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Virtual Memory Manager

This chapter describes the Virtual Memory Manager, the part of the Operating System 
that allows memory to be extended beyond the limits of the physical address space 
provided by the available RAM. A user can select (in the Memory control panel) whether 
to enable this larger or “virtual” address space.

Most applications are completely unaffected by the operation of the Virtual Memory 
Manager and have no need to know whether any virtual memory is available. 
You might, however, need to intervene in the otherwise automatic workings of 
the Virtual Memory Manager if your application has critical timing requirements, 
executes code at interrupt time, or performs debugging operations.

The Virtual Memory Manager also offers services that might be of use to software 
components even if virtual memory is not enabled on a particular computer. On some 
Macintosh computers, the physical address space is discontiguous and is therefore not 
identical with the logical address space. In normal operations, the Operating System uses 
the MMU coprocessor to map logical addresses to their corresponding physical 
addresses. In some cases, however, you might need to perform this address mapping 
yourself. For example, if you are writing software that runs in the Macintosh Operating 
System but communicates addresses to NuBus™ expansion cards with bus master 
or direct memory access (DMA) capabilities, you need to pass physical and not 
logical addresses. You can use the Virtual Memory Manager to determine those 
physical addresses.

To use this chapter, you should be familiar with the normal operation of the Memory 
Manager, as described in the chapter “Introduction to Memory Management” in this 
book. If your application or other software executes code at interrupt time, you should 
also be familiar with the process of scheduling interrupt code, as described in the chapter 
“Introduction to Processes and Tasks” in Inside Macintosh: Processes.

This chapter begins with a description of how the Virtual Memory Manager provides 
virtual memory. It explains how the logical and physical address spaces are mapped to 
one another and when you might need to use the services provided by the Virtual 
Memory Manager. Then it explains how you can use the Virtual Memory Manager to

■ make portions of the logical address space resident in physical RAM

■ make portions of the logical address space immovable in physical RAM

■ map logical to physical addresses

■ defer execution of application-defined interrupt code until a safe time

This chapter also provides information about a number of routines that are useful only 
for the implementation of debuggers that operate under virtual memory.

About the Virtual Memory Manager

The Virtual Memory Manager is the part of the Operating System that provides virtual 
memory, addressable memory beyond the limits of the available physical RAM. The 
principal benefit of using virtual memory is that a user can run more applications at once 
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and work with larger amounts of data than would be possible if the logical address 
space were limited to the available RAM. Instead of equipping a computer with amounts 
of RAM large enough to handle all possible needs, the user can install only enough RAM 
to meet average needs. Then, during those occasional times when more memory is 
needed for large tasks or many applications, the user can take advantage of virtual 
memory. When virtual memory is present, the perceived amount of RAM can be 
extended to as much as 14 MB on systems with 24-bit addressing and as much as 1 GB 
on systems with 32-bit addressing.

The Virtual Memory Manager also provides a number of routines that your software can 
use to modify or get information about its operations. You can use the Virtual Memory 
Manager to

■ hold portions of the logical address space in physical RAM

■ lock portions of the logical address space in their physical RAM locations

■ determine whether a particular portion of the logical address space is currently in 
physical RAM

■ determine, from a logical address, the physical address of a block of memory

This section describes how the Virtual Memory Manager provides virtual memory. It 
also explains why you might need to use certain Virtual Memory Manager routines even 
when virtual memory is not available.

Virtual Memory
The Virtual Memory Manager extends the logical address space by using part of the 
available secondary storage (such as a hard disk) to hold portions of applications and 
data that are not currently in use in physical memory. When an application needs to 
operate on portions of memory that have been transferred to disk, the Virtual Memory 
Manager loads those portions back into physical memory by making them trade places 
with other, unused segments of memory. This process of moving portions (or pages) of 
memory between physical RAM and the hard disk is called paging.

For the most part, the Virtual Memory Manager operates invisibly to applications and to 
the user. Most applications do not need to know whether virtual memory is installed 
unless they have critical timing requirements, execute code at interrupt time, or perform 
debugging operations. The only time that users need to know about virtual memory is 
when they configure it in the Memory control panel. One visible cost of this extra 
memory is the use of an equivalent amount of storage on a storage device, such as a SCSI 
hard disk. Another cost of using virtual memory is a possible perception of sluggishness 
as paged-out segments of memory are pulled back into physical memory. Performance 
degradation due to the use of virtual memory ranges from unnoticeable to severe, 
depending on the ratio of virtual memory to physical RAM and the behavior of the 
actual applications running.
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There are two main requirements for running virtual memory. First, the computer must 
be running system software version 7.0 or later. Second, the computer must be equipped 
with an MMU or PMMU coprocessor. Apple’s 68040- and 68030-based machines have 
an MMU built into the CPU and are ready to run virtual memory with no additional 
hardware. A Macintosh II (68020-based) computer can take advantage of virtual memory 
if it has the 68851 PMMU coprocessor on its main logic board in place of the standard 
Address Management Unit (AMU). (The PMMU is the same coprocessor needed to run 
A/UX.) Apple’s 68000-based machines cannot take advantage of virtual memory.

Users control and configure virtual memory through the Memory control panel. Controls 
in this panel allow the user to turn virtual memory on or off, set the size of virtual 
memory, and set the volume on which the invisible backing-store file resides. (The 
backing-store file is the file in which the Operating System stores the contents of 
nonresident pages of memory.) Other memory-related user controls appear in this 
control panel. These include settings for the disk cache and for 24-bit or 32-bit Memory 
Manager addressing. If users change the virtual memory, addressing, or disk cache 
settings, they must restart the computer for the changes to take effect.

The virtual memory setting in the control panel reflects the total amount of memory 
available to the system (and not simply the amount of memory to be added to available 
RAM). Also, the backing-store file is as large as the amount of virtual memory. This 
backing-store file can be located on any HFS volume that allows block-level access. (This 
volume is known as the paging device or backing volume.) Because the paging device 
must support block-level access, users cannot select as the paging device a volume 
mounted through AppleShare. Also, users cannot select removable disks, including 
floppy disks, as paging devices.

The Logical Address Space
When virtual memory is present, the logical address space is larger than the physical 
address space provided by the available RAM. The actual size of the logical address 
space, and hence the amount of virtual memory, depends on a number of factors, 
including

■ the addressing mode currently used by the Memory Manager

■ the amount of space available on a secondary storage device for use by the 
backing-store file

■ if 24-bit addressing is in operation, the number of NuBus expansion cards, if any, 
installed in the computer

24-Bit Addressing

When running with 24-bit addressing, the Memory Manager can address at most 
224 bytes, or 16 MB. Of these 16 MB, at most 8 MB can be used to address physical RAM. 
The remaining 8 MB are devoted to ROM addresses, I/O device addresses, and NuBus 
slot addresses. Figure 3-1 illustrates the logical address space mapping used by the 24-bit 
Memory Manager.
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Note
In some Macintosh computers, the ROM is mapped to the address range 
$01000000 to $010FFFFF (indicated as belonging to slot $A in Figure 3-1). 
In these computers, the maximum amount of physical RAM is 10 MB 
instead of 8 MB. The remainder of this section describes the original 
layout of the 24-bit logical address space only. ◆

Figure 3-1 24-bit Memory Manager logical address space
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When 24-bit addressing is in operation and virtual memory is available, the Virtual 
Memory Manager uses, as part of the addressable application memory, any 1 MB 
segments not assigned to a NuBus card. For example, if a Macintosh computer has three 
NuBus expansion cards installed, that computer can address at most 11 MB of virtual 
memory. The maximum amount of virtual memory possible in a 24-bit environment is 
14 MB (that is, 8 MB of physical RAM + 6 MB of additional space previously reserved for 
the NuBus); this maximum is achievable only on a computer with no NuBus expansion 
cards installed.

