource Manager’s own purge-warning procedure so that the Memory Manager
checks with the Resource Manager before purging a purgeable resource.

UpdateResFile

You can use the UpdateResFile procedure to update the resource map and resource
data for a resource fork without closing it.

PROCEDURE UpdateResFile (refNum: Integer);

refNu m A file reference number for a resource fork.

DESCRIPTION

Given the reference number of a file whose resource fork is open, UpdateResFile
performs three tasks. The first task is to change, add, or remove resource data in the
file’s resource fork to match the resource map in memory. Changed resource data for
each resource is written only if that resource’s resChanged bit has been set by a
successful call to ChangedResource or AddResource . The UpdateResFile
procedure calls the WriteResource procedure to write changed or added resources to
the resource fork.

The second task is to compact the resource fork, closing up any empty space created
when a resource was removed, made smaller, or made larger. If a resource is made
larger, the Resource Manager writes it at the end of the resource fork rather than at its
original location. It then compacts the space occupied by the original resource data. The
actual size of the resource fork is adjusted when a resource is removed or made larger,
but not when a resource is made smaller.

The third task is to write the resource map in memory to the resource fork if your
application has called the ChangedResource procedure for any resource listed in the
resource map or if it has added or removed a resource. All changes to resource
information in the resource map become permanent at this time; if you want any of these
changes to be temporary, you must restore the original information before calling
UpdateResFile .

CHAPTER 1

Resource Manager

Resource Manager Reference 1-93

If there’s no open resource fork with the given reference number, UpdateResFile
does nothing, and the ResError function returns the result code resNotFound . If the
value of the refNum parameter is 0, it represents the System file’s resource fork. If you
call UpdateResFile but the mapReadOnly attribute of the resource fork is set,
UpdateResFile does nothing, and the ResError function returns the result code
resAttrErr .

Because the CloseResFile procedure calls UpdateResFile before it closes the
resource fork, you need to call UpdateResFile directly only if you want to update the
file without closing it.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of UpdateResFile , see Listing 1-11 on page 1-38. For
descriptions of the ChangedResource , AddResource , and CloseResFile
procedures, see page 1-88, page 1-90, and page 1-110, respectively. The
WriteResource procedure is described next.

WriteResource

You can use the WriteResource procedure to write resource data in memory
immediately to a file’s resource fork. Note that WriteResource does not write the
resource’s resource map entry to disk.

PROCEDURE WriteResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, WriteResource checks the resChanged attribute of that
resource. If the resChanged attribute is set to 1 (after a successful call to the
ChangedResource or AddResource procedure), WriteResource writes the resource
data in memory to the resource fork, then clears the resChanged attribute in the
resource’s resource map in memory.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute inconsistent with operation

CHAPTER 1

Resource Manager

1-94 Resource Manager Reference

Note
When your application calls ChangedResource or AddResourc e, the
Resource Manager attempts to reserve disk space for the changed
resource. If the modified resource data can’t be written to the resource
fork (for example, if there’s not enough room on disk), the resChanged
attribute is not set to 1. If this is the case and you call WriteResource ,
the Resource Manager won’t know that the resource data has been
changed. Thus, the routine won’t write the modified resource data to the
resource fork and won’t return an error. For this reason, always make
sure that the ResError function returns the result code noErr after a
call to ChangedResource or AddResource . ◆

If the resource is purgeable and has been purged, WriteResource writes zero-length
resource data to the resource fork. If the resource’s resProtected attribute is set to 1,
WriteResource does nothing, and the ResError function returns the result code
noErr . The same is true if the resChanged attribute is not set (that is, set to 0). If the
given handle isn’t a handle to a resource, WriteResource does nothing, and
ResError returns the result code resNotFound .

The resource fork is updated automatically when your application quits, when you
call UpdateResFile , or when you call CloseResFile (which in turn calls
UpdateResFile). Thus, you should call WriteResource only if you want to write just
one or a few resources immediately.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about resource attributes, see “The Resource Map” beginning on
page 1-8. For descriptions of the ChangedResource and AddResource procedures,
see page 1-88 and page 1-90, respectively. For a description of the UpdateResFile
procedure, see page 1-92. For a description of the CloseResFile procedure, see
page 1-110.

SetResPurge

You can use the SetResPurge procedure to have the Memory Manager pass the handle
of a resource to the Resource Manager before purging the data specified by that handle.

PROCEDURE SetResPurge (install: Boolean);

install A Boolean value that specifies whether the Memory Manager checks with
the Resource Manager before purging a resource handle.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-95

DESCRIPTION

Specify TRUE in the install parameter to make the Memory Manager pass the handle
for a resource to the Resource Manager before purging the resource data to which the
handle points. The Resource Manager determines whether the handle points to a
resource in the application heap. It also checks if the resource’s resChanged attribute is
set to 1. If these two conditions are met, the Resource Manager calls the
WriteResource procedure to write the resource’s resource data to the resource fork
before returning control to the Memory Manager.

Specify FALSE in the install parameter to restore the normal state, so that the
Memory Manager purges resource data when it needs to without calling the Resource
Manager.

You can use SetResPurge in applications that modify purgeable resources. You should
also take precautions in such applications to ensure that the resource won’t be purged
while you’re changing it.

SPECIAL CONSIDERATIONS

If you call SetResPurg e with the install parameter set to TRUE and then call the
Memory Manager procedure MoveHHi to move a handle to a resource, the Resource
Manager calls the WriteResource procedure to write the resource data to disk even if
the data has not been changed. To prevent this, call SetResPurg e with the install
parameter set to FALSE before you call MoveHHi , then call SetResPurg e with the
install parameter set to TRUE immediately after you call MoveHHi .

Whenever you call SetResPurg e with the install parameter set to TRUE, the
Resource Manager installs its own purge-warning procedure, overriding any
purge-warrning procedure you’ve specified to the Memory Manager.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the SetResAttrs and WriteResource procedures, see page 1-85
and page 1-93, respectively.

For more information about the Memory Manager procedure MoveHHi , see Inside
Macintosh: Memory.

Getting a Unique Resource ID

The Resource Manager provides two routines that return a unique resource ID. The
UniqueID function returns a resource ID that isn’t currently assigned to any resource of
the specified type in any open resource fork. The Unique 1ID function returns a resource
ID that isn’t currently assigned to any resource of the specified type in the resource fork
of the current resource file.

CHAPTER 1

Resource Manager

1-96 Resource Manager Reference

UniqueID

You can use the UniqueID function to get a unique resource ID for a resource.

FUNCTION UniqueID (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

The UniqueID function returns as its function result a resource ID greater than 0 that
isn’t currently assigned to any resource of the specified type in any open resource fork.
You should use this function before adding a new resource to ensure that you don’t
duplicate a resource ID and override an existing resource.

SPECIAL CONSIDERATIONS

In versions of system software earlier than System 7, the UniqueID function may return
a resource ID in the range 0 through 127, which is generally reserved for system
resources. You should check that the resource ID returned is not in this range. If it is, call
UniqueID again, and continue doing so until you get a resource ID greater than 127.

In System 7 and later versions, UniqueID won’t return a resource ID of less than 128.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about restrictions on resource IDs for specific resource types, see
“Resource IDs” on page 1-46.

Unique1ID

You can use the Unique 1ID function to get a resource ID that’s unique with respect to
resources in the current resource file.

FUNCTION Unique1ID (theType: ResType): Integer;

theType A resource type.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-97

DESCRIPTION

The Unique1ID function returns as its function result a resource ID greater than 0 that
isn’t currently assigned to any resource of the specified type in the current resource file.
You should use this routine before adding a new resource to ensure that you don’t
duplicate a resource ID and override an existing resource.

SPECIAL CONSIDERATIONS

In versions of system software earlier than System 7, the Unique1ID function may
return a resource ID in the range 0 through 127, which is generally reserved for system
resources. You should check that the resource ID returned is not in this range. If it is, call
Unique1ID again, and continue doing so until you get a resource ID greater than 127.

In System 7 and later versions, Unique 1ID won’t return a resource ID of less than 128.

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about restrictions on resource IDs for specific resource types, see
“Resource IDs” on page 1-46.

Counting and Listing Resource Types

The Resource Manager provides several routines that count or list resource types. The
CountResources function returns the total number of resources of a given type that are
currently available in all resource forks open to your application, and the
Count1Resources function returns the total number of resources of a given type in the
current resource file.

You can call the GetIndResource function repeatedly to generate handles to all
resources of a given type in all resource forks open to your application. You can call the
Get 1IndResource function repeatedly to generate handles to all resources of a given
type in the current resource file.

The CountTypes function tells you the number of resource types in all resource forks
open to your application. The Count1Types function tells you the number of resource
types in the current resource file. You can call the GetIndType procedure repeatedly to
get all the resource types available in all resource forks open to your application.
Similarly, you can call the Get1IndType procedure repeatedly to get all the resource
types available in the current resource file.

CHAPTER 1

Resource Manager

1-98 Resource Manager Reference

CountResources

You can use the CountResources function to get the total number of available
resources of a given type.

FUNCTION CountResources (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

Given a resource type, the CountResources function reads the resource maps in
memory for all resource forks open to your application. It returns as its function result
the total number of resources of the given type in all resource forks open to your
application.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Count1Resources

You can use the Count1Resources function to get the total number of resources of a
given type in the current resource file.

FUNCTION Count1Resources (theType: ResType): Integer;

theType A resource type.

DESCRIPTION

Given a resource type, the Count1Resources function reads the resource map in
memory of the current resource file. It returns as its function result the total number of
resources of the given type in the current resource file only.

