
GL-1

Glossary

0-length handle A handle whose associated
relocatable block has a logical size of 0 bytes.

24-bit addressing The addressing mode in
which only the low-order 24 bits of a pointer or
handle are used in determining memory
addresses.

32-bit addressing The ability of the Operating
System to use all 32 bits of a pointer or handle in
determining memory addresses.

32-bit clean Said of an application that is able
to run in an environment where all 32 bits of a
memory address are used for addressing.

A5 world An area of memory in an
application’s partition that contains the
QuickDraw global variables, the application
global variables, the application parameters, and
the jump table—all of which are accessed
through the A5 register.

address A number that specifies the location of
a byte in memory.

Address Management Unit (AMU) The
Apple custom integrated circuit in Macintosh II
computers that performs 24-bit to 32-bit address
mapping.

address map The assignment of portions of the
address space of a computer to specific devices.

address mapping See address translation.

address space A range of accessible memory.
See also address map.

address translation The conversion of one set
of addresses into another, corresponding set. For
example, software designed for the original
Macintosh computers uses only 24 bits for
addresses, whereas the Macintosh II and later
models have a 32-bit address bus. As a result, the
Macintosh II and later models convert (or map)
the 24-bit addresses used by the software into the
32-bit addresses used by the hardware.

allocate To assign an area of memory for use.

AMU See Address Management Unit.

application global variables A set of variables
stored in the application’s A5 world that are
global to the application.

application heap An area of memory in the
application heap zone in which memory is
dynamically allocated and released on demand.
The heap contains the application’s 'CODE'
segment 1, data structures, resources, and other
code segments as needed.

application heap zone The heap zone initially
provided by the Memory Manager for use by an
application and the Toolbox; initially equivalent
to the application heap, but may be subdivided
into two or more independent heap zones.

application parameters Thirty-two bytes of
memory in the application partition that are
reserved for system use. The first long word is
the address of the first QuickDraw global
variable.

application partition A partition of memory
reserved for use by an application. The
application partition consists of free space along
with the application’s heap, stack, and A5 world.

application space Memory that’s reserved for
dynamic allocation by applications.

asynchronous execution A mode of invoking
a routine. During the asynchronous execution
of a routine, an application is free to perform
other tasks.

backing-store file The file in which the Virtual
Memory Manager stores the contents of
unneeded pages of memory.

backing volume See paging device.

block See memory block.

block contents The area that’s available for use
in a memory block.

GLOSSARY

GL-2

block header The internal housekeeping
information maintained by the Memory Manager
at the beginning of each block in a heap zone.

cache See data cache, disk cache, or
instruction cache.

callback routine A routine that is executed as
part of the operation of some other routine.

compact See heap compaction.

completion routine A routine that is executed
when an asynchronous call to some other routine
is completed.

concurrent driver A driver that can handle
several requests at once.

copy-back cache A cache whose data is written
to RAM only when necessary to make room in
the cache for data accessed more recently or
when the cache is explicitly flushed. See also
write-through cache.

current heap zone The heap zone currently
under attention, to which most Memory Manager
operations implicitly apply.

cushion See memory cushion.

dangling pointer A copy of a master pointer
that no longer points to the correct memory
address.

data cache An area of memory internal to some
microprocessors (for example, the MC68030 and
MC68040 microprocessors) that holds recently
accessed data. See also instruction cache.

dereference To refer to a block by its master
pointer instead of its handle.

direct memory access (DMA) A technique for
transferring data in or out of memory without
using the CPU.

disk cache A part of RAM that acts as an
intermediate buffer when data is read from
and written to file systems on secondary
storage devices.

disposed handle A handle whose associated
relocatable block has been disposed of.

DMA See direct memory access.

double indirection The means by which the
Memory Manager or an application accesses the
data associated with a handle variable.

double page fault A page fault that occurs
while the Virtual Memory Manager is handling
another page fault. See also page fault.

empty handle A handle whose master pointer
has the value NIL (possibly indicating that the
underlying relocatable block has been purged).

fake handle A handle that was not created by
the Memory Manager.

flush (1) To write data from a cache in memory
to a volume. (2) To write data or instructions
from a cache in the microprocessor to RAM.

fragmentation See heap fragmentation.

free block A memory block containing space
available for allocation.

GB Abbreviation for gigabyte. A gigabyte is
1024 megabytes, or 1,073,741,824 bytes.

global variables See application global
variables, system global variables, and
QuickDraw global variables.

grow-zone function A function supplied by the
application program to help the Memory
Manager create free space within a heap.

handle A variable containing the address of a
master pointer, used to access a relocatable block.
See also pointer.

heap An area of memory in which space
is dynamically allocated and released on
demand, using the Memory Manager. See
also application heap.

heap compaction The process of moving
allocated blocks within a heap to collect the free
space into a single block.

heap fragmentation The state of a heap when
the available free space is scattered throughout
the heap in numerous unused blocks.

heap zone An area of memory initialized by the
Memory Manager for heap allocation. A heap
zone consists of a zone header, a heap, and a
zone trailer.