Notice in Figure 3-1 that addresses from $00800000 to $008FFFFF are reserved for ROM. 
In other words, the largest contiguous block of space that an application can allocate 
when virtual memory is available is somewhat less than 8 MB, even though the total 
amount of virtual memory available can be as large as 14 MB. The rest of the virtual 
memory can be in a contiguous block as large as 4 or 5 MB, unless the user has 
fragmented the NuBus space by making a poor choice of slots in which to install 
expansion cards. To maximize the amount of contiguous virtual memory, users should 
place cards in consecutive slots at either end of the expansion bus. A haphazard 
placement of NuBus cards may result in a number of 1 MB or 2 MB “islands” in the 
upper portion of the 24-bit address space; in general, this kind of fragmentation reduces 
the effectiveness of a large virtual address space.

Note

Some Macintosh computers have fewer than six NuBus slots, and the 
numbering of the slots is not consistent across different models. In a 
Macintosh IIcx, the three available slots are numbered $9 through $B, so 
expansion cards should be grouped toward the lowest-numbered slot 
(contiguous with the ROM space). In a Macintosh IIci, the slots are 
numbered $C through $E, so expansion cards should be grouped toward 
the highest-numbered slot (contiguous with the I/O space). However, 
the RAM-based video on the Macintosh IIci occupies addresses reserved 
for slot $B; as a result, it is impossible to avoid some degree of 
fragmentation of the virtual address space when you use the 
RAM-based video option on that computer. ◆

32-Bit Addressing

When running with 32-bit addressing, the Memory Manager can address at most 
232 bytes, or 4 GB. Of these 4 GB, at most 1 GB can be used to address physical RAM. The 
remaining 3 GB are devoted to ROM addresses, I/O device addresses, and NuBus slot 
addresses. Figure 3-2 illustrates the logical address space mapping used by the 32-bit 
Memory Manager.
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Figure 3-2 32-bit Memory Manager logical address space
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Note
The fragmentation of the virtual address space that sometimes occurs 
when 24-bit addressing is in operation is never a problem when 32-bit 
addressing is in operation. In the 32-bit address space, virtual memory 
and the NuBus slots do not share space. ◆

The Physical Address Space
The original versions of the Macintosh Operating System used physical addresses 
exclusively. A particular location in RAM could be accessed by its physical address, 
regardless of whether that address was generated by an application, by the system 
software, or even by a NuBus expansion card. In short, there was no difference between 
the logical and the physical address spaces.

However, both hardware and software advances have forced the Operating System 
to abstract the logical address space from the physical address space. As you have seen, 
the logical address space is larger than the physical address space when virtual memory 
is available. The Operating System uses the MMU coprocessor to map logical addresses 
to their corresponding physical addresses.

In addition, some Macintosh computers have a discontiguous physical address space. 
For example, on a Macintosh IIci with 8 MB of physical RAM, the physical memory 
appears to the CPU and to the NuBus expansion bus as two separate 4 MB ranges 
(see Figure 3-3). As you can see, the physical RAM occupies two separate ranges: 
the RAM installed in bank A, ranging from $00000000 to $003FFFFF, and the RAM 
installed in bank B, ranging from $04000000 to $043FFFFF.
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Figure 3-3 The physical address space on a Macintosh IIci with 8 MB of RAM

In most cases, a discontiguous physical address space causes no problems, because the 
Operating System uses the MMU coprocessor to map the available physical memory into 
a single contiguous logical address space. All memory addresses returned to your 
application by the Memory Manager (for instance, when you allocate a new block by 
calling NewHandle ) are logical addresses. When you read or write a logical memory 
address, the Operating System uses the MMU coprocessor to determine the physical 
address corresponding to your logical address. This address translation is completely 
transparent to your application. For example, if you read the system global variable 
located at address $10C, it doesn’t matter that the CPU actually looks at the physical 
address $0400010C.
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In some cases, however, you can run into problems if you don’t account for the 
possibility that the logical address space and the physical address space might differ. 
Suppose, for instance, that you are developing a driver that passes addresses to NuBus 
master hardware. In this case, you need to take care to pass it physical addresses only, 
because NuBus hardware does not use the MMU to translate logical addresses into 
physical addresses. If your driver passes a logical address, the NuBus hardware cannot 
translate it into a physical address because it does not have access to the MMU’s 
address-mapping tables. If your hardware then attempts to write data to that address, it 
is likely to overwrite some other portion of physical memory.

To prevent this problem, you need to make certain that you always convert logical 
addresses to their corresponding physical addresses before you pass those addresses to 
any alternate bus master. You can do this by calling the GetPhysical  function, as 
described later in “Mapping Logical to Physical Addresses,” which begins on page 3-16. 
The GetPhysical  function is implemented in ROM on all machines that have a 
discontiguous physical address space—whether or not virtual memory is available. 
Accordingly, before you pass addresses to an alternate bus master, you should check for 
the availability of the GetPhysical  call; if it’s available, you should use it to translate 
logical to physical addresses.

Note

Passive or slave NuBus cards (such as video cards) that do not read or 
write physical RAM are not likely to be affected by the presence of 
virtual memory or by a discontiguous physical address space. ◆

Page Faults
When an application or other software component tries to access data in a page of 
memory that is not currently resident in RAM, the Operating System issues a special 
kind of bus error known as a page fault. The Virtual Memory Manager intercepts page 
faults and tries to load the affected page or pages into memory. It does so by executing 
its own internal page-fault handler, which handles page faults and passes other bus 
errors to the standard bus-error vector in low memory.

To load the required pages into memory, the Virtual Memory Manager ’s page-fault 
handler takes over the SCSI bus and makes calls directly to the driver of the 
backing-store file. While the Virtual Memory Manager is handling a page fault, it is 
essential that no other page faults occur. If a page fault did occur during page-fault 
handling—a condition known as a double page fault—the Virtual Memory Manager 
would have to interrupt the driver of the paging device to make a further request to load 
the needed page. Unless the driver of the paging device is concurrent (that is, able to 
handle several requests at once), the driver cannot handle this second request. 
Unfortunately, current versions of most SCSI disk drivers are not concurrent. As a result, 
a double page fault results in a system crash.

The Virtual Memory Manager takes special steps to avoid double page faults caused by 
user code (that is, code that is not executed as the result of an exception). It defers all 
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user code while the driver of the paging device is busy. In particular, the Virtual Memory 
Manager defers until a safe time the following types of code:

■ VBL tasks

■ Slot-based VBL tasks

■ Time Manager tasks

■ I/O completion routines

Note

Because these types of tasks may be deferred under virtual memory, 
any application or device driver that uses them to achieve real-time 
performance might be adversely affected by the operation of the Virtual 
Memory Manager. ◆

Other software components must take care not to cause page faults at interrupt time. In 
particular, device drivers, which commonly run at interrupt time, should make certain 
that any data structures or buffers that they reference at interrupt time are in physical 
memory at that time. You can make sure that this happens by holding the required data 
in physical memory, as described in “Holding and Releasing Memory” on page 3-14.

In an effort to maintain compatibility with existing drivers, the Operating System 
automatically keeps the entire system heap in physical memory at all times. Therefore, 
if your device driver and its associated data structures are loaded into the system heap, 
you do not need to worry about causing page faults at interrupt time.