RESULT CODE

noErr 0 No error

noErr 0 No error

CHAPTER 1

Resource Manager

Resource Manager Reference 1-99

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the Count1Resources function, see Listing 1-10 on
page 1-34.

GetIndResource

You can use the GetIndResource function repeatedly to get handles to all resources of
a given type in all resource forks open to your application.

FUNCTION GetIndResource (theType: ResType;

 index: Integer): Handle;

theType A resource type.

inde x An integer ranging from 1 to the number of resources of a given type
returned by CountResources , which is the number of resource types in
all open resource forks.

DESCRIPTION

Given an index ranging from 1 to the number of resources of a given type returned by
CountResources (that is, the number of resources of that type in all resource forks
open to your application), the GetIndResource function returns a handle to a resource
of the given type. If you call GetIndResource repeatedly over the entire range of the
index, it returns handles to all resources of the given type in all resource forks open to
your application.

The function reads the resource data into memory if it’s not already there, unless you’ve
called SetResLoad with the load parameter set to FALSE.

IMPORTANT

If you’ve called SetResLoa d with the load parameter set to FALSE
and the data isn’t already in memory, GetIndResource returns an
empty handle (a handle whose master pointer is set to NIL). This can
also happen if you read resource data for a purgeable resource into
memory and then call SetResLoad with the load parameter set to
FALSE. If the resource data is later purged and you call the
GetIndResource function, GetIndResource returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

The GetIndResource function returns handles for all resources in the most recently
opened resource fork first, and then for those in resource forks opened earlier in reverse
chronological order.

CHAPTER 1

Resource Manager

1-100 Resource Manager Reference

Note
The UseResFile procedure affects which file the Resource Manager
searches first when looking for a particular resource; this is not the case
when you use GetIndResource to get an indexed resource. ◆

If you want to find out how many resources of a given type are in a particular resource
fork, set the current resource file to that resource fork, then call Count1Resources and
use Get1IndResource to get handles to the resources of that type.

If you provide an index to GetIndResource that’s either 0 or negative,
GetIndResource returns NIL , and the ResError function returns the result code
resNotFound . If the given index is larger than the value returned by
CountResource s , GetIndResource returns NIL , and ResError returns the result
code resNotFound . If the resource to be read won’t fit into memory, GetIndResource
returns NIL , and ResError returns the appropriate result code.

SPECIAL CONSIDERATIONS

The GetIndResource function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the CountResources function, see page 1-98. For a description of
the UseResFile procedure, see page 1-69. For descriptions of the SetResLoad and
LoadResource procedures, see page 1-79 and page 1-80, respectively.

Get1IndResource

You can use the Get1IndResource function repeatedly to get handles to all resources
of a given type in the current resource file.

FUNCTION Get1IndResource (theType: ResType;

 i ndex: Integer): Handle;

theType A resource type.

inde x An integer ranging from 1 to the number of resources of a given type
returned by Count1Resources , which is the number of resource types
in the current resource file.

noErr 0 No error
re sNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-101

DESCRIPTION

Given an index ranging from 1 to the number of resources of a given type returned by
Count1Resources (that is, the number of resources of that type in the current resource
file), the Get1IndResource function returns a handle to a resource of the given type. If
you call Get1IndResource repeatedly over the entire range of the index, it returns
handles to all resources of the given type in the current resource file.

The function reads the resource data into memory if it’s not already there, unless you’ve
called SetResLoa d with the load parameter set to FALSE.

IMPORTANT

If you’ve called SetResLoa d with the load parameter set to FALSE
and the data isn’t already in memory, Get1IndResource returns an
empty handle (that is, a handle whose master pointer is set to NIL). This
can also happen if you read resource data for a purgeable resource into
memory and then call SetResLoad with the load parameter set to
FALSE. If the resource data is later purged and you call the
Get1IndResource function, Get1IndResource returns an empty
handle. You should test for an empty handle in these situations. To make
the handle a valid handle to resource data in memory, you can call the
LoadResource procedure. ◆

If you provide an index to Get1IndResource that’s either 0 or negative,
Get1IndResource returns NIL , and the ResError function returns the result code
resNotFound . If the given index is larger than the value returned by
Count 1Resource s , Get 1IndResource returns NIL , and ResError returns the result
code resNotFound . If the resource to be read won’t fit into memory,
Get1IndResource returns NIL , and ResError returns the appropriate result code.

SPECIAL CONSIDERATIONS

The Get1IndResource function may move or purge memory blocks in the application
heap. Your application should not call this function at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the Get1IndResource function, see Listing 1-10 on
page 1-34.

For a description of the Count1Resources function, see page 1-98. For a description of
the UseResFil e procedure, see page 1-69. For descriptions of the SetResLoad and
LoadResource procedures, see page 1-79 and page 1-80, respectively.

noErr 0 No error
re sNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-102 Resource Manager Reference

CountTypes

You can use the CountTypes function to get the number of resource types in all
resource forks open to your application.

FUNCTION CountTypes: Integer;

DESCRIPTION

The CountTypes function reads the resource maps in memory for all resource forks
open to your application. It returns an integer representing the total number of unique
resource types.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Count1Types

You can use the Count1Types function to get the number of resource types in the
current resource file.

FUNCTION Count1Types: Integer;

DESCRIPTION

The Count1Types function reads the resource map in memory for the current resource
file. It returns an integer representing the total number of unique resource types in the
current resource file.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

noErr 0 No error

noErr 0 No error

CHAPTER 1

Resource Manager

Resource Manager Reference 1-103

GetIndType

You can call the GetIndType procedure repeatedly to get all the resource types
available in all resource forks open to your application.

PROCEDURE GetIndType (VAR theType: ResType; index: Integer);

theTyp e GetIndType returns, in this parameter, the resource type for the
specified index among all the resource forks open to your application.

inde x An integer ranging from 1 to the number of resource types in all resource
forks open to your application.

DESCRIPTION

Given an index number from 1 to the number of resource types in all resource forks open
to your application (as returned by CountTypes), the GetIndType procedure returns a
resource type in the parameter theType . You can call GetIndType repeatedly over the
entire range of the index to get all the resource types available in all resource forks open
to your application. If the given index isn’t in the range from 1 to the number of resource
types as returned by CountTypes , GetIndType returns four null characters (ASCII
code 0).

SPECIAL CONSIDERATIONS

The GetIndType procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about the CountTypes function, see page 1-102.

noErr 0 No error

CHAPTER 1

Resource Manager

1-104 Resource Manager Reference

Get1IndType

You can use the Get1IndType procedure to get all the resource types available in the
current resource file.

PROCEDURE Get1IndType (VAR theType: ResType; index: Integer);

theTyp e Get1IndType returns, in this parameter, the resource type with the
specified index in the current resource file.

inde x An integer ranging from 1 to the number of resource types in the current
resource file.

DESCRIPTION

Given an index number from 1 to the number of resource types in the current resource
file (as returned by Count1Type s), the Get1IndType procedure returns a resource
type in the parameter theType .You can call Get1IndType repeatedly over the entire
range of the index to get all the resource types available in the current resource file. If the
given index isn’t in the range from 1 to the number of resource types as returned by
Count1Types , Get1IndType returns four null characters (ASCII code 0).

SPECIAL CONSIDERATIONS

The Get1IndType procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODE

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the Count 1Types function, see page 1-102.

Getting Resource Sizes

The Resource Manager provides two routines that allow you to get the size of a
resource. The GetResourceSizeOnDisk and GetMaxResourceSize functions get
the exact size and maximum size, respectively, of a resource. To change the size of a
resource on disk, use the SetResourceSize procedure.

noErr 0 No error

CHAPTER 1

Resource Manager

Resource Manager Reference 1-105

GetResourceSizeOnDisk

You can use the GetResourceSizeOnDisk function to get the exact size of a resource.
The GetResourceSizeOn Di sk function is also available as the SizeResource
function.

FUNCTION GetResourceSizeO nDi sk (theResource: Handle): LongInt;

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, the GetResourceSizeOnDisk function checks the
resource on disk (not in memory) and returns its exact size, in bytes. If the handle isn’t a
handle to a valid resource, GetResourceSizeOnDisk returns –1, and ResError
returns the result code resNotFound .

You can call GetResourceSizeOnDisk before reading a resource into memory to make
sure there’s enough memory available to do so successfully.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

GetMaxResourceSize

You can use the GetMaxResourceSize function to get the approximate size of a
resource. The GetMaxResourceSize function is also available as the MaxSizeRsrc
function.

FUNCTION GetMaxResourceSize (theResource: Handle): LongInt;

theResource
Handle to a resource.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-106 Resource Manager Reference

DESCRIPTION

Like GetResourceSizeOnDisk , GetMaxResourceSize takes a handle and returns
the size of the corresponding resource. However, GetMaxResourceSize does not
check the resource on disk; instead, it either checks the resource size in memory or, if
the resource is not in memory, calculates its size, in bytes, on the basis of information
in the resource map in memory. This gives you an approximate size for the resource that
you can count on as the resource’s maximum size. It’s possible that the resource is
actually smaller than the offsets in the resource map indicate because the file has not yet
been compacted. If you want the exact size of a resource on disk, either call
GetResourceSizeOnDisk or call UpdateResFile before calling
GetMaxResourceSize .

If the value of the theResource parameter isn’t a handle to a valid resource,
GetMaxResourceSize returns –1, and ResError returns the result code
resNotFound .

