
Contents 4-1

CHAPTER 4

Memory Management

Contents

Utilities

The Memory Control Panel 4-3
About the Memory Management Utilities 4-5

The A5 Register 4-5
Addressing Modes 4-7
Address Translation 4-8
Processor Caches 4-8

Stale Instructions 4-9
Stale Data 4-10

Using the Memory Management Utilities 4-13
Accessing the A5 World in Completion Routines 4-14
Accessing the A5 World in Interrupt Tasks 4-16
Using QuickDraw Global Variables in Stand-Alone Code 4-18
Switching Addressing Modes 4-20
Stripping Flag Bits From Memory Addresses 4-21
Translating Memory Addresses 4-23

Memory Management Utilities Reference 4-24
Routines 4-24

Setting and Restoring the A5 Register 4-24
Changing the Addressing Mode 4-26
Manipulating Memory Addresses 4-27
Manipulating the Processor Caches 4-29

Summary of the Memory Management Utilities 4-34
Pascal Summary 4-34

Constants 4-34
Routines 4-34

CHAPTER 4

4-2 Contents

C Summary 4-35
Constants 4-35
Routines 4-35

Assembly-Language Summary 4-36
Trap Macros 4-36
Global Variables 4-36

Result Codes 4-36

CHAPTER 4

The Memory Control Panel 4-3

Memory Management Utilities

This chapter describes a number of utility routines you can use to control certain aspects
of the memory environment in Macintosh computers. Some features of the memory
environment are controlled by the user through the Memory control panel; others are
controlled by the Process Manager or other parts of the Macintosh Operating System and
Toolbox. The utility routines described in this chapter allow you to modify some of the
normal operations of the Operating System or the Toolbox.

You need to read this chapter if your application or driver

■ installs completion routines or interrupt tasks that are executed by the Operating
System or Toolbox, not directly by your application

■ modifies the addressing mode or converts addresses from one form to another

■ moves executable code in memory, or performs DMA operations

To use this chapter, you should be familiar with the information in the chapter
“Introduction to Memory Management” earlier in this book. Also, you can read the
chapter “Introduction to Processes and Tasks” in Inside Macintosh: Processes for a related
discussion of the A5 register.

This chapter begins with a brief description of the Memory control panel, which allows
users to alter several aspects of the Operating System’s memory configuration. Then it
shows how you can use the Memory Management Utilities to

■ set up the A5 register so that your application-defined completion routines and
interrupt tasks can access your application’s global variables

■ get the value of the A5 register so that you can read your application’s QuickDraw
global variables from within stand-alone code

■ get or set a computer’s address-translation mode

■ strip the flag bits from a master pointer or other memory address

■ convert 24-bit addresses to 32-bit addresses

■ flush the microprocessor’s instruction and data caches

The Memory Control Panel

A user can alter several aspects of the system memory configuration by setting certain
controls in the Memory control panel. This panel contains controls governing the
operation of the disk cache, virtual memory, and the addressing mode used by the
Memory Manager. Figure 4-1 shows the Memory control panel.

CHAPTER 4

Memory Management Utilities

4-4 The Memory Control Panel

Figure 4-1 The Memory control panel

The Disk Cache panel replaces the HFS RAM Cache panel (part of the General control
panel) used in earlier versions of system software. A disk cache is a part of RAM that
acts as an intermediate buffer when data is read from and written to file systems on
secondary storage devices. Data is saved there in case it is needed again in the very near
future. If it is, the Operating System reads the data from the disk cache rather than the
secondary storage device (which would take considerably longer). By increasing the
cache size, the user increases the likelihood that data recently read from or written to the
file system will be in the cache. The controls in the Disk Cache panel allow the user to
configure the size of the disk cache used by the Operating System during file-access
operations. In system software version 7.0, unlike earlier versions, the user cannot turn
off disk caching.

In system software version 7.0, the minimum cache size is 16 KB. The default size is
32 KB per megabyte of installed RAM (thus, the default disk cache size for a computer
with 4 MB of RAM is 128 KB). The maximum disk cache size is 320 KB per megabyte of
installed RAM (thus, the maximum disk cache size for a computer with 4 MB of RAM is
1280 KB). The operation of the disk cache is completely transparent to your application.

Note

These cache size values are provided for informational purposes only
and may differ in later system software versions or on different
Macintosh computers. In addition, the use of RAM for a RAM-based
video interface or a RAM disk affects the amount of RAM available for
the disk cache. ◆

CHAPTER 4

Memory Management Utilities

About the Memory Management Utilities 4-5

The Virtual Memory panel allows the user to set various features of virtual memory,
including whether virtual memory is turned on and, if so, how much is available. The
user can also specify the volume of the backing-store file, in which the Virtual Memory
Manager stores unused portions of code and data. Changes to the virtual memory
configuration do not take effect until the user restarts the computer. Note that the Virtual
Memory panel appears only on computers that support virtual memory. For information
on how your application can interact with virtual memory, see the chapter “Virtual
Memory Manager” in this book.

Using the 32-Bit Addressing controls, the user can select the maximum size of the
address space used in the computer. The maximum size of the address space is
determined by the number of bits used to store memory addresses, as explained in the
chapter “Virtual Memory Manager” in this book. The 32-Bit Addressing panel appears
only on computers that support 32-bit addressing mode. By clicking the panel’s controls,
the user can turn 32-bit addressing off and on. Changes made in this panel do not go into
effect until the user restarts the computer.

Using the RAM Disk controls, the user can determine the amount of the available RAM
that is to be treated as a RAM disk, a portion of RAM reserved for use as a temporary
storage device. It is most useful to create a RAM disk on battery-powered computers
(such as the Macintosh PowerBook computers) because the computer uses less energy to
access RAM than to access a hard disk or a floppy disk.

About the Memory Management Utilities

You can use the Memory Management Utilities to ensure that

■ your application’s callback routines, interrupt tasks, and stand-alone code can access
application global variables or QuickDraw global variables

■ your application or driver functions properly in both 24- and 32-bit modes

■ data or instructions in the microprocessor ’s internal caches remain consistent with
data or instructions in RAM

This section explains when and why you might need to use these utilities; for actual
implementation details, see the section “Using the Memory Management Utilities,”
which begins on page 4-13.

The A5 Register
If you write code that accesses your application’s A5 world (usually to read or write
the application global variables) at a time that your application is not the current
application, you must ensure that the A5 register points to the boundary between
your application’s parameters and global variables. Because the Operating System
accesses your A5 world relative to the address stored in the A5 register, you can obtain
unpredictable results if you attempt to read or write data in your A5 world when the
contents of A5 are not valid.

CHAPTER 4

Memory Management Utilities

4-6 About the Memory Management Utilities

There are two general cases in which code might execute when the contents of the A5
register are invalid:

■ when you install a completion routine that is executed when some other operation
(for instance, writing data to disk or playing a sound) is completed

■ when you install a routine (for instance, a VBL task) that is called in response to
an interrupt

If you install code that is to be executed at either of these times, you must make sure to
set up the A5 register upon entry and to restore it before exit. The sections “Accessing
the A5 World in Completion Routines” on page 4-14 and “Accessing the A5 World in
Interrupt Tasks” on page 4-16 describe how to do this in each case.