▲ WARNING

Future versions of the system software are not guaranteed to keep the 
entire system heap in physical memory. To be safe, you should explicitly 
hold in physical memory any code or data that you know might be 
accessed at interrupt time. ▲

The Virtual Memory Manager provides this further level of protection against page 
faults caused by device drivers at interrupt time: it automatically holds in physical 
memory any buffers used by the Device Manager _Read and _Write  operations. Any 
driver that uses the _Read and _Write  calls to move data between main memory and 
the driver’s associated hardware device is therefore automatically compatible with 
virtual memory. If, however, you use _Status  or _Control  calls to move data at 
interrupt time, you must explicitly hold or lock all buffers that are referenced in the 
_Status  or _Control  parameter block. If possible, you should rewrite your driver 
so that it uses _Read and _Write  calls instead of _Status  and _Control  calls to 
move data.

The Virtual Memory Manager provides one other routine that you can use to help 
prevent double page faults. If your application or other code installs interrupt routines 
other than those handled automatically by the Virtual Memory Manager (such as VBL 
tasks, Time Manager tasks, and Device Manager completion calls), you can explicitly 
defer the execution of the routine by calling it via the function DeferUserFn . See 
“Deferring User Interrupt Handling” on page 3-20 for details on calling DeferUserFn .
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Using the Virtual Memory Manager

The routines described in this section allow drivers and applications with critical timing 
needs to intervene in the otherwise automatic workings of the Virtual Memory 
Manager’s paging mechanism.

Note

The vast majority of applications do not need to use these 
routines. They are used primarily by drivers, debuggers, and other 
interrupt-servicing code. ◆

If necessary, your software can request that a range of memory be held in physical 
memory. Holding means that the specified memory range cannot be paged out to disk, 
although it might be moved within physical RAM. As a result, no page faults can result 
from reading or writing memory addresses of pages that are held in memory.

Similarly, a page or range of pages can be locked in physical memory. Locking means 
that the specified memory cannot be paged out to disk and that the memory cannot 
change its real (physical) RAM location. You can also request that a range of pages be 
locked in a contiguous range of physical memory, although contiguity is not guaranteed. 
The need to lock pages in a contiguous area of memory arises primarily when external 
hardware transfers data directly into physical RAM. In this case, locking might be useful 
for keeping a contiguous range of memory stationary during operations of an external 
CPU (on a NuBus card, for example) that cannot support a DMA action.

Most applications do not need to hold or lock pages in physical RAM. The Virtual 
Memory Manager usually works quickly enough that your application is not affected by 
any delay that might result from paging. Device drivers or sound and animation 
applications with critical timing requirements usually need only to hold memory, not 
lock it. Here are some general rules regarding when to hold or lock memory:

■ Avoid executing tasks that could cause page faults at interrupt time. The less work 
done at interrupt time, the better for all applications running.

■ You cannot hold or lock memory (or call any Memory Manager routines that move or 
purge memory) at interrupt time.

■ Don’t lock or hold everything in RAM. Sometimes you do need to hold or lock pages 
in RAM, but if you are in doubt, then probably you need to do neither.

■ Your application must explicitly release or unlock whatever it held or locked. If for 
some reason an area of RAM is held and locked, or held twice, then it must be 
released and unlocked, or released twice.

The last directive is especially important. Your application is responsible for undoing the 
effects of locking or holding ranges of memory. In particular, the Virtual Memory 
Manager does not automatically unlock pages that have been locked. If you do not undo 
these effects in a timely fashion, you are likely to degrade performance. In the worst 
case, you could cause the system to run out of physical memory.
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Obtaining Information About Virtual Memory
You should always determine whether virtual memory is available before attempting to 
use any Virtual Memory Manager routines. To do this, pass the Gestalt  function the 
gestaltVMAttr  selector. The Gestalt  function’s response indicates the version of 
virtual memory, if any, installed. If bit 0 of the response is set to 1, then the system 
software version 7.0 implementation of virtual memory is installed.

Note

Sometimes you don’t need to check whether virtual memory is actually 
available before calling some Virtual Memory Manager routines. For 
example, you might need to call the GetPhysical  function even if 
virtual memory is not enabled. Instead of calling Gestalt  to see 
whether virtual memory is available, you should simply test whether 
the appropriate trap is available. In the case of the GetPhysical  
function, you should check that the _MemoryDispatchA0Result  trap 
is available. ◆

You can also use the Gestalt  function to obtain information about the memory 
configuration of the system, in particular, information about the amount of physical 
memory installed in a computer, the amount of logical memory available in a computer, 
the version of virtual memory installed (if any), and the size of a logical page. By 
obtaining this information from Gestalt , you can help insulate your applications or 
drivers from possible future changes in the details of the virtual memory 
implementation.

Holding and Releasing Memory
You can use the HoldMemory  function to make a portion of the address space resident in 
physical memory and ineligible for paging. This function is intended primarily for use 
by drivers that access user data buffers at interrupt level, whether transferring data to or 
from them. Calling HoldMemory  on the appropriate memory ranges thus prevents them 
from causing page faults at interrupt level and effectively prevents them from generating 
fatal double page faults. The contents of the specified range of virtual addresses can 
move in physical memory, but they are guaranteed always to be in physical memory 
when accessed.

Note

If you use the device-level _Read and _Write  functions when doing 
data transfers, the Virtual Memory Manager automatically ensures that 
the data buffers and parameter blocks are held before the transfer 
of data. ◆

The following sample code instructs the Virtual Memory Manager to hold in RAM an 
8192-byte range of memory starting at address $32500:

myAddress := $32500;

myLength := 8192;

myErr := HoldMemory(myAddress, myLength);
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Note that whole pages of the virtual address space are held, regardless of the starting 
address and length parameters you supply. If the starting address parameter supplied to 
the HoldMemory  function is not on a page boundary, then it is rounded down to the 
nearest page boundary. Similarly, if the specified range does not end on a page boundary, 
the length parameter is rounded up so that one or more whole pages are held. This 
rounding might result in the holding of several pages of physical memory, even if the 
specified range is less than a page in length.

To release memory held as a result of a call to HoldMemory , you must use the 
UnholdMemory  function, which simply reverses the effects of the HoldMemory  
function. For example, the page or pages held in memory in the previous example can be 
released as follows:

myErr := UnholdMemory(myAddress, myLength);

Like holding, releasing applies to whole pages of the virtual address space. Similar 
rounding of the address and length parameters is performed, as required, to make the 
range begin and end on page boundaries.

Note

In current versions of system software, the system heap is always held 
in memory and is never paged out. ◆

Locking and Unlocking Memory
You can use the LockMemory  function to make a portion of the address space 
immovable in physical memory and ineligible for paging. The Operating System may 
move the contents of the specified range of logical addresses to a more convenient 
location in physical memory during the locking operation, but on completion, the 
contents of the specified range of logical addresses are resident and do not move in 
physical memory.

Locking a range of memory is a more drastic measure than just holding it. Locking not 
only forces the range to be held resident in RAM but also prevents its logical address 
from moving with respect to its physical address. The LockMemory  function is used by 
drivers and other code when hardware other than the Macintosh CPU is transferring 
data to or from user buffers, such as any NuBus master peripheral card or DMA 
hardware. This function prevents both paging and physical relocation of a specified 
memory area and allows the physical addresses of a memory area to be exported to the 
non-CPU hardware. Typically, you would use this service for the duration of a single 
I/O request. However, you could use this service to lock data structures that are 
permanently shared between a driver (or other code) and a NuBus master.

Note

Don’t confuse locking address ranges in RAM (using LockMemory ) 
with locking a handle (using HLock ). A locked handle can still be 
paged out. ◆
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The main reason to disable movement of pages in physical memory is to allow 
translation of virtual memory addresses to physical addresses. This translation is needed 
by bus masters, which must write to memory in the physical address space. To avoid 
stale data, the memory locked in RAM is marked as noncacheable in the MMU 
page tables.