GLOSSARY

GL-3

hold To temporarily prevent a range of physical
memory from being paged out by the Virtual
Memory Manager.

instruction cache An area of memory internal
to some microprocessors (for example, the
MC68020, MC68030, and MC68040
microprocessors) that holds recently used
instructions. See also data cache.

jump table An area of memory in an
application’s A5 world that contains one entry
for every externally referenced routine in every
code segment of the application. The jump table
is the means by which the loading and unloading
of segments is implemented.

KB Abbreviation for kilobyte. A kilobyte is
1024 bytes.

lock (1) To temporarily prevent a relocatable
block from being moved during heap
compaction. (2) To temporarily prevent a range
of physical memory from being paged out or
moved by the Virtual Memory Manager.

logical address An address used by
software. The logical address might be translated
into a physical address by the memory
management unit.

logical size The number of bytes in a memory
block’s contents.

low-memory system global variables See
system global variables.

master pointer A pointer to a relocatable block,
maintained by the Memory Manager and
updated whenever the block is moved, purged,
or reallocated. All handles to a relocatable block
refer to it by double indirection through the
master pointer.

master pointer block A nonrelocatable block of
memory that contains master pointers. A master
pointer block in your application heap contains
64 master pointers, and a master pointer block in
the system heap contains 32 master pointers.

master pointer flag bits The high-order 8 bits of
a master pointer. In 24-bit addressing mode,
some of these bits are used to store information
about the relocatable block referenced by the
master pointer.

MB Abbreviation for megabyte. A megabyte is
1024 kilobytes, or 1,048,576 bytes.

memory block An area of contiguous memory
within a heap.

memory-block record A data structure used by
the translation parameter block to indicate the
starting address and length of a given block of
memory. This parameter block is defined by the
MemoryBlock data type.

memory cushion An application-defined
threshold below which the application should
refuse to honor any requests to allocate memory
for nonessential operations.

memory management unit (MMU) Any
component that performs address mapping in a
Macintosh computer. In Macintosh II computers,
it is either the Address Management Unit (AMU)
or the Paged Memory Management Unit
(PMMU). The MMU function is built into the
MC68030 and MC68040 microprocessors.

Memory Manager The part of the Operating
System that dynamically allocates and releases
memory space in the heap.

memory map See address map.

memory reservation The process of creating a
free space at the bottom of the heap for a newly
allocated block by moving unlocked relocatable
blocks upward.

memory reserve An allocated block of memory
in the application heap that is held in reserve and
released only for essential operations when
memory in the heap is low.

MMU See memory management unit.

nonrelocatable block A block whose location
in the heap is fixed. This block can’t be moved
during heap compaction or other memory
operations.

NuBus The 32-bit wide synchronous bus used
for expansion cards in the Macintosh II family
of computers.

NuBus expansion slot A connector attached to
the NuBus in a Macintosh II computer, into
which an expansion card can be installed.

GLOSSARY

GL-4

original application heap zone See application
heap zone.

page The basic unit of memory used in virtual
memory.

Paged Memory Management Unit
(PMMU) The Motorola MC68851 chip, used in
the Macintosh II computer to perform
logical-to-physical address translation and paged
memory management.

page fault A special kind of bus error caused
by an attempt to access data in a page of memory
that is not currently resident in RAM. See also
double page fault.

paging The process of moving data between
physical memory and the backing-store file.

paging device The volume that contains the
backing-store file.

partition A contiguous block of memory
reserved for use by the Operating System or by
an application. See also application partition and
system partition.

physical address An address represented
by bits on a physical address bus. The
physical address may be different from the
logical address, in which case the memory
management unit translates the logical address
into a physical address.

physical size The actual number of bytes a
memory block occupies in its heap zone,
including the block header and any unused bytes
at the end of the block.

PMMU See Paged Memory Management Unit.

pointer A variable containing the address of a
byte in memory. See also handle.

processor cache See data cache or
instruction cache.

program counter A register in the CPU that
contains a pointer to the memory location of the
next instruction to be executed.

protected block A block of memory that should
not be moved or purged by a grow-zone function.

purge To remove a relocatable block from the
heap, leaving its master pointer allocated but set
to NIL .

purgeable block A relocatable block that can be
purged from the heap.

purge-warning procedure A procedure
associated with a particular heap zone. The
Memory Manager calls this procedure whenever
a block is about to be purged from the zone.

QuickDraw global variables A set of variables
stored in the application’s A5 world that contain
information used by QuickDraw.

RAM See random-access memory.

RAM disk A portion of the available RAM
reserved for use as a temporary storage device.
A user can configure a RAM disk or disable it
altogether using controls in the Memory
control panel.

random-access memory (RAM) Memory
whose contents can be changed. The RAM in a
Macintosh computer contains exception vectors,
buffers used by hardware devices, the system
and application heaps, the stack, and other
information used by applications.

read-only memory (ROM) Memory whose
contents are permanent. The ROM in a
Macintosh computer contains routines for the
Toolbox and the Operating System, and the
various system traps.

reallocate To allocate new space in the heap for
a purged block and to update the block’s master
pointer to point to its new location.

reentrant driver A driver that can be
interrupted while servicing a request, service
the new request, and then complete the original
request.

relative handle A pointer to a block’s master
pointer, expressed as an offset relative to the start
of the heap zone rather than as an absolute
memory address. A block’s relative handle is
contained in its block header.

release (1) To free an allocated area of memory,
making it available for reuse. (2) To allow a
previously held range of pages to be movable in
physical memory.

relocatable block A block that can be moved
within the heap during compaction.

reservation See memory reservation.