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For a description of the UpdateResFile and GetResourceSizeOnDis k routines, see
page 1-92 and page 1-105, respectively.

Disposing of Resources

The Resource Manager provides three procedures for disposing of resources. The
ReleaseResource procedure releases the memory associated with a resource,
setting the handle’s master pointer to NIL , thus making your application’s handle to
the resource invalid. The DetachResource procedure sets a resource’s handle in the
resource map to NI L but keeps the resource data in memory. The RemoveResource
procedure removes the resource’s entry from the resource map in memory; the
Resource Manager removes the resource data from memory (and from the file’s resource
fork) when it updates the file’s resource fork.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-107

ReleaseResource

You can use the ReleaseResource procedure to release the memory a resource
occupies when you have finished using it.

PROCEDURE ReleaseResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, ReleaseResource releases the memory occupied by the
resource data, if any, and sets the master pointer of the resource’s handle in the resource
map in memory to NI L. If your application previously obtained a handle to that
resource, the handle is no longer valid. If your application subsequently calls the
Resource Manager to get the released resource, the Resource Manager assigns a new
handle.

If the given resource isn’t a handle to a resource, ReleaseResource does nothing, and
ResError returns the result code resNotFound . Be aware that ReleaseResource
won’t release a resource whose resChanged attribute has been set, but ResError still
returns the result code noErr .

SPECIAL CONSIDERATIONS

The ReleaseResource procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about releasing resources, see “Releasing and Detaching
Resources” beginning on page 1-22. For an example of the use of the
ReleaseResource procedure, see Listing 1-8 on page 1-29.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-108 Resource Manager Reference

DetachResource

You can use the DetachResource procedure to set the value of a resource’s handle in
the resource map in memory to NIL while keeping the resource data in memory.

PROCEDURE DetachResource (theResource: Handle);

theResource
A handle to a resource.

DESCRIPTION

Given a handle to a resource, DetachResource sets the value of the resource’s handle
in the resource map in memory to NIL . After this call, the Resource Manager no longer
recognizes the handle as a handle to a resource. However, DetachResource does not
release the memory used for the resource data, and the master pointer is still valid. Thus,
you can access the resource data directly by using the handle.

If your application subsequently calls a Resource Manager routine to get the released
resource, the Resource Manager assigns a new handle. If the parameter theResource
doesn’t contain a handle to a resource or if the resource’s resChanged attribute is set,
DetachResource does nothing. To determine whether either of these errors occurred,
call ResError .

You can use DetachResource if you want to access the resource data directly without
using Resource Manager routines. You can also use the DetachResource procedure to
keep resource data in memory after closing a resource fork.

To copy a resource and install an entry for the duplicate in the resource map, call
DetachResource , then call AddResource using a different resource ID.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For more information about detaching resources, see “Releasing and Detaching
Resources” beginning on page 1-22. For an example of the use of the DetachResource
procedure, see Listing 1-4 on page 1-24.

For a description of the AddResource procedure, see page 1-90.

noErr 0 No error
resNotFound –192 Resource not found
resAttrErr –198 Attribute does not permit operation

CHAPTER 1

Resource Manager

Resource Manager Reference 1-109

RemoveResource

You can use the RemoveResource procedure to remove a resource’s entry from the
current resource file’s resource map in memory. The RemoveResource procedure is also
available as the RmveResource procedure.

PROCEDURE RemoveResource (theResource: Handle);

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource in the current resource file, RemoveResource removes the
resource entry (resource type, resource ID, resource name, if any, and resource attributes)
from the current resource file’s resource map in memory.

The RemoveResource procedure doesn’t immediately release the memory occupied by
the resource data; instead, the Resource Manager releases the memory when your
application quits, when you call UpdateResFile , or when you call CloseResFile
(which in turn calls UpdateResFile). If the resProtected attribute for the resource is
set or if the theResource parameter doesn’t contain a handle to a resource,
RemoveResource does nothing, and ResError returns the result code rmvResFailed .

IMPORTANT

If you’ve removed a resource, the Resource Manager writes the entire
resource map when it updates the resource fork, and all changes
made to the resource map become permanent. If you want any of the
changes to be temporary, you should restore the original information
before the Resource Manager updates the resource fork. ▲

If you want to release the memory before updating or closing the resource fork, call the
Memory Manager procedure DisposeHandle after you call RemoveResource .

SPECIAL CONSIDERATIONS

The RemoveResource procedure may move or purge memory blocks in the application
heap. Your application should not call this procedure at interrupt time.

RESULT CODES

noErr 0 No error
rmvResFailed –196 RemoveResource procedure failed

CHAPTER 1

Resource Manager

1-110 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the AddResource and UpdateResFile procedures, see page 1-90
and page 1-92, respectively. The CloseResFile procedure is described next.

For more information about the Memory Manager procedure DisposeHandle , see
Inside Macintosh: Memory.

Closing Resource Forks

When your application terminates, the Resource Manager automatically closes every
resource fork open to your application except the System file’s resource fork. The
CloseResFile procedure allows you to close a resource fork before your application
terminates.

CloseResFile

You can use the CloseResFile procedure to close a resource fork before your
application terminates.

PROCEDURE CloseResFile (refNum: Integer);

refNu m The file reference number for the resource fork to close.

DESCRIPTION

Given a file reference number for a file whose resource fork is open, the
CloseResFil e procedure performs four tasks. First, it updates the file by calling the
UpdateResFile procedure. Second, it releases the memory occupied by each resource
in the resource fork by calling the DisposeHandle procedure. Third, it releases the
memory occupied by the resource map. The fourth task is to close the resource fork.

If the refNum parameter does not contain a file reference number for a file whose
resource fork is open, CloseResFile does nothing, and the ResError function
returns the result code resFNotFound . If the value of the refNum parameter is 0, it
represents the System file and is ignored. You cannot close the System file’s resource fork.

When your application terminates, the Resource Manager automatically closes every
resource fork open to your application except the System file’s resource fork. You need to
call the CloseResFile procedure only if you want to close a resource fork before your
application terminates.

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-111

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the CloseResFile procedure, see Listing 1-9 on page 1-32.

For descriptions of the UpdateResFile and ReleaseResource procedures, see
page 1-92 and page 1-107, respectively.

Reading and Writing Partial Resources

You can use the ReadPartialResource , WritePartialResource , and
SetResourceSize procedures to work with a portion of a large resource that may not
otherwise fit in memory.

When using partial resource routines, you should call the SetResLoad procedure,
specifying FALSE for the load parameter, before you call GetResource . Using the
SetResLoad procedure prevents the Resource Manager from reading the entire
resource into memory. Be sure to restore the normal state by calling SetResLoad again,
with the load parameter set to TRUE, immediately after you call GetResource .
Then use ReadPartialResource to read a portion of the resource into a buffer and
WritePartialResource as needed to write a portion of the resource from a buffer
to disk.

Note that the partial resources routines work with the data in the memory pointed to by
the buffer parameter, not the memory referenced through the resource’s handle.
Therefore, you may experience problems if you have a copy of a resource in memory
when you are using the partial resource routines. If you have modified the copy in
memory and then access the resource on disk using the ReadPartialResource
procedure, ReadPartialResource reads the data on disk, not the data in memory,
which is referenced through the resource’s handle. Similarly, WritePartialResource
writes data from the specified buffer, not from the data in memory, which is referenced
through the resource’s handle.

ReadPartialResource

You can use the ReadPartialResource procedure to read part of a resource into
memory and work with a small subsection of a large resource.

PROCEDURE ReadPartialResource (theResource: Handle;

 offset: LongInt; buffer: UNIV Ptr;

 count: LongInt);

theResource
A handle to a resource.

offset The beginning of the resource subsection to be read, measured in bytes
from the beginning of the resource.

CHAPTER 1

Resource Manager

1-112 Resource Manager Reference

buffe r A pointer to the buffer into which the partial resource is to be read.

coun t The length of the resource subsection.

DESCRIPTION

The ReadPartialResource procedure reads the resource subsection identified by the
theResource , offset , and count parameters into a buffer specified by the buffer
parameter. Your application is responsible for the buffer’s memory management. You
cannot use the ReleaseResource procedure to release the memory the buffer occupies.

The ReadPartialResource procedure always tries to read resources from disk. If a
resource is already in memory, the Resource Manager still reads it from disk, and the
ResError function returns the result code resourceInMemory . If you try to read past
the end of a resource or the value of the offset parameter is out of bounds, ResError
returns the result code i nputOutOfBounds . If the handle in the parameter
theResource doesn’t refer to a resource in an open resource fork, ResError returns
the result code resNotFound .

When using partial resource routines, you should call the SetResLoad procedure,
specifying FALSE for the load parameter, before you call GetResource . Using the
SetResLoad procedure prevents the Resource Manager from reading the entire
resource into memory. Be sure to restore the normal state by calling SetResLoad again,
with the load parameter set to TRUE, immediately after you call GetResourc e. Then
use ReadPartialResource to read a portion of the resource into a buffer.

Note

If the entire resource is in memory and you want only part of its data,
it’s faster to use the Memory Manager procedure BlockMove instead of
the ReadPartialResource procedure. If you read a partial resource
into memory and then change its size, you can use SetResourceSize
to change the entire resource’s size on disk as necessary. ◆

SPECIAL CONSIDERATIONS

The ReadPartialResource procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine se.lector for ReadPartialResource are

Trap macro Selector

_ResourceDispatch $7001

CHAPTER 1

Resource Manager

Resource Manager Reference 1-113

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For an example of the use of the ReadPartialResource procedure, see Listing 1-12 on
page 1-41.