You can lock a range of memory in a contiguous range of physical memory by calling the 
LockMemoryContiguous  function. This function can be used by driver and NuBus 
master or driver and DMA hardware combinations when a non-CPU device accessing 
memory cannot handle physically discontiguous data transfers. You can also use this 
service when the transfer of physically discontiguous data would degrade performance. 
However, the call to LockMemoryContiguous  may be expensive, because sometimes 
entire pages must be copied to make a range contiguous.

Note

It might not be possible to make a range physically contiguous if any of 
the pages in the range are already locked. Because a call to 
LockMemoryContiguous  is not guaranteed to return the desired 
results, you must include in your code an alternate method for locking 
the necessary ranges of memory. In general, you should avoid calling 
LockMemoryContiguous  if at all possible. If you must call it, do so as 
early as possible—preferably at system startup time—to increase the 
likelihood of finding enough contiguous memory. ◆

To unlock a range of previously locked pages, use the UnlockMemory  function. This 
function reverses the effects of LockMemory  or LockMemoryContiguous . Unlocked 
pages are marked as cacheable.

Locking, contiguous locking, and unlocking operations are applied to ranges of the 
logical address space. If necessary to force the ranges onto page boundaries, the Virtual 
Memory Manager performs rounding of addresses and sizes, as described in “Holding 
and Releasing Memory” on page 3-14.

Mapping Logical to Physical Addresses
To obtain information about page mapping between logical and physical addresses, use 
the GetPhysical  function, which translates logical addresses into their corresponding 
physical addresses. It provides drivers and other software with the actual physical 
memory addresses of a specified logical address range. Non-CPU devices need this 
information to access memory mapped by the CPU.
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The GetPhysical  function allows you to obtain the physical addresses that correspond 
to any logically addressable range of main memory. To specify the logical address 
range to be translated, you use a memory-block record, defined by the MemoryBlock  
data type.

TYPE MemoryBlock =

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;

A memory-block record identifies a single contiguous block of memory by specifying the 
first byte in the block and the length of the block.

Note

Don’t confuse the blocks of memory defined by the MemoryBlock  data 
type with memory blocks as manipulated by the Memory Manager. The 
portion of the logical address space to be translated by GetPhysical  
can overlap several Memory Manager memory blocks or be just a part of 
one. Typically, however, that range coincides with the contents of a 
single Memory Manager block. ◆

A single logical address range sometimes corresponds to more than one range of 
physical addresses. As a result, GetPhysical  needs to pass back to your application an 
array of memory-block records. You pass a logical address range to GetPhysical , and 
it returns an array of physical address ranges. This operation requires the use of a 
logical-to-physical translation table, defined by the LogicalToPhysicalTable  
data type.

TYPE LogicalToPhysicalTable =

RECORD

logical: MemoryBlock; {a logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF

 MemoryBlock; {equivalent physical blocks}

END;

To call GetPhysical , you need to pass a translation table whose logical  field 
specifies the logical address range you want to translate. You also need to specify how 
many contiguous physical address ranges you want returned. In this way, you can adjust 
the number of elements in the array to suit your own needs. By default, a translation 
table contains enough space for eight physical memory blocks.

CONST defaultPhysicalEntryCount = 8;
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If the variable myTable  is of type LogicalToPhysicalTable  and myCount  is of type 
LongInt , you can call GetPhysical  as follows:

myCount := (SizeOf(myTable) DIV SizeOf(MemoryBlock)) - 1;

myErr := GetPhysical(myTable, myCount);

The algorithm used here to calculate the number of physical entries returned (myCount ) 
allows you to change the size (and hence the type) of the myTable  variable to include 
more or fewer memory blocks. The default size of the translation table is sufficient for 
most purposes. Before you do the translation, you can determine how many physical 
blocks you need to accommodate the entire logical address space specified in the table’s 
logical  parameter. To determine this, you pass a variable whose initial value is 0:

myCount := 0 ; { get number of blocks needed for give n r ange}

myErr := GetPhysical(myTable, myCount);

If the value of its second parameter is 0, GetPhysical  returns in that parameter the 
total number of physical blocks that would be required to translate the entire logical 
address range. In this case, both the logical  and physical  fields of the translation 
table are unchanged.

If the value of its second parameter is not 0, GetPhysical  returns in the physical  
field of the translation table an array specifying the physical blocks that correspond to 
the logical address specified in the logical  field. The GetPhysical  function returns 
in its second parameter the number of entries in that array (which may be fewer than 
were asked for). If the translation table was not large enough to contain all the physical 
blocks corresponding to the logical block, GetPhysical  updates the fields of the 
logical  memory block to reflect the remaining number of bytes in the logical range left 
to translate (count  field) and the next address in the logical address range to translate 
(start  field).

Note

You must lock (using LockMemory ) the address range passed to 
GetPhysical  to guarantee that the translation data returned are 
accurate (that is, that the logical pages do not move around in physical 
memory and that paging activity has not invalidated the translation 
data). An error is returned if you call GetPhysical  on an address 
range that is not locked. ◆

Recall that you sometimes need to call GetPhysical  even if virtual memory is not 
available. (See “The Physical Address Space” on page 3-9 for details.) In general, if 
GetPhysical  is available in the operating environment, then you should call it 
any time your software exports addresses to a NuBus expansion card that can read or 
write physical RAM directly. Listing 3-1 defines a general algorithm for implementing 
driver calls to a generic NuBus master card. To maximize compatibility with virtual 
memory, make sure that your hardware and device drivers support this method of 
issuing driver calls.
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Listing 3-1 Translating logical to physical addresses

PROGRAM GetPhysicalUsage;

USES Types, Traps, Memory, Utilities;

CONST

kTes tPtrS ize = $100000;

VAR

myPtr: Ptr ;

myPtrS ize: LongInt;

hasGetPhysical: Boolean; {does this machine have GetPhysical?}

lockOK: Boolean; {was the block successfully locked?}

myErr: OSErr;

myTable: LogicalToPhysicalTable;

myCount: LongInt;

index: Integer;

PROCEDURE SendDMACmd (addr: Ptr; count: LongInt);

BEGIN

{Th is is where you would probably make a driver call }

{ to initiate DMA from a NuBus master or similar hardware . }

END;

BEGIN

myPtrSize := kTestPtrSize;

myPtr : = Ne wPtr(myPtrSize) ;

I F myPtr < > NIL THEN

BEGIN

hasGetPhysical := TrapAvailable(_MemoryDispatch);

IF hasGetPhysical THEN

BEGIN

myErr := LockMemory (myPtr , myPtrSize) ;

lockOK := (myErr = noErr) ;

I F lockOK THEN

BEGIN

myTable.logical.address : = myP tr;

myTable.logical.count : = myPtrSize;

myErr := noErr;

WHILE (myErr = noErr) & (myTable.logical.count <> 0) DO

BEGIN

myCount := SizeOf(myTable) DIV SizeOf(MemoryBlock) - 1;

myErr := GetPhysical(myTable, myCount);

IF myErr = noErr THEN

FOR index := 0 TO (myCount - 1) DO

WITH myTable DO

SendDMACmd(physical[index].address, 
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physical[index].count)

ELSE

BEGIN

{Ha ndle GetPhysical error indicated by myErr . }

{Lo op will terminate unless myErr is reset to noErr . }

END;

END; {WHILE}

{Al ways unlock a range you locked ; i gnore any error here . }

myErr := UnlockMemory (myPtr , myPtrSize);

END

ELSE {not lockOK}

BEGIN

{handle LockMemory error indicated by myErr}

END;

END

ELSE {GetPhysical not available}

SendDMACmd(myPtr , myPtrSize) ;

END; {I F myPtr}

END.