GLOSSARY

GL-5

reserve See memory reserve.

ROM See read-only memory.

size correction The number of unused bytes at
the end of the block, beyond the end of the
block’s contents.

stack An area of memory in the application
partition that is used to store temporary variables.

stack frame The area of the stack used by a
routine for its parameters, return address, local
variables, and temporary storage.

stale data Data in the microprocessor ’s data
cache whose corresponding value in RAM has
changed. You might need to flush the data cache
to avoid using stale data.

stale instructions Instructions in the
microprocessor’s instruction cache whose
corresponding value in RAM has changed. You
might need to flush the instruction cache to avoid
using stale instructions.

strip an address To clear the high-order byte of
a 24-bit address, making it usable in 32-bit mode.

synchronous execution A mode of invoking a
routine. After calling a routine synchronously, an
application cannot perform other tasks until the
routine is completed.

system global variables A collection of global
variables stored in the system partition.

system heap An area of memory in the
system partition reserved for use by the
Operating System.

system heap zone The heap zone provided by
the Memory Manager for use by the Operating
System; equivalent to the system heap.

system partition A partition of memory
reserved for use by the Operating System.

tag byte The first byte of a block header.

temporary memory Memory allocated outside
an application partition that may be available for
occasional short-term use.

translation table A data structure used by the
GetPhysical function to indicate which
physical blocks correspond to a given logical
block. This parameter block is defined by the
LogicalToPhysicalTable data type.

unlock (1) To allow a relocatable block to be
moved during heap compaction. (2) To allow a
previously locked range of pages to be paged out.

unpurgeable block A relocatable block that
can’t be purged from the heap.

virtual memory Addressable memory beyond
the limits of the available physical RAM. The
Operating System extends the logical address
space by allowing unused applications and data
to be stored on a secondary storage device
instead of in physical RAM.

Virtual Memory Manager The part of the
Operating System that provides virtual memory.

write-through cache A cache whose
information is immediately written to RAM
whenever that information changes. See also
copy-back cache.

zero-length handle See 0-length handle.

zone header An area of memory at the
beginning of a heap zone that contains essential
information about the heap, such as the number
of bytes free in the heap and the addresses of the
heap’s grow-zone function and purge-warning
procedure.

zone pointer A pointer to a zone record.

zone record A data structure representing a
heap zone.

zone trailer A minimum-sized free block
marking the end of a heap zone.

IN-1

Index

Symbols

& operator 1-34
@ operator 2-25

Numerals

0 (memory location) 1-4, 1-35
0-length handles 1-34
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

32-bit addressing 3-7 to 3-9, 4-8
defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16

A

A5 register
and A5 world 1-13, 4-5 to 4-6
grow-zone functions saving and restoring 1-49, 4-14
setting and restoring 1-78 to 1-79, 4-14, 4-24 to 4-25
use of by Toolbox and Operating System

routines 4-14
using to access QuickDraw globals 4-18 to 4-19

A5 world
accessing in completion routines 4-14 to 4-15
accessing in interrupt tasks 4-16 to 4-17
defined 1-12, 1-13
setting 1-78 to 1-79, 4-24 to 4-25

addresses. See memory addresses
addressing modes

24-bit 4-7
32-bit 4-7 to 4-8
current mode, getting 4-26
switching 4-20 to 4-21, 4-26 to 4-27

Address Management Unit (AMU) 3-5
address space. See logical address space; physical

address space
address-translation mode

getting 4-26

setting 4-26 to 4-27
temporarily changing 4-20

AMU (Address Management Unit) 3-5
AND operator 1-34
AppleShare, and paging devices 3-5
application global variables 1-12

accessing in completion routines 4-14
accessing in interrupt tasks 4-17

application heap 1-9 to 1-11
defined 1-10
determining amount of free space 1-42 to 1-44
maximizing space to prevent fragmentation 1-40
setting up 1-38 to 1-42, 1-50 to 1-52, 2-27 to 2-29

application heap limit
getting 1-53, 2-84
setting 1-53 to 1-54, 2-84 to 2-85

application heap zone
See also heap zones
defined 2-5
getting a pointer to 2-81
initializing 2-87 to 2-88
maximizing size of 1-51, 2-27
subdividing into multiple heap zones 2-14 to 2-16

application parameters 1-13
application partitions 1-4, 1-7 to 1-13
ApplicationZone function 2-81
ApplLimit global variable 1-8, 1-40, 1-53, 2-84
ApplZone global variable 2-81

B

backing-store files
defined 3-5
volume specified in Memory control panel 4-5

backing volume. See paging device
block contents 2-22
block headers 2-22 to 2-24
BlockMove procedure 1-74 to 1-75, 2-59 to 2-60
_BlockMove trap, flushing instruction cache 4-10
blocks, memory

See also nonrelocatable blocks; relocatable blocks
allocating 1-44 to 1-46
concatenating 2-64 to 2-66
copying 1-74 to 1-75, 2-59 to 2-64
defined 1-10
how allocated 1-22
manipulating 2-59 to 2-66