For descriptions of the GetResource , SetResLoad , and ReleaseResource routines,
see page 1-73, page 1-79, and page 1-107, respectively. For a description of the
SetResourceSiz e procedure, see page 1-115.

For information about the Memory Manager procedure BlockMove , see Inside
Macintosh: Memory.

WritePartialResource

You can use the WritePartialResource procedure to write part of a resource to disk
when working with a small subsection of a large resource.

PROCEDURE WritePartialResource (theResource: Handle;

 offset: LongInt; buffer: UNIV Ptr ;

 count: LongInt);

theResource
A handle to a resource.

offset The beginning of the resource subsection to write, measured in bytes
from the beginning of the resource.

buffe r A pointer to the buffer containing the data to write.

coun t The length of the resource subsection to write.

DESCRIPTION

The WritePartialResource procedure writes the data specified by the buffer
parameter to the resource subsection identified by the theResource , offset , and
count parameters. Your application is responsible for the buffer’s memory management.

noErr 0 No error
resourceInMemory –188 Resource already in memory
inputOutOfBounds –190 Offset or count out of bounds
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

1-114 Resource Manager Reference

If the disk or the file is locked, the ResError function returns an appropriate File
Manager result code. If you try to write past the end of a resource, the Resource Manager
attempts to enlarge the resource. The ResError function returns the result code
writingPastEnd if the attempt succeeds. If the Resource Manager cannot enlarge the
resource, ResError returns an appropriate File Manager result code. If you pass an
invalid value in the offset parameter, ResError returns the result code
inputOutOfBounds .

The WritePartialResource procedure tries to write the data from the buffer to disk.
If the attempt is successful and the resource data (referenced through the resource’s
handle) is in memory, ResError returns the result code resourceInMemory . In this
situation, be aware that the data of the resource subsection on disk matches the data
from the buffer, not the resource data referenced through the resource’s handle. If the
attempt to write the data from the buffer to the disk fails, ResError returns an
appropriate error.

When using partial resource routines, you should call the SetResLoad procedure,
specifying FALSE for the load parameter, before you call GetResource . Doing so
prevents the Resource Manager from reading the entire resource into memory. Be sure to
restore the normal state by calling SetResLoad again, with the load parameter set to
TRUE, immediately after you call GetResourc e.

If you read a partial resource into memory and then change its size, you must use
SetResourceSize to change the entire resource’s size on disk as necessary before you
write the partial resource.

SPECIAL CONSIDERATIONS

The WritePartialResource procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for WritePartialResource are

RESULT CODES

Trap macro Selector

_ResourceDispatch $7002

noErr 0 No error
dskFulErr –34 Disk full
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file
inputOutOfBounds –190 Offset or count out of bounds

CHAPTER 1

Resource Manager

Resource Manager Reference 1-115

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the GetResource and SetResLoa d routines, see page 1-73 and
page 1-79, respectively. The SetResourceSiz e procedure is described next.

SetResourceSize

You can use the SetResourceSize procedure to change the size of a resource on disk.
This procedure is normally used only with ReadPartialResource and
WritePartialResource .

PROCEDURE SetResourceSize (theResource: Handle ; newSi ze: LongInt);

theResource
A handle to a resource.

newSi ze The size, in bytes, that you want the resource to occupy on disk.

DESCRIPTION

Given a handle to a resource, SetResourceSize sets the size field of the specified
resource on disk without writing the resource data. You can change the size of
any resource, regardless of the amount of memory you have available.

If the specified size is smaller than the resource’s current size on disk, you lose any data
from the cutoff point to the end of the resource. If the specified size is larger than the
resource’s current size on disk, all data is preserved, but the additional area is
uninitialized (arbitrary data).

If you read a partial resource into memory and then change its size, you must use
SetResourceSize to change the entire resource’s size on disk as necessary. For
example, suppose the entire resource occupies 1 MB and you use
ReadPartialResource to read in a 200 KB portion of the resource. If you then
increase the size of this partial resource to 250 KB, you must call SetResourceSize to
set the size of the resource on disk to 1.05 MB. Note that in this case you must also keep
track of the resource data on disk and move any data that follows the original partial
resource on disk. Otherwise, there will be no space for the additional 50 KB when you
call WritePartialResource to write the modified partial resource to disk.

Under certain circumstances, the Resource Manager overrides the size you set with a call
to SetResourceSize . For instance, suppose you read an entire resource into memory
by calling GetResource or related routines, then use SetResourceSize successfully
to set the resource size on disk, and finally attempt to write the resource to disk using
UpdateResFile or WriteResourc e. In this case, the Resource Manager adjusts the
resource size on disk to conform with the size of the resource in memory.

CHAPTER 1

Resource Manager

1-116 Resource Manager Reference

If the disk is locked or full, or the file is locked, the SetResourceSize procedure does
nothing, and the ResError function returns an appropriate File Manager result code. If
the resource is in memory, the Resource Manager tries to set the size of the resource on
disk. If the attempt succeeds, ResError returns the result code resourceInMemory ,
and the Resource Manager does not update the copy in memory. If the attempt fails,
ResError returns an appropriate File Manager result code.

SPECIAL CONSIDERATIONS

The SetResourceSize procedure may move or purge memory blocks in the
application heap. Your application should not call this procedure at interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SetResourceSize are

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

Getting and Setting Resource Fork Attributes

The GetResFileAttrs function and the SetResFileAttrs procedure allow you to
get and set a resource fork’s attributes. You usually don’t need to use these routines.

GetResFileAttrs

You can use the GetResFileAttrs function to get the attributes of a resource fork.

FUNCTION GetResFileAttrs (refNum: Integer): Integer;

refNu m A file reference number for the resource fork whose attributes you want
to get.

Trap macro Selector

_ResourceDispatch $7003

noErr 0 No error
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file

CHAPTER 1

Resource Manager

Resource Manager Reference 1-117

DESCRIPTION

Given a file reference number, the GetResFileAttrs function returns the attributes of
the file’s resource fork. Specify 0 in the refNum parameter to get the attributes of the
System file’s resource fork. If there’s no open resource fork for the given file reference
number, GetResFileAttrs does nothing, and the ResError function returns the
result code resFNotFound .

Like individual resources, resource forks have attributes that are specified by bits in the
low-order byte of a word. The Resource Manager provides the following masks for
testing these bits:

CONST

mapReadOnly = 128; {set if file is read-only}

mapCompact = 64; {set to compact file on update}

mapChanged = 32; {set to write map on update}

When the mapReadOnly attribute is set to 1, the Resource Manager doesn’t write
anything to the resource fork on disk. It also doesn’t check whether the resource data can
be written to disk when the resource map is modified. When this attribute is set to 1, the
UpdateResFile and WriteResource procedures do nothing, but the ResError
function returns the result code noErr .

When the mapCompact attribute is set to 1, the Resource Manager compacts the resource
fork when it updates the file. The Resource Manager sets this attribute when a resource
is removed or when a resource is made larger and thus must be written at the end of a
resource fork. You may want to set the mapCompact attribute to force the Resource
Manager to compact a resource fork when your changes have made resources smaller.

When the mapChanged attribute is set to 1, the Resource Manager writes the resource
map to disk when the file is updated. For example, you can set mapChanged if you’ve
changed resource attributes only and don’t want to call ChangedResource because you
don’t want to write the resource data to disk.

SPECIAL CONSIDERATIONS

The Resource Manager sets the mapChanged attribute for the resource fork when you
call the ChangedResourc e, the AddResourc e, or the RemoveResource procedure.

RESULT CODES

noErr 0 No error
resFNotFound –193 Resource file not found

CHAPTER 1

Resource Manager

1-118 Resource Manager Reference

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the ChangedResource and AddResource procedures, see
page 1-88 and page 1-90, respectively. For descriptions of the UpdateResFile and
WriteResource procedures, see page 1-92 and page 1-93, respectively. For a
description of the RemoveResource procedure, see page 1-109.

SetResFileAttrs

You can use the SetResFileAttrs procedure to change a resource fork’s attributes.

PROCEDURE SetResFileAttrs (refNum: Integer; attrs: Integer);

refNu m A file reference number for the resource fork whose attributes you want
to set.

attr s The attributes to set.

DESCRIPTION

Given a file reference number, the SetResFileAttrs procedure sets the attributes of
the file’s resource fork to those specified in the attrs parameter. If the refNum
parameter is 0, it represents the System file’s resource fork. However, you shouldn’t
change the attributes of the System file’s resource fork. If there’s no resource fork with
the given reference number, SetResFileAttrs does nothing, and the ResError
function returns the result code noErr .

Like individual resources, resource forks have attributes that are specified by bits in the
low-order byte of a word. The Resource Manager provides the following masks for
setting these bits:

CONST

mapReadOnly = 128; {set to make file read-only}

mapCompact = 64; {set to compact file on update}

mapChanged = 32; {set to write map on update}

When the mapReadOnly attribute is set to 1, the Resource Manager doesn’t write
anything to the resource fork on disk. It also doesn’t check whether the resource data can
be written to disk when the resource map is modified. When this attribute is set to 1, the
UpdateResFile and WriteResource procedures do nothing, but the ResError
function returns the result code noErr .

CHAPTER 1

Resource Manager

Resource Manager Reference 1-119

▲ WARNING

If you set the mapReadOnly attribute but later clear it, the resource data
is written to disk even if there’s no room for it. This operation may
destroy the resource fork. ▲

When the mapCompact attribute is set to 1, the Resource Manager compacts the resource
fork when it updates the file. The Resource Manager sets this attribute when a resource
is removed or when a resource is made larger and thus must be written at the end of a
resource fork. You may want to set the mapCompact attribute to force the Resource
Manager to compact a resource fork when your changes make resources smaller.