If the GetPhysical  function is not available, the program defined in Listing 3-1 simply 
calls your routine to send a DMA command to the NuBus hardware. In that case, no 
address translation is necessary. If, however, GetPhysical  is available, you need to 
lock the logical address range whose physical addresses you want to get. If you 
successfully lock the range, you can call GetPhysical  as illustrated earlier. Be sure to 
unlock the range you previously locked before exiting the program.

▲ WARNING

Some Macintosh computers contain the _MemoryDispatch  trap in 
ROM, even though they do not contain an MMU coprocessor. In this 
case, the system software patches the _MemoryDispatch  trap to make 
it appear unimplemented. However, software that executes before 
system patches are installed cannot use this as a test of whether to call 
GetPhysical  or not. If your code is executed before the installation of 
system patches, you should use the Gestalt  function to test directly for 
the existence of an MMU coprocessor. ▲

Deferring User Interrupt Handling
During the time that the Macintosh is handling a page fault, it is critical that no other 
page faults occur. Because the system performs no other work while it is handling a page 
fault, only code that runs as a result of an interrupt can generate a second page fault. For 
this reason, you must call the HoldMemory  function on buffers or code that are to be 
referenced by any interrupt service routine. You must call this function at noninterrupt 
level because the MemoryDispatch  calls may cause movement of logical memory or 
physical memory and possible I/O.
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The use of procedure pointers (variables of type ProcPtr ) in specifying I/O completion 
routines, socket listeners, and so forth makes it impossible for drivers to know the exact 
location and size of all code or buffers that might be referenced when these routines are 
invoked. However, these routines must still be called only at a safe time, when paging is 
not currently in progress. Because the locations of all needed pages cannot be known, an 
alternate strategy is used to prevent a fatal double page fault.

The DeferUserFn  function is provided to allow interrupt service routines to defer, until 
a safe time, code that might cause page faults. This function determines whether the call 
can be made immediately and, if it is safe, makes the call. If a page fault is in progress, 
the address of the service routine and its parameter are saved, and the routine is deferred 
until page faults are again permitted.

Virtual Memory and Debuggers

Note

You need the information in this section only if you are writing a 
debugger that is to operate under virtual memory. ◆

Debuggers running under virtual memory can use any of the virtual memory routines 
discussed in the previous sections. For example, if a debugger is in a situation where 
page faulting would be fatal, it can use DeferUserFn  to defer the debugging until 
paging is safe. However, debuggers running under virtual memory might require a few 
routines that differ from those available to other applications. In addition, debuggers 
might depend on some specific features of virtual memory that other applications 
should not depend on.

For example, because debugger code might be entered at a time when paging would be 
unsafe, you should lock (and not just hold) the debugger and all of its data and buffer 
space in memory. Normally, the locking operation is used to allow NuBus masters or 
other DMA devices to transfer data directly into physical memory. This requires that 
data caching be disabled on the locked page. You might, however, want your debugger 
to benefit from the performance of the data cache on pages belonging solely to the 
debugger. The DebuggerLockMemory  function does exactly what LockMemory  does, 
except that it leaves data caching enabled on the affected pages. You can call the 
DebuggerUnlockMemory  function to reverse the effects of DebuggerLockMemory .

Other special debugger support functions

■ determine whether paging is safe

■ allow the debugger to enter supervisor mode

■ enter and exit the debugging state

■ obtain keyboard input while in the debugging state

■ determine the state of a page of logical memory
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All of these functions are implemented as extensions of _DebugUtil , a trap intended 
for use by debuggers to allow greater machine independence. This trap is not present in 
the Macintosh II, Macintosh IIx, Macintosh IIcx, or Macintosh SE/30 models, but it is 
present in all later models. The Virtual Memory Manager implements this trap for all 
machines that it supports, so a debugger can use _DebugUtil  (and functions defined in 
terms of _DebugUtil ) if Gestalt  reports that virtual memory is present.

When the virtual memory extensions to _DebugUtil  are not present (that is, when the 
computer supports virtual memory but is not a Macintosh II, Macintosh IIx, Macintosh 
IIcx, or Macintosh SE/30), _DebugUtil  provides functions that can determine the 
highest _DebugUtil  function supported, enter the debugging state, poll the keyboard 
for input, and exit the debugging state.

Bus-Error Vectors
The Operating System needs to intercept page faults and do the necessary paging. In 
addition, various applications and pieces of system software need to handle other kinds 
of bus errors. Virtual memory takes care of the complications of bus-error handling by 
providing two bus-error vectors. The vector that applications and other system software 
see is the one in low memory (at address $8). The vector that virtual memory uses (the 
one actually used by the processor) is in virtual memory’s private storage and is pointed 
to by the Vector Base Register (VBR). Virtual memory’s bus-error handler handles page 
faults and passes other bus errors to the vector in low memory at address $8.

When a debugger wants the contents of a page to be loaded into memory, it can read a 
byte from that page. The Operating System detects the page fault and loads the 
appropriate page (perhaps swapping another page to disk).

Note that a debugger will probably temporarily replace one or both of the bus-error 
vectors while it is executing. A debugger that wants virtual memory to continue paging 
while the debugger runs can put a handler only in the low-memory bus-error vector. A 
debugger that displays memory without allowing virtual memory to continue paging 
can put a handler in the virtual memory’s bus-error vector (at VBR + $8).

Because the current version of virtual memory is not reentrant, there are times when 
trying to load a page into memory would be fatal. To allow for this, you can use the 
PageFaultFatal  function to determine whether a page fault would be fatal at that 
time. If this function returns TRUE, the debugger should not allow the virtual memory’s 
bus-error handler to detect any page faults. Thus, you should always replace the virtual 
memory’s bus-error vector if the PageFaultFatal  function returns TRUE.

Special Nonmaskable Interrupt Needs
Because a debugger can be triggered with a nonmaskable interrupt (level 7, triggered by 
the interrupt switch), it has special needs that other code in the system does not. For 
example, because a nonmaskable interrupt might occur while virtual memory is moving 
pages (to make them contiguous, for example), debugger code must be locked (instead 
of held, like most other code that must run at a time when page faults would be fatal). 
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Unfortunately, the LockMemory  function is intended for use by device drivers and 
automatically disables data caching for the locked pages. Because this is not desirable for 
the debugger, the functions DebuggerLockMemory  and DebuggerUnlockMemory  
lock pages without inhibiting the caching of those pages. Note that both stack, code, and 
other storage used by the debugger might need to be locked in this way.

Supervisor Mode
Because a debugger is typically activated through one of the processor vectors, it usually 
executes in supervisor mode, allowing it access to all of memory and all processor 
registers. When the debugger is entered in another way—for example, through 
the _Debugger  or _DebugStr  trap or when it is first loaded—it is necessary to enter 
supervisor mode. You can accomplish this with the following assembly-language 
instructions:

MOVEQ #EnterSupervisorMode,D0

_DebugUtil ;OS trap to DebugUtils

;on exit, D0 still holds old SR

The code switches the caller into supervisor mode, and the previous status register is 
returned in register D0. Thus, when the debugger returns to the interrupted code, you 
can restore the previous interrupt level, condition codes, and so forth. When the 
debugger is ready to return to user mode, it simply loads the status register with the 
result returned in D0. Entering supervisor mode also switches the stack pointer from the 
user stack pointer (USP) to the interrupt stack pointer (ISP); reentering user mode 
changes the stack pointer back to the user stack pointer.