INDEX

IN-2

blocks, memory (continued)
releasing 1-44 to 1-46
size correction for 2-23, 2-24

Boolean operators, short-circuit 1-34
BufPtr global variable 2-14

limitation on lowering during startup 2-85
bus-error vectors 3-22
Byte data type 2-25

C

caches. See data cache; disk cache; instruction cache
callback routines

and code segmentation 1-32 to 1-33
maintaining the A5 register in 4-14 to 4-15

click-loop routines, and the A5 register 4-15
code resources, copying into system heap 2-13
code segmenting

and dangling pointers 1-31 to 1-32
effect on callback routines 1-32 to 1-33

compacting heap zones 2-71 to 2-73
compaction. See heap compaction
CompactMem function 2-71 to 2-72
CompactMemSys function 2-72 to 2-73
completion routines

deferred under virtual memory 3-12
maintaining the A5 register in 4-14 to 4-15

concatenating memory blocks 2-64 to 2-66
concurrent drivers 3-11
control action procedures, and the A5 register 4-15
control definition procedures, and the A5 register 4-15
control panels, Memory

See Memory control panel
copy-back cache 4-12
copying memory blocks 1-74 to 1-75, 2-59 to 2-64
CurrentA5 global variable 1-79, 4-25

and callback routines 4-15
defined 1-13
getting value 1-79, 4-25

current heap zone 2-5
CurStackBase global variable 2-104
cushions. See memory cushions

D

dangling pointers
avoiding 1-29 to 1-33
causes of 1-29 to 1-33
dangling procedure pointers 1-32 to 1-33
defined 1-29
detecting 1-29

introduced 1-20
locking blocks to prevent 1-29 to 1-30
referencing callback routines 1-32 to 1-33
using local variables to prevent 1-31

data cache 4-30 to 4-31
and virtual memory 3-21
defined 4-9
flushing 4-9, 4-12

DebuggerEnter procedure 3-23, 3-35
DebuggerExit procedure 3-23, 3-35 to 3-36
DebuggerGetMax function 3-34 to 3-35
DebuggerLockMemory function 3-21, 3-23, 3-37
DebuggerPoll procedure 3-23, 3-39
debuggers, and virtual memory 3-21 to 3-24
DebuggerUnlockMemory function 3-21, 3-23, 3-38
_DebugUtil trap 3-22, 3-45
deferred tasks, and the A5 register 4-16
DeferUserFn function 3-33

introduced 3-21
using 3-20 to 3-21

dereferenced handles 1-29
DeskHook global variable

clearing in Pascal 2-9
and displaying windows during startup time 2-9

DetachResource procedure 2-13
device drivers, avoiding page faults 3-12
dialog boxes, and low-memory situations 1-44
direct memory access (DMA) 3-3, 3-13, 3-15, 3-16, 3-18,

3-20, 3-21, 4-3, 4-10
and stale data 4-12

disk cache
defined 4-4
setting with the Memory control panel 4-4

disposed handles
checking for 1-33
defined 1-33
preventing dereferencing of 1-33
problems using 1-33

DisposeHandle procedure 1-46, 1-57, 2-34 to 2-35
DisposePtr procedure 1-46, 1-60, 2-38 to 2-39
DMA. See direct memory access
double indirection 1-18
double page faults 3-11 to 3-12, 3-14
duplicating relocatable blocks 2-62 to 2-64

E

EmptyHandle procedure 1-67 to 1-68, 2-51 to 2-52
used by a grow-zone function 1-49

empty handles
checking for 1-34
defined 1-34

INDEX

IN-3

F

fake handles 1-35 to 1-36, 1-55, 2-30
creating 1-35, 1-36
defined 1-35
problems using 1-35, 1-55, 2-30

Finder, allocation of memory for disk copying 2-9
flag bits

master pointer 4-7
stripping 4-7, 4-27

FlushCodeCache procedure 4-31 to 4-32
FlushCodeCacheRange function 4-32 to 4-33
FlushDataCache procedure 4-31
flushing

data cache 4-9, 4-12, 4-31
instruction cache 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

FlushInstructionCache procedure 4-30
fragmentation. See heap fragmentation
FreeMem function 2-66 to 2-67
FreeMemSys function 2-67
free space

assessing 2-66 to 2-70
assessing availability for temporary memory

2-79 to 2-80

G

gaps in heaps, danger of 1-25
GetApplLimit function 1-53, 2-84
GetHandleSize function 2-39 to 2-40
GetMMUMode function 4-26
GetNextEvent function, and temporary memory 2-10
GetPageState function 3-24, 3-39 to 3-40
GetPhysical function 3-31 to 3-33

and discontiguous physical address space 3-11
introduced 3-16
using 3-16 to 3-20

GetPtrSize function 2-41 to 2-42
GetZone function 2-80
global variables. See application global variables;

system global variables; QuickDraw
global variables

grow-zone functions 1-48 to 1-49, 1-80 to 1-81,
2-89 to 2-90

and the A5 register 4-15
defined 1-38
example of 1-49, 4-15
finding protected block 1-78, 2-77
setting 1-77 to 1-78, 2-76 to 2-77
using SetA5 function 1-81, 2-90
using SetCurrentA5 function 1-81, 2-90