When the mapChanged attribute is set to 1, the Resource Manager writes the resource
map to disk when the file is updated. For example, you can set mapChanged if you’ve
changed resource attributes only and don’t want to call ChangedResource because you
don’t want to write the resource data to disk.

When the Resource Manager first creates a resource fork after a call to
FSpOpenResFile or a related routine, it does not set any of the resource forks’s
attributes—that is, they are all set to 0.

SPECIAL CONSIDERATIONS

The Resource Manager sets the mapChanged attribute for the resource fork when you
call the ChangedResourc e, the AddResourc e, or the RemoveResource procedure.

RESULT CODES

SEE ALSO

To check for errors, call the ResError function as described on page 1-51.

For descriptions of the ChangedResource and AddResource procedures, see
page 1-88 and page 1-90, respectively. For descriptions of the UpdateResFile and
WriteResource procedures, see page 1-92 and page 1-93, respectively. For a
description of the RemoveResource procedure, see page 1-109.

Accessing Resource Entries in a Resource Map

The RsrcMapEntry function is an advanced routine that provides a way to access the
resource entries in a resource map in memory. Because the Resource Manager provides
routines for opening, retrieving, and changing resources, there’s usually no reason to
access resource entries directly.

noErr 0 No error
resFNotFound –193 Resource file not found

CHAPTER 1

Resource Manager

1-120 Resource Manager Reference

RsrcMapEntry

To access the resource entries in a resource map in memory directly, you can use the
RsrcMapEntry function.

FUNCTION RsrcMapEntry (theResource: Handle): LongInt;

theResourc e
A handle to a resource.

DESCRIPTION

Given a handle to a resource, RsrcMapEntry returns the offset of the specified
resource’s entry from the beginning of the resource map in memory. If it doesn’t find
the resource entry, RsrcMapEntry returns 0, and the ResError function returns the
result code resNotFound . If you pass a handle whose value is NIL , RsrcMapEntry
returns arbitrary data, but ResError returns the result code noErr .

▲ WARNING

Because the Resource Manager provides routines for opening,
retrieving, and changing resources, there’s usually no reason to access a
resource map directly. To avoid damaging the file for which it’s called,
you should use RsrcMapEntry extremely carefully. ▲

RESULT CODES

SEE ALSO

For an overview of the resource map, see “The Resource Map” beginning on page 1-8.
For details of the structure of the resource map, see Figure 1-14 on page 1-123.

noErr 0 No error
resNotFound –192 Resource not found

CHAPTER 1

Resource Manager

Resource Manager Reference 1-121

Resource File Format
You need to know the exact format of a resource fork, which is described in this section,
only if you’re writing an application that creates or modifies a resource fork directly,
without using Resource Manager routines.

Figure 1-11 shows the format of a compiled resource fork.

Figure 1-11 Format of a resource fork

As Figure 1-11 shows, every resource fork begins with a resource header. Because the
resource header contains an offset to the resource map, the resource map does not
necessarily have to be located at the end of the resource fork.

CHAPTER 1

Resource Manager

1-122 Resource Manager Reference

Figure 1-12 shows the format of a resource header.

Figure 1-12 Format of a resource header in a resource fork

The resource data in a resource fork consists of the data in its individual resources.
Figure 1-13 shows the format of resource data for a single resource.

Figure 1-13 Format of resource data for a single resource

For detailed descriptions of the resource data for various standard resource types, see the
appropriate books in the Inside Macintosh series.

The resource data in a resource fork is followed by the resource map. Figure 1-14 shows
the format of a resource map.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-123

Figure 1-14 Format of the resource map in a resource fork

After reading the resource map into memory, the Resource Manager stores the indicated
information in the reserved areas at the beginning of the map.

Each item in a resource type list specifies one resource type used in the resource fork, the
number of resources of that type, and the location of the reference list for that type.
Figure 1-15 shows the format of an item in a resource type list.

Figure 1-15 Format of an item in a resource type list

CHAPTER 1

Resource Manager

1-124 Resource Manager Reference

The resource type list is followed by the reference lists for each type of resource. Each
resource type has a corresponding reference list that contains entries for each resource of
that type. The reference lists are contiguous and in the same order as the types in the
resource type list.

Figure 1-16 shows the format of an entry in a reference list.

Figure 1-16 Format of an entry in the reference list for a resource type

If a resource does not have a name, the offset to the resource name in the resource’s entry
in the reference list is –1. If a resource does have a name, the offset identifies the location
of the name’s entry in the resource name list. Figure 1-17 shows the format of an item in
the resource name list.

Figure 1-17 Format of an item in a resource name list

CHAPTER 1

Resource Manager

Resource Manager Reference 1-125

Figure 1-18 illustrates the use of various offsets in the resource header and resource map,
including the offsets for an entry in a reference list for an individual resource. Although
the figure shows the resource map after the resource data, the resource map can be
located almost anywhere in the resource fork as long as the offset to the map in the
resource header points to the right location.

Figure 1-18 Offsets in a resource fork and an entry for a single resource in a reference list

CHAPTER 1

Resource Manager

1-126 Resource Manager Reference

Resources in the System File
The System file’s resource fork contains resources that are shared by all applications and
system software. The sections that follow describe these resources.

▲ WARNING

Your application should not directly add resources to, delete resources
from, or modify resources in the System file. ▲

If your application needs to install drivers, you should ship it with the Installer and an
Installer script for drivers. To distribute the Installer, you need to license the Apple
system software, which includes the Installer.

The next section describes resources in the System file that provide information
about the computer on which your application is currently running, such as the user’s
name, the computer name, and the current printer type. You can use Resource Manager
routines or the Gestalt function to obtain this information. Subsequent sections list
system software routines kept in packages in the System file and function key resources.

In System 7 and later versions of system software, users can add resources such as
scripts, keyboards, and sounds to the System file by dragging the resource icons to the
System Folder. Desk accessories and resources such as system extensions are stored in
the subdirectories of the System Folder, not in the System file. In System 7.0, users can
also add resources such as fonts to the System file by dragging their icons to the System
Folder. In System 7.1 and later versions, fonts are stored in a subdirectory of the
System Folder rather than in the System file. (See the chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials for details.)

The folders in the System Folder and some system resources are represented by standard
icons. “Standard Icons” beginning on page 1-129 lists the most important standard icons.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-127

User Information Resources

The following resources in the resource fork of the System file provide the user’s name,
the computer name, the model of computer, the icon for the computer model, and the
current printer type:

Information Resource ID
Resource
type Description

User name –16096 'STR ' The name of the person who “owns” the
computer or is the current user. Use the
GetString function with this resource
ID to return the user name.

Computer
name

–16413 'STR ' The name of the computer, which is
distinct from the user name and from any
internal hard disks that may be present.
The default name of the computer is “User
name’s Macintosh.” Use the GetString
function with this resource ID to return
the computer name.

Computer
model

–16395 'STR#' The model of the computer, such as
Macintosh SE/30 or Macintosh IIci. The
Gestalt selector for the computer model
is gestaltMachineModel , and the
Gestalt function returns a response
value for this selector. You can use
this value as an index into the 'STR#'
resource using the GetIndString
procedure. You should never use the
model of the computer as an indication of
what software features or hardware may
be available.

Computer
icon

Value of
response
parameter
returned
from
Gestal t

'ICN#'
'icl4'
'icl8'
'ics#'
'ics4'
'ics8'

The icon for the computer model, such as
the Macintosh II or Macintosh IIci. The
icons for computers are stored in icon
families. The Gestalt selector for the
computer icon is gestaltMachineIcon .
Use the value from the response value
for this selector as the resource ID of the
icon resource you want. (For more
information about icon families, see the
chapter “Finder Interface” in Inside
Macintosh: Macintosh Toolbox Essentials.)

Printer
type

–8192 'STR ' The type of printer to which the computer
sends documents, such as a LaserWriter
printer. There is no method for retrieving
the name of the printer. Use the
GetString function to return the type of
printer.

CHAPTER 1

Resource Manager

1-128 Resource Manager Reference

You should use GetString , not GetResource , to get the string for the user name or
the computer name. Once you have the string, you should not release it, dispose of it, or
make it purgeable. You will find that the resource was already loaded when you asked
for it, so it should remain loaded when you are finished. Do not change the contents of
either of these strings or mark them as changed. System 6 and earlier versions of system
software do not necessarily have the computer name resource, and for this reason you
should provide error checking as appropriate.

The GetString function, GetIndString procedure, and Gestalt function are
documented in Inside Macintosh: Operating System Utilities.

Packages

A package is a set of routines and data types that forms a part of the Toolbox or
Operating System and is stored as a resource of type 'PACK' . In early models of the
Macintosh computer, all packages were disk-based and brought into memory only when
needed; some packages are now in ROM. The System file contains the standard
Macintosh packages and the resources they use or own.