The Debugging State
When activated by an exception, _Debug  or _DebugStr  trap, or any other means, the 
debugger should call the DebuggerEnter  procedure to notify _DebugUtil  that the 
debugger is entering the debugging state. Then _DebugUtil  can place hardware in a 
quiescent state and prepare for subsequent _DebugUtil  calls.

Before returning to the interrupted application code, the debugger must call 
the DebuggerExit  procedure to allow _DebugUtil  to return hardware affected by 
DebuggerEnter  to its previous state.

Keyboard Input
A debugger can obtain the user’s keyboard input by calling the DebuggerPoll  
procedure. This routine can obtain keyboard input even when interrupts are disabled. 
After you call this service, you must then obtain keyboard events through the normal 
event-queue mechanism.
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Page States
Debuggers need a way to display the contents of memory without paging or to display 
the contents of pages currently on disk. The GetPageState  function returns one of 
these values to specify the state of a page containing a virtual address:

TYPE PageState = Integer;

CONST

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

A debugger can use this information to determine whether certain memory addresses 
should be referenced. Note that ROM and I/O space are not pageable and therefore are 
considered not paged.

Virtual Memory Manager Reference

This section describes the data structures and routines that are provided by the Virtual 
Memory Manager.

Data Structures
The Virtual Memory Manager defines two data structures for use with the 
GetPhysical  function, the memory-block record and the translation table.

Memory-Block Record

The GetPhysical  function uses a memory-block record to hold information about a 
block of memory, either logical or physical. The memory-block record is a data structure 
of type MemoryBlock .

TYPE MemoryBlock =

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;

Field descriptions

address A pointer to the beginning of a block of memory.
count The number of bytes in the block of memory.
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Translation Table

The GetPhysical  function uses a translation table to hold information about a logical 
address range and its corresponding physical addresses. A translation table is defined by 
the data type LogicalToPhysicalTable .

TYPE LogicalToPhysicalTable =

RECORD

logical: MemoryBlock; {a logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF

 MemoryBlock; {equivalent physical blocks}

END;

Field descriptions

logical A logical block of memory whose corresponding physical blocks are 
to be determined.

physical A physical translation table that identifies the blocks of physical 
memory corresponding to the logical block identified in the 
logical  field.

Routines
This section describes the routines you can use to control virtual memory. The section 
“Virtual Memory Management” describes the routines that allow you to control pages in 
physical memory, and the section “Virtual Memory Debugger Support Routines” 
describes the routines that only programmers implementing debuggers need to use.

Virtual Memory Management

This section describes the routines you can use to hold logical pages in physical memory 
and let go of them, lock and unlock pages in physical memory, obtain information about 
page mapping, and handle interrupts. To hold and release pages, use the HoldMemory  
and UnholdMemory  functions. To lock and unlock pages, use the LockMemory , 
LockMemoryContiguous , and UnlockMemory  functions. To obtain page-mapping 
information, use the GetPhysical  function. To defer user interrupt handling, use the 
DeferUserFn  function.

HoldMemory

To make a portion of the address space resident in physical memory and ineligible for 
paging, use the HoldMemory  function.

FUNCTION HoldMemory (address: UNIV Ptr; count: LongInt): OSErr;
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address The starting address of the range of memory to be held in RAM.

count The size, in bytes, of the range of memory to be held in RAM.

DESCRIPTION

The HoldMemory  function makes the portion of the address space beginning at 
address  and having a size of count  bytes resident in physical memory and ineligible 
for paging.

If the address  parameter supplied to the HoldMemory  function is not on a page 
boundary, then it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is held.

SPECIAL CONSIDERATIONS

Even though HoldMemory  does not move or purge memory, you should not call it at 
interrupt time.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the HoldMemory  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0000

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
interruptsMaskedErr –624 Called with interrupts masked
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UnholdMemory

To make a currently held range of memory eligible for paging again, use the 
UnholdMemory  function.

FUNCTION UnholdMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be released.

count The size, in bytes, of the range of memory to be released.

DESCRIPTION

The UnholdMemory  function makes the portion of the address space beginning at 
address  and having a size of count  bytes eligible for paging.

If the address  parameter supplied to the UnholdMemory  function is not on a page 
boundary, then it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is released.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnholdMemory  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0001

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to release

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notHeldErr –621 Specified range of memory is not held
interruptsMaskedErr –624 Called with interrupts masked
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LockMemory

To make a portion of the address space immovable in physical memory and ineligible for 
paging, use the LockMemory  function.

FUNCTION LockMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be locked in RAM.

count The size, in bytes, of the range of memory to be locked in RAM.

DESCRIPTION

The LockMemory  function makes the portion of the address space beginning at 
address  and having a size of count  bytes immovable in physical memory and 
ineligible for paging.

If the address  parameter supplied to the LockMemory  function is not on a page 
boundary, it is rounded down to the nearest page boundary. Similarly, if the specified 
range does not end on a page boundary, the count  parameter is rounded up so that the 
entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the 
Macintosh IIci ROM, all physical RAM is marked noncacheable.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockMemory  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatch $0002

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to lock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
interruptsMaskedErr –624 Called with interrupts masked
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LockMemoryContiguous

The LockMemoryContiguous  function is exactly like the LockMemory  function, 
except that it attempts to obtain a contiguous block of physical memory associated 
with the specified logical address range.

FUNCTION LockMemoryContiguous (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range of memory to be locked in RAM.

count The size, in bytes, of the range of memory to be locked in RAM.

DESCRIPTION

The LockMemoryContiguous  function makes the portion of the address space 
beginning at address  and having a size of count  bytes immovable in physical memory 
and ineligible for paging. The function attempts to obtain a contiguous block of physical 
memory associated with the specified logical address range. It might not be possible to 
make a range physically contiguous if any of the pages contained in the range are 
already locked.

If the address  parameter supplied to the LockMemoryContiguous  function is not on 
a page boundary, it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is locked.

The CPU marks locked pages as noncacheable. On Macintosh computers containing the 
Macintosh IIci ROM, all physical RAM is marked noncacheable.

SPECIAL CONSIDERATIONS

Because a call to LockMemoryContiguous  is not guaranteed to succeed, 
all code that uses LockMemoryContiguous  must have an alternate method 
for locking the necessary ranges of memory. In general, you should avoid using 
LockMemoryContiguous  if at all possible. If you must call it, do so as early as 
possible—preferably at system startup time—to increase the likelihood that enough 
contiguous memory can be found.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the LockMemoryContiguous  function are

Trap macro Selector

_MemoryDispatch $0004
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The registers on entry and exit for this routine are

RESULT CODES

UnlockMemory

To undo the effects of either LockMemory  or LockMemoryContiguous , use the 
UnlockMemory  function.

FUNCTION UnlockMemory (address: UNIV Ptr; count: LongInt): OSErr;

address The starting address of the range of memory to be unlocked.

count The size, in bytes, of the range of memory to be unlocked.

DESCRIPTION

The UnlockMemory  function makes the portion of the address space beginning at 
address  and having a size of count  bytes movable in real memory and eligible for 
paging again.

If the address  parameter supplied to the UnlockMemory  function is not on a page 
boundary, then it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the UnlockMemory  function are

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to unlock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
cannotMakeContiguousErr –622 Cannot make specified range contiguous
interruptsMaskedErr –624 Called with interrupts masked

Trap macro Selector

_MemoryDispatch $0003
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The registers on entry and exit for this routine are

RESULT CODES

GetPhysical

To translate logical addresses into their corresponding physical addresses, use the 
GetPhysical  function.