You might also need to determine the location of your application’s A5 world if you
want to read information in it from within a stand-alone code segment. You might want
to do this in application-defined definition procedures called on behalf of your
application. These include

■ control definition functions

■ window definition functions

■ menu definition functions

The problem with these kinds of stand-alone code segments is not that the value in the
A5 register is incorrect at the time they are executed; rather, it is that they have no A5
world at all. During execution, these stand-alone code segments can effectively “borrow”
the A5 world of the current application. However, they must be compiled and linked
separately from your application. (A custom window definition procedure, for example,
is separately compiled and linked, and then included as a resource of type 'WDEF' in
your application’s resource fork.) The linker cannot resolve any offsets from the value in
the A5 register, because the code segment doesn’t have an A5 world.

A stand-alone code segment can solve this problem quite simply at run time, by
determining the location of your application’s A5 world and then copying the data it
needs to access into blocks of memory that it allocates itself. In the code segment, all
references to data in the A5 world are indirect: the code segment manipulates local
copies of the relevant data. Using this technique, you can avoid explicit symbolic
references to the A5 world, which the linker cannot resolve.

In theory, you could use this technique of copying global data into a stand-alone code
segment’s private storage to access any data contained in your application’s A5 world. In
practice, however, the A5 world can contain so much data that you wouldn’t want to
make local copies of it all. In addition, the precise organization of the entire A5 world is
not generally determinate. Usually, a custom definition procedure or other stand-alone
code segment needs to read only the QuickDraw global variables, which are of fixed size
and have a well-documented organization. See the section “Using QuickDraw Global
Variables in Stand-Alone Code” on page 4-18 for a complete description of how to read
your application’s QuickDraw global variables from within a stand-alone code segment.

CHAPTER 4

Memory Management Utilities

About the Memory Management Utilities 4-7

Addressing Modes
The Memory Manager on the original Macintosh computers uses a 24-bit addressing
mode. To the underlying hardware, only the lower 24 bits of any 32-bit address are
significant. The CPU effectively ignores the upper 8 bits in a memory address by using a
24-bit address-translation mode. In this mode, the CPU (or the MMU coprocessor, if
present) maps all addresses to their lower-order 24 bits whenever it reads or writes a
memory location. This led both system software developers and third-party software
developers to put those upper 8 bits to other uses. For example, the Memory Manager
itself uses the upper 8 bits of the address in a master pointer to maintain information
about the associated relocatable block. These upper 8 bits are known as master pointer
flag bits.

When the Operating System is running in 24-bit mode, you can address at most 1 MB of
the address space assigned to a NuBus expansion card. Some cards, however, can work
with far more than 1 MB of memory. As a result, a device driver might need to switch the
Operating System into 32-bit mode temporarily, so that it can access the entire address
range of the associated device (perhaps to copy data from the device’s RAM into the
heap). When 32-bit address translation is enabled, the CPU or the MMU does not ignore
the upper 8 bits of a memory address.

Note

Don’t confuse the current address-translation mode of the Macintosh
hardware with the current addressing state of the Memory Manager.
The addressing state of the Memory Manager is selectable on a per-boot
basis and cannot be changed by an application or driver. The
address-translation mode of the underlying hardware is controlled by
the CPU and MMU (if one is available) and can be changed, if necessary,
at any time. ◆

The Operating System provides two utilities, GetMMUMode and SwapMMUMode, that
allow you to get and set the current address-translation mode. See “Switching
Addressing Modes” on page 4-20 for details.

If your device driver does in fact temporarily set the Macintosh hardware into 32-bit
address-translation mode, you need to be careful when you pass addresses to the
associated device. Suppose, for example, that your driver wants to transfer data to an
address in the heap (which is under the control of the Memory Manager). If the
24-bit Memory Manager is in operation, you need to strip the high byte from the
memory address; otherwise, the CPU would interpret the high byte of flags as part of the
address and transfer the data to the wrong location.

Note

You might also need to make the block of memory in the heap
immovable in physical memory, so that it is not paged out under virtual
memory. See the discussion of locking memory in the chapter “Virtual
Memory Manager” in this book. ◆

CHAPTER 4

Memory Management Utilities

4-8 About the Memory Management Utilities

The Operating System provides the StripAddress function, which you can use to strip
the high-order byte from a memory address. Even if you are not writing Macintosh
drivers, you might still find it useful to call StripAddress . For example, suppose you
need to compare two memory addresses (two master pointers, perhaps). If the system is
running the 24-bit Memory Manager and you compare those addresses without first
clearing the flag bits, you might get invalid results. You should first call StripAddress
to convert those addresses to their correct format before comparing them.

As you can see, the operation of StripAddress is not dependent on the 24-bit or 32-bit
address translation state of the hardware, but on the 24-bit or 32-bit addressing state of
the Memory Manager. You need to call StripAddress only when the 24-bit Memory
Manager is operating. When the 32-bit Memory Manager is operating, StripAddress
returns unchanged any addresses passed to it, because they are already valid 32-bit
addresses. See “Stripping Flag Bits From Memory Addresses” on page 4-21 for complete
details on calling StripAddress .

Address Translation
When a driver or other software component switches the system to the 32-bit
address-translation mode (perhaps to manipulate special hardware on a slot device),
certain addresses normally accessible in 24-bit mode are not mapped to the same
location by the Macintosh hardware. In particular, the Virtual Memory Manager uses
some of the slot address space as part of the addressable RAM. In that case, the standard
24-to-32 bit translation is not valid for slot spaces that the MMU has remapped into the
application address space.

You can use the Translate24To32 function to translate 24-bit addresses that might
have been remapped by the Macintosh hardware. If you intend to use 24-bit addresses
when your software is executing in 32-bit mode, your code should check for the presence
of that function. If it is available, you should use it to map 24-bit addresses into the 32-bit
address space. For details, see “Translating Memory Addresses” on page 4-23.

Processor Caches
Some members of the Motorola MC680x0 family of microprocessors contain internal
caches that can significantly improve the overall performance of software executing on
those microprocessors. For example, the MC68020 microprocessor contains a 256-byte
on-board instruction cache, an area of memory within the microprocessor that stores
the most recently executed instructions. Whenever the processor needs to fetch an
instruction, it first checks the instruction cache to determine whether the word required
is in the cache. The operation is much faster when the information is in the cache than
when it is only in RAM (which is external to the microprocessor).

Some other members of the MC680x0 family of microprocessors also contain an internal
data cache, an area of memory that holds recently accessed data. The data cache operates
much as the instruction cache does, but it caches data instead of instructions. Before
reading data from RAM, the microprocessor checks the data cache to determine whether

CHAPTER 4

Memory Management Utilities

About the Memory Management Utilities 4-9

the operand required for an instruction is in the cache. Again, the overall performance of
the software is greatly increased by the operation of the data cache.

Table 4-1 lists the available caches and their sizes for the various microprocessors
currently used in Macintosh computers.