Package name Resource ID

List Manager 0

Disk Initialization Manager 2

Standard File Package 3

Floating-Point Arithmetic Package 4

Transcendental Functions Package 5

Text Utilities 6

Text Utilities (formerly referred to
as the Binary-Decimal Conversion
Package)

7

Apple Event Manager 8

PPC Browser 9

Edition Manager 11

Color Picker 12

Data Access Manager 13

Help Manager 14

Picture Utilities 15

CHAPTER 1

Resource Manager

Resource Manager Reference 1-129

Function Key Resources

Function key resources (of the 'FKEY' resource type) are Command-Shift-number key
combinations that are captured and processed by the WaitNextEvent function. The
screen utility resource (a function key resource with resource ID 3) produces a picture of
the main screen, contained in a ' PICT' file, when the user presses Command-Shift-3.
The 'FKEY' resource IDs 0 through 4 are reserved for future use by Apple Computer,
Inc. The WaitNextEvent function is described in the chapter “Event Manager” in Inside
Macintosh: Macintosh Toolbox Essentials.

Standard Icons

System software uses icons to represent documents, applications, folders, disks, and
other elements of the Macintosh interface. Many of these standard icons are stored in the
System file. You can design your own icons for your application and its documents. If
you do not provide your own icons, the Finder displays a default icon. Your application
can retrieve any of the icons in the System file by using the GetResource function. You
should refer to these icons by their constant names and not by their resource IDs. For a
description of the GetResource function, see page 1-73.

Most icons are available in at least two sizes: large (32 by 32 pixels) and small
(16 by 16 pixels). They are also available in three bit depths: 8-bit, 4-bit, and
black-and-white. An icon family consists of the large and small icons for an object, each
with a mask, and each available in the three different color depths. See the chapter
“Finder Interface” in Inside Macintosh: Macintosh Toolbox Essentials for information about
how to create your own icons.

Many of the icons in the System file are also available in a small size (16 by 16 pixels),
represented by the 'SICN' resource. These icons are used in Standard File Package
dialog boxes. The Finder also uses icons in the System file to display in its windows the
contents of disks or folders by name, date, size, or kind. The Views menu in System 7
allows the user to display large or small icons for a given window.

The icons listed in Table 1-4 represent default icons for documents (including special
classes of documents such as stationery), applications, and desk accessories. The icons
show the 'icl8' resource from the icons’ icon family. You can include customized
versions of the icons in Table 1-4 with your documents and applications. There are icon
families and 'SICN' resources for all of these icons unless otherwise noted.

CHAPTER 1

Resource Manager

1-130 Resource Manager Reference

Table 1-4 Document and application icons

Constant name and icon Resource ID Description

genericDocumentIconResource –4000 The default document icon. The Finder
displays this icon if your application
does not provide its own icon for
documents.

genericApplicationIconResource –3996 The default application icon. The
Finder displays this icon for any
application that does not provide its
own icon.

genericDeskAccessoryIconResource –3991 The default desk accessory icon. In
System 7 and later versions, desk
accessories are represented on the
desktop as applications are, each with
its own icon. The Finder displays this
icon for any desk accessory that does
not provide its own icon.

genericEditionFileIconResource –3989 The default edition file icon. (See Inside
Macintosh: Interapplication
Communication for information about
editions.)

genericStationeryIconResource –3985 The default stationery file icon. (See
Inside Macintosh: Macintosh Toolbox
Essentials for information about
stationery.)

genericPreferencesIconResource –3971 The default preferences file
icon. Preference files appear in the
Preferences folder, which is located
inside the System Folder. There is no
'SICN' resource for this icon.

genericQueryDocumentIconResource

–16506 The default query document icon. (See
Inside Macintosh: Interapplication
Communication for information about
query documents.) There is no 'SICN'
resource for this icon.

genericExtensionIconResource

–16415 The default extension icon. The Finder
displays this icon for any extension
that does not have its own icon.
Extension files appear in the
Extensions folder, which is located
inside the System Folder. There is no
'SICN' resource for this icon.

CHAPTER 1

Resource Manager

Resource Manager Reference 1-131

The icons listed in Table 1-5 represent the different types of folders found on the desktop.
The icons shown are the 'icl8' resource for the icons’ icon families. There are icon
families and 'SICN' resources for all of these icons unless otherwise noted.

Table 1-5 Folder icons

Constant name and icon Resource ID Description

genericFolderIconResource –3999 The default folder icon.

privateFolderIconResource –3994 The icon for a folder to which the user does not
have access. It is dimmed and has a distinctly
marked border. The Finder displays an alert box
when a user without privileges attempts to
open this folder.

ownedFolderIconResource –3980 The icon for a folder that is owned by a
particular user, usually on a shared volume
such as a file server. There is no 'SICN'
resource for this icon.

dropFolderIconResource –3979 The icon for a folder in which any user may
store documents, applications, and so on, but
from which only a specified group of users can
retrieve the contents. There is no 'SICN'
resource for this icon.

sharedFolderIconResource –3978 The icon for a folder that the owner has made
available for file sharing. There is no 'SICN'
resource for this icon.

mountedFolderIconResource –3977 The icon for a folder that a guest has mounted
on a remote volume. This icon appears only for
the guest. There is no 'SICN' resource for this
icon.

CHAPTER 1

Resource Manager

1-132 Resource Manager Reference

The icons listed in Table 1-6 represent the different types of folders found in the System
Folder. The icons shown are the 'icl8' resource for the icons’ icon families. You should
not alter the appearance of these icons. There are only icon families for these icons.

Table 1-6 System Folder icons

Constant name and icon Resource ID Description

systemFolderIconResource –3983 The System Folder icon. This folder
contains the System file and other
system-related folders.

appleMenuFolderIconResource –3982 The Apple Menu Items folder icon. This
folder contains items found in the Apple
menu.

startupFolderIconResource –3981 The Startup Items folder icon. This folder
contains documents, aliases,
applications, and other objects that open
when the computer starts up.

controlPanelFolderIconResource –3976 The Control Panels folder icon. This
folder contains control panels.

printMonitorFolderIconResource –3975 The PrintMonitor Documents folder
icon. This folder contains documents that
are in the queue to be printed.

preferencesFolderIconResource –3974 The Preferences folder icon. This folder
contains preferences files for the Finder
and other software that needs to
remember user preferences.

extensionsFolderIconResource –3973 The Extensions folder icon. This folder
contains system extensions.

fontsFolderIconResource –3968 The Fonts folder icon. This folder
contains fonts (both bitmapped and
outline).

CHAPTER 1

Resource Manager

Resource Manager Reference 1-133

The icons listed in Table 1-7 appear on the desktop. The icons shown are the 'icl8'
resource for the icons’ icon families. There are icon families and 'SICN' resources for
these icons unless otherwise noted.

The icons listed in Table 1-8 are used only by the Standard File Package and are available
only as an 'SICN' resource. The pop-up menu in the standard file dialog boxes
indicates where the list of files shown in the dialog box is located (whether on the
desktop, at the top level of a volume, or inside a series of folders on a volume).

Table 1-7 Desktop icons

Constant name and icon Resource ID Description

floppyIconResource –3998 The default icon for any disk, 3.5-inch or otherwise,
whose driver doesn’t supply its own icon.

trashIconResource –3993 The default empty Trash icon.

fullTrashIconResource –3984 The default full Trash icon, with bulging midsection.
There is no 'SICN' resource for this icon.

Table 1-8 Standard File Package icons

Constant name and icon Resource ID Description

openFolderIconResource –3997 The open folder icon, which appears in a
pop-up menu only. The standard file
dialog boxes display this icon to indicate
which folder is currently open.

genericHardDiskIconResource –3995 The hard disk icon, which appears in a
pop-up menu only. The same icon is used
to represent internal and external disks. A
different icon may appear on the desktop,
because the manufacturer of the hard disk
can design a special icon for a particular
volume.

continued

CHAPTER 1

Resource Manager

1-134 Resource Manager Reference

ROM Resources
The information in this section is useful only for designers of specialized programs that
need to access ROM resources directly, bypassing any patches in the System file, or
that need to override ROM resources.

Inserting the ROM Resource Map

Many system resources are stored in ROM. System software calls the InitResources
function during system startup, and the Resource Manager creates a special heap zone in
the system heap and builds a resource map that points to the ROM resources.

The Resource Manager normally searches ROM resources only when you use the
RGetResourc e function to get a handle to the resource, and even then only after it
searches the System file’s resource fork. To search for a resource in ROM before searching
the System file’s resource fork, your application must first alter the resource search order
by inserting the ROM resource map in front of the System file’s resource map.

desktopIconResourc e –3992 The desktop icon, which appears in a
pop-up menu only. The standard file
dialog boxes display this icon to indicate
which files and folders are available on the
desktop.

genericFileServerIconResource –3972 The file server volume icon. This
represents any servers open on the
desktop. A different icon may appear on
the desktop, because the manufacturer can
design a special icon for a particular
server.

genericSuitcaseIconResource –3970 The suitcase icon. This represents any
suitcase, such as font suitcases or desk
accessory suitcases. There are different
icons for these suitcases in larger sizes,
depending on the contents.

Table 1-8 Standard File Package icons (continued)

Constant name and icon Resource ID Description

CHAPTER 1

Resource Manager

Resource Manager Reference 1-135

When the value of the global variable RomMapInsert is TRUE, the Resource Manager
inserts the ROM resource map before the System file’s resource map for the next call
only. When the value of RomMapInsert is TRUE, the adjacent variable TmpResLoad
determines whether the value of the global variable ResLoad is considered TRUE or
FALSE, overriding the actual value of ResLoad for the next call only. The values of the
RomMapInsert and TmpResLoad variables are cleared after each call to a Resource
Manager routine.

The RGetResource function first calls GetResource . If GetResource cannot locate
the requested resource in the resource chain, RGetResource sets RomMapInsert to
TRUE, then calls GetResource again.