GZRootHnd global variable 1-78, 2-77
GZSaveHnd function 1-49, 1-78, 2-77

H

HandAndHand function 2-64 to 2-65
Handle data type 1-18, 2-25
handles

See also relocatable blocks
checking validity of 1-34
defined 1-18 to 1-19
recovering 2-54 to 2-55
relative 2-23

HandleZone function 2-82 to 2-83
HandToHand function 2-62 to 2-64
HClrRBit procedure 2-50 to 2-51
heap compaction

defined 1-11, 1-23
movement of relocatable blocks during 1-24
routines for 2-71 to 2-73, 2-74 to 2-76

HeapEnd global variable 2-104
heap fragmentation

causes of 1-25 to 1-28
defined 1-10
during memory reservation 1-25
maximizing heap size to prevent 1-40
preventing 1-24 to 1-28
summary of prevention 1-28

heap purging 1-21 to 1-22
routines for 2-73 to 2-76

heap. See application heap; system heap
heap zones

See also zone headers; zone trailers
accessing 2-80 to 2-83
changing 2-81
defined 2-5
getting current zone 2-80
initializing 2-86 to 2-87
manipulating 2-83 to 2-89
organization of 2-19 to 2-22
subdividing into multiple heap zones 2-14 to 2-16

HFS RAM Cache panel 4-4
HGetState function 1-30, 1-61 to 1-62, 2-43 to 2-44
high memory, allocating at startup time 2-13 to 2-14
HLockHi procedure 1-73, 2-58 to 2-59
HLock procedure 1-30, 1-63 to 1-64, 2-45 to 2-46
HNoPurge procedure 1-66 to 1-67, 2-48 to 2-49
holding physical memory 3-14
HoldMemory function 3-14, 3-25 to 3-26
HPurge procedure 1-65 to 1-66, 2-47 to 2-48
HSetRBit procedure 2-49 to 2-50
HSetState procedure 1-30, 1-62 to 1-63, 2-44 to 2-45
HUnlock procedure 1-64 to 1-65, 2-46 to 2-47
_HWPriv trap macro 4-36

INDEX

IN-4

I

InitApplZone procedure 2-87 to 2-88
initializing new heap zones within other heap

zones 2-14 to 2-16
InitZone procedure 1-81, 2-86 to 2-87, 2-90
instruction cache

defined 4-8
flushing 4-9 to 4-10, 4-29 to 4-30, 4-31 to 4-33

interprocess buffers, and temporary memory 2-10
interrupts, nonmaskable 3-23
interrupt tasks

and Memory Manager routines 1-50, 2-26
deferring under virtual memory 3-12
maintaining the A5 register 4-16 to 4-17
and temporary memory 2-10

interrupt time
avoiding Memory Manager routines at 1-50, 2-26
deferring code execution under virtual memory 3-20

I/O completion routines, and the A5 register 4-15
ISP. See stack pointer, interrupt

J, K

jump table 1-13
jump table entries

and stale instructions 4-10
for callback routines 1-32

L

linked lists, allocating new elements in 1-31
loading code segments, and dangling pointers

1-31 to 1-32
_LoadSeg trap, flushing instruction cache 4-10
locking physical memory

debugger routine 3-37
defined 3-13
routines for 3-28 to 3-30

locking relocatable blocks 1-20 to 1-21, 1-63 to 1-64,
2-45 to 2-46

LockMemoryContiguous function 3-16, 3-29 to 3-30
LockMemory function 3-28

and stale data 4-13
introduced 3-15

logical address space 3-5 to 3-9
possible fragmentation of 3-7
size of with 24-bit addressing 3-5
size of with 32-bit addressing 3-7
translating to physical address space 3-11

logical sizes of blocks 2-22

LogicalToPhysicalTable data structure 3-17, 3-25
logical-to-physical translation table. See translation

table
low-memory conditions 1-36 to 1-38
low-memory global variables. See system global

variables

M

master pointer blocks 1-18
master pointer flag bits 4-7
master pointers

allocating manually 1-51 to 1-52, 2-28 to 2-29
comparing 4-22
defined 1-18
determining how many to preallocate 1-41 to 1-42
number per block in application zone 1-41
running out of 1-41

MaxApplZone procedure 1-51, 2-27
and ApplLimit global variable 1-8
automatic execution of 1-40, 2-16
and heap fragmentation 1-40

MaxBlock function 2-67 to 2-68
MaxBlockSys function 2-68
maximizing heap zone space 2-74 to 2-76
MaxMem function 2-74 to 2-75
MaxMemSys function 2-75 to 2-76
maxSize constant 2-72
MC680x0 microprocessor

data cache 4-9
instruction cache 4-8, 4-9
size of memory blocks with 2-22

MemErr global variable 1-50, 1-76, 2-26, 2-71
MemError function 1-50, 1-76, 2-26, 2-70 to 2-71
memory

See also temporary memory; virtual memory
allocating and releasing 1-54 to 1-60, 2-29 to 2-39
allocating during startup 2-13 to 2-14
assessing 2-66 to 2-83
changing sizes of blocks 2-39 to 2-43
freeing 2-71 to 2-76
holding 3-13, 3-14
organization of 1-4 to 1-13, 2-19 to 2-24
releasing 3-15

memory addresses
comparing 4-8, 4-22
converting to 32-bit mode 4-7, 4-21 to 4-24,