The operation of any available instruction and data caches is generally transparent to
your application. In certain cases, however, you need to make sure that the information
in the caches and the corresponding information in main memory remain consistent.
When some information in RAM changes but the corresponding information in the
cache does not, the cached information is said to be stale. The following two sections
describe in detail how cached instructions and data can become stale. You can avoid
using stale instructions or data by flushing the affected cache whenever you do
something that can cause instructions or data to become stale. See “Manipulating the
Processor Caches,” beginning on page 4-29, for routines that you can use to maintain
consistency between a cache and main memory.

Stale Instructions

Any time that you modify part of the executable code of your application or other
software, you risk creating stale instructions in the instruction cache. Recall that the
microprocessor stores the most recently executed instructions in its internal instruction
cache, separately from main memory. Whenever your code modifies itself or any data in
memory that contains executable code, there is a possibility that a copy of the modified
instructions will be in the instruction cache (because they were executed recently). If so,
attempting to execute the modified instructions actually results in the execution of the
cached instructions, which are stale.

You can avoid using stale instructions by flushing the instruction cache every time you
modify executable instructions in memory. Flushing the cache invalidates all entries in it
and forces the processor to refill the cache from main memory.

IMPORTANT

Flushing the instruction cache has an adverse effect on the CPU’s
performance. You should flush the instruction cache only when
absolutely necessary. ▲

Table 4-1 Caches available in MC680x0 microprocessors

Microprocessor Instruction cache? Data cache?

MC68000 No No

MC68020 Yes (256 bytes) No

MC68030 Yes (256 bytes) Yes (256 bytes)

MC68040 Yes (4 KB) Yes (4 KB)

CHAPTER 4

Memory Management Utilities

4-10 About the Memory Management Utilities

Any code that modifies itself directly is likely to create stale instructions in the
instruction cache. In addition, you can create stale instructions by modifying other parts
of memory that contain executable instructions. For example, if you modify jump table
entries, you’ll need to flush the instruction cache to avoid using stale instructions.
Similarly, if you install patches by copying code from one part of memory to another and
modifying JMP instructions in order to execute the original routine, you’ll need to flush
the instruction cache. See the description of the FlushInstructionCache procedure
on page 4-30 for details.

The system software automatically flushes the instruction cache when you call certain
traps that are often used to move code from one location to another in memory. The
system flushes the instruction cache whenever you call _BlockMove , _Read,
_LoadSeg , and _UnloadSeg .

▲ WARNING

The _BlockMove trap is not guaranteed to flush the instruction cache
for blocks that are 12 bytes or smaller. If you use _BlockMove to move
very small blocks of code, you should flush the instruction cache
yourself. ▲

Other traps may flush the instruction cache. In general, you need to worry about stale
instructions only when your application moves code and not when the system software
moves it.

Stale Data

A cache may contain stale data whenever information in RAM is changed and that
information is already cached in the microprocessor ’s data cache. Suppose, for example,
that a computer contains an expansion card capable of DMA data transfers from the card
to main memory. The card typically reads commands from a buffer in RAM, executes the
commands, and writes status information back to the buffer when the command
completes. Before the card reads a command, the CPU sets up the command buffer and
initializes the status code to 0. Figure 4-2 shows this situation on a computer with an
MC68030 microprocessor.

CHAPTER 4

Memory Management Utilities

About the Memory Management Utilities 4-11

Figure 4-2 Initializing a status code

The MC68030 has a write-through cache: any data written to the cache is immediately
written out to RAM (to avoid stale data in RAM). As a result, the cache and RAM both
contain the same value (0) for the status code. Suppose next that the expansion card
executes the first command and writes a nonzero status code to RAM. The card then
sends an interrupt to the CPU, indicating that the operation has completed.

At this point, the microprocessor might attempt to read the status code returned by the
external hardware. However, because the status code is in the microprocessor ’s data
cache, the CPU reads the value in the cache, which is stale, instead of the value in main
memory (see Figure 4-3).

CHAPTER 4

Memory Management Utilities

4-12 About the Memory Management Utilities

Figure 4-3 Reading stale data

To avoid using this stale data, have your driver flush the data cache whenever you
transfer data directly into main memory.

IMPORTANT

Flushing the data cache has an adverse effect on the CPU’s performance.
You should flush the data cache only when absolutely necessary. ▲

The MC68040 has a copy-back cache: any data written to the cache is written to RAM
only when necessary to make room in the cache for data accessed more recently or when
the cache is explicitly flushed. As you can see, a copy-back cache allows for even greater
performance improvements than a write-through cache, because the data in the cache
has to be written to main memory less often. This is extremely valuable for relatively
small amounts of data that are needed for only a short while, such as local stack frames
for C or Pascal function calls.

Because the data in a copy-back cache is written to main memory only in certain
circumstances, it’s possible to get stale data in RAM. If you write data that is to be read
by non-CPU devices (such as an expansion card that performs DMA operations), you
need to flush the data cache before instructing the alternate bus master to read that data.
If you don’t update the RAM, the DMA transfer from RAM will read stale data.

A copy-back data cache can also lead to the use of invalid instructions if the stale
data in RAM contains executable code. When fetching instructions, the CPU looks only
in the instruction cache and (if necessary) in main memory, not in the data cache.
Because the instruction and data caches are separate, it’s possible that the CPU will fetch
invalid instructions from memory, in the following way. Suppose that you alter some

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-13

jump table entries and, in doing so, write the value $A9F0 (that is, the trap number of the
_LoadSeg trap) to memory. If the data cache is a copy-back cache, the data in main
memory is not updated immediately, but only when necessary to make room in the
cache (or when you explicitly flush the cache). As a result, the CPU might read invalid
instructions from memory when attempting to execute a routine whose jump table entry
you changed. Figure 4-4 illustrates this problem.

Figure 4-4 Reading invalid instructions

To avoid reading invalid instructions in this way, you need to flush the data cache before
calling any routines whose jump table entries you’ve altered. More generally, whenever
you need to flush the instruction cache, you also first need to flush the data cache—but
only if you’ve changed any executable code and those changes might not have been
written to main memory.

Another way to avoid using stale data is to prevent the data from being cached (and
hence from becoming stale). The Virtual Memory Manager function LockMemory locks
a specified range of pages in physical RAM and either disables the data cache or marks
the specified pages as noncacheable (depending on what’s possible and what makes the
most sense). Accordingly, you need not explicitly flush the processor ’s data cache for
data buffers located in pages that are locked in memory. See the chapter “Virtual
Memory Manager” in this book for more information about locking page ranges.

Using the Memory Management Utilities

This section describes how you can

■ save and restore the value of the A5 register so that you can access your application’s
A5 world in completion routines or other interrupt tasks

■ access your application’s QuickDraw global variables from within stand-alone code

■ change the address-translation mode so that you can temporarily use 32-bit addresses

CHAPTER 4

Memory Management Utilities

4-14 Using the Memory Management Utilities

■ strip the flag bits from a master pointer or other memory address

■ convert 24-bit addresses to 32-bit addresses

Accessing the A5 World in Completion Routines
Some Toolbox and Operating System routines require you to pass the address of an
application-defined callback routine, usually in a variable of type ProcPtr . After a
certain condition has been met, the Toolbox executes the specified routine. The exact
time at which the Toolbox executes the routine varies. The timing of execution is
determined by the Toolbox routine to which you passed the routine’s address and the
action that must be completed before the routine is called.