To set the RomMapInsert and TmpResLoad variables in tandem yourself, you can use
two global constants. Set the system global variable RomMapInsert to the global
constant mapTrue to insert the ROM resource map with SetResLoad(TRUE) . Set
RomMapInsert to the global constant mapFalse to insert the ROM resource map with
SetResLoad(FALSE) .

There is no real resource fork associated with the ROM resources; the ROM resource map
has a path number of 1 (an illegal path reference number). There are two ways to
determine whether a handle references a ROM resource. First, you can set up
RomMapInsert and TmpResLoad and call HomeResFile ; if 1 is returned, the handle is
to a ROM resource. Second, you can dereference the handle and check whether the
master pointer points to ROM by comparing it to the global variable ROMBase.

Overriding ROM Resources

You can override some of the ROM resources, such as ' CURS' resources, simply by
putting the substitute resource in your application’s resource fork. Other ROM resources,
however, such as ' DRVR' and ' PACK' resources, cannot be overridden in this way
because they are already referenced and in use when your application is launched.

On startup, system software creates a list of ROM resources that should not be
referenced. This list is based on information stored in the System file’s resource fork in
an ' ROv#' resource whose version word matches the version word of the ROM. You can
modify the ' ROv#' resource so that it includes the ROM resources that you want to
override.

▲ WARNING

You should not override ROM resources unless absolutely necessary.
Before overriding ROM resources, you should understand the situation
completely. ▲

CHAPTER 1

Resource Manager

1-136 Resource Manager Reference

Figure 1-19 shows the structure of an ' ROv#' resource.

Figure 1-19 Structure of a compiled ROM override (' ROv#') resource

For information on modifying an ' ROv#' resource, write to Macintosh Developer
Technical Support.

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-137

Summary of the Resource Manager

Pascal Summary

Constants

CONST

gestaltResourceMgrAttr = 'rsrc'; {Gestalt selecto r ResMgr}

gestaltPartialRsrcs = 0; {check this bit in the }

{ response parameter}

{resource attributes}

resSysHeap = 64; {set if read into system }

{ heap}

resPurgeable = 32; {set if purgeable}

resLocked = 16; {set if locked}

resProtected = 8; {set if protected}

resPreload = 4; {set if to be preloaded}

resChanged = 2; {set if to be written to }

{ resource fork }

{resource file attributes}

mapReadOnly = 128; { set to make file read-only }

mapCompact = 64; {set to compact file on }

{ update}

mapChanged = 32; {set to write map on update }

{ values for setting the RomMapInsert and TmpResLoad global variables}

mapTrue = $FFFF; {insert ROM map w/ }

{ TmpResLoad = TRUE}

mapFalse = $FF00; {insert ROM map w/ }

{ TmpResLoad = FALSE}

{ system icon definition IDs }

genericDocumentIconResource = -4000; {default document icon}

genericFolderIconResource = -3999; {default folder icon }

floppyIconResource = -3998; {defaul t d isk icon}

openFolderIconResource = -3997; {open folder icon}

genericApplicationIconResource = -3996; {default application }

{ icon }

CHAPTER 1

Resource Manager

1-138 Summary of the Resource Manager

genericHardDiskIconResource = -3995; {hard disk icon }

privateFolderIconResource = -3994; {folder without privileges }

{ f or this user icon}

t rashIconResource = -3993; {default empty Trash icon}

desktopIconResource = -3992; {desktop icon }

genericDeskAccessoryIconResource = -3991; {default desk accessory icon}

genericEditionFileIconResource = -3989; {default edition icon }

genericStationeryIconResource = -3985; {default stationery icon}

systemFolderIconResource = -3983; {System Folder icon }

appleMenuFolderIconResource = -3982; {Apple Menu Items }

{ folder icon }

genericFileServerIconResource = -3972; {file server icon }

genericPreferencesIconResource = -3971; {default preference s }

{ file icon }

genericSuitcaseIconResource = -3970; { default suitcase icon }

genericMoverObjectIconResource = -3969; {System file object icon }

genericQueryDocumentIconResource = - 16506; {default query }

{ document icon}

genericExtensionIconResource = - 16415; {default extensions icon}

fullTrashIconResource = -3984; {default full Trash icon}

startupFolderIconResource = -3981; {Startup Items folder icon}

ownedFolderIconResource = -3980; {owned folder icon}

dropFolderIconResource = -3979; {drop folder icon}

sharedFolderIconResource = -3978; {shared folder icon}

mountedFolderIconResource = -3977; {mounted folder icon}

controlPanelFolderIconResource = -3976; {Control Panels folder icon }

printMonitorFolderIconResource = -3975; {PrintMonitor }

{ Documents folder icon}

preferencesFolderIconResource = -3974; {Preferences folder icon}

extensionsFolderIconResource = -3973; {Extensions folder icon }

fontsFolderIconResource = - 3968; {Fonts folder icon}

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-139

Data Type

TYPE ResType = PACKED ARRAY[1..4] OF Char;

Routines

Initializing the Resource Manager

FUNCTION InitResources: Integer;

PROCEDURE RsrcZoneInit;

Checking for Errors

FUNCTION ResError: Integer;

Creating an Empty Resource Fork

PROCEDURE FSpCreateResFile (spec: FSSpec; creato r: OSType;
f ileType: OSType; scriptTag: ScriptCode);

PROCEDURE HCreateResFile (vRefNum: Integer; dirID: LongInt;
f ileName: Str255) ;

PROCEDURE CreateResFil e (fileName: Str255);

Opening Resource Forks

FUNCTION FSpOpenResFile (spec: FSSpec; permission: SignedByte): Integer;

FUNCTION HOpenResFile (vRefNum: Integer; dirID: LongInt ;
f ileName: Str255;
permission: SignedByte): Integer ;

FUNCTION OpenRFPerm (fileName: Str255; vRefNum: Integer;
permission: SignedByte): Integer ;

FUNCTION OpenResFil e (fileName: Str255): Integer;

Getting and Setting the Current Resource File

FUNCTION CurResFile: Integer;

PROCEDURE UseResFile (refNum: Integer);

FUNCTION HomeResFile (theResource: Handle): Integer;

CHAPTER 1

Resource Manager

1-140 Summary of the Resource Manager

Reading Resources Into Memory

FUNCTION GetResource (theType: ResType; theID: Integer): Handle;

FUNCTION Get1Resource (theType: ResType; theID: Integer): Handle;

FUNCTION GetNamedResource (theType: ResType; name: Str255): Handle;

FUNCTION Get1NamedResource (theType: ResType; name: Str255): Handle;

FUNCTION RGetResource (theType: ResType; theID: Integer): Handle;

PROCEDURE SetResLoad (load: Boolean);

PROCEDURE LoadResource (theResource: Handle);

Getting and Setting Resource Information

PROCEDURE GetResInfo (theResource: Handle; VAR theID: Integer;
VAR theType: ResType; VAR name: Str255) ;

PROCEDURE SetResInfo (theResource: Handle; theID: Integer;
name: Str255);

FUNCTION GetResAttrs (theResource: Handle): Integer;

PROCEDURE SetResAttrs (theResource: Handle; attrs: Integer);

Modifying Resources

PROCEDURE ChangedResource (theResource: Handle);

PROCEDURE AddResource (theData: Handle; theType: ResType;
theID: Integer; name: Str255);

Writing to Resource Forks

PROCEDURE UpdateResFile (refNum: Integer);

PROCEDURE WriteResource (theResource: Handle);

PROCEDURE SetResPurge (install: Boolean);

Getting a Unique Resource ID

FUNCTION UniqueID (theType: ResType): Integer;

FUNCTION Unique1ID (theType: ResType): Integer;

Counting and Listing Resource Types

FUNCTION CountResources (theType: ResType): Integer;

FUNCTION Count1Resources (theType: ResType): Integer;

FUNCTION GetIndResource (theType: ResType; index: Integer) : H andle;

FUNCTION Get1IndResource (theType: ResType; index: Integer): Handle ;

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-141

FUNCTION CountTypes: Integer;

FUNCTION Count1Types: Integer;

PROCEDURE GetIndType (VAR theType: ResType; index: Integer);

PROCEDURE Get1IndType (VAR theType: ResType; index: Integer);

Getting Resource Sizes

{these routines also available as SizeResource and MaxSizeRsrc, r espectively}

FUNCTION GetResourceSizeOnDisk
(theResource: Handle): LongInt ;

FUNCTION GetMaxResourceSize
(theResource: Handle): LongInt;

Disposing of Resources

PROCEDURE ReleaseResource (theResource: Handle);

PROCEDURE DetachResource (theResource: Handle) ;

{The RemoveResource procedure is also available as RmveResource}

PROCEDURE RemoveResource (theResource: Handle);

Closing Resource Forks

PROCEDURE CloseResFile (refNum: Integer);

Reading and Writing Partial Resources

PROCEDURE ReadPartialResourc e
(theResource: Handle;

offset: LongInt; buffer: UNIV Ptr;
count: LongInt) ;

PROCEDURE WritePartialResourc e
(theResource: Handle;

offset: LongInt; buffer: UNIV Ptr;
count: LongInt) ;

PROCEDURE SetResourceSiz e (theResource: Handle ; newSi ze: LongInt) ;

Getting and Setting Resource Fork Attributes

FUNCTION GetResFileAttrs (refNum: Integer): Integer;

PROCEDURE SetResFileAttrs (refNum: Integer; attrs: Integer);

Accessing Resource Entries in a Resource Map

FUNCTION RsrcMapEntry (theResource: Handle): LongInt;