FUNCTION GetPhysical (VAR addresses: LogicalToPhysicalTable;

VAR physicalEntryCount: LongInt): OSErr;

addresses A translation table. On entry, set the logical  field of this record to the 
block of memory to translate. On exit, the physical  field of this record 
holds the corresponding physical address blocks.

physicalEntryCount
The number of physical entries to translate. On entry, set this field to 0 if 
you want GetPhysical  to return the number of table entries needed to 
translate the entire logical address range.

DESCRIPTION

The GetPhysical  function translates a logical address range into its corresponding 
physical address ranges. The logical  field of the addresses  translation table specifies 
the logical address range to be translated. GetPhysical  translates up to the size of the 
physical table or until it completes the translation, whichever occurs first.

If you call GetPhysical  with the physicalEntryCount  parameter set to 0, it returns 
in physicalEntryCount  the number of table entries needed to translate the entire 
address range. In this case, the translation table specified by the addresses  parameter 
is unchanged.

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to unlock

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked
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If you call GetPhysical  with the physicalEntryCount  parameter set to a number 
greater than 0, it returns in the physical  field of the addresses  translation table an 
array specifying the physical blocks that correspond to the logical address specified in 
the logical  field. In the physicalEntryCount  parameter, GetPhysical  returns the 
number of entries in that array (which may be fewer than were asked for). If the 
physical  field of the translation table was not large enough to contain all the physical 
blocks corresponding to the logical block, GetPhysical  updates the fields of the 
logical  memory block to reflect the remaining number of bytes in the logical range 
left to translate (count  field) and the next address in the logical address range to 
translate (start  field).

Note

The logical address range must be locked to ensure validity of the 
translation data. ◆

SPECIAL CONSIDERATIONS

The GetPhysical  function as currently implemented under virtual memory supports 
only logical RAM. You cannot use GetPhysical  to translate addresses in the address 
spaces of the ROM, I/O devices, or NuBus slots. Some Macintosh computers map a 
portion of the physical RAM into NuBus space, to simulate the presence of a video 
expansion card. GetPhysical  returns the result code paramErr  if you attempt to read 
that memory.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPhysical  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_MemoryDispatchA0Result $0005

Registers on entry

D0 Selector code

A0 Pointer to a translation table

A1 physicalEntryCount  in table

Registers on exit

A0 physicalEntryCount  translated

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked
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SEE ALSO

See “Mapping Logical to Physical Addresses,” beginning on page 3-16, for a method of 
calling GetPhysical  to translate addresses to be sent to a NuBus master card.

DeferUserFn

To determine whether code that might cause page faults can safely be called 
immediately, use the DeferUserFn  function.

FUNCTION DeferUserFn (userFunction: ProcPtr; 

argument: UNIV Ptr): OSErr;

userFunction
The address of the routine to run.

argument A pointer to the argument to pass to the specified routine.

DESCRIPTION

The DeferUserFn  function determines whether or not code that might call page faults 
can safely be called immediately. If the code can be called safely, DeferUserFn  calls the 
routine designated by userFunction  with register A0 containing the value designated 
by argument . If a page fault is in progress, however, the routine address and its 
parameter are saved, and the routine is deferred until page faults are again permitted.

Note that the routine might be called immediately (before returning to the caller of 
DeferUserFn ). Deferred functions must follow the register conventions used by 
interrupt handlers: they can use registers A0–A3 and D0–D3, and they must restore all 
other registers used.

ASSEMBLY-LANGUAGE INFORMATION

The registers on entry and exit for the DeferUserFn  function are

RESULT CODES

Registers on entry

A0 Address of function

D0 Argument for function

Registers on exit

D0 Result code

noErr 0 No error
cannotDeferErr –625 Unable to defer additional user functions
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Virtual Memory Debugger Support Routines

This section describes the virtual-memory routines that pertain primarily to 
debuggers. You need to read this section only if you are implementing a debugger. 
To determine which debugger functions are present, use the DebuggerGetMax  
function. When entering and exiting the debugging state, use the DebuggerEnter  
and the DebuggerExit  procedures. To determine whether paging is safe, use the 
PageFaultFatal  function. To lock and unlock memory with caching enabled, use 
the DebuggerLockMemory  and the DebuggerUnlockMemory  functions. To poll for 
keyboard input, use the DebuggerPoll  procedure. To determine the state of a page of 
logical memory, use the GetPageState  function.

DebuggerGetMax

The Memory Manager includes a special routine that debuggers use, instead of the 
Gestalt  function, to determine which debugger functions are present.

FUNCTION DebuggerGetMax: LongInt;

DESCRIPTION

The DebuggerGetMax  function returns the highest selector number of the debugger 
routines that are defined in terms of the _DebugUtil  trap. The numbers correspond to 
the following routines:

Of course, you should use the Gestalt  function to check whether virtual memory 
is available at all before you call the DebuggerGetMax  function.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerGetMax  function are

Selector Routine

$0000 DebuggerGetMax

$0001 DebuggerEnter

$0002 DebuggerExit

$0003 DebuggerPoll

$0004 GetPageState

$0005 PageFaultFatal

$0006 DebuggerLockMemory

$0007 DebuggerUnlockMemory

$0008 EnterSupervisorMode

Trap macro Selector

_DebugUtil $0000
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The registers on entry and exit for this routine are

DebuggerEnter

Before entering the debugging state, call the DebuggerEnter  procedure.

PROCEDURE DebuggerEnter;

DESCRIPTION

Call the DebuggerEnter  procedure to enter the debugging state. This allows the 
_DebugUtil  trap to make preparations for subsequent debugging calls.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerEnter  procedure are

The registers on entry for this routine are

DebuggerExit

Before exiting the debugging state, call the DebuggerExit  procedure.

PROCEDURE DebuggerExit;

DESCRIPTION

The DebuggerExit  procedure allows the _DebugUtil  trap to clean up after all 
debugging calls are completed.

Registers on entry

D0 Selector code

Registers on exit

D0 Highest available selector

Trap macro Selector

_DebugUtil $0001

Registers on entry

D0 Selector code
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ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerExit  procedure are

The registers on entry for this routine are

PageFaultFatal

A debugger can use the PageFaultFatal  function to determine whether it should 
capture all bus errors or whether it is safe to allow them to flow through to virtual 
memory. When paging is safe, the debugger can allow virtual memory to continue 
servicing page faults, and the user can view all of memory.

FUNCTION PageFaultFatal: Boolean;

DESCRIPTION

The PageFaultFatal  function returns TRUE if the debugger should not allow the 
virtual memory’s bus-error handler to detect any page faults.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the PageFaultFatal  function are

The registers on entry and exit for this routine are

Trap macro Selector

_DebugUtil $0002

Registers on entry

D0 Selector code

Trap macro Selector

_DebugUtil $0005

Registers on entry

D0 Selector code

Registers on exit

D0 Returned value
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DebuggerLockMemory

To lock a portion of the address space (as the LockMemory  function does) while leaving 
data caching enabled on the affected pages, use the DebuggerLockMemory  function.

FUNCTION DebuggerLockMemory (address: UNIV Ptr; count: LongInt):

OSErr;

address The start address of the range of memory that is to be locked in RAM.

count The size in bytes of the range of memory that is to be locked in RAM.

DESCRIPTION

The DebuggerLockMemory  function makes the portion of the address space beginning 
at address  and having a size of count  bytes immovable in physical memory and 
ineligible for paging. The function leaves data caching enabled on the affected pages.

If the address  parameter supplied to the DebuggerLockMemory  function is not on a 
page boundary, then it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is locked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerLockMemory  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_DebuggerLockMemory $0006

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
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DebuggerUnlockMemory

To reverse the effects of DebuggerLockMemory , use the DebuggerUnlockMemory  
function.