Callback routines are quite common in the Macintosh system software. A grow-zone
function, for instance, is an application-defined callback routine that is called every time
the Memory Manager cannot find enough space in your heap to honor a
memory-allocation request. Similarly, if your application plays a sound asynchronously,
you can have the Sound Manager execute a completion routine after the sound is
played. The completion routine might release the sound channel used to play the sound
or perform other cleanup operations.

In general, you cannot predict what your application will be doing when an
asynchronous completion or callback routine is actually executed. The routine could be
called while your application is executing code of its own or executing another Toolbox
or Operating System routine.

Note

The completion or callback routine might even be called when your
application is in the background. Before executing a completion or
callback routine belonging to your application, the Process Manager
checks whether your application is in the foreground. If not, the Process
Manager performs a minor switch to give your application temporary
control of the CPU. ◆

Many Toolbox and Operating System routines do not need to access the calling
application’s global variables, QuickDraw global variables, or jump table. As a result,
they sometimes use the A5 register for their own purposes. They save the current value
of the register upon entry, modify the register as necessary, and then restore the original
value on exit. As you can see, if one of these routines is executing when your callback
routine is executed, your callback routine cannot depend on the value in the A5 register.
This effectively prevents your callback routine from using any part of its A5 world.

To solve this problem, simply use the strategy that the Toolbox employs when it takes
over the A5 register: save the current value in the A5 register at the start of your callback
procedure, install your application’s A5 value, and then restore the original value when
you exit. Listing 4-1 illustrates a very simple grow-zone function that uses this
technique. It uses the SetCurrentA5 and SetA5 utilities to manipulate the A5 register.

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-15

Listing 4-1 A sample grow-zone function

FUNCTION MyGrowZone (cbNeeded: Size): LongInt;

VAR

theA5: LongInt; {value of A5 when function is called}

BEGIN

theA5 := SetCurrentA5; {remember current value of A5; install ours}

IF (gEmergencyMemory^ <> NIL) & (gEmergencyMemory <> GZSaveHnd) THEN

BEGIN

EmptyHandle(gEmergencyMemory);

MyGrowZone := kEmergencyMemorySize;

END

ELSE

MyGrowZone := 0; {no more memory to release}

theA5 := SetA5(theA5); {restore previous value of A5}

END;

The function SetCurrentA5 does two things: it returns the current value in the A5
register, and it sets the A5 register to the value of the CurrentA5 low-memory global
variable. This global variable always contains a value that points to the boundary
between the current application’s parameters and its global variables. The MyGrowZone
function defined in Listing 4-1 calls SetCurrentA5 on entry to make sure that it can
read the value of the gEmergencyMemory global variable.

The function SetA5 also does two things: it returns the current value in the A5 register,
and it sets the A5 register to whatever value you pass to the function. The MyGrowZone
function calls SetA5 with the original value of the A5 register as the parameter. In this
case, the value returned by SetA5 is ignored.

There is no way to test whether, at the time your callback routine is called, your
application is executing a Toolbox routine that could change the A5 register. Therefore, to
be safe, you should save and restore the A5 register in any callback routine that accesses
any part of your A5 world. Such routines include

■ grow-zone functions

■ Sound Manager completion routines

■ File Manager I/O completion routines

■ control-action procedures

■ TextEdit word-break and click-loop routines

■ trap patches

■ custom menu definition, window definition, and control definition procedures

See the section of Inside Macintosh describing any particular completion or callback
routine for details on whether you need to save and restore the A5 register in this way.

CHAPTER 4

Memory Management Utilities

4-16 Using the Memory Management Utilities

Accessing the A5 World in Interrupt Tasks
Sometimes, an application-defined routine executes at a time when you can’t reliably call
SetCurrentA5 . For example, if your application is not the current application and you
call SetCurrentA5 as illustrated in Listing 4-1, the function will not return your
application’s value of CurrentA5 . The SetCurrentA5 function always returns the
value of the low-memory global variable CurrentA5 , which always belongs to the
current application. You’ll end up reading some other application’s A5 world.

In general, you cannot reliably call SetCurrentA5 in any code that is executed in
response to an interrupt, including the following:

■ Time Manager tasks

■ VBL tasks

■ tasks installed using the Deferred Task Manager

■ Notification Manager response procedures

Instead of calling SetCurrentA5 at interrupt time, you can call it at noninterrupt time
when yours is the current application. Then store the returned value where you can read
it at interrupt time. For example, the Notification Manager allows you to store
information in the notification record passed to NMInstall . When you set up a
notification record, you can use the nmRefCon field to hold the value in the A5 register.
Listing 4-2 illustrates how to save the current value in the A5 register and pass that value
to a response procedure.

Listing 4-2 Passing A5 to a notification response procedure

VAR

gMyNotification: NMRec; {a notification record}

BEGIN

WITH gMyNotification DO

BEGIN

qType := ORD(nmType); {set queue type}

nmMark := 1; {put mark in Application menu}

nmIcon := NIL; {no alternating icon}

nmSound := Handle(-1); {play system alert sound}

nmStr := NIL; {no alert box}

nmResp := @SampleResponse; {set response procedure}

nmRefCon := SetCurrentA5; {pass A5 to notification task}

END;

END;

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-17

The key step is to save the value of CurrentA5 where the response procedure can find
it—in this case, in the nmRefCon field. You must call SetCurrentA5 at noninterrupt
time; otherwise, you cannot be certain that it will return the correct value.

When the notification response procedure is executed, its first task should be to call the
SetA5 function, which sets register A5 to the value stored in the nmRefCon field. At the
end of the routine, the notification response procedure should call the SetA5 function
again to restore the previous value of register A5. Listing 4-3 shows a simple response
procedure that sets up the A5 register, modifies a global variable, and then restores the
A5 register.

Listing 4-3 Setting up and restoring the A5 register at interrupt time

PROCEDURE SampleResponse (nmReqPtr: NMRecPtr);

VAR

oldA5: LongInt; {A5 when procedure is called}

BEGIN

oldA5 := SetA5(nmReqPtr^.nmRefCon);

{set A5 to the application’s A5}

gNotifReceived := TRUE; {set an application global }

{ to show alert was received}

oldA5 := SetA5(oldA5); {restore A5 to original value}

END;

Note

Many optimizing compilers (including MPW) might put the address of a
global variable used by the interrupt routine into a register before the
call to SetA5 , thereby possibly generating incorrect references to global
data. To avoid this problem, you can divide your completion routine
into two separate routines, one to set up and restore A5 and one to do
the actual completion work. Check the documentation for your
development system to see if this division is necessary, or contact
Macintosh Developer Technical Support. ◆

Several of the other managers that you can use to install interrupt code—including the
Deferred Task Manager, the Time Manager, and the Vertical Retrace Manager—do not
include a reference constant field in their task records. Therefore, if you wish to access
global variables from within one of these tasks, you must use another mechanism to
attach the value of the A5 register to the task record.