CHAPTER 1

Resource Manager

1-142 Summary of the Resource Manager

C Summary

Constants

enum {

#define gestaltResourceMgrAtt r ' rsrc ' / *Gestalt selector ResMgr * /

#define gestaltPartialRsrcs = 0 /*check this bit in the */

/* response parameter*/

};

enum {

/* resource attributes */

resSysHeap = 64 , / *set if read into system heap * /

r esPurgeable = 32 , / *set if purgeable*/

resLocked = 16 , / *set if locked*/

resProtected = 8 , / *set if protected*/

resPreload = 4, / *set if to be preloaded* /

resChanged = 2, / *set if to be written */

/* to resource fork* /

/* resource fork attributes */

mapReadOnly = 128, / *set to make f ile */

/* r ead-only*/

mapCompact = 64, / *set to co mpact f ile */

/* on update */

mapChanged = 32, / *set to write map */

/* on update * /

/ *values for setting the RomMapInsert and TmpResLoad global variables*/

mapTrue = 0xFFFF, /*insert ROM map w/ */

/* TmpResLoad = TRUE*/

mapFalse = 0xFF00 /*insert ROM map w/ */

/* TmpResLoad = FALSE*/

} ;

enum {

/*system icon definition IDs*/

genericDocumentIconResource = -4000, /*default document icon*/

genericStationeryIconResource = -3985, /*default stationery icon*/

genericEditionFileIconResource = -3989, /*default edition icon*/

genericApplicationIconResource = -3996, /*default application icon * /

genericDeskAccessoryIconResource = -3991, /*default desk accessory */

/* icon*/

genericFolderIconResource = -3999, /*default folder icon*/

privateFolderIconResource = -3994, /*folder without privileges*/

/* for this user icon*/

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-143

floppyIconResource = -3998, /*defaul t d is k icon*/

t rashIconResource = -3993, /*default empty Trash icon*/

desktopIconResource = -3992, /*desktop icon*/

openFolderIconResource = -3997, /*open folder icon*/

genericHardDiskIconResource = -3995, /*hard disk icon*/

genericFileServerIconResource = -3972, /*file server icon*/

genericSuitcaseIconResource = -3970, /* default suitcase icon*/

genericMoverObjectIconResource = -3969, /*System file object icon*/

genericPreferencesIconResource = -3971, /*default preferences */

/* file icon*/

genericQueryDocumentIconResource = -16506, /*default query doc icon * /

genericExtensionIconResource = -16415, /*default extension icon*/

systemFolderIconResource = -3983, /*System Folder icon*/

appleMenuFolderIconResource = -3982, /*Apple Menu Items */

/* folder icon*/

} ;

enum {

startupFolderIconResource = -3981, /*Startup Items folder icon*/

ownedFolderIconResource = -3980, /*owned folder icon*/

dropFolderIconResource = -3979, /*drop folder icon*/

sharedFolderIconResource = -3978, /*shared folder icon*/

mountedFolderIconResource = -3977, /*mounted folder icon*/

controlPanelFolderIconResource = -3976, /*Control Panels folder */

/* icon*/

printMonitorFolderIconResource = -3975, /*PrintMonitor */

/* Documents folder icon*/

preferencesFolderIconResource = -3974, /*Preferences folder icon*/

extensionsFolderIconResource = -3973 , /*Extensions folder icon* /

fontsFolderIconResource = - 3968, /*Fonts folder icon*/

fullTrashIconResource = - 3984 /*default full Trash icon*/

} ;

Data Type

typedef unsigned long ResType;

CHAPTER 1

Resource Manager

1-144 Summary of the Resource Manager

Routines

Initializing the Resource Manager

pascal short InitResources (void);

pascal void RsrcZoneInit (void);

Checking for Errors

pascal short ResError (void);

Creating an Empty Resource Fork

pascal void FSpCreateResFile
(const FSSpec *spec, OSType creator,

OSType fileType, ScriptCode scriptTag);

pascal void HCreateResFile (short vRefNum, long dirID,
ConstStr255Param fileName);

pascal void CreateResFile (ConstStr255Param fileName);

Opening Resource Forks

pascal short FSpOpenResFile
(const FSSpec *spec, SignedByte permission);

pascal short HOpenResFile (short vRefNum, long dirID,
ConstStr255Param fileName,
char permission);

pascal short OpenRFPerm (ConstStr255Param fileName, short vRefNum,
char permission);

pascal short OpenResFile (ConstStr255Param fileName);

Getting and Setting the Current Resource File

pascal short CurResFile (void);

pascal void UseResFile (short refNum);

pascal short HomeResFile (Handle theResource);

Reading Resources Into Memory

pascal Handle GetResource (ResType theType, short theID);

pascal Handle Get1Resource (ResType theType, short theID);

pascal Handle GetNamedResource
(ResType theType, ConstStr255Param name);

pascal Handle Get1NamedResource
(ResType theType, ConstStr255Param name);

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-145

pascal Handle RGetResource (ResType theType, short theID);

pascal void SetResLoad (Boolean load);

pascal void LoadResource (Handle theResource);

Getting and Setting Resource Information

pascal void GetResInfo (Handle theResource, short *theID,
ResType *theType, Str255 name);

pascal void SetResInfo (Handle theResource, short theID ,
ConstStr255Param name);

pascal short GetResAttrs (Handle theResource);

pascal void SetResAttrs (Handle theResource, short attrs);

Modifying Resources

pascal void ChangedResource
(Handle theResource);

pascal void AddResource (Handle th eData, ResType theType,
short theID, ConstStr255Param name);

Writing to Resource Forks

pascal void UpdateResFile (short refNum);

pascal void WriteResource (Handle theResource);

pascal void SetResPurge (Boolean install);

Getting a Unique Resource ID

pascal short UniqueID (ResType theType);

pascal short Unique1ID (ResType theType);

Counting and Listing Resource Types

pascal short CountResources
(ResType theType);

pascal short Count1Resources
(ResType theType);

pascal Handle GetIndResource
(ResType theType, short index);

pascal Handle Get1IndResourc e
(ResType theType, short index);

pascal short CountTypes (void);

pascal short Count1Types (void);

CHAPTER 1

Resource Manager

1-146 Summary of the Resource Manager

pascal void GetIndType (ResType *theType, short index);

pascal void Get1IndType (ResType *theType, short index);

Getting Resource Sizes

/*t he GetResourceSizeOnDisk routine is also available as SizeResource*/

pascal long GetResourceSizeOnDisk
(Handle theResource) ;

/*the GetMaxResourceSize routine is also avai l abl e as MaxSizeRsrc*/

pascal long GetMaxResourceSize
(Handle theResource);

Disposing of Resources

pascal void ReleaseResource
(Handle theResource);

pascal void DetachResource (Handle theResource) ;

/*the RemoveResource routine is also available as RvmeResource*/

pascal void RemoveResource (Handle theResource);

Closing Resource Forks

pascal void CloseResFile (short refNum);

Reading and Writing Partial Resources

pascal void ReadPartialResource
(Handle theResource , l ong of fset,

void *buffer, lon g co unt);

pascal void WritePartialResource
(Handle theResource , l ong of fset,

const void *buffer, long count);

pascal void SetResourceSize
(Handle theResource, long newSize);

Getting and Setting Resource Fork Attributes

pascal short GetResFileAttrs
(short refNum);

pascal void SetResFileAttrs
(short refNum, short attrs);

CHAPTER 1

Resource Manager

Summary of the Resource Manager 1-147

Accessing Resource Entries in a Resource Map

pascal long RsrcMapEntry (Handle theResource);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_ResourceDispatch

_HighLevelFSDispatch

Global Variables

Selector Routine

$7001 ReadPartialResource

$7002 WritePartialResource

$7003 SetResourceSize

Selector Routine

$0000 FSpOpenResFile

$000E FSpCreateResFile

TopMapHndl long Handle to resource map of most recently opened
resource fork

SysMapHndl long Handle to System file’s resource fork
SysMap word File reference number of System file’s resource fork
CurMap word File reference number of current resource file
ResLoad word Current SetResLoad state
ResErr word Current value of ResError
ResErrProc long Address of resource error procedure
SysResName length byte followed

by up to 19 characters
Name of System file’s resource fork

RomMapInsert byte Flag for whether to insert ROM resource map
TmpResLoad byte Temporary SetResLoad state for calls using

RomMapInsert

CHAPTER 1

Resource Manager

1-148 Summary of the Resource Manager

Result Codes
noErr 0 No error
dirFulErr –33 Directory full
dskFulErr –34 Disk full
nsvErr –35 No such volume
ioErr –36 I/O error
bdNamErr –37 Bad filename or volume name (perhaps zero length)
eofErr –39 End of file
tmfoErr –42 Too many files open
fnfErr –43 File not found
wPrErr –44 Disk is write-protected
fLckdErr –45 File is locked
vLckdErr –46 Volume is locked
dupFNErr –48 Duplicate filename (rename)
opWrErr –49 File already open with write permission
permErr –54 Permissions error (on file open)
extFSErr –58 Volume belongs to an external file system
memFullErr –108 Not enough room in heap zone
dirNFErr –120 Directory not found
resourceInMemory –188 Resource already in memory
writingPastEnd –189 Writing past end of file
inputOutOfBounds –190 Offset or count out of bounds
resNotFound –192 Resource not found
resFNotFound –193 Resource file not found
addResFailed –194 AddResource procedure failed
rmvResFailed –196 RemoveResource procedure failed
resAttrErr –198 Attribute inconsistent with operation
mapReadErr –199 Map inconsistent with operation