4-26 to 4-27
mapping logical to physical 3-16 to 3-20
stripping flag bits from 4-7, 4-21 to 4-23, 4-27
translating 4-23 to 4-24, 4-28

MemoryBlock data structure 3-17, 3-24
memory-block record 3-17

INDEX

IN-5

memory blocks. See blocks, memory
memory configuration, obtaining information

about 3-14
Memory control panel 3-4, 3-5, 4-3 to 4-5

addressing mode controls 4-5
disk cache controls 4-4
illustrated 4-4
introduced 4-3
RAM disk controls 4-5
virtual memory controls 4-5

memory cushions
defined 1-37
determining optimal size of 1-43
maintaining 1-43 to 1-44

_MemoryDispatchA0Result trap macro 3-45
_MemoryDispatch trap macro 3-20, 3-44
memory management unit (MMU) 3-5
Memory Manager 2-3 to 2-105

24-bit 1-15
32-bit 1-15
allocating master pointers 1-41
and application heap 1-10 to 1-11
application-defined routines 2-89 to 2-92
calling grow-zone function 1-48
capabilities of 2-4
compacting heap 1-23 to 1-24
data types 1-17 to 1-18, 2-24 to 2-26
defined 2-3
movement of blocks by 1-24
purging heap 1-23 to 1-24
reserving memory 1-22 to 1-23, 2-55 to 2-56
returning result codes 1-50, 1-76, 2-26, 2-70 to 2-71
routines 2-26 to 2-89
testing for features 2-11 to 2-12

memory reservation. See reserving memory
memory reserves

benefits of 1-37
defined 1-37
maintaining 1-46 to 1-48

MemTop global variable 2-14, 2-86
menu definition procedures, and the A5 register 4-15
MMU (memory management unit) 3-5
MoreMasters procedure 1-41 to 1-42, 1-51 to 1-52, 2-28

to 2-29
MoveHHi procedure 1-26 to 1-27, 1-71 to 1-72,

2-56 to 2-58
moving relocatable blocks high 1-26 to 1-27,

1-71 to 1-73, 2-56 to 2-59
multiple heap zones

implementing 2-14 to 2-16
uses for 2-6

N

NewEmptyHandle function 2-33
NewEmptyHandleSys function 2-34
NewHandleClear function 1-45, 1-56, 2-31 to 2-32
NewHandle function 1-44, 1-55 to 1-56, 2-29 to 2-31
NewHandleSysClear function 2-32
NewHandleSys function 2-31
NewPtrClear function 1-59, 2-37 to 2-38
NewPtr function 1-44, 1-58 to 1-59, 2-36 to 2-37
NewPtrSysClear function 2-38
NewPtrSys function 2-37
nonessential memory requests, checking whether to

satisfy 1-43
nonmaskable interrupts 3-23
nonrelocatable blocks

See also blocks, memory
advantages of 1-20
allocating 1-28, 1-58 to 1-59, 2-36 to 2-38
allocating temporarily 1-28
data type for 1-18
defined 1-17
disposal and reallocation of 1-25
releasing 1-60, 2-38 to 2-39
sizing 2-41 to 2-43
when to allocate 1-27 to 1-28

Notification Manager, and the A5 world 4-16 to 4-17
notification response procedures, and the

A5 register 4-16

O

OpenResFile function, calling StripAddress on
filenames 4-22

OpenRFPerm function, calling StripAddress on
filenames 4-22

operating system queues, storing elements in system
heap zone 2-12

ordered address comparisons 4-22
original application heap zone 2-5
_OSDispatch trap macro 2-104

P

Paged Memory Management Unit (PMMU) 3-5
PageFaultFatal function 3-22, 3-36
page faults

See also double page faults
defined 3-11
handling 3-20

INDEX

IN-6

page faults (continued)
intercepted by Virtual Memory Manager

3-11 to 3-12, 3-22
protection against 3-12, 3-14

pages, memory
defined 3-4
holding 3-14, 3-25
locking 3-15, 3-28
locking contiguously 3-29
releasing 3-15, 3-27
unlocking 3-30

PageState data type 3-24
paging 3-4
paging device 3-5
partitions 1-4

See also application partitions; system partition
patches, and stale instructions 4-10
physical address space 3-9 to 3-11

discontiguous 3-9
physical memory 3-14 to 3-20

holding pages in 3-14 to 3-15
locking pages in 3-15 to 3-16
releasing pages 3-15
unlocking pages 3-16

physical sizes of blocks 2-22
PMMU (Paged Memory Management Unit) 3-5
pointers 1-17 to 1-18

See also nonrelocatable blocks; dangling pointers
Process Manager, and callback routines 4-14
processor caches 4-8 to 4-13, 4-29 to 4-33

See also data cache; instruction cache
ProcPtr data type 2-25 to 2-26

and code segmentation 1-32 to 1-33
referencing code in code resources 2-13

program counter, fixing before switching to 32-bit
mode 4-21

protected blocks
defined 1-49
determining which they are 1-81, 2-90
handle to returned by GZSaveHnd 1-78, 2-77