To do this, you can define a new record that contains the task record and your own
reference constant field. You can initialize the task record as you normally would and
then copy the value of your application’s A5 register into the reference constant field you
created. Then, when you obtain a pointer to the task record at interrupt time, you can
use your knowledge of the size of the task record to compute the location of your
reference constant field. See the chapters “Time Manager” and “Vertical Retrace
Manager” in Inside Macintosh: Processes for detailed illustrations of these techniques.

CHAPTER 4

Memory Management Utilities

4-18 Using the Memory Management Utilities

Using QuickDraw Global Variables in Stand-Alone Code
If you are writing a stand-alone code segment such as a definition procedure for a
window, menu, or control, you might want routines in that segment to examine the
QuickDraw global variables of the current application. For example, you might want a
control definition function to reference some of the QuickDraw global variables, such as
thePort , screenBits , or the predefined patterns. Stand-alone segments, however,
have no A5 world; if you try to link a stand-alone code segment that references your
application’s global variables, the linker may be unable to resolve those references.

To solve this problem, you can have the definition function find the value of the
application’s A5 register (by calling the SetCurrentA5 function) and then use that
information to copy all of the application’s QuickDraw global variables into a record in
the function’s own private storage. Listing 4-4 defines a record type with the same
structure as the QuickDraw global variables. Note that randSeed is stored lowest in
memory and thePort is stored highest in memory.

Listing 4-4 Structure of the QuickDraw global variables

TYPE

QDVarRecPtr = ^QDVarRec;

QDVarRec =

RECORD

randSeed: LongInt; {for random-number generator}

screenBits: BitMap; {rectangle enclosing screen}

arrow: Cursor; {standard arrow cursor}

dkGray: Pattern; {75% gray pattern}

ltGray: Pattern; {25% gray pattern}

gray: Pattern; {50% gray pattern}

black: Pattern; {all-black pattern}

white: Pattern; {all-white pattern}

thePort: GrafPtr; {pointer to current GrafPort}

END;

The location of these variables is linker-dependent. However, the A5 register always
points to the last of these global variables, thePort . The Operating System references all
other QuickDraw global variables as negative offsets from thePort . Therefore, you
must dereference the value in A5 (to obtain the address of thePort), and then subtract
the combined size of the other QuickDraw global variables from that address. The
difference is a pointer to the first of the QuickDraw global variables, randSeed .
You can copy the entire record into a local variable simply by dereferencing that pointer,
as illustrated in Listing 4-5.

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-19

Listing 4-5 Copying the QuickDraw global variables into a record

PROCEDURE GetQDVars (VAR qdVars: QDVarRec);

TYPE

LongPtr = ^LongInt;

BEGIN

qdVars := QDVarRecPtr(LongPtr(SetCurrentA5)^ -

 (SizeOf(QDVarRec) - SizeOf(thePort)))^;

END;

Thereafter, your stand-alone code segment can read QuickDraw global variables through
the structure returned by GetQDVars . Listing 4-6 defines a very simple draw routine for
a control definition function. After reading the calling application’s QuickDraw global
variables, the draw routine paints a rectangle with a pattern.

Listing 4-6 A control’s draw routine using the calling application’s QuickDraw patterns

PROCEDURE DoDraw (varCode: Integer; myControl: ControlHandle;

flag: Integer);

VAR

cRect: Rect;

qdVars: QDVarRec;

origPenState: PenState;

CONST

kDraw = 1; {constant to specify drawing}

BEGIN

GetPenState(origPenState); {get original pen state}

cRect := myControl^^.contrlRect; {get control’s rectangle}

IF flag = kDraw THEN

BEGIN

GetQDVars(qdVars); {patterns are QD globals}

PenPat(qdVars.gray); {install desired pattern}

PaintRect(cRect); {paint the control}

END;

SetPenState(origPenState); {restore original pen state}

END;

The DoDraw drawing routine defined in Listing 4-6 retrieves the calling application’s
QuickDraw global variables and paints the control rectangle with a light gray pattern. It
also saves and restores the pen state, because the PenPat procedure changes that state.

CHAPTER 4

Memory Management Utilities

4-20 Using the Memory Management Utilities

Switching Addressing Modes
If you are writing a driver for a slot-card device, you can use the SwapMMUMode
procedure to change to 32-bit address-translation mode temporarily, as follows:

myMode := true32b; {specify switch to 32-bit mode}

SwapMMUMode(myMode); {perform switch}

The parameter passed to SwapMMUMode must be a variable that is equal to the constant
false32b or the constant true32b .

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

The SwapMMUMode procedure switches to the specified mode and then changes the
parameter to indicate the mode previously in use. Thereafter, you can restore the
previous address-translation mode by again calling

SwapMMUMode(myMode);

Note

You should switch to 32-bit mode only if the computer supports 32-bit
addressing. To find out whether a system supports 32-bit mode and
whether a system started up in 32-bit mode, use the Gestalt function,
described in the chapter “Gestalt Manager” in Inside Macintosh:
Operating System Utilities. To determine the current address-translation
mode, call the GetMMUMode function. ◆

If you do call SwapMMUMode, be careful to avoid situations that can cause the system to
read an invalid address from the program counter. When the system is in 24-bit mode
and you load a code resource into a block of memory (for example, by calling
GetResource), the high byte of that block’s master pointer contains Memory Manager
flag bits. If you try to execute that code by performing an assembly-language JSR
instruction (typically JSR (A0) , with the master pointer in register A0), the entire
master pointer is translated directly into the program counter. This, however, is not a
valid 32-bit address. As soon as you switch to 32-bit mode, the program counter contains
an invalid value. This is virtually certain to cause the system to crash.

Note

This problem can arise when you change to 32-bit mode in code loaded
from a resource or placed into a block of memory that was allocated by
calls to Memory Manager routines. It does not arise with standard
'CODE' resources because the Segment Manager fixes the program
counter. ◆

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-21

To avoid this problem, simply call StripAddress on the address in the program
counter before you call SwapMMUMode. Listing 4-7 shows one way to do this.

Listing 4-7 Stripping the program counter

PROCEDURE FixPC;

INLINE $41FA, $000A, {LEA *+$000C,A0}

$2008, {MOVE.L A0,D0}

$A055, {_StripAddress}

$2040, {MOVEA.L D0,A0}

$4ED0; {JMP (A0); jump to next instruction }

For these same reasons, you also need to call StripAddress on any address you pass to
the _SetTrapAddress trap, if the address references a block in your application heap.

Stripping Flag Bits From Memory Addresses
If your code runs on a system that might have started up with the 24-bit Memory
Manager, you sometimes need to strip the flag bits from a memory address before you
use it. The Operating System provides the StripAddress function for this purpose.

The StripAddress function takes an address as a parameter and returns the value of
the address’s low-order 3 bytes if the computer started up in 24-bit mode. If the system
started up in 32-bit mode, StripAddress returns the address unchanged (because it
must already be a valid 32-bit address). Note that if a system starts up in 32-bit mode,
you cannot switch it to 24-bit mode.