FUNCTION DebuggerUnlockMemory (address: UNIV Ptr; count: LongInt):

OSErr;

address The starting address of the range of memory that is to be unlocked.

count The size, in bytes, of the range of memory that is to be unlocked.

DESCRIPTION

The DebuggerUnlockMemory  function makes the portion of the address space 
beginning at address  and having a size of count  bytes movable in real memory and 
eligible for paging again.

If the address  parameter supplied to the DebuggerUnlockMemory  function is not on 
a page boundary, then it is rounded down to the nearest page boundary. Similarly, if the 
specified range does not end on a page boundary, the count  parameter is rounded up so 
that the entire range of memory is unlocked.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerUnlockMemory  function are

The registers on entry and exit for this routine are

RESULT CODES

Trap macro Selector

_DebugUtil $0007

Registers on entry

D0 Selector code

A0 Starting address

A1 Number of bytes to hold

Registers on exit

D0 Result code

noErr 0 No error
paramErr –50 Error in parameter list
notLockedErr –623 Specified range of memory is not locked
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DebuggerPoll

To poll for keyboard input, use the DebuggerPoll  procedure.

PROCEDURE DebuggerPoll;

DESCRIPTION

Call the DebuggerPoll  procedure, which you can use even if interrupts are disabled, 
to poll for keyboard input.

ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the DebuggerPoll  procedure are

The registers on entry and exit for this routine are

GetPageState

To obtain the state of a page of logical memory, use the GetPageState  function.

FUNCTION GetPageState (address: UNIV Ptr): PageState;

address An address in the page whose state you want to determine.

DESCRIPTION

The GetPageState  function returns the page state of the page containing the address 
passed in the address  parameter. The returned value is one of these constants:

TYPE PageState = Integer;

CONST

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

Trap macro Selector

_DebugUtil $0003

Registers on entry

D0 Selector code

Registers on exit

D0 Result code
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ASSEMBLY-LANGUAGE INFORMATION

The trap macro and routine selector for the GetPageState  function are

The registers on entry and exit for this routine are

Trap macro Selector

_DebugUtil $0004

Registers on entry

A0 Address in the page whose state is to be determined

D0 Selector code

Registers on exit

D0 Page state 
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Summary of the Virtual Memory Manager

Pascal Summary

Constants

CONST

{Gestalt constants}

gestaltVMAttr = 'vm  '; {virtual memory attributes}

gestaltVMPresent = 0; {bit set if v irtual memory present}

{default number of physical blocks in a translation table}

defaultPhysicalEntryCount = 8;

{page states}

kPageInMemory = 0; {page is in RAM}

kPageOnDisk = 1; {page is on disk}

kNotPaged = 2; {address is not paged}

Data Types

TYPE 

PageState = Integer;

LogicalToPhysicalTable = {translation table}

RECORD

logical: MemoryBlock; {logical block}

physical: ARRAY[0..defaultPhysicalEntryCount-1] OF MemoryBlock;

{equivalent physical blocks}

END;

MemoryBlock = {memory-block record}

RECORD

address: Ptr; {start of block}

count: LongInt; {size of block}

END;
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Routines

Virtual Memory Management

FUNCTION HoldMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION UnholdMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION LockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION LockMemoryContiguous

(address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION UnlockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION GetPhysical (VAR addresses: LogicalToPhysicalTable;
VAR physicalEntryCount: LongInt): OSErr;

FUNCTION DeferUserFn (userFunction: ProcPtr; argument: UNIV Ptr): 
OSErr;

Virtual Memory Debugger Support Routines

FUNCTION DebuggerGetMax : LongInt;

PROCEDURE DebuggerEnter;

PROCEDURE DebuggerExit;

FUNCTION PageFaultFatal : Boolean;

FUNCTION DebuggerLockMemory (address: UNIV Ptr; count: LongInt): OSErr;

FUNCTION DebuggerUnlockMemory

(address: UNIV Ptr; count: LongInt): OSErr;

PROCEDURE DebuggerPol l;

FUNCTION GetPageState (address: UNIV Ptr): PageState ;

C Summary

Constants

/ *Gestalt constant s* /

#define gestaltVMAtt r ' vm  '; / *v irtual memory attribute s* /

#define gestaltVMPresen t  0 ; / * bit set if v irtual memory presen t* /

/*default number of physical blocks in table*/

enum {

defaultPhysicalEntryCount = 8

};
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/*page states*/

enum {

kPageInMemory = 0, /*page is in RAM*/

kPageOnDisk = 1, /*page is on disk*/

kNotPaged = 2 /*address is not paged*/

};

Data Types

typedef short PageState;

struct LogicalToPhysicalTable { /*translation table*/

MemoryBlock logical; /*logical block*/

MemoryBlock physical[defaultPhysicalEntryCount];

/*equivalent physical blocks*/

};

typedef struct LogicalToPhysicalTable LogicalToPhysicalTable;

struct MemoryBlock { /*memory-block record*/

void *address; /*start of block*/

unsigned long count; /*size of block*/

};

typedef struct MemoryBlock MemoryBlock;

Routines

Virtual Memory Management

pascal OSErr HoldMemory (voi d *a ddress, unsigned long count);

pascal OSErr UnholdMemory (voi d *a ddress, unsigned long count);

pascal OSErr LockMemory (voi d *a ddress, unsigned long count);

pascal OSErr LockMemoryContiguous

(voi d *a ddress, unsigned long count);

pascal OSErr UnlockMemory (voi d *a ddress, unsigned long count);

pascal OSErr GetPhysical (LogicalToPhysicalTabl e *a ddresses,
unsigned lon g *p hysicalEntryCount);

pascal OSErr DeferUserFn (ProcPtr  userFunction , voi d *a rgument);
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Virtual Memory Debugger Support Routines

pascal long DebuggerGetMax (void);

pascal void DebuggerEnter (void);

pascal void DebuggerExit (void);

pascal Boolean PageFaultFatal

(void);

pascal OSErr DebuggerLockMemory

(voi d *a ddress, unsigned long count);

pascal OSErr DebuggerUnlockMemory

(voi d *a ddress, unsigned long count);

pasca l void D ebuggerPoll (void);

pascal PageState GetPageState

( const voi d *a ddress);

Assembly-Language Summary

Data Types

Memory-Block Data Structure

Translation Table Data Structure

Trap Macros

Trap Macros Requiring Routine Selectors

_MemoryDispatch

0 address long start of block
4 count 4 bytes size of block

0 logical 8 bytes logical block
8 physical 64 bytes equivalent physical blocks

Selector Routine

$0000 HoldMemory

$0001 UnholdMemory

$0002 LockMemory

$0003 UnlockMemory

$0004 LockMemoryContiguous
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_MemoryDispatchA0Result

_DebugUtil

Result Codes

Selector Routine

$0005 GetPhysical

Selector Routine

$0000 DebuggerGetMax

$0001 DebuggerEnter

$0002 DebuggerExit

$0003 DebuggerPoll

$0004 GetPageState

$0005 PageFaultFatal

$0006 DebuggerLockMemory

$0007 DebuggerUnlockMemory

$0008 EnterSupervisorMode

noErr 0 No error
paramErr –50 Error in parameter list
notEnoughMemoryErr –620 Insufficient physical memory
notHeldErr –621 Specified range of memory is not held
cannotMakeContiguousErr –622 Cannot make specified range contiguous
notLockedErr –623 Specified range of memory is not locked
interruptsMaskedErr –624 Called with interrupts masked
cannotDeferErr –625 Unable to defer additional user functions