PtrAndHand function 2-65 to 2-66
Ptr data type 1-17, 2-25
PtrToHand function 2-60 to 2-61
PtrToXHand function 2-61 to 2-62
PtrZone function 2-83
PurgeMem procedure 2-73 to 2-74
PurgeMemSys procedure 2-74
PurgeSpace procedure 1-75, 2-68 to 2-69
purge-warning procedures 2-16 to 2-18, 2-21,

2-90 to 2-92
defined 2-16
installed by SetResPurge 2-18, 2-91
restrictions on 2-91
sample 2-17

using SetA5 function 2-91
using SetCurrentA5 function 2-91

purging heap zones 1-24, 2-73 to 2-74
purging relocatable blocks 1-21 to 1-22

Q

QuickDraw global variables
defined 1-13
reading in stand-alone code 4-18 to 4-19
structure of 4-18
using in stand-alone code 4-18 to 4-19

R

RAM cache. See disk cache
RAM disks

defined 4-5
setting size of with Memory control panel 4-5

_Read trap, flushing instruction cache 4-10
ReallocateHandle procedure 1-68 to 1-69,

2-52 to 2-53
reallocating relocatable blocks 1-21 to 1-22
RecoverHandle function 2-54 to 2-55
reference constant fields

using to store A5 value 4-17
relative handles 2-23
releasing held pages 3-15
relocatable blocks

See also blocks, memory; handles
allocating 1-55 to 1-56, 2-29 to 2-34
changing properties 1-60 to 1-67, 2-43 to 2-51
clearing resource bit 2-50 to 2-51
concatenating 2-64 to 2-65
data type for 1-17
defined 1-17
disadvantages of 1-20
duplicating 2-62 to 2-64
emptying 1-67 to 1-68, 2-51 to 2-52
getting properties 1-61 to 1-62, 2-43 to 2-44
in bottom of heap zone 1-25
locking 1-20 to 1-21, 1-63 to 1-64, 2-45 to 2-46

for long periods of time 1-28
for short periods of time 1-28

making purgeable 1-65 to 1-66, 2-47 to 2-48
making unpurgeable 1-66 to 1-67, 2-48 to 2-49
managing 1-67 to 1-73, 2-51 to 2-59
master pointers after disposing 1-33
master pointers for 1-41
moving around nonrelocatable blocks 1-24
moving high 1-26 to 1-27, 1-71 to 1-73, 2-56 to 2-59

INDEX

IN-7

properties of 1-20 to 1-22
purging 1-21 to 1-22
reallocating 1-21 to 1-22, 1-68 to 1-69, 2-52 to 2-53
releasing 1-57, 2-34 to 2-35
restrictions on locked blocks 1-27
setting properties 1-62 to 1-67, 2-44 to 2-51
setting resource bit 2-49 to 2-50
sizing 2-39 to 2-41

movement during 1-24
unlocking 1-20 to 1-21, 1-64 to 1-65, 2-46 to 2-47
when to lock 1-28

removable disks, and virtual memory 3-5
ReserveMem procedure 1-70 to 1-71, 2-55 to 2-56
ReserveMemSys procedure 2-56
reserves. See memory reserves
reserving memory 1-22 to 1-23

and heap fragmentation 1-25
defined 1-22
for relocatable blocks 1-26
limitation of 1-25
routines 2-55 to 2-56

resource bit
clearing 2-50 to 2-51
setting 2-49 to 2-50

Resource Manager, installing purge-warning
procedures 2-18, 2-91

resource types
'SIZE' 1-13
'sysz' 2-13

result codes for Memory Manager routines 1-50, 1-76,
2-26, 2-70 to 2-71

S

self-modifying code, and stale instructions 4-10
SetA5 function 1-79, 4-14, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetApplBase procedure 2-88 to 2-89
SetApplLimit procedure 1-53 to 1-54, 2-84 to 2-85

using to increase size of stack 1-40
SetCurrentA5 function 1-79, 4-25

used in a grow-zone function 1-81, 2-90
used in a purge-warning procedure 2-91

SetGrowZone procedure 1-77 to 1-78, 1-81,
2-76 to 2-77, 2-90

SetHandleSize procedure 2-40 to 2-41
SetPtrSize procedure 2-42 to 2-43
SetResPurge procedure, installing purge-warning

procedures 2-18
SetZone procedure 2-81
short-circuit Boolean operators 1-34
SignedByte data type 1-17, 2-25

size correction for blocks 2-23, 2-24
Size data type 2-26
'SIZE' resource type, specifying partition size 1-13
slot-based VBL tasks, deferred under virtual

memory 3-12
stack

collisions with the heap 1-8
default size of 1-40
defined 1-8
determining available space 2-69
increasing size of 1-39 to 1-40

stack frame 1-9
stack pointer

interrupt (ISP) 3-23
user (USP) 3-23

stack sniffer 1-8
StackSpace function 2-69 to 2-70
stale data

avoiding problems with 4-13
defined 4-10

stale instructions
avoiding problems with 4-9
defined 4-9

stand-alone code resources, changing
address-translation mode in 4-20

startup process
allocating memory during 2-13 to 2-14
displaying windows during 2-9