▲ WARNING

If you pass a valid 32-bit address to StripAddress and the computer
started in 24-bit mode, the function still strips off the high byte of the
address, thus probably rendering the address invalid. You can pass
32-bit addresses to StripAddress if the system started up in 32-bit
mode, but then the function does nothing to the address. Therefore, you
should ordinarily pass only 24-bit addresses to the StripAddress
function. ▲

You need to use StripAddress primarily in device drivers or other software that
communicates heap addresses to external hardware (such as a NuBus card). Because the
external hardware might interpret the flag bits of a master pointer as part of the address,
you need to call StripAddress to clear those flag bits.

There is nothing inherently dangerous about 24-bit addresses. They cause problems only
when you try to use them in 32-bit mode. So, unless you are switching addressing modes
(by calling SwapMMUMode), you generally don’t need to call StripAddress .

CHAPTER 4

Memory Management Utilities

4-22 Using the Memory Management Utilities

You might, however, need to call StripAddress in these special cases, even if you are
not designing a driver:

■ Making ordered address comparisons. If you want to sort an array by address or do
any other kind of ordered address comparison (that is, using <, >, ≥, or ≤), you need to
call StripAddress on each address before the comparison. Even though the CPU
uses only the lower 3 bytes when it determines memory addresses in 24-bit mode, it
uses all 32 bits when it performs arithmetic operations.

■ Comparing master pointers. If you want to perform any type of comparison on
master pointers (that is, on dereferenced handles), you must first call StripAddress
on each address. The master pointer flag bits can change at any time, so you need to
clear them before making the comparison. In general, you should call StripAddress
when comparing any two pointers, if either of them might be a dereferenced handle.

■ Accessing addresses in 32-bit mode. If you switch the computer to 32-bit mode
manually, you need to call StripAddress on all 24-bit pointers and handles that you
access while in 32-bit mode. Be careful, however, not to call StripAddress on a
valid 32-bit address.

■ Fixing the program counter. You might need to use StripAddress to fix the value of
the program counter before you switch manually to 32-bit mode. See “Switching
Addressing Modes” on page 4-20 for details.

■ Overcoming Resource Manager limitations. To avoid a limitation in the Resource
Manager ’s OpenResFile and OpenRFPerm routines, you should call
StripAddress on pointers to the filenames that you pass to those functions, but
only if the strings that represent the files are hard-coded into your application’s code
instead of in a separate resource. When the string is embedded in a code resource, the
Resource Manager calls the RecoverHandle function with an invalid master pointer.
Here is an example of the correct way to call OpenResFile :

fileName := 'This file';
myRef := OpenResFile(StringPtr(StripAddress(@fileName))^);

In virtually all other cases, you don’t need to call StripAddress before using a
valid 24-bit address. In particular, you don’t need to call StripAddress before
dereferencing a pointer or handle in 24-bit mode, unless you subsequently switch
to 32-bit mode by calling SwapMMUMode. Also, you don’t need to call StripAddress
when checking pointers and handles for equality or when performing address arithmetic.

Because you need to call StripAddress rarely (if ever), the additional processing time
required to call StripAddress shouldn’t adversely affect the execution of your
software. In some cases, however, you might want to avoid the overhead of calling the
trap dispatcher every time you need to call StripAddress . (A good example might be
a time-critical loop in an interrupt task.) You can use the QuickStrip function defined
in Listing 4-8 in place of StripAddress when speed is a real concern.

CHAPTER 4

Memory Management Utilities

Using the Memory Management Utilities 4-23

Listing 4-8 Stripping addresses in time-critical code

FUNCTION QuickStrip (thePtr: Ptr): Ptr;

BEGIN

QuickStrip := Ptr(BAND(LongInt(thePtr), gStripAddressMask));

END;

The QuickStrip function defined in Listing 4-8 simply masks the address it is passed
with the same mask StripAddress uses. You can calculate that mask by executing the
lines of code in Listing 4-9 early in the execution of your software:

Listing 4-9 Calculating the StripAddress mask

VAR

gStripAddressMask: LongInt; {global mask variable}

gStripAddressMask := $FFFFFFFF;

gStripAddressMask :=

LongInt(StripAddress(Ptr(gStripAddressMask)));

Unless you are calling StripAddress repeatedly at interrupt time, you probably don’t
need to use this technique.

Translating Memory Addresses
As explained earlier in “Address Translation” on page 4-8, you sometimes need to
override the Operating System’s standard translation of 24-bit addresses into their 32-bit
equivalents. This is necessary because the Virtual Memory Manager might have
programmed the MMU to map unused NuBus slot addresses into the address space
reserved for RAM. If you try to use a 24-bit address when the system switches to 32-bit
mode, the standard translation might result in a 32-bit address that points to the space
reserved for expansion cards. In that case, you are virtually guaranteed to obtain
invalid results.

To prevent this problem, you can use the Translate24To32 function to get the
32-bit equivalent of a 24-bit address. In general, you should test for the presence of
the _Translate24To32 trap before you use any 24-bit addresses in 32-bit mode.
If it is available, you should use it in place of the static translation process performed
automatically by the Operating System while running in 32-bit mode.

Note

You need to use the Translate24To32 function only when the
computer is running in 32-bit mode, it was booted in 24-bit mode, and
you are communicating with external hardware. Most applications do
not need to use it. ◆

CHAPTER 4

Memory Management Utilities

4-24 Memory Management Utilities Reference

Listing 4-10 illustrates how to use Translate24To32 . The DoRoutine procedure
defined there calls the application-defined routine MyRoutine to process a block of
data while in 32-bit mode. It checks whether the _Translate24To32 trap is available,
and if so, makes sure that the address to be read is a valid 32-bit address.

Listing 4-10 Translating 24-bit to 32-bit addresses

PROCEDURE DoRoutine (oldAddr: Ptr; length: LongInt);

BEGIN

IF TrapAvailable(_Translate24To32) THEN

MyRoutine(Translate24To32(oldAddr), length);

ELSE

MyRoutine(oldAddr, length);

END;

Note that you don’t need to call StripAddress before calling Translate24To32 ,
because the Translate24To32 function automatically ignores the high-order byte of
the 24-bit address you pass it. (For a definition of the TrapAvailable function, see the
chapter “Gestalt Manager” in Inside Macintosh: Operating System Utilities.)

Memory Management Utilities Reference

This section describes the memory management utilities provided by the
Operating System.

Routines
This section describes the routines you use to set and restore the A5 register, change the
addressing mode, manipulate memory addresses, and manipulate the processor caches.

Setting and Restoring the A5 Register

Any code that runs asynchronously or as a callback routine and that accesses the calling
application’s A5 world must ensure that the A5 register correctly points to the boundary
between the application parameters and the application global variables. To accomplish
this, you can call the SetCurrentA5 function at the beginning of any asynchronous or
callback code that isn’t executed at interrupt time. If the code is executed at interrupt
time, you must use the SetA5 function to set the value of the A5 register. (You determine
this value at noninterrupt time by calling SetCurrentA5 .) Then you must restore the
A5 register to its previous value before the interrupt code returns.