Str255 data type 2-25
StringHandle data type 2-25
StringPtr data type 2-25
StripAddress function 4-21 to 4-23, 4-27 to 4-28
supervisor mode 3-23
SwapDataCache function 4-30 to 4-31
SwapInstructionCache function 4-29
SwapMMUMode procedure 4-26 to 4-27

calling from stand-alone code 4-20
SysEqu.p interface file 2-7
system extensions, allocating memory at

startup time 2-13
system global variables

changing 2-9
defined 1-6 to 1-7, 2-6
reading 2-8 to 2-9
uses of 2-6 to 2-7

system heap 1-6
defined 1-6
held in RAM under virtual memory 3-12

system heap zone
allocating memory in 2-12
creating new heap zones within 2-16
defined 2-5
getting a pointer to 2-82
installing interrupt code into 2-13
uses for 2-5

INDEX

IN-8

system partition 1-4 to 1-7
See also system heap; system global variables

SystemZone function 2-82
SysZone global variable 2-82
'sysz' resource type 2-13

T

tag bytes 2-23
TempFreeMem function 2-79
TempMaxMem function 2-79 to 2-80
TempNewHandle function 2-78
temporary memory

allocating 2-10 to 2-11
confirming success of allocation 2-10
defined 1-13, 2-4
determining zone of 2-10
limitation on locking 2-10
operating on blocks 2-5
optimal usage of 2-5
release of during application termination 2-10
routines 2-77 to 2-80
testing for features of 2-11 to 2-12
tracking of 2-10
using as a heap zone 2-16

TheZone global variable 2-80
32-bit addressing 3-7 to 3-9, 4-8

defined 1-15
machines that support 4-5
setting with the Memory control panel 4-5
using temporarily 4-20

32-bit clean 1-16
THz data type 2-20
Time Manager tasks

and the A5 register 4-16
deferred under virtual memory 3-12

TopMem function 2-14, 2-85 to 2-86
Translate24To32 function 4-23 to 4-24, 4-28 to 4-29
translating logical to physical addresses 3-16 to 3-20,

3-31 to 3-33
translation tables 3-17, 3-25
trap patches, and the A5 register 4-15
24-bit addressing 3-5 to 3-7, 4-7 to 4-8

defined 1-15
setting with the Memory control panel 4-5
stripping flag bits 4-21 to 4-23

U

UnholdMemory function 3-15, 3-27
_UnloadSeg trap, flushing instruction cache 4-10

unlocking physical memory 3-16, 3-30 to 3-31
debugger routine 3-38

unlocking relocatable blocks 1-20 to 1-21, 1-64 to 1-65,
2-46 to 2-47

UnlockMemory function 3-16, 3-30 to 3-31
updating windows, saving memory space for 1-44
USP. See stack pointer, user

V

VBL tasks
and the A5 register 4-16
deferred under virtual memory 3-12

Vector Base Register (VBR) 3-22
virtual memory

and AppleShare volumes 3-5
and removable disks 3-5
and user interrupts 3-21
backing-store file 4-5
bus-error vectors under 3-22
CPU data caching 3-15
debugger routines 3-34 to 3-40
debugger support for 3-21 to 3-24
deferring interrupt code execution 3-12, 3-20
introduced 1-15
management routines 3-25 to 3-33
mapping information, getting 3-16 to 3-18
requirements for running 3-5
setting with the Memory control panel 4-5
testing for availability 3-14

Virtual Memory Manager 3-3 to 3-45
See also virtual memory
data structures 3-24 to 3-25
defined 3-3 to 3-4
routines 3-25 to 3-40

W, X, Y

WaitNextEvent function, and temporary memory 2-10
window definition procedures, and the A5

register 4-15
WITH statement (Pascal), and dangling pointers 1-29
word-break routines, and the A5 register 4-15
write-through cache 4-11

Z

zero (memory location). See 0 (memory location)
zero-length handles. See 0-length handles

INDEX

IN-9

Zone data structure 2-20
zone headers 2-5, 2-20 to 2-21
zone pointers 2-20
zone records 2-20, 2-20 to 2-21
zone trailer blocks 2-20
zone trailers 2-5

T H E A P P L E P U B L I S H I N G S Y S T E M

This Apple manual was written, edited,
and composed on a desktop publishing
system using Apple Macintosh
computers and FrameMaker software.
Proof pages were created on an Apple
LaserWriter IINTX printer. Final page
negatives were output directly from text
files on an Agfa ProSet 9800 imagesetter.
Line art was created using Adobe™
Illustrator. PostScript®, the
page-description language for the
LaserWriter, was developed by Adobe
Systems Incorporated.

Text type is Palatino® and display type is
Helvetica®. Bullets are ITC Zapf
Dingbats®. Some elements, such as
program listings, are set in Apple Courier.

LEAD WRITER
Tim Monroe

WRITERS
Tim Monroe, Michael Abramowicz

DEVELOPMENTAL EDITOR
Antonio Padial

ILLUSTRATOR
Peggy Kunz

PRODUCTION EDITOR
Teresa Lujan

ON-LINE PRODUCTION EDITOR
Gerri Gray

PROJECT MANAGER
Patricia Eastman

Special thanks to Eric Anderson,
Jeff Crawford, and Brian McGhie.

Acknowledgments to Sanborn Hodgkins,
Craig Prouse, Jim Reekes, Keith Rollin,
and the entire Inside Macintosh team.