CHAPTER 4

Memory Management Utilities

Memory Management Utilities Reference 4-25

SetCurrentA5

You can use the SetCurrentA5 function to get the current value of the system global
variable CurrentA5 .

FUNCTION SetCurrentA5: LongInt;

DESCRIPTION

The SetCurrentA5 function does two things: First, it gets the current value in the A5
register and returns it to your application. Second, SetCurrentA5 sets register A5 to
the value of the low-memory global variable CurrentA5 . This variable points to the
boundary between the parameters and global variables of the current application.

SPECIAL CONSIDERATIONS

You cannot reliably call SetCurrentA5 in code that is executed at interrupt time unless
you first guarantee that your application is the current process (for example, by calling
the Process Manager function GetCurrentProcess). In general, you should call
SetCurrentA5 at noninterrupt time and then pass the returned value to the
interrupt code.

ASSEMBLY-LANGUAGE INFORMATION

You can access the value of the current application’s A5 register with the low-memory
global variable CurrentA5 .

SetA5

In interrupt code that accesses application global variables, use the SetA5 function first
to restore a value previously saved using SetCurrentA5 , and then, at the end of the
code, to restore the A5 register to the value it had before the first call to SetA5 .

FUNCTION SetA5 (newA5: LongInt): LongInt;

newA5 The value to which the A5 register is to be changed.

DESCRIPTION

The SetA5 function performs two tasks: it returns the address in the A5 register when
the function is called, and it sets the A5 register to the address specified in newA5.

SEE ALSO

See “The A5 Register” on page 4-5 for a discussion of when you need to call SetA5 .

CHAPTER 4

Memory Management Utilities

4-26 Memory Management Utilities Reference

Changing the Addressing Mode

If you wish to change address-translation modes manually, you can use the
GetMMUMode function to find out which mode is currently in use and the SwapMMUMode
procedure to swap modes.

Note

In general, you need to alter the CPU’s addressing mode manually only
if you are designing device drivers or other software that communicates
with NuBus expansion cards. ◆

GetMMUMode

To find out which address-translation mode (24-bit or 32-bit) is currently in use, use the
GetMMUMode function.

FUNCTION GetMMUMode: SignedByte;

DESCRIPTION

The GetMMUMode function returns the address-translation mode currently in use. On
exit, GetMMUMode returns one of the following constants:

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

SPECIAL CONSIDERATIONS

To find out which addressing mode was in effect at system startup, use the Gestalt
function.

ASSEMBLY-LANGUAGE INFORMATION

To determine the current address-translation mode, you can test the contents of the
global variable MMU32Bit . The value TRUE indicates that 32-bit mode is in effect.

SwapMMUMode

To change the address-translation mode from 24-bit to 32- bit or vice versa, use the
SwapMMUMode procedure.

PROCEDURE SwapMMUMode (VAR mode: SignedByte);

CHAPTER 4

Memory Management Utilities

Memory Management Utilities Reference 4-27

mode On entry, the desired address-translation mode. On exit, the address
translation mode previously in use.

DESCRIPTION

The SwapMMUMode procedure sets the address-translation mode to the value specified
by the mode parameter. The mode in use prior to the call is returned in mode, and you
can restore the previous mode by calling SwapMMUMode again. The value of mode
should be one of the following constants on entry and will be one of the following
constants on exit:

CONST

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

SPECIAL CONSIDERATIONS

You might cause a system crash if you switch to 32-bit addressing mode when your
application is executing a code resource you loaded into memory while 24-bit mode was
in effect. See “Switching Addressing Modes” on page 4-20 for a description of how this
problem arises and how you can avoid it.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for SwapMMUMode are

Manipulating Memory Addresses

Sometimes you need to modify a memory address before using it. You can strip off a
master pointer’s flag bits, if any, by calling the StripAddress function. You can map
24-bit addresses into the 32-bit address space by calling the Translate24To32 function.

StripAddress

Use the StripAddress function to strip the flag bits from a 24-bit memory address.

FUNCTION StripAddress (address: UNIV Ptr): Ptr;

address The address to strip.

Registers on entry

D0 New mode

Registers on exit

D0 Previous mode

CHAPTER 4

Memory Management Utilities

4-28 Memory Management Utilities Reference

DESCRIPTION

The StripAddress function returns a pointer that references the same address
passed in the address parameter, but in a form that is comprehensible to the 32-bit
Memory Manager.

The effect of the StripAddress function depends on the startup mode of the Memory
Manager, not on the current mode. Thus, if the Memory Manager started up in 32-bit
mode, the address passed to StripAddress is unchanged (because it already must be a
32-bit address). If the Memory Manager started up in 24-bit mode, the function returns
the low-order 3 bytes of the address. You should not pass valid 32-bit addresses to
StripAddress if the Memory Manager started up in 24-bit mode.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for StripAddress are

Translate24To32

You can use the Translate24To32 function to map 24-bit addresses into the 32-bit
address space.

FUNCTION Translate24To32 (addr24: UNIV Ptr): Ptr;

addr24 An address that is meaningful to the 24-bit Memory Manager.

DESCRIPTION

The Translate24To32 function translates the address specified by the addr24
parameter from 24-bit into 32-bit addressing mode and returns that address. If addr24 is
already a 32-bit address, the function returns it unchanged.

Unlike the StripAddress function, Translate24To32 does not necessarily return an
address that can be used in 24-bit mode. Also, you cannot meaningfully call
Translate24To32 on the result of a previous translation.

SPECIAL CONSIDERATIONS

You need to call Translate24To32 only if you use 24-bit addresses while
communicating with external hardware in 32-bit mode and virtual memory is enabled.
See “Translating Memory Addresses” on page 4-23 for details.

Registers on entry

D0 The address to strip

Registers on exit

D0 The function result

CHAPTER 4

Memory Management Utilities

Memory Management Utilities Reference 4-29

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for Translate24To32 are

Manipulating the Processor Caches

The system software provides routines that allow you to enable, disable, and flush the
processor caches. Before you call any of the routines described in this section, be sure to
check that the trap _HWPriv is implemented. The only exception is the
FlushCodeCache procedure, which is available whenever the processor has a cache
that can be flushed.

▲ WARNING

If you call these routines and _HWPriv isn’t implemented, your
application will crash. ▲

SwapInstructionCache

You can use the SwapInstructionCache function to enable or disable the
instruction cache.

FUNCTION SwapInstructionCache (cacheEnable: Boolean): Boolean;

cacheEnable
The desired state of the instruction cache.

DESCRIPTION

The SwapInstructionCache function enables or disables the instruction cache,
depending on whether the cacheEnable parameter is set to TRUE or FALSE. On exit,
SwapInstructionCache returns the previous state of the instruction cache.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SwapInstructionCache are

Registers on entry

D0 A 24-bit addressing mode address

Registers on exit

D0 The translated address

Trap macro Selector

_HWPriv $0000

CHAPTER 4

Memory Management Utilities

4-30 Memory Management Utilities Reference

FlushInstructionCache

You can use the FlushInstructionCache procedure to flush the instruction cache.

PROCEDURE FlushInstructionCache ;

DESCRIPTION

The FlushInstructionCache procedure flushes the current contents of the
instruction cache. Because flushing this cache degrades performance of the CPU, you
should call this routine only when absolutely necessary. See “Stale Instructions” on
page 4-9 for details on when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushInstructionCache are

SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, FlushInstructionCache also flushes the
data cache before it flushes the instruction cache, to ensure that any instructions
subsequently copied to the instruction cache are not copied from stale RAM.

SwapDataCache

You can use the SwapDataCache function to enable or disable the data cache.

FUNCTION SwapDataCache (cacheEnable: Boolean): Boolean;

cacheEnable
The desired state of the data cache.

DESCRIPTION

The SwapDataCache function enables or disables the data cache, depending on
whether the cacheEnable parameter is set to TRUE or FALSE. On exit,
SwapDataCache returns the previous state of the data cache.

Trap macro Selector

_HWPriv $0001

CHAPTER 4

Memory Management Utilities

Memory Management Utilities Reference 4-31

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for SwapDataCache are

FlushDataCache

You can use the FlushDataCache procedure to flush the data cache.

PROCEDURE FlushDataCache ;

DESCRIPTION

The FlushDataCache procedure flushes the current contents of the data cache. Because
flushing this cache degrades performance of the CPU, you should call this routine only
when absolutely necessary. See “Processor Caches” beginning on page 4-8 for details on
when to call this procedure.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushDataCache are

FlushCodeCache

You can use the FlushCodeCache procedure to flush the instruction cache.

PROCEDURE FlushCodeCache ;

DESCRIPTION

The FlushCodeCache procedure flushes the current contents of the instruction cache.
Because flushing this cache degrades performance of the CPU, you should call this
routine only when absolutely necessary. See “Processor Caches” beginning on page 4-8
for details on when to call this procedure.

Trap macro Selector

_HWPriv $0002

Trap macro Selector

_HWPriv $0003

CHAPTER 4

Memory Management Utilities

4-32 Memory Management Utilities Reference

SPECIAL CONSIDERATIONS

On processors with a copy-back data cache, FlushCodeCache also flushes the data
cache before it flushes the instruction cache, to ensure that any instructions subsequently
copied to the instruction cache are not copied from stale RAM.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro for FlushCodeCache is _CacheFlush .

FlushCodeCacheRange

You can use the FlushCodeCacheRange function to flush a portion of the instruction
cache.

FUNCTION FlushCodeCacheRange (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range to flush.

count The size, in bytes, of the range to flush.

DESCRIPTION

The FlushCodeCacheRange function flushes the current contents of the instruction
cache. FlushCodeCacheRange is an optimized version of FlushCodeCache and is
intended for use on processors such as the MC68040 that support flushing only a portion
of the instruction cache. On processors that do not have this capability,
FlushCodeCacheRange simply flushes the entire instruction cache.

The FlushCodeCacheRange function might flush a larger portion of the instruction
cache than requested if it would be inefficient to satisfy the request exactly.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for FlushCodeCacheRange are

Trap macro Selector

_HWPriv $0009

CHAPTER 4

Memory Management Utilities

Memory Management Utilities Reference 4-33

The registers on entry and exit for FlushCodeCacheRange are

RESULT CODES

Registers on entry

A0 Starting address of the range to flush

A1 Number of bytes to flush

D0 Routine selector

Registers on exit

D0 Result code

noErr 0 No error
hwParamErr –502 Processor does not support flushing a range

CHAPTER 4

Memory Management Utilities

4-34 Summary of the Memory Management Utilities

Summary of the Memory Management Utilities

Pascal Summary

Constants

CONST

{Gestalt constants}

gestaltAddressingModeAttr = 'addr'; {addressing mode attributes}

gestalt32BitAddressing = 0; {started in 32-bit mode}

gestalt32BitSysZone = 1; {32-bit compatible sys. zone}

gestalt32BitCapable = 2; {machine is 32-bit capable}

{addressing mode constants}

false32b = 0; {24-bit addressing mode}

true32b = 1; {32-bit addressing mode}

Routines

Setting and Restoring the A5 Register

FUNCTION SetCurrentA5 : LongInt;

FUNCTION SetA5 (newA5: LongInt): LongInt;

Changing the Addressing Mode

FUNCTION GetMMUMode: SignedByte;

PROCEDURE SwapMMUMode (VAR mode: SignedByte);

Manipulating Memory Addresses

FUNCTION StripAddress (address: UNIV Ptr): Ptr;

FUNCTION Translate24To32 (addr24: UNIV Ptr): Ptr ;

Manipulating the Processor Caches

FUNCTION SwapInstructionCache (cacheEnable: Boolean): Boolean;

PROCEDURE FlushInstructionCache ;

FUNCTION SwapDataCache (cacheEnable: Boolean): Boolean;

CHAPTER 4

Memory Management Utilities

Summary of the Memory Management Utilities 4-35

PROCEDURE FlushDataCache ;

PROCEDURE FlushCodeCache ;

FUNCTION FlushCodeCacheRange (address: UNIV Ptr; count: LongInt): OSErr;

C Summary

Constants

/*Gestalt constants*/

#define gestaltAddressingModeAttr 'addr'; / *a ddressing mode attributes*/

#define gestalt32BitAddressing 0; /*started in 32-bit mode*/

#define gestalt32BitSysZone 1; /*32-bit compatible sys. zone*/

#define gestalt32BitCapable 2; /*machine is 32-bit capable*/

/*addressing mode constants*/

enum {false32b = 0}; /*24-bit addressing mode*/

enum {true32b = 1}; /*32-bit addressing mode*/

Routines

Setting and Restoring the A5 Register

long SetCurrentA5 (void);

long SetA5 (long newA5);

Changing the Addressing Mode

pascal char GetMMUMode (void);

pascal void SwapMMUMode (char *mode);

Manipulating Memory Addresses

pascal Ptr StripAddress (Ptr address);

pascal Ptr Translate24To32 (Ptr addr24) ;

Manipulating the Processor Caches

pascal Boolean SwapInstructionCache
(Boolean cacheEnable);

pascal void FlushInstructionCache
(void);

CHAPTER 4

Memory Management Utilities

4-36 Summary of the Memory Management Utilities

pascal Boolean SwapDataCache (Boolean cacheEnable);

pascal void FlushDataCache (void);

void FlushCodeCache (void);

OSErr FlushCodeCacheRange (void *address, unsigned long count);

Assembly-Language Summary

Trap Macros

Trap Macros Requiring Routine Selectors

_HWPriv

Global Variables

Result Codes

Selector Routine

$0000 SwapInstructionCache

$0001 FlushInstructionCache

$0002 SwapDataCache

$0003 FlushDataCache

$0009 FlushCodeCacheRange

CurrentA5 long Address of the boundary between the application global variables and the
application parameters of the current application.

MMU32Bit byte TRUE if 32-bit addressing mode is in effect.

noErr 0 No error
hwParamErr –502 Processor does not support flushing a range

